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Abstract
For given edge-capacitated connected graph and two its vertices s and t, the bot-
tleneck (or maxmin ) path problem is to find the maximum value of path-minimum 
edge capacities among all paths, connecting s and t. It can be generalized by find-
ing the bottleneck values between s and all possible t. These problems arise as sub-
problems in the known maximum flow problem, having applications in many real-
life tasks. For any graph with n vertices and m edges, they can be solved in O(m) 
and O(t(m, n)) times, respectively, where t(m, n) = min(m + n log(n),m�(m, n)) and 
�(⋅, ⋅) is the inverse Ackermann function. In this paper, we generalize of the bot-
tleneck path problems by considering their versions with k sources. For the first of 
them, where k pairs of sources and targets are (offline or online) given, we present 
an O((m + k) log(n))-time randomized and an O(m + (n + k) log(n))-time determin-
istic algorithms for the offline and online versions, respectively. For the second one, 
where the bottleneck values are found between k sources and all targets, we present 
an O(t(m, n) + kn)-time offline/online algorithm.
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1  Introduction

In this paper, we consider generalizations of the known Bottleneck Path Problem, 
abbreviated as the BPP, and Single-Source Bottleneck Paths Problem, abbreviated 
as the SSBPP. In both these problems, a simple, connected graph G = (V ,E) with 
V = {v1, v2,… , vn} and E = {e1, e2,… , em} is given and, for every edge ei , its 
capacity ci is also given. Additionally given a source vertex s ∈ V  and a target 
vertex t ∈ V  , the BPP is to find the value b(s, t) = max

P∈Pst

min
e∈P

c(e) , where Pst is the 

set of all paths between s and t. The SSBPP asks to find b(s, t), for a given source 
vertex s ∈ V  and all t ∈ V .

The BPP appears as a subproblem in the algorithm by Edmonds and Karp [12] 
for solving the Maximum Flow Problem and in an algorithm for the k-Splitta-
ble Flow Problem [3]. The Maximum Flow Problem serves as a (relaxation of 
a) mathematical model for many real-life problems, arising in electrical power 
transmission, airline scheduling, communication networks. The SSBPP arises as 
a subroutine, for example, in railway timetabling [19]. The BPP can be solved in 
O(m) time by the Camerini’s threshold approach, see Section 2. The SSBPP can 
be solved in O(m + n log(n)) time or in O(m�(m, n)) time by the Prim’s algorithm 
or the Chazelle’s algorithm, modified by breadth-first search, respectively, see 
Section 2. Descriptions of the original Camerini’s, Chazelle’s, and Prim’s algo-
rithms can be found in [7, 8, 20]. Duan, Lyu, and Xie presented an algorithm 
with the complexity O(

√
mn log(n) log log(n) + m

√
log(n)) for solving the SSBPP 

[10]. There are several papers, in which algorithms with computational complex-
ity guaranties are presented for the directed versions of the BPP and SSBPP, see, 
for example, [9, 10, 17].

We generalize the BPP and SSBPP by considering statements with many 
sources as follows. Given a simple, connected, edge-capacitated graph and verti-
ces s1,… sk , the Multi-Pair Bottleneck Path Problem (MPBPP, for short) is to find 
the values of b(s1, t1),… , b(sk, tk) , where t1,… , tk are additionally given, and the 
Multi-Source Bottleneck Paths Problem (MSBPP, for short) is to find b(si, t) , for 
any i and all t ∈ V  . The version of the MSBPP, when k = n , is called the All-Pairs 
Bottleneck Paths Problem, abbreviated as the APBPP.

The BPP, SSBPP, MPBPP, MSBPP, APBPP are maxmin problems. Any algo-
rithm, solving one of them, can be used to solve the corresponding minmax 
problem, which is obtained by taking all capacities with the opposite sign. The 
MPBPP, MSBPP, and APBPP can be used as parts in algorithms for solving vari-
ations and generalizations of the Maximum Flow Problem.

Obviously, the MPBPP can be solved in O(km) time by k calls of a linear-
time algorithm for the BPP. Similarly, the MSBPP can be solved in O(kt(m, n)) 
time. These approaches could be considered as naive or baseline solutions for 
the MPBPP and MSBPP. Several algorithms for solving the APBPP with upper 
complexity bounds are presented in [11, 21, 23]. In this paper, we propose 
O((m + k) log(n))-time randomized and O(m + (n + k) log(n))-time deterministic 
algorithms for the offline and online versions of the MPBPP, respectively, i.e., 
when si and ti are given in advance or subsequently enter. We also propose an 
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O(t(m, n) + kn)-time algorithm for the offline/online MSBPP. For large k, our 
algorithms are better than the baseline solutions.

2 � Baseline solutions

A spanning tree of a connected graph is any its tree subgraph, containing all verti-
ces of the graph. The minimum spanning tree problem, abbreviated as the MSTP, is 
to find in a given edge-weighted graph a spanning tree with the minimum sum of 
weights of its edges. The Bottleneck Spanning Tree Problem (the BSTP, for short) 
is to find in a given edge-weighted graph a spanning tree, in which the maximum 
weight of its edges achieves the minimum value. The maximization version of the 
MSTP (respectively, the maxmin version of the BSTP) can be solved with any 
algorithm for the MSTP (respectively, for the BSTP) by sign changing for all edge 
weights.

The BSTP can be solved in linear time on the quantity of edges by the Camerini’s 
algorithm [7], but no linear-time algorithm for the MSTP is known. There are many 
classic algorithms for solving the MSTP, like the Boruvka’s algorithm [6], Prim’s 
algorithm [20], Kruskal’s algorithm [18], Chazelle’s algorithm [8], and others, but 
all of them are super-linear. To solve the BPP, the Camerini’s threshold method can 
be applied as follows:

Algorithm 1   Linear-time BPP algorithm

The computational complexity analysis of Algorithm 1 can be done in a similar 
way to one presented in [7], giving the complexity bound O(m). Therefore, the BPP 
can be solved in O(m) time.

Optimal solutions of the MSTP are appeared to be useful for solving the SSBPP. 
Indeed, the following statement is true (it is known, no doubtely, but the authors did 
not find the corresponding reference):

Statement 1  If T is a minimum spanning tree of G = (V ,E, c) , then, for any s, t ∈ V  , 
the st-path in T is an optimal solution of the minmax version of the BPP with the 
source s and the target t.
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Proof  Assume the contrary, i.e., for the maximum-capacity edge ê on the st-path in 
T, we have c(ê) > b̂(s, t) = min

P∈Pst

max
e∈P

c(e) . Denote by V1 and V2 the vertex sets of the 

connected components of T ⧵ {ê} , where s ∈ V1, t ∈ V2 . For any edge 
e� = {a, b} ∈ E(G) with a ∈ V1, b ∈ V2 , we have c(e�) ≥ c(ê) . Otherwise, a spanning 
tree (T ⧵ {ê}) ∪ {e�} has a smaller weight, than T. Therefore, for any st-path P in G, 
we have max

e��∈P
c(e��) ≥ c(ê) . Hence, b̂(s, t) ≥ c(ê) . We have a contradiction. 	�  ◻

The MSTP can be solved by the Prim’s algorithm, which pseudocode is presented 
below:

Algorithm 2   Prim’s  algorithm for the MSTP

Using Fibonacci heaps [13], the Prim’s algorithm can be implemented in 
O(m + n log(n)) time. B. Chazelle invented the so-called soft heaps and applied them 
for solving the MSTP in O(m�(m, n)) time [8]. Having a minimum spanning tree T 
and a source s, breadth-first search in T, started at s, gives an optimal solution of the 
SSBPP in O(n) time by Statement 1. Hence, the SSBPP can be solved in O(t(m, n)) 
time.

3 � Our solutions for the MPBPP

3.1 � The offline MPBPP

In this Subsection, we assume that all (s1, t1),… , (sk, tk) are given offline. In other 
words, all input data are known in advance, before the algorithm starts running.

A disjoint-set data structure, abbreviated as a DJS, is a data structure that stores a 
partition of a set into disjoint subsets. It supports operations for adding new subsets, 
replacing two subsets by their union, and finding a representative member of a sub-
set. A DJS is usually implemented as a disjoint-subset forest, allowing to perform 
the three basic operations in near-constant time, see [14, 16, 22]. More precisely, 
insertion and join can be performed in O(1) time in the worst case, but search can be 
performed in amortized time, bounded from above by a value of the inverse Acker-
mann function.

DJSs play an important role in an efficient implementation of the Kruskal’s algo-
rithm for solving the MSTP or its maximization version. Namely, at each its step, a 
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disjoint-set data structure keeps a (monotonically growing) forest, which always is 
a part of a minimum/maximum spanning tree, obtained after the last step. First, the 
Kruskal’s algorithm sorts edges by their weights (non-decreasingly for the MSTP 
or non-increasingly for its maximization variant), next, it scans the sorted set and 
determines whether a current edge can be added to an optimal solution or not. This 
verification is based on the union and search operations with DJSs. It can be adopted 
to the MPBPP.

Our DJS-based solution for the MPBPP is presented in Algorithm 3. It uses the 
following notations:

–	 ind[v] is the set of those i, such that si or ti belongs to the subset of a DJS, con-
taining v;

–	 Find(v) returns a canonical element of the subset, containing v;
–	 Join(x, y) replaces the two subsets, having canonical elements x and y, by their 

union, arranges x as the canonical element of the new subset, and swaps the argu-
ments of ind[x] and ind[y], if ♯ind[y] > ♯ind[x];

–	 answer[i] is b(si, ti) , for any i;
–	 A⊗ B means the symmetric difference of sets A and B.

Algorithm 3   Algorithm for the offline  MPBPP

The correctness of Algorithm  3 is based on Statement 1. Indeed, according to 
this statement, the value of b(si, ti) is determined at the first moment, when a path 
arises between si and ti in the partial optimal solution. In other words, e connects 
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vertices a and b from distinct connected components, a, si belong to one of them 
and b, ti belong to another. Hence, i ∈ ind[x] and i ∈ ind[y] . At this moment, 
answer[i] = c(e) = b(si, ti) and the same is true for the whole ind[x] ∩ ind[y] . The 
assignment ind[x] ← ind[x]⊗ ind[y] guarantees that the subset Tx (or the tree) with 
the canonical element x from the partial optimal solution keeps only those si or ti that 
si ∈ V(Tx), ti ∉ V(Tx) or si ∉ V(Tx), ti ∈ V(Tx).

Let us estimate the computational complexity of Algorithm  3, assuming that all 
ind[i] are stored by hash-sets. It is known that insertion of an element into a hash-set 
and deletion of an element from a hash-set have constant randomized times [2]. The 
computational complexity of all algorithm’s actions, non-connected to work with 
inds, can be estimated by O(mlog(n)). Computing ind[x] ∩ ind[y] and the assignment 
ind[x] ← ind[x]⊗ ind[y] are performed in O(min(♯ind[x], ♯ind[y])) expected time by 
iterating on a minimum-size of these two sets. Let us show that the expected running 
time with all inds is O(k log(n) + n).

Work of the second cycle in Algorithm 3 can be represented by a binary tree Tr, all 
whose vertices correspond to subsets of a DJS, assuming that any such a subset S is 
equipped with its size nS and the number kS of i that si ∈ S or ti ∈ S . Clearly, it holds 
that ♯ind[xS] ≤ kS , where xS is the canonical element of S. By E(p, q) we denote the 
expected maximum quantity of atomic operations, needed for obtaining subsets S with 
nS = p and kS = q overall input data. As the root of Tr is obtained by joining some two 
subsets, we have

By the mathematical induction method on n and k we will show that 
E(n, k) = O(k log(n) + n) . Its basis are the statements E(n, 1) = O(n) 
and E(1, k) = O(k) , which are clearly true, for any n and k. The induc-
tion step assumes that E(n�, k�) ≤ Ĉ(k� log2(n

�) + n�) , for some Ĉ > C and all 
n ≥ n� ≥ 2, k� ≤ k, (n�, k�) ≠ (n, k) . Hence, we have

if t ≥ n

2
 . If t < n

2
 , then, by l ≤ k

2
 , we have

So, we proved that E(n, k) = O(k log(n) + n) . By this fact and the previ-
ous reasonings, the total expected computational complexity of Algorithm  3 is 
O((m + k) log(n)).

E(n, k) ≤ E(t, k − l) + E(n − t, l) + C ⋅ l, for some C > 0, 1 ≤ t ≤ n − 1, 0 ≤ l ≤
k

2
.

E(n, k) − Ĉ(k log2(n) + n) ≤ Ĉ((k − l) log2(t) + l log2(n − t) + l − k log2(n))

= Ĉ((k − l) log2(
t

n
) + l log2(

2(n − t)

n
)) ≤ 0,

E(n, k) − Ĉ(k log2(n) + n) ≤ Ĉ(k − l)(log2(
t

n
) + log2(

2(n − t)

n
))

= Ĉ(k − l) log2(
2t(n − t)

n2
) < 0.
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3.2 � The online MPBPP

The input data for Algorithm 3 are assumed to be given offline. For the online MPBPP, 
i.e., when (si, ti) are entering in the online regime, it is also possible to design an algo-
rithm with the same complexity bound O((m + k) log(n)) . It is based on modifications 
of some efficient algorithms for the so-called lowest common ancestor problem, abbre-
viated as the LCAP and introduced by A. Aho, J. Hopcroft, J. Ullman in [1].

For a given rooted tree (or a directed acyclic graph) G and its vertices v and u, the 
LCA of v and u is the deepest node, for which both v and u are descendants, assuming 
that each vertex is a descendent of itself. The LCAP is to find the LCA for an offline 
given G and its subsequently given queries (v1, u1),… , (vk, uk) . We will assume that G 
is a rooted tree.

Usually, algorithms for solving the LCAP firstly preprocess G in linear time on its 
vertex number and then return the LCAs in constant time per query. D. Harel and R. 
Tarjan invented in [15] the first algorithm of this type, based on the heavy-light decom-
position technique, but their solution is difficult to understand and implement. O. Berk-
man and U. Vishkin discovered in [5] a new way to solve the LCAP, also consumpt-
ing linear-time preprocessing time with constant query time. Their approach uses the 
depth-first search from the root of a given tree and indexing vertices in accordance to it, 
a reduction of the LCAP to the range minimum query problem (the RMQP, for short) 
within some subinterval in the sequence of indices. This RMQP is solved, using several 
techniques, one of them is precomputing the answers on large intervals that have sizes 
that are powers of two.

The mentioned approach of O. Berkman and U. Vishkin was simplified by M. 
Bender and M. Farach-Colton in [4]. Their algorithm is known as the jump-pointers 
algorithm. It uses a preprocessing step, working in O(n log(D)) time, where D is the 
tree diameter. Namely, for each vertex x, all liftings from x are organized to vertices 
that are higher than x on powers of two. We modify the preprocessing step by split-
ting paths from current vertices to the tree root into segments and computing minimum 
edge capacities in them.

In Algorithm 4, T is an edge-capacitated tree, stored by an adjacency list and rooted 
at an arbitrarily chosen vertex r. It also uses the following notations:

•	 x is a current vertex;
•	 d[x] is the depth of x with respect to r;
•	 p[x][0… ⌈log2(D)⌉] and v[x][0… ⌈log2(D)⌉] are arrays of jump-pointers and min-

imum edge capacities in the corresponding segments.
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Algorithm 4   Modified jump-pointers preprocession

Clearly that the computational complexity of Algorithm 4 is O(n log(D)) . In Algo-
rithm 5 below, for each query, two vertices are aligned, so that they are located 
at the same depth. Next, for any j, after j jumps the vertices s and t will have the 
depth d[s] − 2j = d[t] − 2j . Hence, if d[p[s][j]] ≤ d[l] , where l is the LCA of s 
and t, then p[s][j] = p[t][j].

Algorithm 5   Computation of the bottleneck value
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It is easy to see that the computational complexity of Algorithm 5 is O(log(D)) . So, 
by Statement 1, to solve the MPBPP, it is enough to find the maximum spanning tree 
for (V, E, c), preprocess it by Algorithm 4, and call Algorithm 5, for every pairs of que-
ries, see Algorithm 6.

Algorithm 6   Algorithm for the online MPBPP

The computational complexity of Algorithm 6 is O(m + (n + k) log(n)).

4 � Our solution for the MSBPP

Our algorithm for the offline/online MSBPP is simple, see Algorithm 7. Firstly, find 
the maximum spanning tree for a given graph. Next, call breadth-first search, started 
at every source, to determine the bottleneck values. Its correctness is based on State-
ment 1 and the computational complexity is O(t(m, n) + kn).
Algorithm 7   Algorithm for the offline/online MSBPP

5 � Conclusions and future work

In this paper, we considered bottleneck path problems with many sources. Previ-
ously, only single-source such problems were considered and algorithms for them 
were designed. We presented several efficient algorithms for multi-sources bottle-
neck path problems in this paper. When the sources quantity is large, our solutions 
work faster than baseline algorithms with sequential calling single-source algo-
rithms. Developing new algorithms and improving the existing ones is a challenging 
research problem for future research.
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