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Abstract 
 

The paper proposes new second-order accuracy metrics for 
scoring/rating models, which show the target preference of the model - it is 
better to diagnose "good" objects or better to diagnose "bad" ones for a 
constant generally accepted predictive power determined by the first-order 
metric - the Gini index. There are two metrics, they have both an integral 
representation and a numerical one. The numerical representation of metrics 
is of two types, the first of which is based on binary events to evaluate the 
model, the second on the default probability given by the model. Comparison 
of the results of calculating the metrics allows you to validate the calibration 
settings of the scoring/rating model and reveals its distortions. The article 
provides examples of calculating second-order accuracy metrics for ratings of 
several rating agencies, as well as for the well-known approach to calibration 
based on van der Burg’s ROC curves.  
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1  Introduction and problem statement 
  

The most popular method for validating scoring (rating) models currently used in practice is 
the analysis of the characteristics of the Cumulative Accuracy Profile (CAP) profile and its integral 
statistical accelerator - the accuracy coefficient or Gini index. A detailed explanation of this method 
can be found in [12]. To construct a CAP curve, all obtained credit scoring / rating values are sorted 
in ascending order for the entire set of scoring objects (for example, legal entities or individuals) for 
a certain period or for a set of periods. It should be known whether a default occurred or not for an 
object during the analyzed period (usually a year) from the date of the rating calculation. The rating 
model should have predictive power and separate future defaulters from “good” targets by placing 
defaulters at the top of the list. 

For each possible numerical value of the rating (say, from 0 to 100), for example, 10, the Y-
axis is the proportion of defaults with a lower rating than 10, the X-axis is the proportion of all objects 
with a lower rating than 10. An effective rating model The CAP curve should be as convex as possible 
above the diagonal and ascending at the start of the X-axis. If the CAP curve is close to the diagonal, 
it means that the rating does not in any way characterize the probability of default (ineffective 
scoring model, Random-model). 

The Gini index or Accuracy Ratio (AR) of a scoring model is the ratio of the area between the 
CAP curve and the diagonal to the area between the ideal CAP curve and the diagonal, (see Fig. 1), 

𝐴𝑅 =
𝑎𝑅

𝑎𝑃
. Value of AR is measured in the range from 0 (ineffective system) to 1 (ideal system), if AR 

is less than zero (maybe up to -1), then the rating model is worse than its absence, or the rating 
objects are ordered in reverse order.  

 

 
Figure  1: CAP curve. 

  
The ideal CAP-curve will be set in the form of a triangle with a notch with the base D indicated 

in Fig. 1, where D is the share of defaults among all rated objects of the training set. 
 Exact expressions for AR  

 𝐴𝑅 =
2 ∫

1
0 𝐶(𝑥)𝑑𝑥−1

1−𝐷
 (1) 
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 where C(x) is the CAP-curve value for the x-coordinate of the scoring object, which denotes the 
proportion of objects sorted by rating, so that the rating of the object x is higher or equal to the x 
proportion of all rated objects, but lower than the opposite proportion of 1-x, 𝐶(0) = 0, 𝐶(1) = 1. 
From the construction of the CAP-curve it follows that the probability of default (PD) in the training 
sample of objects x∈[0,1] is given by the product  

 𝑃𝐷(𝑥) = 𝐷 ⋅
𝑑

𝑑𝑥
𝐶(𝑥) (2) 

 

To plot the Receiver Operating Characteristic (ROC) curve, the OX axis represents the share 
of non-default objects sorted by rating (scoring) ascending order, so there is no triangle with base D 
in the ROC curve figure. The ideal ROC curve will coincide with the OY axis up to the value of one, 
therefore, the dependence on the share of defaults D will formally disappear from formula (1) for 
the Gini index  

 𝐴𝑅 = 2 ⋅ 𝐴𝑈𝐶 − 1, (3) 

 where AUC = ∫
1

0
𝑅(𝑔)𝑑𝑔 is area under ROC curve. 

The AUC metric has long been widely used in various problems of diagnosing binary events 
[4]: from the problems of signal-noise separation in radio engineering [7] and medical diagnostics 
[13], [16] to algorithms artificial intelligence [3] and credit scoring used in risk management [8]. 

The Gini exponent calculated from the ROC curve turns out to be invariant with respect to D. 
Indeed, the share of “good” objects (i.e, no default) will be defined as  

 𝑔(𝑥) =
𝑥−∫

𝑥
0 𝑃𝐷(𝑠)𝑑𝑠

1−𝐷
,   (4) 

 where, obviously, 𝑔(𝑥) ∈ [0,1] and  

 𝐶(𝑥) = 𝑅(𝑔(𝑥)),    𝑅(0) = 0,    𝑅(1) = 1. (5) 

 Then 𝐴𝑅 = 2 ∫
1

0
𝑅(𝑔(𝑥))𝑑𝑔(𝑥) − 1 = 2

∫
1

0 𝐶(𝑥)(1−𝑃𝐷(𝑥))

1−𝐷
𝑑𝑥 − 1 =

2 ∫
1

0 𝐶(𝑥)𝑑𝑥−1

1−𝐷
, that is, formulas 

(1) and (3) are equivalent. 
 

 
Figure  2: ROC curves of two models of the same power (Gini). 

   

In Fig. 2 shows the ROC curves of two scoring models having the same AR accuracy. However, 
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curve type 1 characterizes the rating model 1, which is better than model 2 at identifying “bad” 
objects - this is called the left-hand preference of the model. On the contrary, curve type 2 shows 
that model 2 is better at separating "good" objects - this is called right-hand preference. 
Mathematically, this is easy to verify if you pay attention to the geometric meaning of formula (2), 
which determines the probability of default as the tangent of the slope of the tangent for the CAP 
curve, multiplied by the normalizing default. 

The Gini metric is the most thoroughly studied in credit risk management, in the work [5] 
estimates of the statistical accuracy of this metric on limited measurement data are given. However, 
the Gini metric does not characterize the peculiarities of the preference of scoring models in the 
best way to determine the “bad” ones and not to distinguish the “good” objects in the best way, or 
vice versa. 

In practice, taking into account the target preference of the scoring / rating model is in 
demand, including its purposeful construction for a given preference. For example, if the lending 
strategy is aimed at the maximum level of approval when lending to approved companies on general 
terms (collateral, margin, short loan term, etc.), then it is reasonable that such a “credit pipeline” 
would be preferred to model 1. On the contrary, in the case of long-term lending on concessional 
terms or lending in a downturn, a reasonable preference will be given to model 2, because such a 
strategy requires the selection of the best companies with a minimum level of risk. 

To separate these goals, it is necessary to introduce additional metrics that can distinguish 
the features of the scoring model with left-hand and right-hand preference for the convexity of the 
ROC curve. 

 

2  Definition of metrics of the second order of accuracy of scoring 
models 

   

2.1  Definition 
 It is assumed that a scoring (rating) model has been built for which a convex continuous 

ROC curve is known 𝑦 = 𝑅(𝑥) , the inverse function is defined 𝑥 = 𝑅−1(𝑦). 
  

Definition 

  

    1.   The Left-hand AR of the scoring model is the LAR metric  

𝐿𝐴𝑅 = 2 ⋅ 𝐿𝐴𝑈𝐶 − 1,    𝐿𝐴𝑈𝐶 = ∫
1

0

∫
𝑐

0 𝑅(𝑥)𝑑𝑥

𝑐⋅𝑅(𝑐)
𝑑𝑐; 

 

    2.   The Right-hand AR of the scoring model is called the RAR metric  

𝑅𝐴𝑅 = 2 ⋅ 𝑅𝐴𝑈𝐶 − 1,              𝑅𝐴𝑈𝐶 = ∫
1

0

∫
1

𝑓
(1−𝑅−1(𝑦))𝑑𝑦

(1−𝑓)⋅(1−𝑅−1(𝑓))
𝑑𝑓.  

 

 

 By changing variables, it is easy to see that the equivalent expression for RAUC is 

 𝑅𝐴𝑈𝐶 = ∫
1

0

∫
1

𝑐 (𝑅(𝑥)−𝑅(𝑐))𝑑𝑥

(1−𝑐)⋅(1−𝑅(𝑐))
⋅ 𝑅′(𝑐)𝑑𝑐 or, similar to RAR, the expression  

 𝑅𝐴𝑅 = 1 − 2 ⋅ ∫
1

0
(1 − 𝑅(𝑐)) ⋅ (∫

𝑐

0

𝑅′(𝑥)

(1−𝑥)⋅(1−𝑅(𝑥))
𝑑𝑥) 𝑑𝑐. 
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With AR = 0 (random scoring model) LAR = RAR = 0. Indeed, at zero AR, 𝑅(𝑥) = 𝑥  and 

𝐿𝐴𝑅[𝑟𝑎𝑛𝑑𝑜𝑚] = 2 ∫
1

0

∫
𝑐

0
𝑥𝑑𝑥

𝑐2 𝑑𝑐 − 1 = 0, the same will happen for RAR. 

The right-hand RAR metric is a representation of the left-hand LAR metric and vice versa, if 
you do the symmetric inverse transformation of the ROC curve. Namely:  

 {
𝑦 = 1 − 𝑅(𝑥)
𝑄 = 1 − 𝑥

 (6) 

 

Then Q(y) will be a right-hand ROC curve (curve type 2 Fig. 2) if R(x) was a left-hand ROC curve 
(curve type 1 Fig. 2) and vice versa. 

 

 

2.2  AR, LAR, RAR metrics on a finite set of scoring objects 
 

Let the statistical binary data on the credit risk indicator be provided, including: 
  

    1.  𝑁 – non-defaults, with ratings 𝑆𝑛, 𝑛 = 1 … 𝑁 

 

    2.  D – defaults with ratings before default �̂�𝑑, 𝑑 = 1 … 𝐷. 
 

    3.  all ratings are ordered from «bad» to «good» 𝑆𝑛+1 ≥ 𝑆𝑛, �̂�𝑑+1 ≥ �̂�𝑑.  

 

 The default rate in a given sample will obviously be 𝑃𝐷 =
𝐷

𝐷+𝑁
. Let the function 

𝛿𝑢(𝑤) = {

1, if  𝑢 > 𝑤
1

2
  if  𝑢 = 𝑤

0, if  𝑢 < 𝑤

.   

 ROC curve 𝑅𝑛 at point 𝑥𝑛 = 0 …
𝑛

𝑁
… 1 calculated as  

 𝑅0 = 0, 𝑅𝑛 =
1

𝐷
⋅ ∑𝐷

𝑑=1 𝛿𝑆𝑛
(�̂�𝑑) (7) 

 The first-order discriminating metric AR (Gini coefficient) is calculated using the well-known 
formula of the Mann-Whitney statistics:  

 𝐴𝑈𝐶 =
1

𝑁⋅𝐷
⋅ ∑𝑁

𝑛=1 ∑𝐷
𝑑=1 𝛿𝑆𝑛

(�̂�𝑑),    𝐴𝑅 = 2 ⋅ 𝐴𝑈𝐶 − 1     (8) 

 The second-order left-hand and right-hand metric LAR and RAR is calculated by the formulas: 
 

 𝐿𝐴𝑈𝐶 =
1

𝑁
∑𝑁

𝑘=1 |

∑𝑘
𝑛=1 ∑𝐷

𝑑=1 𝛿𝑆𝑛
(�̂�𝑑)

𝑘⋅∑𝐷
𝑑=1 𝛿𝑆𝑘

(�̂�𝑑)
  if  ∑𝐷

𝑑=1 𝛿𝑆𝑘
(�̂�𝑑) ≠ 0

0    if    ∑𝐷
𝑑=1 𝛿𝑆𝑘

(�̂�𝑑) = 0
  , 

 

 𝑅𝐴𝑈𝐶 =
1

𝐷
∑𝐷

𝑑=1 |

∑𝐷
𝑛=𝑑 ∑𝑁

𝑘=1 𝛿𝑆𝑘
(�̂�𝑛)

(𝐷−𝑑+1)⋅∑𝑁
𝑘=1 𝛿𝑆𝑘

(�̂�𝑑)
  if  ∑𝑁

𝑘=1 𝛿𝑆𝑘
(�̂�𝑑) ≠ 0

0    if    ∑𝑁
𝑘=1 𝛿𝑆𝑘

(�̂�𝑑) = 0

,     (9) 

  

 𝐿𝐴𝑅 = 2 ⋅ 𝐿𝐴𝑈𝐶 − 1  ,    𝑅𝐴𝑅 = 2 ⋅ 𝑅𝐴𝑈𝐶 − 1 

. 
 Formulas (9) are obtained from the definition of second-order left-hand and right-hand 
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metrics after replacing the integral with finite differences taking into account (7). It should only be 
noted that the computational volume of calculating metrics is of the order of magnitude 𝐷 ⋅ 𝑁 for 
AR, 𝐷 ⋅ 𝑁2/2 for LAR, 𝑁 ⋅ 𝐷2/2 for RAR. Therefore, in the case of big data, you will have to resort 
to the random thinning technique to save computational resources. 

The statistical error of the LAR, RAR metrics at the time of publication of this work has not 
been investigated, however, the statistics of the AR indicator has been thoroughly studied [5]. It is 
proposed to use these results to formulate approximate interval criteria taking into account the 
finiteness of measurements. However, given the absence of formulas for LAR, RAR statistics, there 
is no point in “chasing accuracy,” so we use conservative estimates of the AR standard deviation. In 
[1], an upper bound for the standard deviation AR for a convex continuous ROC curve depending on 
the AR value is presented in the form  

 𝜎𝑨𝑹 = √
(2𝑁+1)⋅(1−𝐴𝑅2)−(𝑁−𝐷)⋅(1−𝐴𝑅)2

3⋅𝑁⋅𝐷
. (10) 

 Which is in practical terms of the study of the scoring model at 𝑁 ≫ 𝐷 ≫ 1 

 can be simplified to 𝜎𝑨𝑹 ≅ √
1+2𝐴𝑅−3𝐴𝑅2

3⋅𝐷
.  

 

2.3  AR, LAR, RAR metrics imputed to the calibrated rating model 
 

Let the number of non-default rating segments 𝑆𝑖 , ordered in descending order of PD 
dimensions, is equal to N, 𝑖 = 1 … 𝑁 . For each segment of the rating 𝑆𝑖  of the test sample 
containing 𝑛𝑖 ≥ 0 objects, the calibrated probability of default is determined 𝑑𝑖 = 𝑃𝐷(𝑆𝑖). 

 Assuming 𝑔0 = 0, 𝑅0 = 0, coordinates 𝑔𝑘 =
∑𝑘

𝑖=1 𝑛𝑖⋅(1−𝑑𝑖)

∑𝑁
𝑖=1 𝑛𝑖⋅(1−𝑑𝑖)

 , 𝑅𝑘 =
∑𝑘

𝑖=1 𝑑𝑖⋅𝑛𝑖

∑𝑁
𝑖=1 𝑑𝑖⋅𝑛𝑖

 will form the 

imputed ROC-curve in the axes OX, OY, respectively. 
The dotted numerical analog of the definitions of the Gini AR, as well as the LAR and RAR 

metrics on the imputed ROC curve, will be the following expressions:- the imputed Gini is calculated 
as  

 𝐴𝑈𝐶𝑖𝑚𝑝 = ∑𝑁
𝑘=1 [

𝑅𝑘+𝑅𝑘−1

2
⋅ (𝑔𝑘 − 𝑔𝑘−1)] , 𝐴𝑅𝑖𝑚𝑝 = 2 ⋅ 𝐴𝑈𝐶𝑖𝑚𝑝 − 1. (11) 

 - imputed second-order accuracy metrics LAR, RAR are calculated as  

 𝐿𝐴𝑈𝐶𝑖𝑚𝑝 = ∑𝑁
𝑘=1 [

𝑔𝑘−𝑔𝑘−1

𝑔𝑘⋅𝑅𝑘
⋅ ∑𝑘

𝑠=1
𝑅𝑠+𝑅𝑠−1

2
⋅ (𝑔𝑠 − 𝑔𝑠−1), if  𝑔𝑘 ⋅ 𝑅𝑘 ≠ 0

0,    if  𝑔𝑘 ⋅ 𝑅𝑘 = 0
], 

 

 𝑅𝐴𝑈𝐶𝑖𝑚𝑝 = ∑𝑁
𝑘=1 [

𝑅𝑘−𝑅𝑘−1

(1−𝑔𝑘−1)⋅(1−𝑅𝑘−1)
⋅ ∑𝑁

𝑠=k (1 −
𝑔𝑠+𝑔𝑠−1

2
) ⋅ (𝑅𝑠 − 𝑅𝑠−1),

  if  (1 − 𝑔𝑘−1) ⋅ (1 − 𝑅𝑘−1) ≠ 0

0  ,    if  (1 − 𝑔𝑘−1) ⋅ (1 − 𝑅𝑘−1) = 0

], (12) 

  

 𝐿𝐴𝑅𝑖𝑚𝑝 = 2 ⋅ 𝐿𝐴𝑈𝐶𝑖𝑚𝑝 − 1,    𝑅𝐴𝑅𝑖𝑚𝑝 = 2 ⋅ 𝑅𝐴𝑈𝐶𝑖𝑚𝑝 − 1. 

 For a specific rating model, the calculations of the first and second order metrics are possible using 
formulas (8),(9) at the development-validation stage according to the default data of the test sample 
objects. Calculations according to formulas (11),(12) are carried out after the rating model is 
calibrated and the objects are filled with rating categories for the current non-default sample. It is 
of practical interest to compare the results (8),(9) vs (11),(12), because it lie in base of validation of 
the calibration. 
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3. Limit convex ROC curves 
  

The simplest geometric illustration of a ROC curve with asymmetric scoring model properties 
is a triangular ROC curve (see Fig. 3).  

 
Figure  3: Triangular ROC curve. 

 

    This ROC curve is set with only two parameters 𝑎, 𝑑 at that 𝑎 ∈ [0,1 − 𝑑]. Obviously, 
the Gini index is 𝐴𝑅 = 𝑑.   To find LAR and RAR, it is necessary to represent the ROC-curve as a 
function  

 𝑅𝑂𝐶(𝑥) = {
𝑥

𝑎+𝑑

𝑎
,    𝑥 ≤ 𝑎

𝑥
1−𝑎−𝑑

1−𝑎
+

𝑑

1−𝑎
, 𝑥 > 𝑎,

 (13) 

 then use the formulas LAR and RAR from the definition of paragraph 2.1. 
 Omitting rather cumbersome but standard calculations, we get  

 
𝐿𝐴𝑅(𝑎, 𝑑) = 𝑎 ⋅ 𝑙𝑛(𝑎)   −

1−𝑎

1−𝑎−𝑑
⋅ (𝑎 + 𝑑) ⋅ 𝑙𝑛(𝑎 + 𝑑)

𝑅𝐴𝑅(𝑎, 𝑑) = (1 − 𝑎 − 𝑑) ⋅ ln(1 − 𝑎 − 𝑑)   −
𝑎+𝑑

𝑎
⋅ (1 − 𝑎) ⋅ ln(1 − 𝑎)

 (14) 

 From formulas (14), the limiting values of the metrics LAR and RAR for a given accuracy of the AR 
scoring model follow. If the value a on the right tends to zero (𝑎 → 0 + 𝜖), then we get the ROC-
curve, shifted to the maximum to the left, with the maximum LAR and minimum RAR. If 𝑎 → 1 −
𝑑 − 𝜖, it will turn out the other way around, i.e. minimum LAR and maximum RAR. It is not difficult 
to calculate the limits (14)  

min(𝐿𝐴𝑅, 𝑅𝐴𝑅)   = 𝐴𝑅 + (1 − 𝐴𝑅) ⋅ ln(1 − 𝐴𝑅)  , max(𝐿𝐴𝑅, 𝑅𝐴𝑅)   = −
𝐴𝑅⋅ln(𝐴𝑅)

1−𝐴𝑅
. (15) 

 Formula (15) gives the range of possible LAR, RAR values for a convex ROC curve  

𝐿𝐴𝑅, 𝑅𝐴𝑅 ∈ [min(𝐿𝐴𝑅, 𝑅𝐴𝑅)  , max(𝐿𝐴𝑅, 𝑅𝐴𝑅)  ]. 
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4. Trapezoidal representation of the ROC curve, segment of 
indifference 

Triangular metrics 𝑎(𝐿𝐴𝑅) and 𝑎(𝑅𝐴𝑅) obtained from a given ROC curve with a known 
Gini index (𝐴𝑅 = 𝑑) have an obvious geometric meaning. If we solve the transcendental equations 
(13), then they will parameterize the ROC-curve of the given scoring model, indicating the size and 
extent of its three main zones of default probability. You can conditionally divide these zones 
according to the traffic light principle: to the «red» - (0, 𝑎(𝐿𝐴𝑅)] , to «yellow» - 
(𝑎(𝐿𝐴𝑅), 𝑎(𝑅𝐴𝑅)]   and on “green” - (𝑎(𝑅𝐴𝑅), 1]  along the ROC axis «Fraction of non-
defaults» (see Fig. 5). The color depth of the "traffic light" coloring will be determined by the slope 
of the triangular ROC (13), which is a multiple of the expected probability of default PD of the 
entire population2. In the «red» zone, PD has a multiplier   𝑃𝐷𝑟𝑒𝑑 = 𝑃𝐷 ∙ 𝜇𝐿, similarly in the 

«green» zone is  𝑃𝐷𝑔𝑟𝑒𝑒𝑛 = 𝑃𝐷
𝜇𝑅

⁄  and in the “yellow” zone there is, on average, a neutral 

position  𝑃𝐷𝑦𝑒𝑙𝑙𝑜𝑤 = 𝑃𝐷.  

 

 
Figure 4. Triangulation of the ROC-curve of the scoring model AR = 0.667, LAR = 0.53, RAR = 0.486 

(a(LAR)=0.116, a(RAR)=0.185) 
The multipliers 𝜇𝐿 , 𝜇𝑅 of the left and right zones of the ROC curve (among the population of 
non-default objects) are calculated as 

𝜇𝐿(𝐿𝐴𝑅, 𝐴𝑅) =
𝑎(𝐿𝐴𝑅)+𝐴𝑅

𝑎(𝐿𝐴𝑅)

𝜇𝑅(𝑅𝐴𝑅, 𝐴𝑅) =
1−𝑎(𝑅𝐴𝑅)

1−𝑎(𝑅𝐴𝑅)−𝐴𝑅

         (16) 

and 𝜇𝐿 > 1, 𝜇𝑅 > 1 . 
The higher the multiplier 𝜇𝐿, the higher the left preference for the ROC curve (L-type), on the 
other hand, the higher 𝜇𝑅, the higher the right target preference at equal AR (R-type). With an 
increase in the overall discriminatory accuracy AR, both indicators will increase monotonically. 
From formulas (14), (16) will follow a unified equation for the multipliers 

𝑠𝐴𝑅 =
𝐴𝑅

𝜇𝑠−1
𝑙𝑛 (

𝐴𝑅

𝜇𝑠−1
) −

𝜇𝑠−1−𝐴𝑅

𝜇𝑠(1−𝐴𝑅)−1
∙

𝐴𝑅∙𝜇𝑠

𝜇𝑠−1
𝑙𝑛 (

𝐴𝑅∙𝜇𝑠

𝜇𝑠−1
),    (17) 

                                                      
2 This is not a strict definition, but it becomes precise as 𝑃𝐷 → 0. 
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where 𝑠 = 𝐿, 𝑅.  Thus, the solution of equation (17) is the function 𝜇 = 𝜇𝑠(𝑠𝐴𝑅, 𝐴𝑅), which has 
the single solution in the area 𝐴𝑅 ∈ (0,1), 

  𝑠𝐴𝑅 ∈ (𝐴𝑅 + (1 − 𝐴𝑅) ∙ ln(1 − 𝐴𝑅) , −
𝐴𝑅∙ln(𝐴𝑅)

1−𝐴𝑅
),  

wherein  𝑎(𝐿𝐴𝑅) =
𝐴𝑅

𝜇𝐿−1
,    𝑎(𝑅𝐴𝑅) =

𝜇𝑅−1−𝜇𝑅∙𝐴𝑅

𝜇𝑅−1
.  

The parameters 𝐴𝑅, 𝜇𝐿 , 𝜇𝑅 (17) can also be an alternative parameterization of the ROC curve 
instead of 𝐴𝑅, 𝐿𝐴𝑅, 𝑅𝐴𝑅. 
Using the multipliers 𝜇𝐿 , 𝜇𝑅 you can get the ranges of the trapezoidal representation of the ROC-
curve Fig.5, which has two properties:  

1. The area under the trapezoid coincides with the AUC of ROC curve; 

2. The upper base of the trapezoid is parallel to the lower. That is, in the non-default sampling 

range of the OX axis 𝐼 ∈ (𝒂, 𝟏 − 𝒃), the trapezoidal ROC curve is indifferent to default 

discrimination. 

 
Figure 5. Trapezoidal transformation of a ROC curve 

 
Analytical calculations give 

𝒂 =
𝑎(𝐿𝐴𝑅)

1+√1−𝐴
, 𝒃 =

1−𝑎(𝑅𝐴𝑅)

1+√1−𝐴
, 

where 𝐴 = 𝐴𝑅 ∙ (1 +
1

𝜇𝐿−1
+

1

𝜇𝑅−1
).  

Whence it follows that the length of the neutral section is 

 𝑰 = 1 − 𝒂 − 𝒃 = √1 − 𝐴.          (18) 
The coordinates of the two points of the upper base of the trapezoidal ROC curve are the lower 

(𝒂; 𝒂 ∙ 𝜇𝐿) and upper (1 − 𝒃; 1 −
𝒃

𝜇𝑅
), respectively.  

The length of the neutral section 𝑰 has a simple meaning from the point of view of the 
binary choice model. Namely, (18) is the concentration (percentage) of binary choice objects that 
have quasi-neutrality (or indifference) to discrimination. For example, if we consider the ROC curve 
as a population ranking curve by income, then metric (18) will estimate the concentration of the 
population with an average income (middle-class). At the same time, metric (18) is not invariant 
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with respect to ROC preference (L-type, where there are few rich people or R-type, where there 

are many poor people). Moreover, under condition 𝐴 = 1 (equivalent to  
1

𝜇𝐿−1
+

1

𝜇𝑅−1
=

1−𝐴𝑅

𝐴𝑅
), 

the middle-class as such disappears, and the ROC-curve takes on a triangular shape Fig. 3, 
indicating only two income classes (like to patricians and plebeians in ancient Rome).  
 
 

5. Practical samples of rating/scoring models preference  
 One of the most popular PD calibration models for scoring cards is the logit form 

 𝑃𝐷 =
1

1+𝑒𝛼⋅𝑅+𝛽
, 

where 𝛼, 𝛽 – constant parameters, 𝑅 – scoring score. In order to answer the question whether 
this form of calibration is suitable for different target preferences of scoring / rating models, let us 
consider a similar form of calibrations, which follows from van der Burgt’s one-parameter class of 
ROC curves [15]. Van der Burgt’s ROC curve model type is easy to analyze and recommended for 
calibrating scoring models [14]. The one-parameter family is   

 𝑅𝑂𝐶(𝑥) =
1−𝑒−𝑘𝑥

1−𝑒−𝑘 . 

 

Gini index (AR) is calculated as a function  

 𝐴𝑅(𝑘) = 2 ⋅ (
1

1−𝑒−𝑘 −
1

𝑘
−

1

2
), (19) 

 for which there is an inverse one 𝑘(𝐴𝑅).   

   

Figure  6. Dependence of the left-hand metric LAR and the right-hand one - RAR on the Gini index 
AR for the van der Burgt’s curves family’s. 

 

    Using the definition from paragraph 2.1 and (19), for the van der Burgt’s curve, 𝐿𝐴𝑅(𝑘),
𝑅𝐴𝑅(𝑘), 𝑘(𝐴𝑅)     is calculated and 𝐿𝐴𝑅(𝐴𝑅), 𝑅𝐴𝑅(𝐴𝑅) dependencies are plotted (see Fig. 6). 
The dependences min(LAR, RAR) and max(LAR, RAR) on AR are established by relations (15). 

From the graphs Fig. 6 it follows that the van der Burgt’s curve has an exclusively right-hand 
target preference, since RAR>LAR always fulfilled on the range of the Gini index AR  ∈   (0,1).   
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Therefore, the van der Burgt’s curve cannot be used to calibrate the left-hand target preference 
scoring models. 

It would be interesting to know what target preferences are among well-known rating 
agencies? Rating agencies do not use any calibration function for some implied rating score, but set 
the rating category of the rated object through strictly regulated manipulations with the assessments 
of risk-dominant parameters. Then, for each rating grade, they make a historical estimate of the 
default rate, which is updated annually using historical data. 

Metrics for assessing the accuracy of discrimination of the first and second order for rating 
agencies can be estimated directly by binary events (default / non-default on the annual horizon) of 
rated objects using formulas (8),(9), but this requires access to their closed databases. However, 
there is a way to evaluate these same metrics from imputed data using the approach (11),(12). To 
do this, you need to extract only two entities - this is the distribution of rated objects (number or 
proportion) by rating categories (or classes) and the calibration values of PD in each rating category.  

 

 
Figure  7. Imputed 𝐴𝑅𝑖𝑚𝑝, 𝐿𝐴𝑅𝑖𝑚𝑝,  𝐿𝐴𝑅𝑖𝑚𝑝 metrics from (1) - Moody’s, (2) - Fitch, (3) - Expert 

RA(Russia). (A source: Rating agency’s data for corporate segment). 
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These data are supplied in varying degrees of detail by the Big Three and sovereign rating 
agencies in the Annual Default Study. To demonstrate the dynamics of annual assessments of 
𝐴𝑅𝑖𝑚𝑝, 𝐿𝐴𝑅𝑖𝑚𝑝, 𝑅𝐴𝑅𝑖𝑚𝑝, we took two rating agencies of the Big Three (Moody’s and Fitch) and 

one sovereign (Expert RA, Russia) (see Fig. 7). 
 

     The presented assessments show that Moody’s is not inferior to Fitch in terms of the imputed 
Gini index, however, in terms of target preference, Moody’s rating “sees” good corporate companies 
better and distinguishes “bad” worse than Fitch rating, that is, it has a right-hand preference. Fitch’s 
ROC curve is close to symmetrical (𝐿𝐴𝑅𝑖𝑚𝑝 ≅ 𝑅𝐴𝑅𝑖𝑚𝑝). The discrimination power of the sovereign 

Expert RA is significantly lower than the representatives of Big Three, but according to the estimates 
of the second-order metrics, Expert RA rating also “sees” the good ones better, having a 
predominantly right-hand preference. The difference in target preferences of rating mechanisms for 
different rating agencies complicates the task of comparing their rating scales. Many scientific works 
are devoted to the latter problem [6], [11], [2], [9], etc. 

Validation of the calibration of rating / scoring models requires binary event data as well as 
the results of the rating of a portfolio of objects, and it is necessary to take into account the statistical 
uncertainty before drawing conclusions. It is required to calculate AR, LAR, RAR according to the 
formulas (8),(9) with fixing the statistical error 𝜎𝑚𝑎𝑥 (10) of the calculation of AR. The first thing 

that is important to evaluate is the first-order metrics |𝐴𝑅 − 𝐴𝑅𝑖𝑚𝑝|  vs 𝜎𝑚𝑎𝑥  and the sign 

(𝐿𝐴𝑅 − 𝑅𝐴𝑅) up to 𝜎𝑚𝑎𝑥 to understand the preference of the model. If the result of evaluating 
the first-order metric on the current portfolio 𝐴𝑅𝑖𝑚𝑝  is consistent with the AR estimate on 

historical binary data, then the analysis of the second-order metrics can be started to answer the 
question whether the imputed rating result takes into account the target preference of the model, 
whether there are distortions in the second-order metrics. For this, the dominant LAR or RAR metric 
calculated on binary data is compared with the corresponding 𝐿𝐴𝑅𝑖𝑚𝑝 and 𝑅𝐴𝑅𝑖𝑚𝑝. 

The approach to assessing the internal rating of clients or applicants, the most practical for 
implementation in a credit institution, is a parametric calibration of the scoring / rating model for 
the probability of default, which should correspond to the discriminatory power and target 
preference of the model. A universal approach to model calibration was proposed in [10], where the 
right-hand and left-hand preference of the scoring model was taken into account.  

 

6.  Conclusion 
 

 It is presents new specialized metrics for the accuracy of second-order scoring models, 
which show the target preference of the models - whether it is better to identify "good" rating 
objects (borrowers) or better to identify "bad" ones, provided that the predictive power of the model 
being unchanged and determined by the generally accepted first-order metric - the Gini index (AR). 
There are two second-order metrics, left-hand LAR and right-hand RAR. Their definition is given 
through an integral representation assuming the ROC curve is continuous, but then two groups of 
representations of finite numerical formulas for metrics are given. The first of which is based on 
binary events, the second on the default probability given by the model. Comparison of the results 
of calculating the metrics allows you to validate the calibration settings of the scoring / rating model 
and reveals its distortions. If the data for first approach is will be difficult to get, then the second will 
give an understanding of the target preference of the model. 

Examples of calculations for three rating agencies are given. The results indicate that 
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Moody’s and Expert-RA have a predominantly right-hand preference, while Fitch has a near to 
neutral preference in own rating. Using the example of the widespread logit formula for the 
calibration of the scoring model, we made sure that such a calibration is applicable only for the 
scoring model of near to right-hand or no more than neutral preference (𝐿𝐴𝑅 ≈ 𝑅𝐴𝑅). For scoring 
models that are have the left-hand preference or strictly the righ-hand one the logit calibration can 
give significant distortion. 

The paper also gives a metrization of the ROC-curve, which is unambiguous and alternative 
to AR/LAR/RAR, but has an obvious geometric meaning in the trapezoidal representation of the ROC-
curve. Metrization 𝐴𝑅/𝜇𝐿 ,/𝜇𝑅  allows you to consistently divide the ROC-curve into three areas 
with high, indifferent and low dependence on the X coordinate, to indicate the area where the 
discrimination model is quasi-neutral.   
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