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0. Introduction

Let X be a complete toric variety with an acting torus T . All varieties and actions 
are defined over an algebraically closed field K of characteristic zero. It is proved in [9, 
Proposition 11], see also [7, Theorem 4.2] and [2, Theorem 4.2.4.1], that the automor-
phism group Aut(X) is a linear algebraic group and T is a maximal torus in Aut(X). 
An algebraic subgroup H in Aut(X) is called regular if H is normalized by the torus T .

We say that X is radiant if a maximal unipotent subgroup U of the automorphism 
group Aut(X) acts on X with an open orbit. The aim of this paper is to show that 
radiant toric varieties have important distinguishing features that make this class of 
varieties attractive for study.

Let Ga and Gm stand for the additive and the multiplicative group of the ground 
field K, respectively. The groups Ga and Gm are commutative one-dimensional linear 
algebraic groups, and Ga is unipotent. Moreover, any commutative unipotent linear 
algebraic group is isomorphic to the vector group Gn

a = Ga × . . .×Ga (n times). Given 
an algebraic action Ga ×X → X (resp. Gm ×X → X), we call the image of Ga (resp. 
Gm) in Aut(X) a Ga-subgroup (resp. Gm-subgroup) in Aut(X). An additive action on a 
complete algebraic variety X is a faithful algebraic action Gn

a ×X → X with an open 
orbit. Since the group Gn

a is isomorphic to the affine space An as an algebraic variety, we 
obtain an open embedding of An into X such that the action of Gn

a on An by translations 
extends to an action on X. This shows that a complete variety with an additive action 
is an equivariant completion of the affine space, and vice versa; see [14,4].

If X is toric we say that an additive action Gn
a ×X → X is normalized if the image 

of the group Gn
a in Aut(X) is a regular subgroup. Let us say that a regular Ga-subgroup 

in Aut(X) is a root subgroup. It is easy to see that a normalized additive action is an 
additive action given by n pairwise commuting root subgroups in Aut(X).

It is well known that any complete toric variety X corresponds to a complete fan 
Σ = ΣX in the lattice N of one-parameter subgroups of the acting torus T . Let ρ1, . . . , ρm
be the rays of the fan Σ. We say that the fan Σ is bilateral if there is a basis p1, . . . , pn
of the lattice N such that, up to renumbering, the rays ρ1, . . . , ρn are generated by the 
vectors p1, . . . , pn, respectively, and the remaining rays ρn+1, . . . , ρm lie in the negative 
orthant with respect to this basis.

The following result is proved in [3, Theorem 4.1 and Corollary 1].

Theorem A. Let X be a complete toric variety. The following conditions are equivalent:

(i) the variety X is radiant;
(ii) the variety X admits an additive action;
(iii) the variety X admits a normalized additive action;
(iv) the fan ΣX is bilateral.
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In particular, radiant toric varieties are precisely toric equivariant completions of affine 
spaces, cf. [4].

One more characterization of radiant projective toric varieties was proposed by Fu 
and Hwang [12]. Let X ⊆ P (V ) be a closed subvariety. For a nonsingular point x ∈ X, a 
Gm-action on X coming from a Gm-subgroup of GL(V ) is said to be of Euler type at x

if x is an isolated fixed point of the restricted Gm-action on X and the induced Gm-
action on the tangent space TxX is by scalar multiplication. The subvariety X ⊆ P (V )
is Euler-symmetric if for a general point x ∈ X, there exists a Gm-action on X of Euler 
type at x. It is proved in [12, Theorem 3.7(i)] that every Euler-symmetric variety admits 
an additive action. If X is a projective toric variety, it is shown in [17, Theorem 3]
that X admits an additive action if and only if X is Euler-symmetric with respect to 
some embedding into a projective space. Moreover, in this case X is Euler-symmetric 
with respect to any linearly non-degenerate linearly normal embedding into a projective 
space.

Lattice polytopes that correspond to projective radiant toric varieties are described 
in [3, Theorem 5.2]. Examples of non-projective radiant toric varieties are given in [18]; 
see also Example 4.7 below.

It is shown in [3, Theorem 3.6] that a normalized additive action on a radiant toric 
variety is unique up to isomorphism. Moreover, it follows from [11, Corollary 4] that any 
additive action on a radiant toric variety is isomorphic to a normalized additive action if 
and only if the maximal unipotent subgroup U in Aut(X) is commutative. In this case 
U is the only candidate up to conjugation for a subgroup in Aut(X) defining an additive 
action on X.

Let us describe the content of the paper. In Section 1 we discuss basic facts on toric 
varieties and Cox rings and recall a description of the automorphism group of a complete 
toric variety due to Demazure. Section 2 is devoted to the study of Demazure roots of 
a bilateral fan. Unlike classical root systems, the set of Demazure roots of a complete 
polyhedral fan may seem rather random and unsymmetric. However, a more detailed 
analysis shows that in the case of a bilateral fan, the set of Demazure roots has many 
nice properties. The study of such properties was started by Dzhunusov [10,11]. We 
develop these results and find new features of Demazure roots. With any bilateral fan 
Σ we associate its ray matrix A. We show that Demazure roots of Σ admit an explicit 
description in terms of columns of the matrix A. This allows both to study properties of 
Demazure roots and to construct bilateral fans with prescribed Demazure roots.

In Section 3, using results on Demazure roots, we give a description of a maximal 
unipotent subgroup of the automorphism group Aut(X) of a radiant toric variety X as 
a semidirect product of some explicitly presented unipotent groups. The next step is to 
find all regular unipotent subgroups in Aut(X) which act on X with an open orbit. This 
is done in Section 4. We define a principal unipotent subgroup of Aut(X) as a regular 
commutative unipotent subgroup that acts on X with an open orbit. It is proved that a 
regular unipotent subgroup U in Aut(X) acts on X with an open orbit if and only if U
contains a principal unipotent subgroup. We come to consider two types of radiant toric 
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varieties: the ones that admit a faithful action of a non-commutative unipotent group 
and the ones that do not. Specific properties of radiant toric varieties of each type are 
studied.

In Section 5 we compute the center of a regular unipotent subgroup U acting on X
with an open orbit. With any such U we associate a directed graph Γ and describe the 
central series and the derived subgroups of U in terms of Γ. These results allow to find 
the nilpotency class and the derived length of a regular unipotent subgroup.

It is shown in Section 6 that the open orbit of a non-commutative regular unipotent 
subgroup has smaller dimension than the subgroup itself. This imposes certain restric-
tions on equivariant toric completions of unipotent groups. Finally, in Section 7 we 
describe smooth radiant toric surfaces. It turns out that the Picard number of a smooth 
non-radiant toric surface is at least 4. We expect further classification results on smooth 
radiant toric varieties of small dimensions.

The authors thank the referee for a careful reading and helpful comments.

1. Preliminaries

In this section we recall basic facts on toric varieties. Hereinafter we fix an algebraically 
closed field K of characteristic zero. By the word ‘variety’ we mean a separated algebraic 
variety over K.

1.1. Toric varieties and Cox rings

Let T = (K×)n be an algebraic torus of rank n. A normal irreducible variety X is 
called toric, if there is a faithful action of T on X with an open orbit. There is a well-
known combinatorial description of toric varieties. We briefly recall it in this subsection 
and refer to standard textbooks [8,13] on toric varieties for details.

Let N ∼= Zn be the lattice of one-parameter subgroups of T and M = HomZ(N, Z) ∼=
Zn be the character lattice of T . Denote by NQ and MQ the associated Q-vector spaces 
N ⊗Z Q and M ⊗Z Q. Let 〈·, ·〉 : MQ × NQ → Q be the pairing of dual vector spaces 
NQ and MQ.

A cone in N is a convex polyhedral cone in NQ. A cone is called strongly convex if it 
contains no nonzero linear subspace. Recall that the dual cone σ∨ to a cone σ in N is 
defined by

σ∨ = {u ∈ MQ | 〈u, v〉 ≥ 0 ∀v ∈ σ}.

Given a strongly convex cone σ in N one can consider the finitely generated K-algebra 
K[σ∨ ∩M ] graded by the semigroup of lattice points of the cone σ∨:

K[σ∨ ∩M ] =
⊕

Kχu,

u∈σ∨∩M
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where χu·χu′ = χu+u′ . Denote by X(σ) the corresponding affine variety Spec(K[σ∨∩M ]). 
It is well-known that given an affine variety X there is a bijection between faithful T -
actions on X and effective M -gradings on K[X]. The aforementioned σ∨ ∩ M -grading 
on K[σ∨ ∩M ] corresponds to a faithful T -action on X(σ) with an open orbit. Therefore, 
X(σ) is a toric variety. Moreover, every affine toric variety X arises in this way.

A fan in N is a finite collection Σ of strongly convex cones in N such that for all 
σ1, σ2 ∈ Σ every face of σ1 is an element of Σ and the intersection σ1 ∩ σ2 is a face of 
both σ1 and σ2. There is a one-to-one correspondence between toric varieties with an 
acting torus T and fans in N . Namely, given a fan Σ in N the corresponding toric variety 
X(Σ) is a union of affine charts X(σ), σ ∈ Σ, where any two charts X(σ1) and X(σ2)
are glued along their open subset X(σ1 ∩ σ2). Every toric variety arises in this way.

Denote by |Σ| the support of a fan Σ in N :

|Σ| =
⋃
σ∈Σ

σ.

A fan Σ in N is called complete if |Σ| = NQ. The corresponding toric variety X(Σ) is 
complete if and only if the fan Σ is complete.

Let us recall the basic ingredients of the Cox construction; see [2, Chapter 1] for 
more details. Let X be a normal variety with free finitely generated divisor class group 
Cl(X) and only constant invertible regular functions. Let WDiv(X) be the group of Weil 
divisors on X and K ⊆ WDiv(X) be a subgroup which maps onto Cl(X) isomorphically. 
The Cox ring of the variety X is defined as a K-graded algebra

R(X) =
⊕
D∈K

H0(X,D),

where H0(X, D) = {f ∈ K(X)× | div(f) +D ≥ 0} ∪{0}, and where the multiplication on 
homogeneous components coincides with multiplication in K(X) and extends to R(X)
by linearity. Up to isomorphism the graded ring R(X) does not depend on the choice of 
a subgroup K. This construction may also be generalized to the case when Cl(X) is a 
finitely generated group with torsion.

Consider a fan Σ in N and the corresponding toric variety X = X(Σ). One-
dimensional cones in Σ are called rays. We denote by Σ(1) = {ρ1, . . . , ρm} the set of 
rays in Σ. Similarly, we denote by σ(1) the set of rays of a cone σ. Let us denote by 
pl the generator of the semigroup ρl ∩ N . Assume that X has only constant invertible 
regular functions. This is equivalent to the condition 〈p1, . . . , pm〉Q = NQ.

There is a one-to-one correspondence between cones σ ∈ Σ and T -orbits O(σ) in X
such that dimO(σ) = n − dim〈σ〉. In particular, each ray ρl ∈ Σ(1) corresponds to a 
prime T -invariant Weil divisor Dl = O(ρl) on X. The divisor class group Cl(X) of X is 
generated by classes [D1], . . . , [Dm]. Moreover, there is a short exact sequence

0 M Zm Cl(X) 0, (1)
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where the map M → Zm is given by u → (〈u, p1〉, . . . , 〈u, pm〉) and the map Zm → Cl(X)
is given by (c1, . . . , cm) → c1[D1] + · · · + cm[Dm]. In [7] it is proved that the Cox ring 
R(X) is a Cl(X)-graded polynomial algebra K[x1, . . . , xm] with deg(xl) = [Dl] for each 
1 ≤ l ≤ m.

One can easily characterize radiant toric varieties in terms of Cox rings. Namely, a 
complete toric variety X is radiant if and only if the group Cl(X) is free and there is a 
positive integer n < m such that we can reorder the variables in K[x1, . . . , xm] in such 
a way that deg(xn+1), . . . , deg(xm) form a basis in Cl(X) and for 1 ≤ j ≤ n we have 
deg(xj) =

∑m
k=n+1 akj deg(xk) for some non-negative integers akj ; cf. [11, Corollary 3].

The Cl(X)-grading on R(X) gives rise to an action of the quasitorus G =
HomZ(Cl(X), K×) on Km = Spec(R(X)). Note that if we apply the HomZ(−, K×)-
functor to the short exact sequence (1), we obtain an inclusion G ↪→ (K×)m.

Denote by Z the closed subset of Km defined by equations∏
ρl �∈σ(1)

xl = 0 ∀σ ∈ Σ.

These equations generate the so-called irrelevant ideal in R(X); see [2, Section 1.6.3] for 
more details. The subset Z is invariant under the action of the group G, thus there is 
an action of G on the variety X̂ = Km \ Z. The variety X is isomorphic to the good 
categorical quotient X̂/ /G and the isomorphism X ∼= X̂/ /G is compatible with torus: 
X ⊃ T ∼= (K×)m/ /G = (K×)m/G.

1.2. Demazure roots and root subgroups

Hereinafter we fix a complete fan Σ in N with rays ρ1, . . . , ρm and their primitive 
generators p1, . . . , pm and let X = X(Σ), R = R(X) = K[x1, . . . , xm]. Denote by Ri ⊆
M, 1 ≤ i ≤ m the set of vectors e ∈ M such that

〈e, pi〉 = −1 and 〈e, ps〉 ≥ 0 for all s �= i.

The elements of the set R = �m
i=1 Ri are called Demazure roots of Σ; cf. [9, Définition 4]. 

The roots in S = R ∩ −R are called semisimple, and the ones in U = R \S are called 
unipotent.

Let e ∈ Ri. Denote by ∂e the locally nilpotent derivation on R:

∂e =

⎛⎝∏
s �=i

x〈e,ps〉
s

⎞⎠ ∂

∂xi
= xθ(e) ∂

∂xi
,

where the map θ : Ri → Zm is defined by

θ(e) =
(
〈e, p1〉, . . . , 〈e, pi−1〉, 0, 〈e, pi+1〉, . . . , 〈e, pm〉

)
.
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The action of operators exp(α∂e), α ∈ K on R gives rise to an action of the group Ue
∼= Ga

on X̂ that commutes with the action of G. This induces a Ue-action on X̂/ /G = X so 
Ue ⊆ Aut(X). The subgroups Ue, e ∈ R are exactly the root subgroups of Aut(X). 
Indeed, let e ∈ R. It is easy to see that as a subgroup of Aut(X̂) the group Ue is 
normalized by (K×)m, so Ue ⊆ Aut(X) is normalized by the acting torus T . Conversely, 
it is known that every Ga-subgroup of Aut(X) which is normalized by T has the form 
Ue for some e ∈ R; see [9, Théorème 3] and [16, Proposition 3.14].

In the case of a radiant toric variety X there is a normalized additive action on X
given by the tuple of pairwise commuting homogeneous locally nilpotent derivations 
∂1, . . . , ∂n on the ring R(X) = K[x1, . . . , xm], where

∂j = x
an+1j
n+1 . . . xamj

m

∂

∂xj
;

see [3, Lemma 3.5].

1.3. The automorphism group of a complete toric variety

In addition to the quotient realization, the Cox ring R also contains information about 
the automorphism group of X. Let Autg(R) be the group of graded automorphisms of the 
algebra R. If φ ∈ Autg(R), then φ commutes with the action of the group G and thus φ
induces an automorphism of X. In fact, there is an isomorphism Aut0(X) ∼= Autg(R)/G. 
Moreover, Aut(X) is a linear algebraic group generated by the acting torus T , the root 
subgroups Ue, e ∈ R and a finite group; see [7, Section 4].

We recall basic facts on the structure of the group Aut(X) proved by Demazure [9]; 
see also [16, Section 3.4]. The torus T is a maximal torus in Aut(X) and R is a root 
system of Aut(X) with respect to T . The unipotent radical Gu of Aut0(X) is generated 
by the subgroups Ue, e ∈ U, while there exists a connected reductive subgroup Gred with 
T as a maximal torus such that S is the root system for Gred and Aut0(X) = Gu�Gred. 
It follows that if we pick a system of positive roots S+ with S = S+ � S−, then 
the subgroup generated by Gu and all subgroups Ue, e ∈ S+ is a maximal unipotent 
subgroup in Aut(X).

By [5], for any connected (not necessarily linear) algebraic group F of dimension n
there exists a smooth projective variety X of dimension 2n such that the connected 
component of the group Aut(X) is isomorphic to F . At the same time, the class of 
connected linear algebraic groups that can be realized as the connected component of 
the group Aut(X) of a complete toric variety X is quite constrained. In particular, it 
is proved in [9, Proposition 3.3] that the semisimple part of such a group is a group of 
type A. One of the aims of this work is to study further specific properties of the group 
Aut(X) in the case of a radiant toric variety X.
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1.4. Regular subgroups

Recall that an algebraic subgroup H ⊆ Aut(X) is called regular if it is normalized 
by the acting torus T . In particular, root subgroups in Aut(X) are precisely regular 
Ga-subgroups.

Note that a regular unipotent subgroup U is defined by the root subgroups which 
are contained in U . Denote by R(U) the set of all roots e ∈ R such that Ue ⊆ U . 
We call elements of the set R(U) the roots of the group U . Conversely, given a subset 
M ⊆ R such that the subgroups Ue, e ∈ M generate a unipotent subgroup, we denote this 
subgroup by U(M). Clearly, if U is a regular unipotent subgroup, then U(R(U)) = U . 
If M = R(U(M)), then we call such a set of roots saturated, see Definition 4.1.

On the other hand, one might have R(U(M)) � M for a subset M ⊆ R. This can 
happen due to the fact that if e, e′ ∈ R and e + e′ ∈ R, then 〈Ue, Ue′〉 ⊃ Ue+e′ .

Let 1 ≤ i ≤ m, e ∈ Ri, and α ∈ K. For α ∈ K denote

ue(α) = exp(α∂e).

Each ue(α) is an automorphism of the K-algebra R, and the action of Ue on Km =
Spec(R) is given by

ue(α) · P = (ue(α) · x1(P ), . . . , ue(α) · xm(P )),

where P = (c1, . . . , cm) is a point in Km and ue(α) · xi ∈ R is considered as a function 
on Km for each 1 ≤ i ≤ m. Since

ue(α)xi = xi + αxθ(e) and ue(α)xj = xj for 1 ≤ j �= i ≤ m,

we see that ue(α) changes only the ith coordinate.
Consider another pair e′ ∈ Rj and α′ ∈ K. Denote d = 〈e, pj〉. Then

ue′(α′)ue(α)xk = xk for all k �= i, j.

If i = j, then

ue′(α′)ue(α)xi = ue′(α′)(xi + αxθ(e)) = xi + α′xθ(e′) + αxθ(e).

If i �= j, then

ue′(α′)ue(α)xj = ue′(α′)xj = xj + α′xθ(e′) and

ue′(α′)ue(α)xi = ue′(α′)(xi + αxθ(e)) = ue′(α′)
(
xi + αxd

j

xθ(e)

xd
j

)
=

= xi + α(ue′(α′)xj)d
xθ(e)

xd
= xi +

d∑(
d

l

)
xd−l
j α(α′)lxlθ(e′)x

θ(e)

xd
=

j l=0 j
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= xi +
d∑

l=0

(
d

l

)
α(α′)l x

θ(e)+lθ(e′)

xl
j

.

Example 1.1. Let Σ be a fan of projective plane P 2 so that n = 2, m = 3 and p1 = (1, 0), 
p2 = (0, 1), p3 = (−1, −1). Take the dual basis in M and consider two roots M =
{(−1, 1), (0, −1)}. As (3 × 3)-matrices acting on homogeneous coordinates [z0 : z1 : z2], 
the elements of the subgroups U(−1,1) and U(0,−1) are

u(−1,1)(α) =
(1 α 0

0 1 0
0 0 1

)
and u(0,−1)(β) =

(1 0 0
0 1 β
0 0 1

)
,

respectively. Clearly, these root subgroups generate a unipotent subgroup U(M). How-
ever, one can check that

u(−1,1)(α)u(0,−1)(1)u(−1,1)(−α)u(0,−1)(−1) =
(1 0 α

0 1 0
0 0 1

)
,

which is an element of the subgroup U(−1,0). It shows that

R(U(M)) = M ∪ {(−1, 0)} � M.

Let U be a regular unipotent subgroup in Aut(X) with R(U) = {e1, . . . , ek}, and 
Ue1 , . . . , Uek be all root subgroups in U . Then the multiplication map

Ue1 × . . .× Uek → U, (u1, . . . , uk) → u1 . . . uk

is an isomorphism of affine varieties. This fact is proved in [15, Proposition 28.1] for 
regular unipotent subgroups of a reductive group, but the proof passes without changes 
in the case we are interested in.

2. Demazure roots of bilateral fans

In this section we continue the study of Demazure roots (or simply roots) of bilateral 
fans started in [3,10,11]. Let N be a lattice of rank n and Σ be a complete fan in N
which is bilateral. Recall that this means that we can order the rays ρ1, . . . , ρm of Σ so 
that the primitive vectors p1, . . . , pn form a basis of N and for any n + 1 ≤ k ≤ m we 
have

pk = −
n∑

j=1
akjpj , where akj ∈ Z≥0. (2)

Let q1, . . . , qn be the basis of the lattice M = Hom(N, Z) dual to p1, . . . , pn. One can 
easily see that every root e ∈ Ri, 1 ≤ i ≤ n has the form
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e = −qi +
∑
j �=i

bjqj , where bj = 〈e, pj〉 ∈ Z≥0.

Moreover, we have −qi ∈ Ri for every 1 ≤ i ≤ n.
A root e ∈ R is called basic if e = −qi for some 1 ≤ i ≤ n. We also call a root of the 

form −qi + qj elementary, where 1 ≤ i, j ≤ n and i �= j. All other roots in �n
i=1 Ri are 

called special. Finally, roots in �m
k=n+1 Rk are called detached.

Note that if e ∈ Ri ∩S for some 1 ≤ i ≤ n, then e is either basic or elementary. In 
[10, Proposition 2] it is proved that Rk ⊆ {q1, . . . , qn} for all n + 1 ≤ k ≤ m. So, the set 
R is composed of

• basic roots in �n
i=1 Ri;

• elementary roots in �n
i=1 Ri;

• special roots in �n
i=1 Ri, they are unipotent;

• detached roots in �m
k=n+1 Rk, they are semisimple.

Lemma 2.1. Consider roots e ∈ Ri and e′ ∈ Rj for some 1 ≤ i, j ≤ n, i �= j such that 
〈e′, pi〉 = 0. Denote d = 〈e, pj〉.

(1) If d > 0, then e + e′ ∈ Ri and [∂e, ∂e′ ] = −d∂e+e′ .
(2) If d = 0, then [∂e, ∂e′ ] = 0.

Proof. Let us prove that e +e′ ∈ Ri when d > 0. Clearly, the conditions 〈e +e′, pi〉 = −1
and 〈e + e′, pl〉 ≥ 0 are satisfied for l �= i, j. We have 〈e + e′, pj〉 = 〈e, pj〉 + 〈e′, pj〉 =
d − 1 ≥ 0 so e + e′ ∈ Ri.

Write ∂e = fxd
j

∂
∂xi

and ∂e′ = h ∂
∂xj

for some monomials f and h that do not depend 

on xi and xj . Then [∂e, ∂e′ ] = fh[xd
j

∂
∂xi

, ∂
∂xj

]. If d > 0, then [∂e, ∂e′ ] = −dfhxd−1
j

∂
∂xi

=
−d∂e+e′ . Otherwise d = 0 and [∂e, ∂e′ ] = 0. �

Now let us consider the following partial preorder on the set C = {1, . . . , n}. We say 
that i � j if aki ≥ akj for all n + 1 ≤ k ≤ m, where the integers akj are defined in (2). 
Further, we let i � j if aki = akj for all n + 1 ≤ k ≤ m. The relation � is an equivalence 
relation on C and the preorder � induces a partial order on the set of equivalence classes.

One can regard the defined preorder as a preorder on the set of columns of a matrix. 
Namely, we write the coordinates of the vectors −pn+1, . . . , −pm as rows of an (m −n) ×n

matrix:

A =

⎛⎝an+1 1 . . . an+1n

...
...

⎞⎠ .
am1 . . . amn
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We say that A is the ray matrix of the bilateral fan Σ. Let v1, . . . , vn be the columns of 
the matrix A. Then i � j if and only if vi ≥ vj (coordinate-wise), and i � j if and only 
if vi = vj .

The rows of A are nonzero pairwise distinct primitive integer vectors with non-negative 
entries. Since the fan Σ is complete, the matrix A contains no zero column: indeed, if 
there is i ∈ C such that aki = 0 for all k > n, then every cone from Σ is contained in the 
half-space {v ∈ NQ | 〈qi, v〉 ≥ 0}, a contradiction. Conversely, any matrix A satisfying 
these conditions is the ray matrix of some bilateral fan Σ.

The ray matrix A does not define the bilateral fan Σ. But it determines the set of 
rays Σ(1) and thus the set of Demazure roots R. In fact, it is convenient to describe the 
set of Demazure roots in terms of the matrix A. Let us collect the corresponding results 
in the following proposition.

Proposition 2.2. Let Σ be a bilateral fan and A be its ray matrix. Then

(1) a vector e = −qi +
∑

j �=i bjqj, bj ∈ Z≥0 belongs to Ri if and only if −Ae ≥ 0;
(2) a vector e ∈ M is a detached root in Rk if and only if e = qi, where the column vi

is a vector of length (m − n) with a 1 in the (k − n)th coordinate and 0’s elsewhere.

Proof. (1) The equality 〈e, pi〉 = −1 follows from the definition of a dual basis. Since

−Ae = vi −
∑
j �=i

bjvj ,

the condition −Ae ≥ 0 is just the system of conditions 〈e, pk〉 ≥ 0, k > n written in 
vector form.

(2) Let e =
∑n

j=1 wjqj . Then e ∈ Rk for some k > n if and only if all wj = 〈e, pj〉
are non-negative and the vector Ae =

∑n
j=1 wjvj has one coordinate 1 and all other 

coordinates non-positive. Since all vectors vj are nonzero and have non-negative 
coordinates, this is the case if and only if all coordinates wj but one are 0’s, one 
coordinate wi equals 1, and the vector vi also has one coordinate equal to 1 and 
others equal to 0. Then e = qi and 〈e, pk〉 = −1 means that vi has 1 in the (k−n)th
coordinate. �

Example 2.3. Let X = F1 × P 1, where F1 is the Hirzebruch surface. Taking a basis 
p1, p2, p3 in N , we let p4 = −p1 − p2, p5 = −p1 and p6 = −p3, and the (bilateral) fan Σ
of X is the product of the fan of F1 generated by p1, p2, p4, p5 and the fan of P 1 generated 
by p3, p6. We have n = 3 and m = 6. The ray matrix of Σ is

A =
(1 1 0

1 0 0
0 0 1

)
.

Using Proposition 2.2, one can find that
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R1 = {−q1, −q1 + q2}, R2 = {−q2}, R3 = {−q3},
R4 = {q2}, R5 = ∅, R6 = {q3}.

Consider a fan Σ′ obtained from Σ by deforming the ray Q≥0 · p5 into Q≥0 · p′5, where 
p′5 = −p1 − p3. That is, for each cone Cone(S) generated by a subset S ⊆ {p1, . . . , p6}, 
we consider a cone Cone(S′), where S′ is obtained from S by substituting p5 with p′5. 
The collection Σ′ of such cones Cone(S′) is also a bilateral fan. Its ray matrix is equal to

A′ =
(1 1 0

1 0 1
0 0 1

)
.

Consider a fan Σ′′ obtained from Σ′ by gluing its cones Cone(p3, p4, p
′
5) and

Cone(p2, p3, p
′
5). In other words, we remove the two aforementioned cones and their inter-

section Cone(p3, p′5) from the set Σ, add Cone(p2, p3, p4, p′5) to this new set, and denote 
the resulting set by Σ′′. The set Σ′′ is a bilateral fan and its ray matrix is also equal to A′.

The next observation follows from Lemma 2.1; it is also proved in [11, Lemma 2].

Lemma 2.4. For any 1 ≤ i ≤ n if Ri �= {−qi}, then Ri contains an elementary root. 
Moreover, if 〈e, pj〉 > 0 for some e ∈ Ri and 1 ≤ j ≤ n, then −qi + qj ∈ Ri.

We proceed with the following result.

Proposition 2.5. Take i, j ∈ C with i �= j. Then

(1) i � j if and only if Ri contains the elementary root −qi + qj;
(2) if i � j, then the translation map ξ : M → M given by ξ(e) = −qi + qj + e induces 

a bijection Rj \ {−qj + qi} → Ri \ {−qi + qj}.

Proof. (1) By Proposition 2.2.(1) the vector −qi + qj is a root if and only if −A(−qi +
qj) = vi − vj ≥ 0 and by definition i � j if and only if vi ≥ vj .

(2) The conditions 〈e, pi〉 = −1 and 〈e, ps〉 ≥ 0 for any s �= i mean that every root in 
Ri has the form e = −qi +

∑
s �=i bsqs with bs ∈ Z≥0. Similarly, every root in Rj has 

the form e′ = −qj +
∑

s �=j b
′
sqs with b′s ∈ Z≥0. Since we have pk = − 

∑n
s=1 aksps for 

n + 1 ≤ k ≤ m, the remaining conditions on elements in Ri are

〈e, pk〉 = aki − akjbj −
∑
s �=i,j

aksbs ≥ 0.

Similarly, we have

〈e′, pk〉 = akj − akib
′
i −
∑

aksb
′
s ≥ 0.
s �=i,j
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By assumptions, we know that aki = akj for all n + 1 ≤ k ≤ m. So if bj = b′i = 0, 
the conditions imposed on the sets {bs} and {b′s} are the same, and it remains to 
prove that if e ∈ Ri and 〈e, pj〉 > 0, then e = −qi + qj . We have

−Ae = vi −
∑
s �=i

bsvs = −(bj − 1)vj −
∑
s �=i,j

bsvs

since vi = vj by definition of �. We obtain that a non-negative vector −Ae equals 
the sum of non-positive vectors. It follows that (bj − 1)vj = 0 and bsvs = 0 for all 
s �= i, j. But all vs are nonzero, so bj = 1 and bs = 0 for all s �= i, j. We obtain 
e = −qi + qj . �

The following lemma contains one more property of Demazure roots that will be 
needed in the next section.

Lemma 2.6. For i ∈ C we have qi ∈ R if and only if all roots in Ri are semisimple. In 
particular, the set Ri contains no special root.

Proof. If the root −qi ∈ Ri is semisimple, then qi ∈ R.
Conversely, assume that qi ∈ R. Then qi is detached and the vector vi is as in Propo-

sition 2.2.(2). Let e = −qi +
∑

s �=i bsqs be a root in Ri. Then

−Ae = vi −
∑
s �=i

bsvs ≥ 0.

Since all vectors vs are nonzero, 
∑

s �=i bs equals either 0 or 1. In the first case all bs
equal 0 and the root e = −qi is semisimple. Otherwise we have vi = vj and e = −qi + qj
for some 1 ≤ j �= i ≤ n, so i � j. In this case the vector −e is a root as well, so the root 
e is semisimple. �

Let C1, . . . , Cr be the equivalence classes of the relation �. By Proposition 2.5 an 
elementary root −qi + qj is semisimple if and only if i and j are in the same equiv-
alence class. By renumbering the classes we may assume that Cl � Cs implies l < s. 
Furthermore, by renumbering the vectors p1, . . . , pn we may assume that C1, . . . , Cr is 
an (element-wise) increasing sequence of segments of C. In other words, we have the 
following:

the sequence C1, . . . , Cr is � -non-increasing and
there exist numbers 0 = c0 < c1 < . . . < cr = n such that for all 1 ≤ s ≤ r

we have Cs = {cs−1 + 1, cs−1 + 2, . . . , cs}.
(3)

Lemma 2.7. Assume that the condition (3) holds. If e ∈ Ri is a unipotent root, then 
e = −qi +

∑
j>i〈e, pj〉qj.
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Proof. The case of basic e is trivial. Assume that 〈e, pj〉 > 0 for some j ∈ C. By 
Lemma 2.4, we have −qi + qj ∈ Ri. So i � j by Proposition 2.5.(1).

If i � j, then by Proposition 2.5.(2) and the fact that e is unipotent we have
e + qi − qj ∈ Rj . It implies 〈e, pj〉 = 0, a contradiction. We conclude that i � j and thus 
j > i. �
3. The structure of a maximal unipotent subgroup

Let us fix a radiant toric variety X = X(Σ) with a bilateral fan Σ and keep the 
notation of the previous section. Let us also assume the condition (3). We are going 
to describe the structure of a maximal unipotent subgroup of the automorphism group 
Aut(X).

Given v ∈ N such that 〈e, v〉 �= 0 ∀e ∈ S, we denote

S+
v = {e ∈ S | 〈e, v〉 > 0} and R+

v = S+
v � U.

Recall that U(R+
v ) is a maximal (regular) unipotent subgroup in Aut(X) and 

R(U(R+
v )) = R+

v . Since any system of positive roots in S is S+
v for some v ∈ N , 

any maximal regular unipotent subgroup is obtained this way for a suitable v. Let us 
define Umax = U(R+

v ) with v such that

〈q1, v〉 < · · · < 〈qn, v〉 < 0. (4)

Lemma 3.1. Assume that the condition (3) is satisfied and v ∈ N is chosen so that (4)
holds. Then a root e ∈ R lies in R+

v if and only if it has the form e = −qi+
∑

j>i〈e, pj〉qj
for some i ∈ C.

Proof. All unipotent roots lie in R+
v and have the desired form by Lemma 2.7. A semisim-

ple root is basic, elementary or detached. In the first case it is in R+
v and has the desired 

form. In the second case −qi + qj ∈ R+
v if and only if j > i due to (4). In the third case 

it is not in R+
v and is not of the corresponding form. �

Hereinafter we fix a vector v satisfying the condition (4). Denote R+ = R+
v and 

R
+
i = Ri ∩R+ for all i ∈ C. In particular, we have R+ = R(Umax) = �n

i=1 R
+
i .

Remark 3.2. By Lemma 2.4, if for i ∈ C there is a root e ∈ Ri with 〈e, pj〉 > 0 for some 
j ∈ C, then i � j. We conclude that if i lies in a �-minimal equivalence class Cs and i
is a maximal number in Cs, then R+

i = {−qi}. In particular, R+
n = {−qn}.

Given a subset C ′ ⊆ C, we denote

U(C ′) = U

(
�

′
R

+
i

)
.

i∈C
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For example, U(i) = U(R+
i ) = 〈Ue | e ∈ R

+
i 〉. Note that if C ′ = {i1, . . . , ik}, then 

U(C ′) acts trivially on coordinates xj in the Cox ring R(X) for all j �= i1, . . . , ik; see 
Subsection 1.2. In particular, if I and J are disjoint subsets of C, then U(I) ∩U(J) = {id}. 
Recall that for e ∈ R and α ∈ K we denote ue(α) = exp(α∂e) ∈ Ue.

Lemma 3.3. Let 1 ≤ i ≤ j ≤ n, e ∈ R
+
i , e′ ∈ R

+
j , and α, α′ ∈ K. Denote d = 〈e, pj〉.

(1) The sum e + e′ is a root if and only if i < j and d > 0, in which case e + e′ ∈ Ri.
(2) If i < j, then

ue′(α′)ue(α) · xi =
d∏

l=0

ue+le′

((
d

l

)
α(α′)l

)
· xi.

(3) If e + e′ is not a root, then ue(α) commutes with ue′(α′).

Proof. (1) Assume that e +e′ is a root. Then i < j, since otherwise i = j and 〈e +e′, pi〉 =
−2. Thus, e + e′ ∈ Ri by Lemma 3.1 and d − 1 = 〈e + e′, pj〉 ≥ 0. The converse 
follows from Lemma 2.1.

(2) The action of the product ue′(α′)ue(α) on xi was computed in Subsection 1.4:

ue′(α′)ue(α)xi = xi +
d∑

l=0

(
d

l

)
α(α′)l x

θ(e)+lθ(e′)

xl
j

.

By the first statement of the lemma, e + le′ ∈ Ri for each 0 ≤ l ≤ d. Note that

xθ(e)+lθ(e′)

xl
j

= xθ(e+lθ(e′)).

Therefore,

ue′(α′)ue(α)xi = xi +
d∑

l=0

(
d

l

)
α(α′)lxθ(e+lθ(e′)) =

d∏
l=0

ue+le′

((
d

l

)
α(α′)l

)
· xi.

(3) An automorphism u ∈ Umax, arising from an automorphism of the Cox ring R(X), is 
defined by its action on the coordinate functions xs, 1 ≤ s ≤ m of R(X). Therefore, 
if u1, u2 ∈ Umax, then u1 = u2 if and only if

u1xs = u2xs for all 1 ≤ s ≤ m.

Denote u1 = ue′(α′)ue(α) and u2 = ue(α)ue′(α′). By the computations in Subsec-
tion 1.4, we know

u1xk = xk = u2xk for k �= i, j,
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so we only have to consider the cases s = i, j.
If i = j, then ue(α) clearly commutes with ue′(α′). Let i �= j. Since e + e′ is not a 
root, d = 0 by the first statement of the lemma. So by the second statement of the 
lemma

u1xi = xi + αxθ(e) = ue(α)xi = u2xi.

The monomial θ(e′) does not contain the variable xi since i < j, so

u2xj = ue′(α′)xj = u1xj .

Therefore, u1 = u2. �
Proposition 3.4.

(1) The subgroup U(i) is commutative of dimension |R+
i |.

(2) The subgroup U(i) is normalized by the subgroup U(j) for j > i. Moreover, if e ∈ R
+
i , 

e′ ∈ R
+
j , and d = 〈e, pj〉, then

ue′(α′)ue(α)ue′(α′)−1 =
d∏

k=0

ue+ke′

((
d

k

)
α(α′)k

)
∈ U(i)

for all α, α′ ∈ K.

Proof. The first assertion follows from Lemma 3.3. Denote

u1 = ue′(α′)ue(α)ue′(α′)−1 = ue′(α′)ue(α)ue′(−α′),

u2 =
d∏

l=0

ue+le′

((
d

l

)
α(α′)l

)
.

Clearly, u2 ∈ U(i), so u2 fixes xs for all s �= i.
As in Lemma 3.3, it suffices to prove u1xs = u2xs for all 1 ≤ s ≤ m. This equation 

clearly holds for all s �= i, j. Since the monomial θ(e′) does not contain the term xi, we 
have

u1xj = ue′(α′)ue′(−α′)xj = xj = u2xj .

By Lemma 3.3 u1xi = u2xi since

u1xi = ue′(α′)ue(α)xi.

Therefore, u1 = u2. �
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Remark 3.5. Since all elements of the subgroup U(i) change only one coordinate xi in the 
spectrum Km = Spec(R(X)) of the Cox ring R(X) = K[x1, . . . , xm] (see Subsection 1.4), 
we conclude that for any 1 ≤ i ≤ n general orbits of the action of the subgroup U(i) on 
X are one-dimensional.

Let U ⊆ Aut(X) be a regular unipotent subgroup such that M = R(U) ⊆ R+. For 
each i = 1, . . . , n denote Mi = M ∩R

+
i .

Corollary 3.6. We have

U =
((

· · · (U(Mn) � U(Mn−1)) . . .
)
� U(M2)

)
� U(M1).

In particular, Umax ∼=
((

· · · (Ga �G
|R+

n−1|
a ) . . .

)
�G|R+

2 |
a

)
�G|R+

1 |
a .

Proof. Applying the second claim of Proposition 3.4 to all pairs (1, j), j > 1 we obtain 
U = U(M2∪. . .∪Mn) �U(M1). Similarly, U(M2∪. . .∪Mn) = U(M3, . . . , Mn) �U(M2), 
and so on. At the end we obtain

U =
((

· · · (U(Mn) � U(Mn−1)) . . .
)
� U(M2)

)
� U(M1),

which proves the assertion. If U = Umax, then M = R+ and U(Mi) = U(i) = G
|R+

i |
a by 

the first assertion of Proposition 3.4. Moreover, |R+
n | = 1 by Remark 3.2. �

Now let us fix positive integers k > l and consider the subgroup Uk,l of the group Uk

of all unitriangular (k × k)-matrices such that

(βij)ki,j=1 ∈ Uk,l ⇐⇒ βij = 0 for all j > i > l.

In other words, the group Uk,l consists of matrices of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . *

. . .
0 1

*

0
1

. . . 0
. . .

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In particular, the subgroup Uk,k−1 coincides with the group Uk. Note also that the 

group Uk,l is commutative if and only if l = 1.
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Proposition 3.7. Let Cs = {cs−1+1, cs−1+2, . . . , cs} be an equivalence class in C. Denote 
c = cs−1 + 1. Then

U(Cs) ∼= Uk,l

with k = |R+
c | + 1 and l = |Cs|.

Proof. Denote by E the identity (k × k)-matrix. Let Ei,j be a (k × k)-matrix with a 
unique nonzero entry on ith row and jth column equal to 1. For each i ≤ l the matrices 
E +

∑
j>i βijEi,j form a subgroup Hi in Uk,l isomorphic to Gk−i

a :

⎛⎝E +
∑
j>i

βijEi,j

⎞⎠ ·

⎛⎝E +
∑
j>i

β′
ijEi,j

⎞⎠ = E +
∑
j>i

(βij + β′
ij)Ei,j .

Further, for l ≥ i′ > i we have⎛⎝E +
∑
j>i′

βi′jEi′,j

⎞⎠ ·

⎛⎝E +
∑
j>i

βijEi,j

⎞⎠ = E +
∑
j>i′

βi′jEi′,j +
∑
j>i

βijEi,j ,

so every element of Uk,l is uniquely decomposed as the product hlhl−1 · · ·h1, where 
hi ∈ Hi for all i. Finally, for 1 ≤ i < j ≤ k and i < i′ < j′ ≤ k write

(E − β′Ei′,j′)(E − βEi,j)(E − β′Ei′,j′)−1 = (E − β′Ei′,j′)(E − βEi,j)(E + β′Ei′,j′) =

= E − βEi,j − δji′ββ
′Ei,j′ .

In particular, Uk,l =
((

· · · (Hl �Hl−1) . . .
)
�H2

)
�H1.

By Corollary 3.6 the group U(Cs) is a semidirect product of the subgroups U(c), U(c +
1), U(c +2), . . . with the action on each next normalized subgroup as in Proposition 3.4. 
Note that if i ∈ Cs, then |R+

i | = |R+
c | − (i − c) = k − (i − c + 1) by Proposition 2.5.(2) 

and Lemma 3.1.
Denote by T the set of roots in R+, which are not elementary semisimple. Let us 

enumerate the roots e ∈ R+
c ∩ T by numbers je, l + 1 ≤ je ≤ k. By Proposition 2.5.(2), 

for every i ∈ Cs the map e → e − qc + qi establishes a bijection between roots in R+
i ∩T

and roots in R+
c ∩T. We let je be equal to je′ , where the root e′ corresponds to e under 

this bijection.
We conclude that a map φ : U(Cs) → Uk,l defined on generators as

φ(u−qi+qj (α)) = E − αEi−c+1,j−c+1 with i, j ∈ Cs;

φ(ue(α)) = E − αEi−c+1,je for other roots e ∈ R
+
i

is the required isomorphism. �
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Theorem 3.8. Let Umax be a maximal unipotent subgroup of the automorphism group 
Aut(X) of a radiant toric variety X. Assume that the condition (3) holds for the equiv-
alence classes C1, . . . , Cr of the relation �. Then

Umax ∼=
((

· · ·
(
Ukr,lr � Ukr−1,lr−1

)
. . .
)
� Uk2,l2

)
� Uk1,l1 ,

where ks = |R+
cs−1+1| + 1 and ls = |Cs|, 1 ≤ s ≤ r.

Proof. By the same argument as in the proof of Corollary 3.6, grouping together subsets 
R

+
i , i ∈ Cs for each 1 ≤ s ≤ r, we obtain a decomposition

Umax =
((

· · ·
(
U(Cr) � U(Cr−1)

)
. . .
)
� U(C2)

)
� U(C1).

By Proposition 3.7 we have U(Cs) ∼= Uks,ls . This proves the theorem. �
Example 3.9. Let X be the projective space Pn so that the number of rays of the fan Σ
equals n + 1 and pn+1 = −(p1 + · · · + pn). We have 1 � 2 � · · · � n, so the whole set C
is an equivalence class. For each i ∈ C the set of roots R+

i consists of vectors

−qi,−qi + qi+1,−qi + qi+2 . . . ,−qi + qn.

In particular, we have |R+
1 | = n, so Umax ∼= Un+1,n is the group Un+1. Of course, this 

also follows from the well-known fact Aut(Pn) = PGL(n + 1).

Example 3.10. Let X be as in Example 2.3. Then

Umax = (U(3) � U(2)) � U(1) ∼= (Ga �Ga) �G2
a.

In fact, for this particular case U(1, 2) ∼= U3 and the subgroup U(3) commutes with the 
subgroup U(1, 2), so we have Umax = U(3) × U(1, 2) ∼= Ga × U3.

Finishing this section, let us describe a maximal unipotent subgroup Uss of the 
semisimple part of the group Aut(X) as a subgroup of Umax. The roots of Uss are the 
semisimple roots in R+. For any subset S ⊆ C denote by R(S) the set of roots �i∈S Ri

and let R+(S) = R(S) ∩R+. For each 1 ≤ s ≤ r let Us ⊆ U(Cs) be the subgroup such 
that R(Us) = R+(Cs) ∩S. By Theorem 3.8 there is a decomposition

Uss =
((

· · ·
(
Ur � Ur−1) . . . )� U2

)
� U1.

Denote by U (1)
k,l (resp. U (2)

k,l ) the subgroup of Uk,l consisting of all matrices that differ 
from the unit matrix at most in the upper left (l× l)-square (resp. at most in the upper 
right (l × (k − l))-rectangle). Then Uk,l = U

(1)
k,l � U

(2)
k,l , the subgroup U (1)

k,l is isomorphic 

to Ul, and the subgroup U (2)
k,l is commutative.
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Proposition 3.11. In the above notation, the following holds.

(1) Uss = U1 × . . .× Ur.
(2) For each 1 ≤ s ≤ r we have Us = U(Cs) ∼= Uks

if all roots in R(Cs) are semisimple, 
and Us ∼= U

(1)
ks,ls

∼= Uls otherwise.

Proof. (1) Since we already have a semidirect product decomposition of Uss, it suffices 
to prove that each two subgroups Us and Us′ , s �= s′ commute with each other. It 
follows from Lemma 3.3 and the facts that a positive semisimple root is either basic 
or elementary and the sum of two such roots from different components is not a root.

(2) If all roots in R(Cs) are semisimple, then Us = U(Cs) ∼= Uks,ls
∼= Uks

, since ls =
ks−1 by definition. Assume that there are unipotent roots in R(Cs). By Lemma 2.6
for each i ∈ Cs we have −qi ∈ U and due to the construction of the isomorphism 
U(Cs) ∼= Uks,ls in the proof of Proposition 3.7 we see that Us ∼= U

(1)
ks,ls

. �
We see that each subgroup Us is the group of all unitriangular matrices: it is iso-

morphic either to Uks
or to Uls . This is a manifestation of a famous theorem due to 

Demazure: the semisimple part of the automorphism group of a complete toric variety 
is a group of type A; see [9, Proposition 3.3]. The number of simple components in the 
semisimple part of the automorphism group Aut(X) equals the number of classes Cs

such that either Cs contains at least two elements or the corresponding basic root −qi
is semisimple.

The center of Umax is described in Remark 5.2 below.

4. Regular unipotent subgroups

In this section we study regular unipotent subgroups of the automorphism group 
Aut(X) of a radiant toric variety X that act on X with an open orbit. We keep the 
notation of the previous sections.

Definition 4.1. We say that a subset of roots A ⊆ R is saturated with respect to a subset 
B ⊆ R if for any a ∈ A and b ∈ B the sum a + b is either contained in A or is not a root.

Recall that R(Umax) = R+.

Lemma 4.2. A subset M ⊆ R+ equals R(U) for some regular subgroup U ⊆ Umax if and 
only if for each i ∈ C the subset Mi is saturated with respect to �j>i Mj.

Proof. Observe that a subset M ⊆ R+ equals R(U) for some regular subgroup U ⊆ Umax
if and only if the linear span of derivations ∂e, e ∈ M is a Lie subalgebra in the tangent 
algebra of the group Umax. By Lemmas 2.1 and 3.1, this is the case if and only if for all 
e ∈ Mi and e′ ∈ Mj , j > i with 〈e, pj〉 > 0 we have e + e′ ∈ Mi. �
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Definition 4.3. A principal unipotent subgroup of the automorphism group Aut(X) of a 
radiant toric variety X is a regular commutative unipotent subgroup that acts on X
with an open orbit.

The action of a subgroup of Aut(X) on X is faithful, so a principal unipotent sub-
group in Aut(X) is precisely a subgroup that defines a normalized additive action on 
X. Since every two such actions are equivalent (see [3, Theorem 3.6]), every two prin-
cipal unipotent subgroups in Aut(X) are conjugate. As we have seen in Subsection 1.2, 
U({−q1, . . . , −qn}) is an example of a principal unipotent subgroup.

Theorem 4.4. Let X be a radiant toric variety. A regular unipotent subgroup U in Umax

with M = R(U) acts on X with an open orbit if and only if U contains a principal 
unipotent subgroup. More precisely, the subgroup U acts on X with an open orbit if and 
only if −q1, . . . , −qn ∈ M.

Proof. If a subgroup U(M) acts on X with an open orbit, then the set Mi is nonempty 
for each i. Indeed, if such intersection is empty, then any orbit of the group U(M) on 
the spectrum of the Cox ring R(X) is contained in the subvariety, where the coordinates 
xi, xn+1, . . . , xm are constant. So, the dimension of any orbit is less than n, and it can 
not project to an open orbit on X.

Let us prove by induction that −q1, . . . , −qn ∈ M. By Remark 3.2, we have −qn ∈ M. 
Assuming for some i < n that −qi+1, . . . , −qn ∈ M, we take an arbitrary element of Mi, 
say −qi +

∑
j>i bjqj , and apply consecutively Lemma 2.1 for each e′ = −qi+1, . . . , −qn. 

Then −qi ∈ M, and the direct implication follows.
In Subsection 1.2 we have already seen that locally nilpotent derivations ∂−q1 , . . . , ∂−qn

give rise to an additive action on X, so the inverse implication is straightforward. �
This fact and the results of [11] motivate the following definition.

Definition 4.5. We say that a radiant toric variety X is of Type I, if a maximal unipotent 
subgroup in Aut(X) is commutative. All other radiant toric varieties are assigned to 
Type II.

In Type I, the maximal unipotent subgroup in Aut(X) is a principal unipotent sub-
group. By [11, Corollary 4], radiant toric varieties of Type I are precisely complete toric 
varieties that admit a unique additive action. On the other hand, Type II consists exactly 
of complete toric varieties that admit a faithful action of a non-commutative unipotent 
group with an open orbit.

Clearly, the direct product X1 × . . .×Xs of radiant toric varieties is again a radiant 
toric variety, and it is of Type I if and only if all factors Xi are of Type I. Let us give 
one more result in this direction.
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Proposition 4.6. Every radiant toric variety of Type I admits a unique decomposition 
X ∼= (P 1)b × Y , where b is a non-negative integer and Y is a radiant toric variety of 
Type I such that the connected component Aut(Y )0 is solvable.

Proof. Since X is of Type I, besides basic roots −q1, . . . , −qn the set R may contain 
only some detached roots qi.

Assume that q1 ∈ Rn+1. By Proposition 2.2.(2), in the ray matrix A we have an+11 =
1 and ak 1 = 0 for all n + 2 ≤ k ≤ m. If an+1 s > 0 for some 2 ≤ s ≤ n, then by 
Proposition 2.2.(1) we obtain −qs + q1 ∈ Rs, a contradiction. So, we have an+1 s = 0 for 
all 2 ≤ s ≤ n.

It means that Σ = Σ1 ⊕Σ2, where Σ1 is the fan generated by p1 and −p1 and Σ2 is a 
complementary subfan. It implies that X ∼= P 1 ×X(Σ2). Repeating this procedure, we 
come to the decomposition X ∼= (P 1)b × Y , where the fan of the toric variety Y has no 
detached roots. We conclude that Aut(Y )0 ∼= T � U , where T is the acting torus of Y
and U is a principal unipotent subgroup of Aut(Y ). In particular, the group Aut(Y )0 is 
solvable.

In any decomposition of this form, b is the number of pairs of semisimple roots of 
Σ, and the fan of Y is the subfan of Σ obtained as an intersection with the subspace 
generated by the vectors pi such that Ri contains no semisimple root. This shows that 
the decomposition is unique. �

Let us give an example of a smooth non-projective radiant toric variety X(Σ) of 
dimension n for each n ≥ 3; see [18] for details.

Example 4.7. The set of primitive vectors on the rays of Σ consists of a basis p1, . . . , pn
of the lattice N , the vector w = −p1 − . . . − pn, and the vectors ui = pi + w, i ∈ C =
{1, . . . , n}. The maximal cones of Σ are constructed as follows. For each integer k denote 
by pk and uk the vectors pi and ui correspondingly, where k and i are equal modulo n
and i ∈ C. Now for each i ∈ C write a sequence of vectors

pi, pi+1, . . . , pi+n−2, ui, ui+1, . . . , ui+n−2, w.

For each (continuous) segment S of n elements of this sequence, the cone generated by 
elements of S lies in Σ. Lastly, Σ also contains the cone generated by p1, . . . , pn.

The toric variety X(Σ) is of Type I. Indeed, the ray matrix A equals

⎛⎜⎜⎜⎜⎝
0 1 . . . 1
1 0 . . . 1
...

. . .
...

1 1 . . . 0

⎞⎟⎟⎟⎟⎠ ,
1 1 . . . 1
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so each two columns of A are incomparable. In the case n = 3 the orbit structure of 
the action of Umax on X is described in [18]. This description shows that the number of 
orbits of a maximal unipotent subgroup Umax on a radiant toric variety can be infinite.

Problem 4.8. Characterize bilateral fans Σ such that the action Umax � X(Σ) has a 
finite number of orbits.

Since a closed subvariety of a projective variety is projective, the direct product of 
complete varieties is projective if and only if each factor is projective. This shows that 
the product X × P 2, where X is a variety from Example 4.7, is an example of a smooth 
non-projective radiant toric variety of Type II.

Now we come to an algorithm that allows to construct all regular unipotent subgroups 
in Aut(X) that act on X with an open orbit.

Algorithm 4.9. We sequentially construct a subset M ⊆ R+, which is the set of roots 
of a regular unipotent subgroup of Aut(X). For this we produce subsets Mi ⊆ R

+
i step 

by step starting from i = n down to i = 1. By Theorem 4.4 we start with Mn = R+
n =

{−qn}.
Assume that we constructed subsets Mi+1, Mi+2, . . . , Mn for some i ∈ C such that 

for each j > i the set Mj is saturated with respect to �k>j Mk. Let us construct the set 
Mi. Once again by Theorem 4.4 we have to start with Mi = {−qi}. Choose some subset 
of roots E ⊆ R

+
i that we wish to add to Mi. Since we want to preserve the condition 

of saturation, we also need to add to Mi all sums of the form e +
∑

s es, where e ∈ E, 
es ∈ �j>i Mj , and e +

∑
s es ∈ R

+
i . After that we move to Mi−1. In short, we iterate 

over the collection of subsets of R+
i which are saturated with respect to �k>i Mk and 

recursively repeat the procedure for Mi−1.
Assume that we constructed M1, . . . , Mn. Let M = M1 � . . . �Mn. By Theorem 4.4

there exists a regular unipotent subgroup U ⊆ Aut(X) such that R(U) = M and U acts 
on X with an open orbit. All regular unipotent subgroups that act on X with an open 
orbit are obtained this way for a suitable choice of intermediate subsets Mi.

Example 4.10. Let n = 3, m = 4, and p4 = (−3, −2, −1). In this case X is a weighted 
projective space P (1, 2, 3). We have 1 � 2 � 3 and

R
+
3 = {−q3},

R
+
2 = {−q2, −q2 + q3, −q2 + 2q3},

R
+
1 = {−q1, −q1 + q2, −q1 + q2 + q3, −q1 + q3, −q1 + 2q3, −q1 + 3q3}.

By Corollary 3.6, we obtain Umax ∼=
(
Ga �G3

a

)
�G6

a.
Let us apply Algorithm 4.9. We start with M3 = {−q3}. The following cases are 

possible for M2.
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(1) If M2 = {−q2}, then a subset M1 ⊆ R
+
1 satisfies the constraint

−q1 + b2q2 + b3q3 ∈ M1 =⇒

−q1 + b′2q2 + b′3q3 ∈ M1 for all b′2 ≤ b2, b′3 ≤ b3.

This case gives 11 subgroups: one of dimension 3, two of dimension 4, two of dimen-
sion 5, three of dimension 6, two of dimension 7, and one of dimension 8.

(2) If M2 = {−q2, −q2 + q3}, then M1 ⊆ R
+
1 satisfies the constraint from the first case 

and two additional ones:

−q1 + q2 ∈ M1 =⇒ −q1 + q3 ∈ M1,

−q1 + q2 + q3 ∈ M1 =⇒ −q1 + 2q3 ∈ M1.

This case gives 9 subgroups: two for each of dimensions 6, 7, 8 and one for each of 
dimensions 4, 5, and 9.

(3) If M2 = R
+
2 , then there are two additional constraints on M1 ⊆ R

+
1 :

−q1 + q2 ∈ M1 =⇒ −q1 + 2q3 ∈ M1,

−q1 + q2 + q3 ∈ M1 =⇒ −q1 + 3q3 ∈ M1.

This case gives 7 subgroups: two of dimension 8 and one for each of dimensions 5, 
6, 7, 9, and 10.

We conclude that there are 27 regular unipotent subgroups in Umax that act on P (1, 2, 3)
with an open orbit.

5. Centers and central series

We proceed with a computation of the center of a regular unipotent subgroup. Let U
be a regular unipotent subgroup of Aut(X) that acts on X with an open orbit. Denote

C(U) = {i ∈ C | 〈e, pi〉 ≤ 0 ∀e ∈ R(U)}.

Proposition 5.1. The center Z(U) of U equals 
∏

i∈C(U) U−qi . In particular, Z(U) is con-
tained in a principal unipotent subgroup.

Proof. Consider the center z(u) of the tangent algebra u = Lie(U). Let δ =∑
e∈R(U) αe∂e ∈ z(u). Then by Lemma 2.1 for all i ∈ C we have

0 = [δ, ∂−qi ] =
∑

−αe〈e, pi〉∂e−qi .

e:〈e,pi〉>0
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So, αe = 0 for any non-basic e, hence δ =
∑n

i=1 α−qi∂−qi . Furthermore, if −qj + qk ∈
R(U) for some j �= k, then by Lemma 2.1

0 = [δ, ∂−qj+qk ] = [α−qk∂−qk , ∂−qj+qk ] = α−qk〈−qj + qk, pk〉∂−qj = α−qk∂−qj .

By Lemma 2.4, we have δ =
∑

i∈C(U) αi∂−qi . Conversely, every δ ∈ u of such form lies 
in z(u). We conclude with the fact that Lie(Z(U)) = z(u). �
Remark 5.2. If U = Umax, then C(U) is the set of minimal numbers of classes Cs that 
are maximal with respect to the partial preorder �.

In the rest of this section we describe the lower and upper central series of a regular 
unipotent subgroup U in terms of a directed graph on the set of roots of U .

Definition 5.3. Given a regular unipotent subgroup U ⊆ Umax with M = R(U), we define 
a directed graph Γ(M) with M as the set of vertices as follows. There is an arrow from 
a root a ∈ M to a root b ∈ M if and only if there exists e ∈ M such that b = a + e.

Let k be a non-negative integer. We denote by M↑k the subset of roots b in M such 
that there is a path of length k in Γ(M) ending in b. Further, let us denote by M↓k the 
subset of roots a in M such that any path in Γ(M) starting in a is of length less than k.

Remark 5.4. If there is an arrow from a ∈ Mi to b = a + e ∈ Mj , then i ≥ j and 
[∂a, ∂e] = d∂b for some d �= 0 by Lemma 2.1.

We claim that the graph Γ(M) is acyclic. Assume to the contrary that there is a cycle 
S = (b0 = a, b1, . . . , bl−1, bl = a). Then each vertex of this cycle lies in the same Mi. 
For each 1 ≤ k ≤ l denote ek = bk − bk−1. We have a = a +

∑l
k=1 ek or, equivalently, ∑l

k=1 ek = 0. This is a contradiction, since due to Lemma 3.1 the sum of positive roots 
cannot be zero.

Proposition 5.5. Let U be a regular unipotent subgroup and l be the length of the longest 
path in Γ(M), where M = R(U). Then the lower (resp. upper) central series of U consists 
of subgroups U(M↑k) (resp. U(M↓k)) for 0 ≤ k ≤ l + 1 in this order.

Proof. We proceed by induction on k. If k = 0, then M↑k = M and M↓k = ∅, so 
U(M↑k) = U and U(M↓k) = {id} are the first subgroups of the corresponding central 
series. Assume that U(M↑k) and U(M↓k) are the kth subgroups of the lower and upper 
central series, respectively. We use the fact that the tangent algebra of the commutator 
of two closed connected subgroups is the commutator of their tangent algebras; see [19, 
Theorem 24.5.11]. So the tangent algebra Lie([U, U(M↑k)]) is spanned by all elements 
[∂e, ∂a], where e ∈ M and a ∈ M↑k. By Remark 5.4, they span the subspace 〈∂b | b ∈
M↑k+1〉, hence [U, U(M↑k)] = U(M↑k+1).
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Similarly, consider h ∈ U such that ghg−1h−1 ∈ U(M↓k) for all g ∈ U . Then h =
exp(∂) for some ∂ ∈ Lie(U) and [∂, ∂e] ∈ Lie(U(M↓k)) for all e ∈ M. So, ∂ is a linear 
combination of elements {∂u | u ∈ M↓k+1}.

Finally, M↑l � M↑l+1 = ∅ and M↓l � M↓l+1 = M. �
Corollary 5.6. The nilpotency class of Umax equals l + 1, where l is the length of the 
longest path in Γ(R+).

Remark 5.7. The upper and lower central series of a regular unipotent group U may 
not coincide. Indeed, let M2 = {−q2} and M1 = {−q1, −q1 + q2, −q1 + 2q2}. Then 
M↑1 = {−q1, −q1 + q2}, but M↓2 = {−q1, −q1 + q2, −q2}.

Corollary 5.8. The derived length of Umax equals the minimal number k such that

(
· · ·
(
(R+)↑1

)↑1 · · ·)↑1︸ ︷︷ ︸
k times

= ∅

Proof. The claim is a direct implication of the equality R([U, U ]) = R(U)↑1 for any 
regular subgroup U ⊆ Umax. �

In particular, Umax is commutative if and only if the graph Γ(R+) has no arrow, and 
Umax is metabelian if and only if the graph Γ((R+)↑1) has no arrow.

Example 5.9. For the maximal unipotent subgroup Umax treated in Example 4.10 the 
longest path has length 4 (see Fig. 1), so the nilpotency class is 5. The derived series 
consists of Umax, U(R′) with R′ in Fig. 2, and U({−q1, −q1 + q3}), so the derived length 
equals 3.

We end this section with the observation that the lower central series is defined by a 
subgraph of Γ(M), which has simpler structure.

Definition 5.10. We call an arrow in Γ(M) from a to b inner, if a, b ∈ Mi for some i, and 
outer otherwise.

Lemma 5.11. Assume that there is an inner arrow a → b and an outer one b → c in 
Γ(M). Then there exist an outer arrow a → b′ and an inner one b′ → c for some vertex 
b′ ∈ Γ(M).

Proof. Let a, b ∈ Mj , c ∈ Mk, and the root d = b − a belong to Mi. Then i > j > k and 
the root e = c − b belongs to Mk.

Let us take b′ = a + e and prove that b′ ∈ Mk. The root d has −1 at ith coordinate 
and 0’s at jth and kth coordinates. The roots a, b have −1 at jth coordinate and 0 at kth



I. Arzhantsev et al. / Bull. Sci. math. 192 (2024) 103419 27
q1

q2

q3

R3

R1

R2

−q3

−q2

−q1

−q2 + q3−q2 + 2q3

−q1 + q3−q1 + q3−q1 + 2q3−q1 + 3q3

−q1 + q2−q1 + q2 + q3

Fig. 1. The graph Γ(R) from Example 4.10. Here each third of the plane represents the elements of Ri, 
i = 1, 2, 3 in suitable coordinates. The inner arrows are depicted dashed and outer ones dotted.

coordinate. The roots c, e have −1 at kth coordinate and e has positive jth coordinate. 
These observations imply that b′ has −1 at kth coordinate and non-negative elsewhere.

So, by Proposition 2.2, since −Ab′ = (−Aa) +(−Ae) has non-negative coordinates, b′
is indeed a root in Mk. The claim follows. �
Proposition 5.12. For any path ending in a vertex v ∈ Γ(M) there exists a path of the 
same length, which ends in v and consists of inner arrows.

Proof. Consider a path a1 → · · · → ak → v of length k, which contains an outer arrow. 
By Lemma 5.11, we can swap inner and outer arrows until the first arrow a1 → a′2 is 
outer.

Let a′2 = a1 + a′1. Then the arrow a′1 → a′2 is inner since a′1 and a′2 lie in the same 
Ri. We obtain a path from a′1 to v of length k with a smaller number of outer arrows. 
Proceeding in this manner, we construct a desired path. �
Corollary 5.13. The subgroups U(M↑i) do not change if we substitute the initial graph 
Γ(M) by the subgraph of inner arrows.

Remark 5.14. Proposition 5.12 shows that there is a (commutative) subgroup U(Mi)
in U(M) such that the intersections of the subgroups in the lower central series with 
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q1

q2

q3

R3

R1

R2

−q2

−q1

−q2 + q3

−q1 + q3−q1 + q3−q1 + 2q3−q1 + 3q3

−q1 + q2

Fig. 2. The graph Γ(R′) with R
′ = R([Umax, Umax]) in Example 4.10.

U(Mi) are pairwise distinct. In particular, the nilpotency class of U(M) does not exceed 
maxi |Mi|.

6. Toric equivariant completions of unipotent groups

In this section we consider equivariant completions of unipotent groups by toric vari-
eties. The following proposition shows that a complete toric variety X can not be realized 
as an equivariant completion of a non-commutative regular unipotent subgroup.

Proposition 6.1. Consider a complete toric variety X with an acting torus T . Let a 
regular unipotent subgroup U of Aut(X) act on X with an open orbit O so that the 
action U � O has trivial stabilizers. Then the group U is commutative.

Proof. We may assume that U is contained in Umax. If U is not commutative, then 
by Theorem 4.4 U contains a principal unipotent subgroup as a proper subgroup. By 
Lemma 2.4 there is an elementary root −qi + qj in R(U). Then the one-parameter 
subgroups U−qi and U−qi+qj in U acting on the spectrum of the Cox ring R(X) change 
only the coordinate xi. This shows that generic orbits of U−qi and U−qi+qj on X coincide, 
and the action U � O has non-trivial stabilizers, a contradiction. �

The next example demonstrates that the regularity condition is crucial.
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Example 6.2. For n ≥ 3 we consider the subgroup

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
a1 1 0 0 · · · 0
a2 an 1 0 · · · 0
a3 0 0 1 · · · 0
...

. . .
an 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1, . . . , an ∈ K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊂ GL(n + 1,K),

with the action on Pn given in homogeneous coordinates by

(a1, . . . , an) · [z0 : . . . : zn] = [z0 : z1 + a1z0 : z2 + a2z0 + anz1 : z3 + a3z0 : . . . : zn + anz0].

This subgroup is neither commutative nor regular. It acts on Pn with an open orbit and 
generic stabilizers are trivial.

The theory of equivariant completions of commutative unipotent groups is nothing 
but the theory of additive actions. In the toric case this theory is rather well-developed, 
see [3,4,10,11,14]. It will be interesting to study (toric) equivariant completions of non-
commutative unipotent groups. Observations given above may serve as first steps towards 
this goal.

It is natural here to draw an analogy with the case of flag varieties. Take a simple 
linear algebraic group G and a parabolic subgroup P in G. The homogeneous space 
G/P is a projective variety called a flag variety of the group G. This variety contains 
an open Bruhat cell O, which is an orbit of the unipotent radical U of the opposite 
parabolic subgroup P−, and the action of U on O has trivial stabilizers. So G/P is 
an equivariant completion of U . Moreover, U may be regarded as a regular unipotent 
subgroup of Aut(G/P ) since U is normalized by a maximal torus in G.

At the same time, if G is the connected component of the group Aut(G/P ) (this is 
almost always the case), then G/P admits an additive action if and only if the group U
is commutative, and the list of such cases is very short (see [1]). In particular, it may 
happen only if the parabolic subgroup P is maximal.

It is proved in [6, Theorem 1.1] that G/P can be realized as an equivariant completion 
of the unipotent radical U in a unique way up to isomorphism, provided G/P is not 
isomorphic to a projective space.

7. The case of toric surfaces

In this section we illustrate the results obtained above in the case of surfaces. We keep 
the notation of the previous sections. Let X be a radiant toric surface; here n = 2 and 
so C = {1, 2}.
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If 1 and 2 are �-incomparable, then R consists of two basic roots and Umax = G2
a is 

the only unipotent group that acts faithfully with an open orbit on X. Equivalently, X
is a radiant toric variety of type I.

Assume now that 1 � 2. Then

R
+
2 = {−q2}, R

+
1 = {−q1, −q1 + q2, . . . , −q1 + dq2}

for some d ≥ 1. By definition of a Demazure root, the number d is determined by the 
following conditions on elements of the ray matrix A:

ak1 ≥ dak2 for all 3 ≤ k ≤ m and ak1 < (d + 1)ak2 for some 3 ≤ k ≤ m.

In this case the group Umax is metabelian of nilpotency class d + 1 and

Umax ∼= Ga �Gd+1
a .

Applying Algorithm 4.9 to this setting, we see that there are d + 1 non-isomorphic 
regular unipotent subgroups that act faithfully with an open orbit on X:

U−q2 �
(
U−q1 × U−q1+q2 × · · · × U−q1+lq2

) ∼= Ga �Gl+1
a , 0 ≤ l ≤ d.

By Proposition 3.4.(2) the action on the normalized subgroup is defined by

u−q2(α′)u−q1+kq2(α)u−q2(−α′) =

=
k∏

i=0
u−q1+(k−i)q2

((
k

i

)
α(α′)i

)
=

k∏
j=0

u−q1+jq2

((
k

j

)
α(α′)k−j

)
.

Now let us take a closer look at smooth toric surfaces. Such a surface is given by 
primitive vectors p0, p1, . . . , pm, pm+1 with p0 = pm and p1 = pm+1 such that any pair 
ps, ps+1 forms a basis of the lattice N = Z2. In this case ps−1 + ps+1 = csps for some 
integer numbers cs, 1 ≤ s ≤ m; see [16, Section 1.7] or [13, Section 2.5]. Clearly, the 
sequence (c1, . . . , cm) determines a smooth complete toric surface uniquely.

Proposition 7.1. Let X be a smooth complete toric surface given by a sequence 
(c1, . . . , cm). Then X is radiant if and only if the sequence (c1, . . . , cm, c1) contains 
at least two standing nearby non-positive numbers.

Proof. A complete toric surface X is radiant if and only if for some s all the vectors pi, 
i �= s, s + 1 are contained in the negative orthant with respect to the basis ps, ps+1. We 
have

ps−1 = csps − ps+1, ps+2 = cs+1ps+1 − ps,

and all other vectors pi lie between ps−1 and ps+2. This implies the claim. �
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For m = 3 we have only the projective plane P 2 represented by the sequence 
(−1, −1, −1). The case m = 4 corresponds to Hirzebruch surfaces Fq represented by 
sequences (0, q, 0, −q) for some non-negative integer q. Since any smooth complete toric 
surface can be obtained either from P 2 or from Fq by a sequence of blow-ups at T -
fixed points, any sequence (c1, . . . , cm) can be obtained either from (−1, −1, −1) or from 
(0, q, 0, −q) by a series of operations, which add 1 to some elements cs and cs+1 (we as-
sume that cm+1 = c1) and insert 1 between them; see [16, Section 1.7] or [13, Section 2.5]
for details.

Proposition 7.1 and the description of sequences (c1, . . . , cm) given above imply that 
for m ≤ 5 all smooth complete toric surfaces are radiant. For m = 6 we have the blow-up 
of P 2 at three T -fixed points corresponding to the sequence (1, 1, 1, 1, 1, 1), which is not 
radiant.

It is an interesting problem to study smooth radiant toric varieties in higher dimen-
sions.
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