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CHARACTERISTIC SPACE OF ORBITS OF MORSE–SMALE

DIFFEOMORPHISMS ON SURFACES

E.V. NOZDRINOVA, O.V. POCHINKA, AND E.V. TSAPLINA

Abstract. The classical approach to the study of dynamical systems
consists in representing the dynamics of the system in the form of a
“source-sink”, which means identifying attractor-repeller pairs which
are attractor-repellent sets for all other trajectories of the system. If
there is a way to choose this pair so that the space orbits in its comple-
ment (the characteristic space of orbits) is connected, this creates pre-
requisites for finding complete topological invariants of the dynamical
system. It is known that such a pair always exists for arbitrary Morse–
Smale diffeomorphisms given on any manifolds of dimension n ⩾ 3.
Whereas for n = 2 the existence of a connected characteristic space has
been proved only for orientation-preserving gradient-like (without het-
eroclinic points) diffeomorphisms defined on an orientable surface. In
the present work, it is constructively shown that the violation of at least
one of the above conditions (absence of heteroclinic points, orientability
of a surface, orientability of a diffeomorphism) leads to the existence of
Morse–Smale diffeomorphisms on surfaces that do not have a connected
characteristic space of orbits.
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1. Introduction and the Statement of the Result

Let f : Mn → Mn be a Morse–Smale diffeomorphism defined on a closed con-
nected n-manifold. Denote by Ω0

f , Ω
1
f , Ω

2
f the set of orbits of sinks, saddles, and

sources of the diffeomorphism f . For any (possibly empty) f -invariant set Σ ⊂ Ω1
f

such that cl(Wu
Σ) \Wu

Σ ⊂ Ω0
f , set

AΣ = Ω0
f ∪Wu

Σ , RΣ = Ω2
f ∪W s

Ω1
f\Σ

.
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It follows from [8] that AΣ and RΣ are an attractor and a repeller, which are called
dual. In the monograph [7] the set

VΣ =Mn \ (AΣ ∪RΣ)

is called the characteristic space, and the orbit space V̂Σ of the action f on VΣ is
called the characteristic space of orbits.

There are a number of examples where a reasonable choice of a dual pair leads
to a complete topological classification of some subset of Morse–Smale dynamical
systems (look, for example, [2], [1], [3], [4], [9], and an overview of [5]). In most cases,
finding complete topological invariants is based on the existence of a connected
characteristic space of orbits for the class of systems under consideration. For
example, according to [2], for any Morse–Smale 3-diffeomorphism, the characteristic
space of orbits constructed for the set Σ of saddle points with a one-dimensional
unstable manifold is connected. This fact played a key role in obtaining a complete
topological classification of such diffeomorphisms, obtained in [2]. According to [8],
any Morse–Smale diffeomorphism defined on a manifold of dimension n > 3 also has
a connected characteristic space of orbits. For orientation-preserving gradient-like
(without heteroclinic points) diffeomorphisms on surfaces there is a result in the
work [10] to the effect that the existence of a connected characteristic orbit space

V̂Σ homeomorphic to the two-dimensional torus T2.
The main result of the work is the proof of the fact that the violation of at

least one of the conditions (absence of heteroclinic points, orientability of the sur-
face, orientability of the diffeomorphism) leads to the existence of Morse–Smale
diffeomorphisms on the surface that do not have a connected characteristic space
of orbits. Exactly, the following theorem is proved.

Theorem 1. (1) On any orientable surfaceM2 there exists an orientation-changing
gradient-like diffeomorphism that does not have a connected characteristic space of
orbits.

(2) On any non-orientable surfaceM2 there exists a gradient-like diffeomorphism
that does not have a connected characteristic space of orbits.

(3) On any surface M2 there exists a Morse–Smale diffeomorphism with hetero-
clinic points that does not have a connected characteristic space of orbits.

2. Required Information and Facts

Let Mn be a smooth closed orientable manifold and f a diffeomorphism on
Mn. For a diffeomorphism f , a point x ∈ X is called wandering if there exists an
open neighborhood Ux of x such that f(Ux) ∩ Ux = ∅. Otherwise, the point x is
called non-wandering. It is immediate from the definition that any point in the
neighborhood Ux of a wandering point x is wandering itself and therefore the set
of wandering points is open while the set of non-wandering points is closed.

The set of all nonwandering points of the diffeomorphism f is called the non-
wandering set and usually denoted by Ωf .

The simplest examples of hyperbolic sets are primarily the hyperbolic fixed points
of a diffeomorphism, which can be classified as follows. Let f : X → X be a
diffeomorphism and f(p) = p. A point p is hyperbolic if and only if the absolute
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value of each eigenvalue of the Jacobi matrix
(
∂f
∂x

)
|p is not equal to 1. If the absolute

values of all the eigenvalues are less than 1, then p is called a attracting (a sink
point, or sink); if the absolute values of all the eigenvalues are greater than 1 then
p is called a repelling (a source point, or source). Attracting or repelling points are
called nodes. A hyperbolic fixed point that is not a node, is called a saddle point
or saddle.

If the point p is a periodic point f with period per(p), then applying the previous
construction to the diffeomorphism fper(p), we obtain a classification of hyperbolic
periodic points similar to the classification of fixed hyperbolic points .

The hyperbolic structure of a periodic point p leads to its stable

W s
p = {x ∈Mn : lim

k→+∞
d(fk per(p)(x), p) → 0}

and unstable

Wu
p = {x ∈Mn : lim

k→+∞
d(f−k per(p)(x), p) → 0}

diversities that are smooth embeddings of Rn−qp and Rqp respectively. Here qp

is the number of eigenvalues of the Jacobian matrix
(
∂fper(p)

∂x

)
|p modulo greater

than 1.
For a hyperbolic fixed or periodic point p, the stable or unstable manifold is

called the invariant manifold of this point, the connected component of the set
Wu
p \ p (resp. W s

p \ p) is called unstable (resp. stable) separatrix.
A closed f -invariant set A ⊂ Mn is called an attractor of a discrete dynamical

system f if it has a compact neighborhood UA such that f(UA) ⊂ intUA and
A =

⋂
k⩾0 f

k(UA). The neighborhood of UA is called captivating or isolating.

Repeller is defined as an attractor for f−1. An attractor and a repeller are called
dual if the complement to the exciting neighborhood of the attractor is the exciting
neighborhood of the repeller.

A diffeomorphism f : Mn →Mn is called a Morse–Smale diffeomorphism if
1) the nonwandering set Ωf consists of a finite number of hyperbolic orbits;
2) the manifolds W s

p , W
u
q intersect transversally for any nonwandering points

p, q.
A Morse–Smale diffeomorphism is called gradient-like if the condition W s

σ1
∩

Wu
σ2

̸= ∅ for different points σ1, σ2 ∈ Ωf implies that dimWu
σ1

< dimWu
σ2
. In

dimension n = 2, the set of gradient-like diffeomorphisms coincides with the set of
Morse–Smale diffeomorphisms whose saddle separatrices do not intersect.

IfMn is an orientable manifold, then the diffeomorphism f : Mn →Mn is called
orientation-preserving, if f has a positive Jacobian at least at one point, otherwise
the diffeomorphism is called orientation-changing.

Let f : M2 → M2 be a gradient-like diffeomorphism defined on a closed surface
M2. Let ω be the sink point of the period mω of the diffeomorphism f . According
to [12, Theorem 5.5], the diffeomorphism fmω in some neighborhood of the point
ω is topologically conjugate to the linear diffeomorphism of the plane given by the

matrix

(
1
2 0
0 ςω · 1

2

)
, where ςω = +1 (−1) if fmω |W s

ω
preserves (changes) orientation.
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We say that the sink ω has a positive orientation type if ςω = +1 and has a negative
orientation type otherwise.

Denote by Oω the orbit of the point ω. Let Vω = W s
Oω

\ Oω. Denote by

V̂ω = Vω/f the orbit space of the action of the group F = {fk, k ∈ Z} ∼= Z on Vω
and by pω : Vω → V̂ω the natural projection.

Proposition 2.1 [6, Statement 1]. The manifold V̂ω is diffeomorphic to a two-
dimensional torus if ςω = +1 and is diffeomorphic to a Klein bottle if ςω = −1.
Moreover, ηω (π1(V̂ω)) = mωZ.

Similarly denote the orientation type ςα for the periodic source α of the diffeo-
morphism f , the space of orbits V̂α and the projection of the stable separatrix of
the saddle point into it.

Let σ be a saddle point of the period mσ of the diffeomorphism f . According
to [12, Theorem 5.5], the diffeomorphism fmσ in some neighborhood of the point
σ is topologically conjugate to the linear diffeomorphism of the plane given by

the matrix

(
νσ · 1

2 0
0 λσ · 2

)
, where νσ = +1 (−1) if f |W s

p
preserves (changes)

orientation; λσ = +1 (−1) if f |Wu
p

preserves (changes) orientation. A pair ςσ =

(νσ, λσ) will be called the orientation type of the saddle point σ and denote by
aςσ : R2 → R2 a corresponding linear diffeomorphism. If νσ > 0, λσ > 0, then the
type of orientation will be called positive, and negative otherwise.

Denote by Oσ the orbit of the saddle point σ and set Nu
σ = NOσ

\W s
Oσ

. Then

the group F acts on Nu
σ , generating the orbit space N̂u

σ = Nu
σ /f and the natural

projection puσ : N
u
σ → N̂u

σ (see Figure 1 for the case ςσ = (+1, +1)).

Figure 1. An orbit space N̂u
σ

Denote similarly by the orbit space N̂s
σ = Ns

σ/f of the action of the group F on

Ns
σ = NOσ

\Wu
Oσ

, the natural projection psσ : N
s
σ → N̂s

σ and mapping ηsσ composed
of homomorphisms into the group Z from the fundamental group of each connected
component of the space N̂s

σ.
In addition, the map

ψ̂σ = psσ(p
u
σ)

−1 : ∂N̂u
σ → ∂N̂s

σ

is well defined and it will be called the rearrangement map (see Figure 2 for the
case ςσ = (+1, +1)).
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Figure 2. Rearrangement map

Denote by Ω0
f , Ω

1
f , Ω

2
f the set of sinks, saddles, and sources of the diffeomor-

phism f . For any (possibly empty) f -invariant set Σ ⊂ Ω1
f such that cl(Wu

Σ)\Wu
Σ ⊂

Ω0
f , we set

AΣ = Ω0
f ∪Wu

Σ , RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

The set
VΣ =M2 \ (AΣ ∪RΣ)

is called the characteristic space. The factor space

V̂Σ = VΣ/f

is called the characteristic space of orbits. Let V 1
Σ = p−1

Σ
(V̂ 1

Σ), . . . , V
k
Σ = p−1

Σ
(V̂ kΣ )

and denote by m1, . . . , mk the number of connected components in the sets V 1
Σ ,

. . . , V kΣ respectively.

Proposition 2.2 [13, Proposition 1]. Each connected component of the charac-

teristic orbit space V̂Σ is homeomorphic either to a two-dimensional torus or to a
Klein bottle.

Proposition 2.3 [11, Lemma 4.1]. Let Σ′ = Σ∪Oσ for some saddle orbit Oσ and

v̂, v̂′ be the disjoint union of the connected components of the spaces V̂Σ, V̂Σ′ which
have non-empty intersection with N̂u

σ , N̂
s
σ, respectively. Then

V̂Σ′ ∼= (V̂Σ \ int N̂u
σ ) ∪ψ̂σ

N̂s
σ.

Wherein
V̂Σ′ ∼= (V̂Σ \ v̂) ⊔ v̂′. (1)

Corollary 2.1. If σ is a saddle point with a positive orientation ςσ = (+1, +1),
then for the sets v̂, v̂′ in the formula (1) the following features are implemented :

• v̂ is a disjoint union of two Klein bottles, v̂ is a disjoint union of two Klein
bottles (see Figure 3(1));

• v̂ is a torus, v̂′ is a disjoint union of two tori (see Figure 3(2));
• v̂ is a disjoint union of two tori and v̂′ is a torus;
• v̂ is a disjoint union of a torus and a Klein bottle and v̂′ is a Klein bottle;
• v̂ is a Klein bottle and v̂′ is a disjoint union of a torus and a Klein bottle;
• v̂ is a torus and v̂′ is a torus (if M2is a non-orientable surface surface).
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If σ is a saddle point with negative orientation ςσ = (−1, −1), then the following
possibilities are realized :

• v̂ is a Klein bottle and v̂′ is a Klein bottle;
• v̂ is a torus and v̂′ is a torus.

Figure 3. Illustration for Corollary 2.1

3. Construction of Model Diffeomorphisms

In this section, we construct several basic diffeomorphisms, the proof of the
theorem 1 will be based on them.

3.1. Gradient-like diffeomorphism ψ0 on the sphere S2. Define polar co-
ordinates (r, φ) on the plane R2. Denote by ϱ(r) the function depicted on the
graph(see Figure 4), which has the property ϱ(r) = ϱ( 1r ).

r

r21/2 10

( )ᵨ
1

Figure 4. Function graph ϱ

Also define a vector field on the plane R2 using the following system of differential
equations: ṙ =

{
−r(r − 1), 0 ⩽ r ⩽ 1;

1− r, r > 1;

φ̇ = −ϱ(r) sin 2φ.
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Denote by χt the flow induced by this vector field, and denote by χ the diffeo-
morphism, which is the shift of the flow χt per unit of time. The result is a
diffeomorphism that has a hyperbolic source at the origin O, hyperbolic saddles at
points A1, A3 and hyperbolic sinks at points A0, A2 (see Figure 5).

Figure 5. Phase portrait of a diffeomorphism χ

Let a diffeomorphism θ : R2 → R2 be as follows as θ(r, φ) = (r, −φ). We define
the diffeomorphism ψ̄0 : R2 → R2 by the formula

ψ̄0 = θ ◦ χ.

By the construction, the nonwandering set of the diffeomorphism ψ̄0 coincides with
a nonwandering diffeomorphism set χ. Consider the standard two-dimensional
sphere

S2 = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}.

Denote by N(0, 0, 1) north pole and define a stereographic projection (see Figure 6)
ϑ : S2 \ {N} → R2 formula

ϑ(x1, x2, x3) =

(
x1

1− x3
,

x2
1− x3

)
.

Define a diffeomorphism ψ0 : S2 → S2 by the formula

ψ0(x) =

{
ϑ−1 ◦ ψ̄0 ◦ ϑ(x), x ∈ S2 \ {N},
N, x = N.

By construction, ψ0 is an orientation-changing gradient-like 2-sphere diffeomor-
phism whose nonwandering set consists of two fixed sources α1 = N , α2 = ϑ−1(O) of
negative orientation (ςα1 = ςα2 = −1); two fixed sinks ω0 = ϑ−1(A0), ω1 = ϑ−1(A2)
of negative orientation (ςω0

= ςω1
= −1) and saddle orbit Oσ = {σ = ϑ−1(A1),

ψ0(σ) = ϑ−1(A3)} of period 2 with orientation type ςσ = (+1, +1) (see Figure 7):

Ωψ0 = {α1, α2, ω0, ω1, σ, ψ0(σ)}.
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Figure 6. Stereographic projection

(   )

Figure 7. Diffeomorphism ψ0

3.2. Gradient-like diffeomorphism ψ̃1 on the projective plane RP 2. Con-
sider the diffeomorphism ψ0 : S2 → S2 defined in 3.1 and the group Z2 = {+1, −1}
acting on the two-dimensional sphere S2 = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}
as follows:

±1 · x = ±x, x = (x1, x2, x3) ∈ S2.

Then the orbit space S2/Z2 of the action of the group Z2 on S2 is the projective
plane RP 2. Let p : S2 → RP 2 be the natural projection. Let the diffeomorphism
ψ̃1 : RP 2 → RP 2 be defined by the formula

ψ̃1(x) = p ◦ ψ0 ◦ p−1(x), x ∈ RP 2.

By construction, the nonwandering set of the constructed diffeomorphism consists
of three fixed points: the source α̃ of negative orientation (ςα̃ = −1), the sink ω̃ of
negative orientation (ςω̃ = −1) and saddle σ̃1 with orientation type ςσ̃1 = (−1, −1)
(see Figure 8):

Ωψ̃1
= {α̃, ω̃, σ̃1}.



CHARACTERISTIC SPACE OF ORBITS 29

Figure 8. Diffeomorphism ψ̃1

3.3. Gradient-like diffeomorphism ψ̃q. Let S−
q = S2#RP 2# . . .#RP 2︸ ︷︷ ︸

q

. Con-

struct a model diffeomorphism ψ̃q : S
−
q → S−

q . The source α̃ and the sink ω̃ of

the diffeomorphism ψ̃1 should be considered. Whereas they are hyperbolic, there
are non-intersecting 2-discs Bω̃, Bα̃ around them such that ψ̃1(Bω̃) ⊂ intBω̃,

ψ̃−1
1 (Bα̃) ⊂ intBα̃. Then the connected sum of two copies of projective planes

along the disks Bω̃, Bα̃ is a non-orientable surface S−
2 of genus 2 (see Figure 9).

Since the dynamics in the disk Bω̃ is inverse to the dynamics in the disk Bα̃, a
diffeomorphism ψ̃2 is well-defined on the surface S−

2 , which coincides with ψ̃1 to

RP2 \ Bα̃ and to RP2 \ Bω̃. We say that the diffeomorphism ψ̃2 is the connected

sum of two copies of the diffeomorphism ψ̃1 (ψ̃2 = ψ̃1#ψ̃1) along the sink ω̃ and
source α̃.

Figure 9. Diffeomorphism ψ̃2

By induction, a diffeomorphism ψ̃q : S
−
q → S−

q on a non-orientable surface of

genus q ⩾ 2 is constructed as a connected sum of diffeomorphisms ψ̃q−1 and ψ̃1

(ψ̃q = ψ̃q−1#ψ̃1) along the ω̃ sink and α̃ source. By construction, the nonwandering
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set of the diffeomorphism ψ̃q consists of q+2 fixed points: the source α̃ of negative
orientation (ςα̃ = −1), the sink ω̃ negative orientation (ςω̃ = −1) and q saddles
σ̃1, . . . , σ̃q with orientation type ςσ̃i

= (+1, +1) (see Figure 9 for q = 2):

Ωψ̃q
= {α̃, ω̃, σ̃1, . . . , σ̃q}.

3.4. Gradient-like diffeomorphism ψ1 on a torus T2. We construct a dif-
feomorphism ψ1 on the two-dimensional torus T2 as a cartesian product of two
orientation-preserving source-sink diffeomorphisms on the circle S1. For this we
should consider the function F̄ : R → R given by the formula:

F̄ (x) = x+
1

6π
sin 2πx

(see Figure 10).

y

1 x

1

0

Figure 10. Function Graph F̄

Consider the projection π : R → S1 given by the formula π(x) = e2πix. Since the
function F̄ is strictly monotonically increasing and satisfies the condition F̄ (x+1) =
F̄ (x) + 1, it admits a projection onto a circle in diffeomorphism F : S1 → S1 given
by

F (z) = πF̄π−1(z), z ∈ S1.

By construction, the diffeomorphism F has a fixed hyperbolic sink and source and
is an orientation-preserving source-sink diffeomorphism. Define a diffeomorphism
F1 : T2 → T2 by the formula

F1(z, w) = (F (z), F (w)), z, w ∈ S1.

Then the diffeomorphism F1 is orientation-preserving, and its nonwandering set
consists of four fixed points: a source α of positive orientation (ςα = +1), a sink
ω of positive orientation (ςω = +1) and two saddles σ1, σ2 of positive orientation
type (see Figure 11):

ΩF = {α, ω, σ1, σ2}.
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Figure 11. Diffeomorphism F1

Let us represent the two-dimensional torus T2 as the factor group of the group
R2 with respect to the integer lattice Z2 : T2 = R2/Z2. Consider the matrix A =(
0 1
1 0

)
∈ GL(2, Z) and the algebraic torus automorphism Â : T2 → T2,

Â(x, y) = (y, x) (mod 1).

Let

ψ1 = Â ◦ F1 : T2 → T2.

By construction, the diffeomorphism ψ1 is an orientation-changing gradient-like
diffeomorphism whose nonwandering set consists of a source α and a sink ω of
negative orientation types (ςα = ςω = −1), as well as periodic saddle orbit Oσ1

=
{σ1, ψ1(σ1)} of period 2 and orientation type ςσ1

= (+1, +1) (see Figure 12):

Ωψ1
= {α, ω, σ1, ψ1(σ1)}.

3.5. Gradient-like diffeomorphism ψg on an orientable surface of genus g.

Let S+
g = S2#T2# . . .#T2︸ ︷︷ ︸

g

. Let us construct a model diffeomorphism ψg : S
+
g →

S+
g . To do this, firstly, we should construct a diffeomorphism ψ2 : S

+
2 → S+

2 as
a connected sum of two copies of the diffeomorphism ψ1 (ψ2 = ψ1#ψ1) along
the sink ω and the source α (see Fig. 13). Then, by induction, we define the
diffeomorphism ψg : S

+
g → S+

g as a connected sum of diffeomorphisms ψg−1 and
ψ1 (ψg = ψg−1#ψ1) along the sink ω and the source α. By construction, the
nonwandering set of the diffeomorphism ψg consists of a fixed source α and a fixed
sink ω of negative orientation types (ςα = ςω = −1), and g saddle periodic orbits
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Figure 12. Diffeomorphism ψ1

Figure 13. Diffeomorphism ψ2

Oσ1
= {σ1, ψ1(σ1)}, . . . , Oσg

= {σg, ψ1(σg)} of period 2 and orientation type
ςσi = (+1, +1) (see Figure 13 for g = 2):

Ωψg
= {α, ω, σ1, ψg(σ1), . . . , σg, ψg(σg)}.

3.6. Non-gradient-like Morse–Smale diffeomorphism ξ0 on the sphere
S2. Consider the diffeomorphism h : R2 → R2 given in polar coordinates (r, φ),
φ ∈

(
−π

2 ,
3π
2

]
by the formula h(r, φ) =

(
r
2 , φ

)
. Let A− = {(r, φ) ∈ R2 \ {0} : 3π

4 ⩽
φ ⩽ 5π

4 }, A+ = {(r, φ) ∈ R2 \ {0} : |φ| ⩽ π
4 }. Let C = R × [−2, 2] and define the

diffeomorphisms η− : A− → C, η+ : A+ → C by the formulas

η−(r, φ) =
(
3− log2 r, 8

(φ
π
− 1

))
, η+(r, φ) =

(
−3− log2 r,

8φ

π

)
.

It can be directly verified that the diffeomorphism η− (η+) conjugates the diffeo-
morphism h with the diffeomorphism g : C → C defined by the formula g(x, d) =
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(x + 1, d) and η−(2, π) = (2, 0) (η+(1/2, 0) = (−2, 0)). It is obvious that the
diffeomorphism g is included in the flow gt : C → C defined by the formula

gt(x, d) = (x+ t, d).

We define the flow ϕt− on C using the formulas

ẋ =

{
1− 1

9 (x
2 + d2 − 4)2, x2 + d2 ⩽ 4,

1, else;

ḋ =


d
2

(
sin

(
π
2 (x

2 + d2 − 3)
)
− 1

)
, 2 < x2 + d2 ⩽ 4,

−d, x2 + d2 ⩽ 2,

0, else.

x

Figure 14. Flow paths ϕt−

By construction, the flow ϕt− coincides with the flow gt for |x| ⩾ 2. Moreover, the
diffeomorphism ϕ− = ϕ1− has exactly two fixed points: the saddle P−(1, 0) and the
sink Q−(−1, 0) (see Figure 14), besides both points are hyperbolic. One unstable
separatrix of the P− saddle is an open interval (−1, 1)× {0} belonging to the Q−
sink basin, and the other is a ray (1, +∞)× {0}.

Define the flow ϕt+ on C by the formulas

ẋ =

{
1− 1

9 (x
2 + d2 − 4)2, x2 + d2 ⩽ 4,

1, else;

ḋ =


−d

2

(
sin

(
π
2 (x

2 + d2 − 3)
)
− 1

)
, 2 < x2 + d2 ⩽ 4,

d, x2 + d2 ⩽ 2,

0, else.

By construction, the flow ϕt+ coincides with the flow gt for |x| ⩾ 2. In this case,
the diffeomorphism ϕ+ = ϕ1+ has exactly two fixed points: the saddle P+(−1.0)
and the source Q+(1.0) (see Figure 15), similarly, both points are hyperbolic. One
stable separatrix of the saddle P+ is the open interval (−1, 1) × {0} belonging to
the source basin Q+, and the other is the ray (−∞, −1)× {0}.

Define diffeomorphism f̄ : R2 → R2 so that f̄ coincides h outside A+ ∪ A− and
coincides η−1

− ϕ−η− and η−1
+ ϕ+η+ to A− and A+ respectively.
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x

Figure 15. Flow paths ϕt+

Consider on R2 the annulus K = {(x1, x2) ∈ R2 : 1 ⩽ x21 + x22 ⩽ 4}.Define the
function ν : [1, 2] → [1, 2] (see Figure 16) by the formula:

ν(t) =


1, t = 1,

1 + 1

1+exp

(
3
2
−t

(t−1)2(t−2)2

) , 1 < t < 2,

2, t = 2.

On the annulus K we can define the Dehn twist d̄ : K → K formula

x

y

2

1 2

1

Figure 16. Function Graph ν : [1, 2] → [1, 2]

d̄(t, eiϕ) =
(
t, ei(ϕ+2πν(t))

)
.

Let ξ̄0 = d̄ ◦ f̄ : R2 → R2 (see Figure 17).
By construction, the diffeomorphism ξ̄0 coincides with h in some neighborhood

of the point O and the point at infinity, therefore, it induces on S2 a Morse–Smale
diffeomorphism ξ0 : S2 → S2 by the formula

ξ0(x) =

{
ϑ−1 ◦ ξ̄0 ◦ ϑ(x), x ∈ S2 \ {N},
N, x = N.

It follows directly from the construction that the nonwandering set of the dif-
feomorphism ξ0 consists of six fixed points of positive orientation: two sources
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Figure 17. Diffeomorphism ξ̄0

α1 = N , α2 = ξ0(ϑ
−1(Q+)), two sinks ω0 = ξ0(ϑ

−1(Q−)), ω = S and two saddles
σ = ξ0(ϑ

−1(P−)), σ0 = ξ0(ϑ
−1(P+)) (see Figure 18):

Ωξ0 = {α1, α2, ω0, ω, σ0, σ}.

Figure 18. Phase portrait of a diffeomorphism ξ0

4. Proof of the Main Result

In this section, we will prove Theorem 1, each item in a separate lemma below.

Lemma 4.1. On any orientable surface M2 there exists an orientation-changing
gradient-like diffeomorphism that does not have a connected characteristic space of
orbits.

Proof. To prove the lemma, consider a diffeomorphism fg : S
+
g → S+

g such that
f0 = ψ0 and fg (g > 0) is the connected sum of the diffeomorphism ψ0 with
the diffeomorphism ψg along sink ω0 and source α respectively. By construction,
the diffeomorphism fg changes orientation, and its nonwandering set consists of two
fixed sources α1, α2, two fixed sinks ω, ω1 of negative orientation (ςα1 = ςα2 = ςω =
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ςω1
= −1) and g + 1 saddle periodic orbits Oσ = {σ, fg(σ)}, Oσ1

= {σ1, fg(σ1)},
. . . , Oσg

= {σg, fg(σg)} of period 2 and orientation type (+1, +1) (see Figure 13):

Ωfg = {α, ω, σ, fg(σ1), σ1, fg(σ1), . . . , σg, fg(σg)}.

1

f  (  ) f (   )

Figure 19. Diffeomorphism fg

Let us show that the diffeomorphism fg does not have a connected characteristic
space of orbits.

Indeed, by the proposition 2.1, each of the orbit spaces V̂ω, V̂ω1 is homeomorphic

to a Klein bottle. Therefore, if Σ = ∅, then the characteristic orbit space V̂Σ
is not connected and consists of two Klein bottles. Since all saddle points of the
diffeomorphism fg have a positive orientation type, then, according to the Corollary
2.1, adding the orbits of such saddles to the set Σ does not decrease the number of
connected components of the characteristic space of orbits. □

Lemma 4.2. On any non-orientable surface M2 there exists a gradient-like diffeo-
morphism that does not have a connected characteristic space of orbits.

Proof. Define a diffeomorphism f̃q : S
−
q → S−

q , q ∈ N, as a connected sum of dif-

feomorphisms ψ0 and ψ̃q (f̃q = ψ0#ψ̃q) along the sink ω0 of the diffeomorphism ψ0

and the source α̃ of the diffeomorphism ψ̃q (see Fig. 20 for q = 1). By construc-
tion, the nonwandering set Ωf̃q consists of two sources α1, α2 and two sinks ω1, ω̃

of negative orientation types (ςω1
= ςω̃ = ςα1

= ςα2
= −1), also of q fixed saddles

σ̃1, . . . , σ̃q of orientation type ςσ̃i = (−1, −1) and a saddle orbit Oσ = {σ, f̃q(σ)}
of period 2 with a positive orientation type (see Figure 20 for q = 1):

Ωf̃q = {α1, α2, ω1, ω̃, σ, f̃q(σ1), σ̃1, . . . , σ̃q}.

Let us show that the diffeomorphism f̃q does not have a connected characteristic
space of orbits.

By the construction and proposition 2.1, each of the orbit spaces V̂ω̃, V̂ω1 is
homeomorphic to a Klein bottle. If Σ = ∅, then the characteristic orbit space
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Figure 20. Diffeomorphism f̃1

V̂Σ is not connected and consists of two Klein bottles. Since all saddle points of
the diffeomorphism f̃q have orientation type either (+1, +1) or (−1, −1), then,
according to the corollary 2.1, adding the orbits of such saddles to the set Σ does
not decrease the number of connected components of the characteristic space of
orbits. □

Lemma 4.3. On any surface M2 there exists a Morse–Smale diffeomorphism with
heteroclinic points that does not have a connected characteristic space of orbits.

Proof. We construct a diffeomorphism ξg : S
+
g → S+

g as a connected sum of diffeo-

morphisms ξ0 and ψ2
g (ξg = ξ0#ψ

2
g) along the sink ω0 of the diffeomorphism ξ0 and

the source α of the diffeomorphism ψ2
g . By construction, the diffeomorphism ξg

preserves orientation, its nonwandering set consists of points of positive orientation
type: two sinks ω, ω1 and two sources α1, α2 and 2+2g saddles σ0, σ, σ1, . . . , σ2g
(a special case for g = 1 is shown in Figure 21).

Figure 21. Diffeomorphism ξ1
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Let us show that the diffeomorphism ξg does not have a connected characteristic
space of orbits.

Let the set Σ = ∅, then the characteristic orbit space consists of two tori V̂ω1

and V̂ω. Since the unstable saddle point manifolds σ1, . . . , σ2g contain the only one
sink ω in their closures, then adding these saddles to the set Σ does not reduce the
number of components of the characteristic space of orbits. The unstable manifold
of the saddle σ0 contains the only one sink ω1 in its closure, then adding this saddle
to the set Σ increases the number of connected components of the characteristic
space to three. The saddle σ is greater the saddle σ0 by the Smale order1, so the
saddle σ can be added to the set Σ only together with the saddle σ0. Hence, for any
set Σ the number of connected components of the characteristic space is greater
than one.

Also, let us construct a diffeomorphism ξ̃q : S
−
q → S−

q as a connected sum of

diffeomorphisms ξ0 and ψ̃2
q (ζq = ξ0#ψ̃

2
q ) along the sink ω0 of the diffeomorphism

ξ0 and the source α̃ of the diffeomorphism ψ̃2
q (a special case for q = 1 is shown

in Figure 22). The nonwandering set of the diffeomorphism ζq consists of points
of positive orientation type: two sources α1, α2, two sinks ω1, ω̃ and q + 2 saddles
σ, σ0, σ̃1, . . . σ̃q.

Figure 22. Connected sum of diffeomorphisms ξ0 and ψ̃2
1

Similar arguments to the case of orientable surfaces prove that the diffeomor-
phism ξ̃q does not have a connected characteristic space of orbits. □
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