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ABSTRACT
In the machine learning and optimization community, there are
two main approaches for the convex risk minimization problem,
namely the Stochastic Approximation (SA) and the Sample Average
Approximation (SAA). In terms of the oracle complexity (required
number of stochastic gradient evaluations), both approaches are
considered equivalent on average (up to a logarithmic factor). The
total complexity depends on a specific problem, however, starting
from the work [A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro,
Robust stochastic approximationapproach to stochastic programming,
SIAM. J. Opt. 19 (2009), pp. 1574–1609] it was generally accepted
that the SA is better than the SAA. We show that for the Wasser-
stein barycenter problem, this superiority can be inverted. We pro-
vide a detailed comparison by stating the complexity bounds for
the SA and SAA implementations calculating barycenters defined
with respect to optimal transport distances and entropy-regularized
optimal transport distances. As a byproduct, we also construct con-
fidence intervals for the barycenter defined with respect to entropy-
regularized optimal transport distances in the �2-norm. The prelimi-
nary results are derived for a general convex optimization problem
given by the expectation to have other applications besides the
Wasserstein barycenter problem.
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1. Introduction

In this paper, we consider the problem of finding a barycenter of discrete random proba-
bility measures. We refer to optimal transport (OT) metrics which provides a successful
framework to compare objects that can be modelled as probability measures (images,
videos, texts, etc.). Transport-based distances have gained popularity in various fields
such as statistics [13,27], unsupervised learning [4], signal and image analysis [76], com-
puter vision [66], text classification [51], economics and finance [62] and medical imaging
[38,77]. Moreover, a lot of statistical results are known about optimal transport distances
[47,72,78].

The success of optimal transport led to an increasing interest inWasserstein barycenters
(WBs). Wasserstein barycenters are used in Bayesian computations [74], texture mixing
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[61], clustering (k-means for probability measures) [21], shape interpolation and color
transferring [71], statistical estimation of template models [15] and neuroimaging [38].
For discrete random probability measures from the probability simplex�n (n is the size of
support) with distribution P, a Wasserstein barycenter is introduced through a notion of
Fréchet mean [30]

min
p∈�n

Eq∼PW(p, q). (1)

If a solution of (1) exists and is unique, then it is referred to as the population barycenter
of distribution P. HereW(p, q) is optimal transport between measures p and q

W(p, q) = min
π∈U(p,q)

〈C,π〉, (2)

where C ∈ R
n×n
+ is a symmetric transportation cost matrix and U(p, q) � {π ∈ R

n×n
+ :

π1 = p,πT1 = q} is transport polytope.1
In [18], the entropic regularization of optimal transport problem (2) was proposed to

improve its statistical properties [9,47] and to reduce the computational complexity from
Õ(n3) (n is the size of the support of the measures) to n2 min{Õ( 1

ε
), Õ(
√
n)} arithmetic

operations2

Wγ (p, q) � min
π∈U(p,q)

{〈C,π〉 − γE(π)} . (3)

Here γ > 0 and E(π) � −〈π , logπ〉 is the entropy. Since E(π) is 1-strongly concave on
�n2 in the �1-norm, the objective in (3) is γ -strongly convex with respect to π in the �1-
norm on �n2 , and hence, problem (3) has a unique optimal solution. Moreover,Wγ (p, q)
is γ -strongly convex with respect to p in the �2-norm on �n [8, Theorem 3.4]. Another
particular advantage of the entropy-regularized optimal transport (3) is a closed-form
representation for its dual function [1,19] defined by the Fenchel–Legendre transform of
Wγ (p, q) as a function of p

W∗γ ,q(u) = max
p∈�n

{〈u, p〉 −Wγ (p, q)
} = γ

(
E(q)+ 〈q, log(Kβ)

〉)
,

where β = exp(u/γ ), K = exp(−C/γ ) and functions < roman > log < /roman > or
exp are applied element-wise. Hence, the gradient of dual function W∗γ ,q(u) is also
represented in a closed-form [19]

∇W∗γ ,q(u) = β 	 (K · q/(Kβ)
) ∈ �n,

where symbols 	 and / stand for the element-wise product and element-wise division
respectively.

Background on the SA and the SAA. Let us consider a general stochastic convex
minimization problem

min
x∈X⊆Rn

F(x) � Ef (x, ξ), (4)

where function f is convex in x (x ∈ X, X is a convex set) andEf (x, ξ) is the expectation of
f with respect to ξ ∈ 	. Such kind of problems arise in many applications of data science
[67,69] (e.g. risk minimization) and mathematical statistics [73] (e.g. maximum likeli-
hood estimation). There are two competing approaches based on Monte Carlo sampling
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techniques to solve (4): the Stochastic Approximation (SA) [64] and the Sample Average
Approximation (SAA). The SAA approach replaces the objective in problem (4) with its
sample average approximation

min
x∈X F̂(x) � 1

m

m∑
i=1

f (x, ξi), (5)

where ξ1, ξ2, . . . , ξm are the realizations of a random variable ξ . The number of realizations
m is adjusted by a desired precision. The total working time of both approaches to solve
problem (4) with the average precision ε in the non-optimality gap in term of the objective
function (i.e. to find xN such thatEF(xN)−minx∈X F(x) ≤ ε), depends on a specific prob-
lem. However, it was generally accepted [54] that the SA approach is better than the SAA
approach. Stochastic gradient (mirror) descent, an implementation of the SA approach
[44], gives the following estimation for the number of iterations (that is equivalent to the
sample size of ξ1, ξ2, ξ3, . . . , ξm)

m = O
(
M2R2

ε2

)
. (6)

Here we considered the minimal assumptions (non-smoothness) for the objective f (x, ξ)

‖∇f (x, ξ)‖22 ≤ M2, ∀x ∈ X, ξ ∈ 	. (7)

Whereas the application of the SAA approach requires the following sample size [70]:

m = Õ
(
nM2R2

ε2

)
,

that is n times more (n is the problem dimension) than the sample size in the SA approach.
This estimate was obtained under the assumptions that problem (5) is solved exactly. This
is one of the main drawback of the SAA approach. However, if the objective f (x, ξ) is λ-
strongly convex in x, the sample sizes are equal up to logarithmic terms

m = O
(
M2

λε

)
.

Moreover, in this case, for the SAA approach, it suffices to solve problem (5) with accuracy
[68]

ε′ = O
(

ε2λ

M2

)
. (8)

Therefore, to eliminate the linear dependence on n in the SAA approach for a non-strongly
convex objective, regularization λ = ε

2R2 should be used [68].
Let us suppose that f (x, ξ) in (4) is convex but not strongly convex in x (possibly,

λ-strongly convex but with very small λ� ε
R2 ). Here R = ‖x1 − x∗‖2 is the Euclidean

distance between starting point x1 and the solution x∗ of (4) which corresponds to the
minimum of this norm (if the solution is not the only one). Then, the problem (4) can be
replaced by

min
x∈X Ef (x, ξ)+ ε

2R2
‖x− x1‖22. (9)
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The empirical counterpart of (9) is

min
x∈X

1
m

m∑
i=1

f (x, ξi)+ ε

2R2
‖x− x1‖22, (10)

where the sample size m is defined in (6). Thus, in the case of non-strongly objective, a
regularization equates the sample size of both approaches.

1.1. Contribution and relatedwork

The SA and SAA approaches. This paper is inspired by the work [54], where it is stated that
the SA approach outperforms the SAA approach for a certain class of convex stochastic
problems. Our aim is to show that for theWasserstein barycenter problem, this superiority
can be inverted. We provide a detailed comparison by stating the complexity bounds for
implementations of the SA and SAA approaches for the Wasserstein barycenter problem.
As a byproduct, we also construct a confidence interval for the barycenter defined w.r.t.
entropy-regularized OT.

Sample size.We also estimate the sample size of measures to calculate an approximation
for Fréchet mean of a probability distribution with a given precision.

Consistency and rates of convergence. The consistency of empirical barycenter as an
estimator of true Wasserstein barycenter (defined by the notion of Fréchet mean) as the
number of measures tends to infinity was studied inmany papers, e.g. [12,52,57,63], under
some conditions for the process generated themeasures.Moreover, the authors of [15] pro-
vide the rate of this convergence but under restrictive assumption on the process (it must
be from admissible family of deformations, i.e. it is a gradient of a convex function). With-
out any assumptions on generating process, the rate of convergence was obtained in [11],
however, only for measures with one-dimensional support. For some specific types of met-
rics and measures, the rates of convergence were also provided in works [17,37,49]. Our
results were obtained under the condition of discreteness of the measures. We can always
achieve this condition through additional preprocessing (discretization of measures).

Penalization of barycenter problem. For a general convex (but not strongly convex)
optimization problem, the empirical minimization may fail in offline approach despite
the guaranteed success of an online approach if no regularization was introduced [68].
The limitations of the SAA approach for non-strongly convex case are also discussed
in [39,70]. Our contribution includes introducing a new regularization for population
Wasserstein barycenter problem that improves the complexity bounds for the standard
penalty (squared norm penalty) [68]. This regularization relies on the Bregman diver-
gence and peox-function introduced in [6].

1.2. Preliminaries

Notation. Let �n = {a ∈ R
n+ |
∑n

l=1 al = 1} be the probability simplex. Then we refer to
the jth component of vector xi as [xi]j. The notation [n] means 1, 2, . . . , n. For two vectors
x, y of the same size, denotations x/y and x	 y stand for the element-wise product and
element-wise division respectively.When functions, such as log or exp, are used on vectors,
they are always applied element-wise. For some norm ‖ · ‖ on spaceX , we define the dual
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norm ‖ · ‖∗ on the dual space X ∗ in a usual way ‖s‖∗ = maxx∈X {〈x, s〉 : ‖x‖ ≤ 1}. We
denote by In the identity matrix, and by 0n×n we denote zeros matrix. For a positive semi-
definitematrixA,we denote its smallest positive eigenvalue by λ+min(A).We use denotation
O(·) when we want to indicate the complexity hiding constants, to hide also logarithms,
we use denotation Õ(·).

Definition 1.1: A function f (x, ξ) : X ×	→ R is M-Lipschitz continuous in x w.r.t. a
norm ‖ · ‖ if it satisfies

|f (x, ξ)− f (y, ξ)| ≤ M‖x− y‖, ∀x, y ∈ X, ∀ξ ∈ 	.

Definition 1.2: A function f : X ×	→ R is γ -strongly convex in x w.r.t. a norm ‖ · ‖ if
it is continuously differentiable and it satisfies

f (x, ξ)− f (y, ξ)− 〈∇f (y, ξ), x− y〉 ≥ γ

2
‖x− y‖2, ∀x, y ∈ X, ∀ξ ∈ 	.

Definition 1.3: The Fenchel–Legendre conjugate for a function f : (X,	)→ R w.r.t. x is

f ∗(u, ξ) � sup
x∈X
{〈x, u〉 − f (x, ξ)}, ∀ξ ∈ 	.

1.3. Paper organization

The structure of the paper is as follows. In Section 2, we give a background on the SA and
SAA approaches and derive preliminary results. Section 4 presents the comparison of the
SA and SAA approaches for the problem of Wasserstein barycenter defined w.r.t. regular-
ized optimal transport distances. Finally, Section 5 gives the comparison of the SA and
SAA approaches for the problem of Wasserstein barycenter defined w.r.t. (unregularized)
optimal transport distances.

2. Strongly convex optimization problem

We start with preliminary results stated for a general stochastic strongly convex optimiza-
tion problem of form

min
x∈X⊆Rn

F(x) � Ef (x, ξ), (11)

where f (x, ξ) is γ -strongly convex with respect to x. Let us define x∗ = argminx∈X F(x).

2.1. The SA approach: stochastic gradient descent

The classical SA algorithm for problem (11) is presented by stochastic gradient descent
(SGD) method. We consider the SGD with inexact oracle given by gδ(x, ξ) such that

∀x ∈ X, ξ ∈ 	, ‖∇f (x, ξ)− gδ(x, ξ)‖2 ≤ δ. (12)

Then the iterative formula of SGD can be written as (k = 1, 2, . . . ,N.)

xk+1 = �X

(
xk − ηkgδ(xk, ξ k)

)
. (13)
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Here x1 ∈ X is starting point,�X is the projection onto X, ηk is a stepsize. For a γ -strongly
convex f (x, ξ) in x, the stepsize ηk can be taken as 1

γ k to obtain optimal rate O
(

1
γN

)
.

A good indicator of the success of an algorithm is the regret

RegN �
N∑
k=1

(
f (xk, ξ k)− f (x∗, ξ k)

)
.

It measures the value of the difference between a made decision and the optimal decision
on all the rounds. The work [46] gives a bound on the excess risk of the output of an online
algorithm in terms of the average regret.

Theorem 2.1 ([46, Theorem 2]): Let f : X ×	→ [0,B] be γ -strongly convex and M-
Lipschitz w.r.t. x. Let x̃N � 1

N
∑N

k=1 xk be the average of online vectors x1, x2, . . . , xN. Then
with probability at least 1− 4β logN

F(x̃N)− F(x∗) ≤ RegN
N
+ 4

√
M2 log(1/β)

γ

√
RegN
N
+max

{
16M2

γ
, 6B
}
log(1/β)

N
.

For the update rule (13) with ηk = 1
γ k , this theorem can be specified as follows.

Theorem 2.2: Let f : X ×	→ [0,B] be γ -strongly convex and M-Lipschitz w.r.t. x. Let
x̃N � 1

N
∑N

k=1 xk be the average of outputs generated by iterative formula (13) with ηk = 1
γ k .

Then, with probability at least 1− α the following holds:

F(x̃N)− F(x∗) ≤ 3δD
2
+ 3(M2 + δ2)

Nγ
(1+ logN)

+max
{
18M2

γ
, 6B+ 2M2

γ

}
log(4 logN/α)

N
.

where D = maxx′,x′′∈X ‖x′ − x′′‖2 and δ is defined by (12).

Proof: The proof mainly relies on Theorem 2.1 and estimating the regret for iterative
formula (13) with ηk = 1

γ k .
From γ -strongly convexity of f (x, ξ) in x, it follows for xk, x∗ ∈ X

f (x∗, ξ k) ≥ f (xk, ξ k)+ 〈∇f (xk, ξ k), x∗ − xk〉 + γ

2
‖x∗ − xk‖2.

Adding and subtracting the term 〈gδ(xk, ξ k), x∗ − xk〉 we get using Cauchy–Schwarz
inequality and (12)

f (x∗, ξ k) ≥ f (xk, ξ k)+ 〈gδ(xk, ξ k), x∗ − xk〉 + γ

2
‖x∗ − xk‖2

+ 〈∇f (xk, ξ k)− gδ(xk, ξ k), x∗ − xk〉
≥ f (xk, ξ k)+ 〈gδ(xk, ξ k), x∗ − xk〉 + γ

2
‖x∗ − xk‖2 + δ‖x∗ − xk‖2. (14)
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From the update rule (13) for xk+1 we have

‖xk+1 − x∗‖2 = ‖�X(xk − ηkgδ(xk, ξ k))− x∗‖2
≤ ‖xk − ηkgδ(xk, ξ k)− x∗‖2
≤ ‖xk − x∗‖22 + η2k‖gδ(xk, ξ k)‖22 − 2ηk〈gδ(xk, ξ k), xk − x∗〉.

From this it follows

〈gδ(xk, ξ k), xk − x∗〉 ≤ 1
2ηk

(‖xk − x∗‖22 − ‖xk+1 − x∗‖22)+
ηk

2
‖gδ(xk, ξ k)‖22.

Together with (14) we get

f (xk, ξ k)− f (x∗, ξ k) ≤ 1
2ηk

(‖xk − x∗‖22 − ‖xk+1 − x∗‖22)

−
(γ

2
+ δ
)
‖x∗ − xk‖2 +

η2k
2
‖gδ(xk, ξ k)‖22.

Summing this from 1 to N, we get using ηk = 1
γ k

N∑
k=1

f (xk, ξ k)− f (x∗, ξ k) ≤ 1
2

N∑
k=1

(
1
ηk
− 1

ηk−1
+ γ + δ

)
‖x∗ − xk‖2

+ 1
2

N∑
k=1

ηk‖gδ(xk, ξ k)‖22

≤ δ

2

N∑
k=1
‖x∗ − xk‖2 + 1

2

N∑
k=1

ηk‖gδ(xk, ξ k)‖22. (15)

From Lipschitz continuity of f (x, ξ) w.r.t. to x it follows that ‖∇f (x, ξ)‖2 ≤ M for all x ∈
X, ξ ∈ 	. Thus, using that for all a, b, (a+ b)2 ≤ 2a2 + 2b2 it follows

‖gδ(x, ξ)‖22 ≤ 2‖∇f (x, ξ)‖22 + 2δ2 = 2M2 + 2δ2

From this and (15) we bound the regret as follows

RegN �
N∑
k=1

f (xk, ξ k)− f (x∗, ξ k) ≤ δ

2

N∑
k=1
‖p∗ − pk‖2 + (M2 + δ2)

N∑
k=1

1
γ k

≤ 1
2
δDN + M2 + δ2

γ
(1+ logN). (16)

Here the last bound takes place due to the sum of harmonic series. Then for (16) we can
use Theorem 2.1. Firstly, we simplify it rearranging the terms using that

√
ab ≤ a+b

2

F(x̃N)− F(x∗) ≤ RegN
N
+ 4

√
M2 log(1/β)

Nγ

√
RegN
N
+max

{
16M2

γ
, 6B
}
log(1/β)

N
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≤ 3RegN
N
+ 2M2 log(1/β)

Nγ
+max

{
16M2

γ
, 6B
}
log(1/β)

N

= 3RegN
N
+max

{
18M2

γ
, 6B+ 2M2

γ

}
log(1/β)

N
.

Then we substitute (16) in this inequality and make the change α = 4β logN and get with
probability at least 1− α

F(x̃N)− F(x∗) ≤ 3δD
2
+ 3(M2 + δ2)

Nγ
(1+ logN)

+max
{
18M2

γ
, 6B+ 2M2

γ

}
log(4 logN/α)

N
.

�

2.2. Preliminaries on the SAA approach

The SAA approach replaces the objective in (11) with its sample average

min
x∈X F̂(x) � 1

m

m∑
i=1

f (x, ξi), (17)

where each f (x, ξi) is γ -strongly convex in x. Let us define the empirical minimizer of (17)
x̂∗ = argminx∈X F̂(x), and x̂ε′ such that

F̂(x̂ε′)− F̂(x̂∗) ≤ ε′. (18)

The next theorem gives a bound on the excess risk for problem (17) in the SAA approach.

Theorem 2.3: Let f : X ×	→ [0,B] be γ -strongly convex and M-Lipschitz w.r.t. x in the
�2-norm. Let x̂ε′ satisfies (18) with precision ε′. Then, with probability at least 1− α we have

F(x̂ε′)− F(x∗) ≤
√
2M2

γ
ε′ + 4M2

αγm
.

Let ε′ = O
(

γ ε2

M2

)
and m = O

(
M2

αγ ε

)
. Then, with probability at least 1− α the following

holds:

F(x̂ε′)− F(x∗) ≤ ε and ‖x̂ε′ − x∗‖2 ≤
√
2ε/γ .

The proof of this theorem mainly relies on the following theorem.

Theorem 2.4: [68, Theorem 6] Let f (x, ξ) be γ -strongly convex and M-Lipschitz w.r.t. x in
the �2-norm. Then, with probability at least 1− α the following holds:

F(x̂∗)− F(x∗) ≤ 4M2

αγm
,

where m is the sample size.
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Proof: For any x ∈ X, the following holds:

F(x)− F(x∗) = F(x)− F(x̂∗)+ F(x̂∗)− F(x∗). (19)

From Theorem 2.4 with probability at least 1− α the following holds:

F(x̂∗)− F(x∗) ≤ 4M2

αγm
.

Then from this and (19) we have with probability at least 1− α

F(x)− F(x∗) ≤ F(x)− F(x̂∗)+ 4M2

αγm
. (20)

FromLipschitz continuity of f (x, ξ) it follows, that for ant x ∈ X, ξ ∈ 	 the following holds:

|f (x, ξ)− f (x̂∗, ξ)| ≤ M‖x− x̂∗‖2.
Taking the expectation of this inequality w.r.t. ξ we get

E|f (x, ξ)− f (x̂∗, ξ)| ≤ M‖x− x̂∗‖2.
Then we use Jensen’s inequality (g(E(Y)) ≤ Eg(Y)) for the expectation, convex function
g and a random variable Y. Since the module is a convex function we get

|Ef (x, ξ)− Ef (x̂∗, ξ)| = |F(x)− F(x̂∗)| ≤ E|f (x, ξ)− f (x̂∗, ξ)| ≤ M‖x− x̂∗‖2.
Thus we have

|F(x)− F(x̂∗)| ≤ M‖x− x̂∗‖2. (21)

From strong convexity of f (x, ξ) in x, it follows that the average of f (x, ξi)’s, that is F̂(x), is
also γ -strongly convex in x. Thus we get for any x ∈ X, ξ ∈ 	

‖x− x̂∗‖2 ≤
√

2
γ

(F̂(x)− F̂(x̂∗)). (22)

By using (21) and (22) and taking x = x̂ε′ in (20), we get the first statement of the theorem

F(x̂ε′)− F(x∗) ≤
√
2M2

γ
(F̂(x̂ε′)− F̂(x̂∗))+ 4M2

αγm
≤
√
2M2

γ
ε′ + 4M2

αγm
. (23)

Then from the strong convexity we have

‖x̂ε′ − x∗‖2 ≤

√√√√√ 2
γ

⎛⎝√2M2

γ
ε′ + 4M2

αγm

⎞⎠. (24)

Equating (23) to ε, we get the expressions for the sample sizem and auxiliary precision ε′.
Substituting both of these expressions in (24) we finish the proof. �



1612 D. DVINSKIKH

3. Non-strongly convex optimization problem

Now we consider a non-strongly convex optimization problem of type

min
x∈X⊆Rn

F(x) � Ef (x, ξ), (25)

where f (x, ξ) is Lipschitz continuous in x. Let us define x∗ = argminx∈X F(x).

3.1. The SA approach: stochastic mirror descent

We consider stochastic mirror descent (MD) with inexact oracle [34,44,54]3. For a prox-
function d(x) and the corresponding Bregman divergence Bd(x, x1), the proximal mirror
descent step is

xk+1 = argmin
x∈X

(
η
〈
gδ(xk, ξ k), x

〉
+ Bd(x, xk)

)
. (26)

We consider the simplex setup: prox-function d(x) = 〈x, log x〉. Here and below, func-
tions such as < roman > log < /roman > or exp are always applied element-wise. The
corresponding Bregman divergence is given by the Kullback–Leibler divergence

KL(x, x1) = 〈x, log(x/x1)〉 − 1�(x− x1).

Then a starting point is taken as x1 = argminx∈�n d(x) = (1/n, . . . , 1/n).

Theorem 3.1: Let R2 � KL(x∗, x1) ≤ log n and D = maxx′,x′′∈�n ‖x′ − x′′‖1 = 2. Let f :
X ×	→ R

n be M∞-Lipschitz w.r.t. x in the �1-norm. Let x̆N � 1
N
∑N

k=1 xk be the average
of outputs generated by iterative formula (26) with η =

√
2R

M∞
√
N
. Then, with probability at

least 1− α we have

F(x̆N)− F(x∗) ≤ M∞(3R+ 2D
√
log(α−1))√

2N
+ δD = O

(
M∞

√
log(n/α)√
N

+ 2δ

)
.

Proof: For MD with prox-function function d(x) = 〈x log x〉 the following holds for any
x ∈ �n [44, Equation 5.13]

η〈gδ(xk, ξ k), xk − x〉 ≤ KL(x, xk)− KL(x, xk+1)+ η2

2
‖gδ(xk, ξ k)‖2∞

≤ KL(x, xk)− KL(x, xk+1)+ η2M2
∞.

Then by adding and subtracting the terms 〈F(x), x− xk〉 and 〈∇f (x, ξ k), x− xk〉 in this
inequality, we get using Cauchy–Schwarz inequality the following:

η〈∇F(xk), xk − x〉
≤ η〈∇f (xk, ξ k)− gδ(xk, ξ k), xk − x〉
+ η〈∇F(xk)− ∇f (xk, ξ k), xk − x〉 + KL(x, xk)− KL(x, xk+1)+ η2M2

∞
≤ ηδ max

k=1,...,N
‖xk − x‖1 + η〈∇F(xk)−∇f (xk, ξ k), xk − x〉
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+ KL(x, xk)− KL(x, xk+1)+ η2M2
∞. (27)

Then using convexity of F(xk) we have

F(xk)− F(x) ≤ η〈∇F(xk), xk − x〉
Then we use this for (27) and sum for k = 1, . . . ,N at x = x∗

η

N∑
k=1

F(xk)− F(x∗) ≤ ηδN max
k=1,...,N

‖xk − x∗‖1 + η

N∑
k=1
〈∇F(xk)−∇f (xk, ξ k), xk − x∗〉

+ KL(x∗, x1)− KL(x∗, xN+1)+ η2M2
∞N

≤ ηδND+ η

N∑
k=1
〈∇F(xk)−∇f (xk, ξ k), xk − x∗〉 + R2 + η2M2

∞N

(28)

where we used KL(x∗, x1) ≤ R2 and maxk=1,...,N ‖pk − p∗‖1 ≤ D. Then using convexity of
F(xk) and the definition of output x̆N in (28) we have

F(x̆N)− F(x∗) ≤ δD+ 1
N

N∑
k=1
〈∇F(xk)−∇f (xk, ξ k), xk − x∗〉 + R2

ηN
+ ηM2

∞. (29)

Next we use the Azuma–Hoeffding’s [45] inequality and get for all β ≥ 0

P

(N+1∑
k=1
〈∇F(xk)− ∇f (xk, ξ k), xk − x∗〉 ≤ β

)
≥ 1− exp

(
− 2β2

N(2M∞D)2

)
= 1− α.

(30)
Here we used that 〈∇F(pk)− ∇f (xk, ξ k), x∗ − xk〉 is a martingale-difference and∣∣∣〈∇F(xk)−∇f (xk, ξ k), x∗ − xk〉

∣∣∣ ≤ ‖∇F(xk)−∇W(pk, qk)‖∞‖x∗ − xk‖1
≤ 2M∞ max

k=1,...,N
‖xk − x∗‖1 ≤ 2M∞D.

Thus, using (30) for (29) we have that with probability at least 1− α

F(x̆N)− F(x∗) ≤ δD+ β

N
+ R2

ηN
+ ηM2

∞. (31)

Then, expressing β through α and substituting η = R
M∞

√
2
N to (31) ( such η minimize the

r.h.s. of (31)), we get

F(x̆N)− F(x∗) ≤ δD+ M∞D
√
2 log(1/α)√
N

+ M∞R√
2N
+ M∞R

√
2√

N

≤ δD+ M∞(3R+ 2D
√
log(1/α))√

2N
.
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Using R = √log n and D = 2 in this inequality, we obtain

F(x̆N)− F(x∗) ≤ M∞(3
√
log n+ 4

√
log(1/α))√

2N
+ 2δ. (32)

We raise this to the second power, use that for all a, b ≥ 0, 2
√
ab ≤ a+ b and then extract

the square root. We obtain the following:√(
3
√
log n+ 4

√
log(1/α)

)2 = √9 log n+ 16 log(1/α)+ 24
√
log n

√
log(1/α)

≤
√
18 log n+ 32 log(1/α).

Using this for (32), we get the statement of the theorem

F(x̆N)− F(x∗) ≤ M∞
√
18 log n+ 32 log(1/α)√

2N
+ 2δ = O

(
M∞

√
log(n/α)√
N

+ 2δ

)
.

�

3.2. Penalization in the SAA approach

In this section, we study the SAA approach for non-strongly convex problem (25). We
regularize this problem by 1-strongly convex w.r.t. x penalty function r(x, x1) in the �2-
norm

min
x∈X⊆Rn

Fλ(x) � Ef (x, ξ)+ λr(x, x1) (33)

and we prove that the sample sizes in the SA and SAA approaches will be equal up to
logarithmic terms. The empirical counterpart of problem (33) is

min
x∈X F̂λ(x) � 1

m

m∑
i=1

f (x, ξi)+ λr(x, x1). (34)

Let us define x̂λ = argminx∈X F̂λ(x). The next lemma proves the statement from [68] on
boundness of the population sub-optimality in terms of the square root of empirical sub-
optimality.

Lemma 3.2: Let f (x, ξ) be convex and M-Lipschitz continuous w.r.t �2-norm. Then for any
x ∈ X with probability at least 1− δ the following holds:

Fλ(x)− Fλ(x∗λ) ≤
√
2M2

λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
+ 4M2

λ

αλm
,

where x∗λ = argminx∈X Fλ(x), Mλ � M + λR2 andR2 = r(x∗, x1).

Proof: Let us define fλ(x, ξ) � f (x, ξ)+ λr(x, x1). As f (x, ξ) is M-Lipschitz continuous,
fλ(x, ξ) is also Lipschitz continuous withMλ � M + λR2. From the Jensen’s inequality for
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the expectation, and themodule as a convex function,we get thatFλ(x) is alsoMλ-Lipschitz
continuous

|Fλ(x)− Fλ(x̂λ)| ≤ Mλ‖x− x̂λ‖2, ∀x ∈ X. (35)

From λ-strong convexity of f (x, ξ), we obtain that F̂λ(x) is also λ-strongly convex

‖x− x̂λ‖22 ≤
2
λ

(
F̂λ(x)− F̂λ(x̂λ)

)
, ∀x ∈ X.

From this and (35) it follows

Fλ(x)− Fλ(x̂λ) ≤
√
2M2

λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
. (36)

For any x ∈ X and x∗λ = argminx∈X Fλ(x) we consider

Fλ(x)− Fλ(x∗λ) = Fλ(x)− Fλ(x̂λ)+ Fλ(x̂λ)− Fλ(x∗λ). (37)

From [68, Theorem 6], we have with probability at least 1− α

Fλ(x̂λ)− Fλ(x∗λ) ≤
4M2

λ

αλm
.

Using this and (36) for (37), we obtain with probability at least 1− α

Fλ(x)− Fλ(x∗λ) ≤
√
2M2

λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
+ 4M2

λ

αλm
. �

The next theorem proves eliminating the linear dependence on n in the sample size of
the regularized SAA approach for a non-strongly convex objective (see estimate (6)), and
estimates the auxiliary precision for the regularized SAA problem (8).

Theorem 3.3: Let f (x, ξ) be convex and M-Lipschitz continuous w.r.t x and let x̂ε′ be such
that

1
m

m∑
i=1

f (x̂ε′ , ξi)+ λr(x̂ε′ , x1)− argmin
x∈X

{
1
m

m∑
i=1

f (x, ξi)+ λr(x, x1)

}
≤ ε′.

To satisfy

F(x̂ε′)− F(x∗) ≤ ε

with probability at least 1− α , we need to take λ = ε/(2R2),

m = 32M2R2

αε2
,

whereR2 = r(x∗, x1). The precision ε′ is defined as

ε′ = ε3

64M2R2 .
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Proof: From Lemma 3.2 we get for x = x̂ε′

Fλ(x̂ε′)− Fλ(x∗λ) ≤
√
2M2

λ

λ

(
F̂λ(x̂ε′)− F̂λ(x̂λ)

)
+ 4M2

λ

αλm

=
√
2M2

λ

λ
ε′ + 4M2

λ

αλm
, (38)

where we used the definition of x̂ε′ from the statement of the this theorem. Then we
subtract F(x∗) in both sides of (38) and get

Fλ(x̂ε′)− F(x∗) ≤
√
2M2

λε
′

λ
+ 4M2

λ

αλm
+ Fλ(x∗λ)− F(x∗). (39)

Then we use

Fλ(x∗λ) � min
x∈X

{
F(x)+ λr(x, x1)

}
≤ F(x∗)+ λr(x∗, x1)

The inequality holds for any x ∈ X,

= F(x∗)+ λR2

whereR = r(x∗, x1). Then from this and (39) and the definition of Fλ(x̂ε′) in (33) we get

F(x̂ε′)− F(x∗) ≤
√
2M2

λ

λ
ε′ + 4M2

λ

αλm
− λr(x̂ε′ , x1)+ λR2

≤
√
2M2

λε
′

λ
+ 4M2

λ

αλm
+ λR2. (40)

AssumingM � λR2 and choosing λ = ε/(2R2) in (40), we get the following:

F(x̂ε′)− F(x∗) =
√
4M2R2ε′

ε
+ 8M2R2

αmε
+ ε/2. (41)

Equating the first term and the second term in the r.h.s. of (41) to ε/4 we obtain the rest
statements of the theorem including F(x̂ε′)− F(x∗) ≤ ε. �

4. Fréchet mean with respect to entropy-regularized optimal transport

In this section, we consider the problem of finding population barycenter of discrete
measures. We define the population barycenter of distribution P with respect to entropy-
regularized transport distances

min
p∈�n

Wγ (p) � EqWγ (p, q), q ∼ P. (42)
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4.1. Properties of entropy-regularized optimal transport

Entropic regularization of transport distances [18] improves their statistical properties
[9,47] and reduces their computational complexity. Entropic regularization has shown
good results in generative models [35], multi-label learning [31], dictionary learning [65],
image processing [19,60], neural imaging [38].

Let us firstly remind optimal transport problem between histograms p, q ∈ �n with cost
matrix C ∈ R

n×n
+

W(p, q) � min
π∈U(p,q)

〈C,π〉, (43)

where

U(p, q) � {π ∈ R
n×n
+ : π1 = p,πT1 = q}.

Remark 1 (Connection with the ρ-Wasserstein distance): When for ρ ≥ 1,
Cij = d(xi, xj)ρ in (43), where d(xi, xj) is a distance on support points xi, xj of space X,
thenW(p, q)1/ρ is known as the ρ-Wasserstein distance.

Nevertheless, all the results of this paper are based only on the assumptions that the
matrix C ∈ R

n×n
+ is symmetric and non-negative.

Following [18], we introduce entropy-regularized optimal transport problem

Wγ (p, q) � min
π∈U(p,q)

{〈C,π〉 − γE(π)} , (44)

where γ > 0 and E(π) � −〈π , logπ〉 is the entropy. Since E(π) is 1-strongly concave on
�n in the �1-norm, the objective in (44) is γ -strongly convex with respect to π in the �1-
norm on �n, and hence problem (44) has a unique optimal solution. Moreover,Wγ (p, q)
is γ -strongly convex with respect to p in the �2-norm on �n [8, Theorem 3.4].

One particular advantage of the entropy-regularized optimal transport is a closed-form
representation for its dual function [1,19] defined by the Fenchel–Legendre transform of
Wγ (p, q) as a function of p

W∗γ ,q(u) = max
p∈�n

{〈u, p〉 −Wγ (p, q)
} = γ

(
E(q)+ 〈q, log(Kβ)

〉)
= γ

⎛⎝−〈q, log q〉 + n∑
j=1

[q]j log

( n∑
i=1

exp
(
([u]i − Cji)/γ

))⎞⎠ (45)

where β = exp(u/γ ), K = exp(−C/γ ) and [q]j is jth component of vector q. Functions
such as < roman > log < /roman > or exp are always applied element-wise for vectors.
Hence, the gradient of dual functionW∗γ ,q(u) is also represented in a closed form [19]

∇W∗γ ,q(u) = β 	 (K · q/(Kβ)
) ∈ �n,

where symbols 	 and / stand for the element-wise product and element-wise division
respectively. This can be also written as

∀l = 1, . . . , n [∇W∗γ ,q(u)]l =
n∑
j=1

[q]j
exp
(
([u]l − Clj)/γ

)
n∑
i=1

exp
(
([u]i − Cji)/γ

) . (46)
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The dual representation ofWγ (p, q) is

Wγ (p, q) = min
π∈U(p,q)

n∑
i,j=1

(
Cijπi,j + γπi,j logπi,j

)

= max
u,ν∈Rn

⎧⎨⎩〈u, p〉 + 〈ν, q〉 − γ

n∑
i,j=1

exp
(
([u]i + [ν]j − Cij)/γ − 1

)⎫⎬⎭
= max

u∈Rn

⎧⎨⎩〈u, p〉 − γ

n∑
j=1

[q]j log

(
1
[q]j

n∑
i=1

exp
(
([u]i − Cij)/γ

))⎫⎬⎭ . (47)

Any solution
(
u∗
ν∗
)
of (47) is a subgradient ofWγ (p, q) [58, Proposition 4.6]

∇Wγ (p, q) =
(
u∗
ν∗
)
. (48)

We consider u∗ and ν∗ such that 〈u∗, 1〉 = 0 and 〈ν∗, 1〉 = 0 (u∗ and ν∗ are determined up
to an additive constant).

The next theorem [8] describes the Lipschitz continuity ofWγ (p, q) in p on probability
simplex �n restricted to

�ρ
n =

{
p ∈ �n : min

i∈[n]
pi ≥ ρ

}
,

where 0 < ρ < 1 is an arbitrary small constant.

Theorem 4.1 ([8, Theorem 3.4, Lemma 3.5]): • For any q ∈ �n, p ∈ �n,Wγ (p, q) is γ -
strongly convex w.r.t. p in the �2-norm

• For any q ∈ �n, p ∈ �
ρ
n and 0 < ρ < 1, ‖∇pWγ (p, q)‖2 ≤ M, where

M =

√√√√√ n∑
j=1

(
2γ log n+ inf

i∈[n]
sup
l∈[n]
|Cjl − Cil| − γ log ρ

)2

.

We roughly takeM = O(
√
n‖C‖∞) since for all i, j ∈ [n],Cij > 0, we get

M [8]= O

⎛⎜⎝
√√√√√ n∑

j=1

(
inf
i∈[n]

sup
l∈[n]
|Cjl − Cil|

)2
⎞⎟⎠

= O

⎛⎝√√√√ n∑
j=1

sup
l∈[n]

C2
jl

⎞⎠ = O

(
√
n sup
j,l∈[n]

Cjl

)
= O

⎛⎝√n sup
j∈[n]

∑
l∈[n]

Cjl

⎞⎠ = O
(√

n‖C‖∞
)
.

Thus, we suppose that Wγ (p, q) and W(p, q) are Lipschitz continuous with almost the
same Lipschitz constant M in the �2-norm on �

ρ
n . Moreover, by the same arguments, for
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the Lipschitz continuity in the �1-norm: ‖∇pWγ (p, q)‖∞ ≤ M∞, we can roughly estimate
M∞ = O(‖C‖∞) by taking maximum instead of the square root of the sum.

In what follows, we use Lipschitz continuity ofWγ (p, q) andW(p, q) for measures from
�n keeping in mind that adding some noise and normalizing the measures makes them
belong to �

ρ
n . We also notice that if the measures are from the interior of �n then their

barycenter will be also from the interior of �n.

4.2. The SA approach: stochastic gradient descent

For problem (42), as a particular case of problem (4), stochastic gradient descent method
can be used. From Equation (48), it follows that an approximation for the gradient of
Wγ (p, q) with respect to p can be calculated by Sinkhorn algorithm [3,26,58] through the
computing dual variable u with δ-precision

‖∇pWγ (p, q)−∇δ
pWγ (p, q)‖2 ≤ δ, ∀q ∈ �n. (49)

Here denotation ∇δ
pWγ (p, q) means an inexact stochastic subgradient of Wγ (p, q) with

respect to p. Algorithm 3 combines stochastic gradient descent given by iterative for-
mula (13) for ηk = 1

γ k with the Sinkhorn algorithm (Algorithm1) andAlgorithm2making
the projection onto the simplex �n.

Algorithm 1 Sinkhorn’s algorithm [57] for calculating ∇δ
pWγ (pk, qk).

1: procedure Sinkhorn(p, q,C, γ )
2: a1← (1/n, ..., 1/n), b1← (1/n, ..., 1/n)
3: K ← exp(−C/γ )

4: while not converged do
5: a← p/(Kb)
6: b← q/(K�a)
7: end while
8: return γ log(a) � Sinkhorn scaling a = eu/γ
9: end procedure

Algorithm 2 Euclidean Projection ��n(p) = arg min
v∈�n
‖p− v‖2 onto Simplex �n [24].

1: procedure Projection(w ∈ R
n)

2: Sort components of w in decreasing manner: r1 ≥ r2 ≥ · · · ≥ rn.
3: Find ρ = max

{
j ∈ [n] : rj − 1

j

(∑j
i=1 ri − 1

)}
4: Define θ = 1

ρ
(
∑ρ

i=1 ri − 1)
5: For all i ∈ [n], define pi = max{wi − θ , 0}.
6: return p ∈ �n
7: end procedure
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Algorithm 3 Projected Online Stochastic Gradient Descent for WB (PSGDWB).
Require: starting point p1 ∈ �n, realization q1, δ, γ .
1: for k = 1, 2, 3, . . . do
2: ηk = 1

γ k
3: ∇δ

pWγ (pk, qk)← Sinkhorn(pk, qk,C, γ ) or the accelerated Sinkhorn [40]
4: p(k+1)/2← pk − ηk∇δ

pWγ (pk, qk)
5: pk+1← Projection(p(k+1)/2)
6: Sample qk+1
7: end for

Ensure: p1, p2, p3...

For Algorithm 3 and problem (42), Theorem 2.2 can be specified as follows

Theorem 4.2: Let p̃N � 1
N
∑N

k=1 pk be the average of N online outputs of Algorithm 3 run
with δ. Then, with probability at least 1− α the following holds:

Wγ (p̃N)−Wγ (p∗γ ) = O
(
M2 log(N/α)

γN
+ δ

)
,

where p∗γ � argminp∈�n Wγ (p).

Let Algorithm 3 run with δ = O(ε) and N = Õ
(
M2

γ ε

)
= Õ

(
n‖C‖2∞

γ ε

)
. Then, with proba-

bility at least 1− α

Wγ (p̃N)−Wγ (p∗γ ) ≤ ε and ‖p̃N − p∗γ ‖2 ≤
√
2ε/γ .

The total complexity of Algorithm 3 is

Õ

⎛⎝n3‖C‖2∞
γ ε

min

⎧⎨⎩exp
(‖C‖∞

γ

)(‖C‖∞
γ
+ log

(‖C‖∞
κε2

))
,

√
n‖C‖2∞
κγ ε2

⎫⎬⎭
⎞⎠ ,

where κ � λ+min(∇2W∗γ ,q(u∗)).

Proof: We estimate the co-domain (image) ofWγ (p, q)

max
p,q∈�n

Wγ (p, q) = max
p,q∈�n

min
π∈Rn×n

+ ,
π1=p,
πT1=q

n∑
i,j=1

(Cijπij + γπij logπij)

≤ max
π∈Rn×n

+ ,∑n
i,j=1 πij=1

n∑
i,j=1

(Cijπij + γπij logπij) ≤ ‖C‖∞.

Therefore, Wγ (p, q) : �n ×�n→ [−2γ log n, ‖C‖∞]. Then we apply Theorem 2.2 with
B = ‖C‖∞ and D = maxp′,p′′∈�n ‖p′ − p′′‖2 =

√
2, and we sharply get
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Wγ (p̃N)−Wγ (p∗γ ) = O
(
M2 log(N/α)

γN
+ δ

)
,

Equating each terms in the r.h.s. of this equality to ε/2 and using M = O(
√
n‖C‖∞), we

get the expressions forN and δ. The statement ‖p̃N − p∗γ ‖2 ≤
√
2ε/γ follows directly from

strong convexity ofWγ (p, q) andWγ (p).
The proof of algorithm complexity follows from the complexity of the Sinkhorn’s

algorithm. To state the complexity of the Sinkhorn’s algorithm,we first define δ̃ as the accu-
racy in function value of the inexact solution u ofmaximization problem in (47). Using this
we formulate the number of iteration of the Sinkhorn’s [16,29,50,75]

Õ
(
exp
(‖C‖∞

γ

)(‖C‖∞
γ
+ log

(‖C‖∞
δ̃

)))
. (50)

The number of iteration for the accelerated Sinkhorn’s can be improved [40]

Õ

⎛⎝√n‖C‖2∞
γ ε′

⎞⎠ . (51)

Here ε′ is the accuracy in the function value, which is the expression 〈u, p〉 + 〈ν, q〉 −
γ
∑n

i,j=1 exp((−Cji + ui + νj)/γ − 1) under themaximum in (47). From strong convexity
of this objective on the space orthogonal to eigenvector 1n corresponds to the eigenvalue
0 for this function, it follows that

ε′ ≥ γ

2
‖u− u∗‖22 =

κ

2
δ, (52)

where κ � λ+min(∇2W∗γ ,q(u∗)). From [8, Proposition A.2.], for the eigenvalue of
∇2W∗γ ,q(u∗) it holds that 0 = λn(∇2W∗γ ,q(u∗)) < λk(∇2W∗γ ,q(u∗)) for all k = 1, . . . , n−
1. Inequality (52) holds due to ∇δ

pWγ (p, q) := u in Algorithm 3 and ∇pWγ (p, q) � u∗
in (48). Multiplying both of estimates (50) and (51) by the complexity of each iteration of
the (accelerated) Sinkhorn’s algorithm O(n2) and the number of iterations N = Õ

(
M2

γ ε

)
(measures) of Algorithm 3, and taking the minimum, we get the last statement of the
theorem. �

Next, we study the practical convergence of projected stochastic gradient descent
(Algorithm 3). Using the fact that the true Wasserstein barycenter of one-dimensional
Gaussian measures has closed-form expression for the mean and the variance [22], we
study the convergence to the true barycenter of the generated truncated Gaussian mea-
sures. Figure 1 illustrates the convergence in the 2-Wasserstein distance within 40 s.

4.3. The SAA approach

The empirical counterpart of problem (42) is the (empirical) Wasserstein barycenter
problem

min
p∈�n

1
m

m∑
i=1

Wγ (p, qi), (53)

where q1, q2, . . . , qm are some realizations of random variable with distribution P.
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Figure 1. Convergence of projected stochastic gradient descent to the true barycenter of 2× 104

Gaussian measures in the 2-Wasserstein distance.

Let us define p̂mγ � argminp∈�n
1
m
∑m

i=1Wγ (p, qi) and its ε′-approximation p̂ε′ such
that

1
m

m∑
i=1

Wγ (p̂ε′ , qi)− 1
m

m∑
i=1

Wγ (p̂mγ , qi) ≤ ε′. (54)

For instance, p̂ε′ can be calculated by the IBP algorithm [7] or the accelerated IBP algorithm
[40]. The next theorem specifies Theorem 2.3 for theWasserstein barycenter problem (53).

Theorem 4.3: Let p̂ε′ satisfies (54). Then, with probability at least 1− α

Wγ (p̂ε′)−Wγ (p∗γ ) ≤
√
2M2

γ
ε′ + 4M2

αγm
,

where p∗γ � argminp∈�n Wγ (p). Let ε′ = O
(

ε2γ
n‖C‖2∞

)
and m = O

(
M2

αγ ε

)
= O

(
n‖C‖2∞
αγ ε

)
.

Then, with probability at least 1− α

Wγ (p̂ε′)−Wγ (p∗γ ) ≤ ε and ‖p̂ε′ − p∗γ ‖2 ≤
√
2ε/γ .

The total complexity of the accelerated IBP computing p̂ε′ is

Õ
(
n4‖C‖4∞
αγ 2ε2

)
.

Proof: From Theorem 2.3 we get the first statement of the theorem

Wγ (p̂ε′)−Wγ (p∗γ ) ≤
√
2M2

γ
ε′ + 4M2

αγm
.
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Figure 2. Convergence of the Iterative Bregman Projections to the true barycenter of 2× 104 Gaussian
measures in the 2-Wasserstein distance.

From [40] we have that complexity of the accelerated IBP is

Õ

(
mn2
√
n‖C‖∞√
γ ε′

)
.

Substituting the expression form and the expression for ε′ from Theorem 2.3

ε′ = O
(

ε2γ

M2

)
, m = O

(
M2

αγ ε

)
to this equation we get the final statement of the theorem and finish the proof. �

Next, we study the practical convergence of the Iterative Bregman Projections on trun-
cated Gaussian measures. Figure 2 illustrates the convergence of the barycenter calculated
by the IBP algorithm to the true barycenter of Gaussian measures in the 2-Wasserstein
distance within 10 s. For the convergence to the true barycenter w.r.t. the 2-Wasserstein
distance in the SAA approach, we refer to [15], however, considering the convergence in
the �2-norm (Theorem 4.3) allows to obtain better convergence rate in comparison with
the bounds for the 2-Wasserstein distance.

4.4. Comparison of the SA and the SAA for theWB problem

Now we compare the complexity bounds for the SA and the SAA implementations solving
problem (42). We skip the high probability details since we can fixed α (say α = 0.05) in
the all bounds. Moreover, based on [68], we assume that in fact all bounds of this paper
have logarithmic dependence on α which is hidden in Õ(·) [28,48].

Table 1 presents the total complexity of the numerical algorithms implementing the SA
and the SAA approaches. When γ is not too large, the complexity in the first row of the



1624 D. DVINSKIKH

Table 1. Total complexity of the SA and the SAA implementations for
minp∈�n EqWγ (p, q).

Algorithm Complexity

Projected SGD (SA) Õ

(
n3‖C‖2∞

γ ε
min{exp

( ‖C‖∞
γ

) ( ‖C‖∞
γ
+ log

( ‖C‖∞
κε2

))
,

√
n‖C‖2∞
κγ ε2
}
)

Accelerated IBP (SAA) Õ
(
n4‖C‖4∞
γ 2ε2

)

table is achieved by the second term under the minimum, namely

Õ
(
n3
√
n‖C‖3∞

γ
√

γ κε2

)
,

where κ � λ+min(∇2W∗γ ,q(u∗)). This is typically bigger than the SAA complexity when
κ � γ /n. Hereby, the SAA approach may outperform the SA approach provided that the
regularization parameter γ is not too large.

From the practical point of view, the SAA implementation converges much faster
than the SA implementation. Executing the SAA algorithm in a distributed manner only
enhances this superiority since for the case when the objective is not Lipschitz smooth,
the distributed implementation of the SA approach is not possible. This is the case of
the Wasserstein barycenter problem, indeed, the objective is Lipschitz continuous but not
Lipschitz smooth.

5. Fréchet mean with respect to optimal transport

Now we are interested in finding a Fréchet mean with respect to optimal transport

min
p∈�n

W(p) � EqW(p, q). (55)

5.1. The SA approachwith regularization: stochastic gradient descent

The next theorem explains how the solution of strongly convex problem (42) approximates
a solution of convex problem (55) under the proper choice of the regularization parameter
γ .

Theorem 5.1: Let p̃N � 1
N
∑N

k=1 pk be the average of N online outputs of Algorithm 3

run with δ = O(ε) and N = Õ(
n‖C‖2∞

γ ε
). Let γ = ε/(2R2) with R2 = 2 log n. Then, with

probability at least 1− α the following holds:

W(p̃N)−W(p∗) ≤ ε,

where p∗ is a solution of (55).
The total complexity of Algorithm 3 with the accelerated Sinkhorn is

Õ
(
n3
√
n‖C‖3∞

γ
√

γ κε2

)
= Õ

(
n3
√
n‖C‖3∞

ε3
√

εκ

)
.

where κ � λ+min(∇2W∗γ ,q(u∗)).
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Proof: The proof of this theorem follows from Theorem 4.2 and the following [33,50,58]:

W(p)−W(p∗) ≤Wγ (p)−Wγ (p∗)+ 2γ log n ≤Wγ (p)−Wγ (p∗γ )+ 2γ log n,

where p ∈ �n, p∗ = argminp∈�n W(p). The choice γ = ε
4 log n ensures the following:

W(p)−W(p∗) ≤Wγ (p)−Wγ (p∗γ )+ ε/2, ∀p ∈ �n.

This means that solving problem (42) with ε/2 precision, we get a solution of problem (55)
with ε precision.

When γ is not too large, Algorithm 3 uses the accelerated Sinkhorns algorithm (instead
of Sinkhorns algorithm). Thus, using γ = ε

4 log n and meaning that ε is small, we get the
complexity according to the statement of the theorem. �

5.2. The SA approach: stochastic mirror descent

Now we propose an approach to solve problem (55) without an additional regulariza-
tion. The approach is based on mirror descent given by the iterative formula (26). We
use simplex setup which provides a closed form solution for (26). Algorithm 4 presents
the application of mirror descent to problem (55), where the gradient ofW(pk, qk) can be
calculated using dual representation of optimal transport [58] by any LP solver exactly:

W(p, q) = max
(u,ν)∈Rn×R

n,
ui+νj≤Cij,∀i,j∈[n]

{〈u, p〉 + 〈ν, q〉} . (56)

Then

∇pW(p, q) = u∗,

where u∗ is a solution of (56) such that 〈u∗, 1〉 = 0.
The next theorem estimates the complexity of Algorithm 4

Algorithm 4 Stochastic mirror descent for the Wasserstein barycenter problem.
Require: starting point p1 = (1/n, ..., 1/n)T , number of measures N, q1, ..., qN , accuracy

of gradient calculation δ

1: η =
√

2 log n
‖C‖∞

√
N

2: for k = 1, . . . ,N do
3: Calculate ∇pkW(pk, qk) solving dual LP by any LP solver
4:

pk+1 =
pk 	 exp

(
−η∇pkW(pk, qk)

)
n∑
j=1

[pk]j exp
(
−η
[
∇pkW(pk, qk)

]
j

)
5: end for

Ensure: p̆N = 1
N
∑N

k=1 pk
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Theorem 5.2: Let p̆N be the output of Algorithm 4 processing N measures. Then, with
probability at least 1− α we have

W(p̆N)−W(p∗) = O

(
‖C‖∞

√
log(n/α)√
N

)
,

Let Algorithm 4 run with N = Õ
(
M2∞R2

ε2

)
= Õ

( ‖C‖2∞
ε2

)
, R2 � KL(p1, p∗) ≤ log n. Then,

with probability at least 1− α

W(p̆N)−W(p∗) ≤ ε.

The total complexity of Algorithm 4 is

Õ
(
n3‖C‖2∞

ε2

)
.

Proof: From Theorem 3.1 and usingM∞ = O(‖C‖∞), we have

W(p̆N)−W(p∗) = O

(
‖C‖∞

√
log(n/α)√
N

+ 2δ

)
. (57)

Notice, that ∇pkW(pk, qk) can be calculated exactly by any LP solver. Thus we take δ = 0
in (57) and get the first statement of the theorem.

The second statement of the theorem directly follows from this and the condition
W(p̆N)−W(p∗) ≤ ε.

To get the complexity bounds we notice that the complexity for calculating∇pW(pk, qk)
is Õ(n3) [2,20,23,32], multiplying this by N = O(‖C‖2∞R2/ε2) with R2 � KL(p∗, p1) ≤
log n, we get the last statement of the theorem.

Õ(n3N) = Õ

(
n3
(‖C‖∞R

ε

)2)
=Õ
(
n3
(‖C‖∞

ε

)2)
.

�

Next we compare the SA approaches with and without regularization of optimal trans-
port in problem (55). Entropic regularization of optimal transport leads to strong convexity
of regularized optimal transport in the �2-norm, hence, the Euclidean setup should be used.
Regularization parameter γ = ε

4 log n ensures ε-approximation for the unregularized solu-
tion. In this case, we use stochastic gradient descentwith Euclidean projection onto simplex
since it converges faster for strongly convex objective. For non-regularized problemwe can
significantly use the simplex prox structure, indeed, we can apply stochastic mirror descent
with simplex setup (the Kullback–Leibler divergence as the Bregman divergence) with Lip-
schitz constantM∞ = O(‖C‖∞) that is

√
n better than Lipschitz constant in the Euclidean

normM = O(
√
n‖C‖∞).

We studied the convergence of stochastic mirror descent (Algorithm 4) and stochastic
gradient descent (Algorithm 3) in the 2-Wasserstein distance within 104 iterations (pro-
cessing of 104 probability measures). Figure 3 confirms better convergence of stochastic
mirror descent than projected stochastic gradient descent as stated in their theoretical
complexity (Theorems 5.1 and 5.2).
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Figure 3. Convergence of projected stochastic gradient descent, and stochastic mirror descent to the
true barycenter of 2× 104 Gaussian measures in the 2-Wasserstein distance.

5.3. The SAA approach

Similarly for the SA approach, we provide the proper choice of the regularization parameter
γ in the SAA approach so that the solution of strongly convex problem (42) approximates
a solution of convex problem (55).

Theorem 5.3: Let p̂ε′ satisfy

1
m

m∑
i=1

Wγ (p̂ε′ , qi)− 1
m

m∑
k=1

Wγ (p̂∗γ , q
i) ≤ ε′,

where p̂∗γ = argminp∈�n
1
m
∑m

i=1Wγ (p, qi), ε′ = O(
ε2γ

n‖C‖2∞ ), m = O(
n‖C‖2∞
αγ ε

), and
γ = ε/(2R2) withR2 = 2 log n. Then, with probability at least 1− α the following holds:

W(p̂ε′)−W(p∗) ≤ ε.

The total complexity of the accelerated IBP computing p̂ε′ is

Õ
(
n4‖C‖4∞

αε4

)
.

Proof: The proof follows from Theorem 4.3 and the proof of Theorem 5.1 with γ =
ε/(4 log n). �

5.4. Penalization of theWB problem

For the population Wasserstein barycenter problem, we construct 1-strongly convex
penalty function in the �1-norm based on Bregman divergence. We consider the following
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prox-function [6]:

d(p) = 1
2(a− 1)

‖p‖2a, a = 1+ 1
2 log n

, p ∈ �n

that is 1-strongly convex in the �1-norm. Then Bregman divergence Bd(p, p1) associated
with d(p) is

Bd(p, p1) = d(p)− d(p1)− 〈∇d(p1), p− p1〉.
Bd(p, p1) is 1-strongly convex w.r.t. p in the �1-norm and Õ(1)-Lipschitz continuous in
the �1-norm on �n. One of the advantages of this penalization compared to the negative
entropy penalization proposed in [5,10] is that we get the upper bound on the Lipschitz
constant, the properties of strong convexity in the �1-norm on�n remain the same. More-
over, this penalization contributes to the better wall-clock time complexity than quadratic
penalization [10] since the constants of Lipschitz continuity for W(p, q) with respect
to the �1-norm is

√
n better than with respect to the �2-norm but R2 = ‖p∗ − p1‖22 ≤

‖p∗ − p1‖21 ≤
√
2 and R2d = Bd(p∗, p1) = O(log n) are equal up to a logarithmic factor.

The regularized SAA problem is as follows:

min
p∈�n

{
1
m

m∑
k=1

W(p, qk)+ λBd(p, p1)

}
. (58)

The next theorem is a particular case of Theorem (3.3) for the populationWBproblem (55)
with r(p, p1) = Bd(p, p1).

Theorem 5.4: Let p̂ε′ be such that

1
m

m∑
k=1

W(p̂ε′ , qk)+ λBd(p̂ε′ , p1)− min
p∈�n

{
1
m

m∑
k=1

W(p, qk)+ λBd(p, p1)

}
≤ ε′. (59)

To satisfy

W(p̂ε′)−W(p∗) ≤ ε.

with probability at least 1− α, we need to take λ = ε/(2R2
d) and

m = Õ
(‖C‖2∞

αε2

)
,

where R2d = Bd(p∗, p1) = O(log n). The precision ε′ is defined as

ε′ = Õ
(

ε3

‖C‖2∞

)
.

The total complexity of Mirror Prox computing p̂ε′ is

Õ
(
n2
√
n‖C‖5∞
ε5

)
.
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Proof: The proof is based on saddle-point reformulation of the WB problem. Further, we
provide the explanation how to do this. First we rewrite the OT as [42]

W(p, q) = min
x∈�n2

max
y∈[−1,1]2n

{d�x+ 2‖d‖∞(y�Ax− b�y)}, (60)

where b = (p�, q�)�, d is vectorized cost matrix of C, x be vectorized transport plan of
X, and A = {0, 1}2n×n2 is an incidence matrix. Then we reformulate the WB problem as a
saddle-point problem [25]

min
p∈�n,

x∈X��n2 × . . .×�n2︸ ︷︷ ︸
m

max
y∈[−1,1]2mn

1
m

{
d�x+ 2‖d‖∞

(
y�Ax − b�y

)}
, (61)

where x = (x�1 , . . . , x�m)�, y = (y�1 , . . . , y�m)�, b = (p�, q�1 , . . . , p�, q�m)�, d = (d�, . . . ,
d�)�, and A = diag{A, . . . ,A} ∈ {0, 1}2mn×mn2 is block-diagonal matrix. Similarly to (61)
we reformulate (58) as a saddle-point problem

min
p∈�n,
x∈X

max
y∈[−1,1]2mn

fλ(x, p, y) � 1
m

{
d�x+ 2‖d‖∞

(
y�Ax− b�y

)}
+ λBd(p, p1)

The gradient operator for f (x, p, y) is defined by

G(x, p, y) =
⎛⎝ ∇xf∇pf
−∇yf

⎞⎠ = 1
m

⎛⎝ d + 2‖d‖∞A�y
−2‖d‖∞{[yi]1···n}mi=1 + λ(∇d(p)−∇d(p1))

2‖d‖∞(Ax− b)

⎞⎠ , (62)

where [d(p)]i = 1
a−1‖p‖2−aa [p]a−1i .

To get the complexity of MP, we use the same reasons as in [25] with (62). The total
complexity is

Õ
(
mn2
√
n‖C‖∞
ε′

)
Then we use Theorem 3.3 and get the expressions for m, ε′ with λ = ε/(2Rd2), where
Rd2 = Bd(p∗, p1). The number of measures is

m = 32M2∞R2d
αε2

= Õ
(‖C‖2∞

αε2

)
.

The precision ε′ is defined as

ε′ = ε3

64M2∞Rd2
= O

(
ε3

‖C‖2∞

)
.

�
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Table 2. Total complexity of the SA and the SAA implementations for
minp∈�n EqW(p, q).

Algorithm Theorem Complexity

Projected SGD (SA)with γ = ε
4 log n 5.1 Õ

(
n3
√
n‖C‖3∞

ε3
√

εκ

)
Stochastic MD (SA) 5.2 Õ

(
n3‖C‖2∞

ε2

)
Accelerated IBP (SAA)

with γ = ε
4 log n 5.3 Õ

(
n4‖C‖4∞

ε4

)
Mirror Prox with Bd(p∗ , p1) penalization (SAA) 5.4 Õ

(
n2
√
n‖C‖5∞
ε5

)

5.5. Comparison of the SA and the SAA for theWB problem

Now we compare the complexity bounds for the SA and SAA implementations solving
problem (55). We also skip the high probability details as in fact all bounds of this paper
have logarithmic dependence on α [28,48]. Table 2 presents the total complexity for the
numerical algorithms.

For the SA algorithms, which are Stochastic MD and Projected SGD, we can conclude
the following: non-regularized approach (Stochastic MD) uses simplex prox structure
and gets better complexity bounds, indeed Lipschitz constant in the �1-norm is M∞ =
O(‖C‖∞), whereas Lipschitz constant in the Euclidean norm is M = O(

√
n‖C‖∞). The

practical comparison of Stochastic MD (Algorithm 4) and Projected SGD (Algorithm 3)
can be found in Figure 3.

For the SAA approaches (Accelerated IBP and Mirror Prox with specific penaliza-
tion), we enclose the following: entropy-regularized approach (Accelerated IBP) has
better dependence on ε than penalized approach (Mirror Prox with specific penaliza-
tion), however, worse dependence on n. Using Dual Extrapolation method for the WP
problem from paper [25] instead of Mirror Prox allows to omit

√
n in the penalized

approach.
Using Dual Extrapolation method for the WP problem [25] instead of Mirror Prox,

we can omit
√
n in the last row of Table 2. One of the main advantages of the SAA

approach is the possibility to perform it in a decentralized manner in contrast to the
SA approach, which cannot be executed in a decentralized manner or even in dis-
tributed or parallel fashion for non-smooth objective [36]. This is the case of the Wasser-
stein barycenter problem, indeed, the objective is Lipschitz continuous but not Lipschitz
smooth.

Notes

1. When for ρ ≥ 1,Cij = d(xi, xj)ρ in (2), whered(xi, xj) is a distance on support points xi, xj, then
W(p, q)1/ρ is known as the ρ-Wasserstein distance. Nevertheless, all the results of this thesis are
based only on the assumptions that the matrix C ∈ R

n×n
+ is symmetric and non-negative. Thus

optimal transport problem defined in (2) is a more general than the Wasserstein distances.
2. The estimate n2 min{Õ( 1

ε
), Õ(
√
n)} is the best known theoretical estimate for solving OT

problem [14,42,53,59]. The best known practical estimates are
√
n times worse (see [40] and

references therein).
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3. By using dual averaging scheme [55] we can rewrite Algorithm 4 in online regime [41,56] with-
out including N in the stepsize policy. Note, that mirror descent and dual averaging scheme are
very close to each other [43].
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