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Abstract—This paper studies non-smooth problems of convex stochastic optimization. Using the
smoothing technique based on the replacement of the function value at the considered point by the
averaged function value over a ball (in l1-norm or l2-norm) of a small radius centered at this point, and
then the original problem is reduced to a smooth problem (whose Lipschitz constant of the gradient is
inversely proportional to the radius of the ball). An essential property of the smoothing used is the pos-
sibility of calculating an unbiased estimation of the gradient of a smoothed function based only on
realizations of the original function. The obtained smooth stochastic optimization problem is pro-
posed to be solved in a distributed federated learning architecture (the problem is solved in parallel:
nodes make local steps, e.g. stochastic gradient descent, then communicate—all with all, then all this
is repeated). The goal of the article is to build on the basis of modern achievements in the field of gra-
dient–free non-smooth optimization and in the field of federated learning gradient-free methods for
solving problems of non-smooth stochastic optimization in the architecture of federated learning.
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1. INTRODUCTION
The article deals with problems of stochastic optimization

(1)

and their saddle generalizations. In this case, it is assumed that the function —convex, non-smooth,
and has a bounded Lipschitz constant. It is also assumed that the realization of the function  is
available for observation, but not its gradient (in x) . Moreover, the paper also considers the case
when this implementation is available with a small noise of a non-random nature.This article is based on
the work [1], in which an optimal algorithm is proposed (up to logarithmic factor in the dimension of the
space of multipliers in the estimates of oracle calls) for solving problem (1) according to three criteria at
once: (1) number of oracle calls (calculations of ), (2) the number of consecutive iterations of the
method (you can call the oracle multiple times in one iteration), (3) the maximum allowable level of
(potentially adversarial) noise at which it is still possible to achieve the desired accuracy. The approach [1]
is based on a rather old idea (see, for example, [2]) of replacing the original non-smooth function 
with its smoothed version , where  is a uniformly distributed random vector on

—the Euclidean unit ball centered at zero. For a smoothed function, the final approximation (with

‡ The main contribution to the article belongs to Aleksandr Lobanov lobbsasha@mail.ru. According to the rules of the journal,
the authors of the article are arranged in alphabetical order.
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GRADIENT-FREE FEDERATED LEARNING METHODS 1601
a step ) of the derivative with respect to a random direction (chosen with equal probability on the Euclid-
eanunit sphere) will be an unbiased (randomized) estimate of the gradient, which, when using a symmet-
ric difference approximation, has a good variance [3]—the same as if  was smooth.

In another recent paper [4] it was shown that if smoothing is used not over the Euclidean ball, but over
the ball in the -norm, then in certain situations it is possible to improve the estimates [1] for the number
of oracle calls by a logarithmic factor (over the space dimension). However, the question of the number of
consecutive iterations was not discussed in [4] and another (narrower) concept of adversarial noise was
used, for which the question of exact lower estimates, as far as we know, is still open.

In this paper, we show how the results of [1] can be theoretically improved using the smoothing scheme
from [4] (see also the earlier paper [5], where this smoothing scheme was also proposed, but the analysis
was performed less accurately). As noted above, the improvements are logarithmic in scale. Note that at
the same time the numerical experiments carried out in this work could not clearly capture the effect of
such an improvement in estimates.

Another important area of development of the work in [1] was the generalization of all the results (and
its modification with smoothing on a ball in the -norm) to distributed algorithms in the architecture of
federated learning [6]. Note that, in federated learning, problems of type (1) are considered, firstly,
smooth, and secondly, with a full-gradient (stochastic) oracle. Problem (1) is solved independently at each
node, then the nodes communicate and calculate the average (over the nodes), then they start solving the
problem independently again, starting from this average. After some time, the nodes communicate again,
calculate the average, and the process repeats… In this work, by using a smoothing scheme (with the intro-
duction of additional randomization), it is possible to reduce a non-smooth stochastic optimization prob-
lem with a gradient-free oracle to a smooth stochastic optimization problem with an oracle, producing a
stochastic gradient, in which the stochastics is formed from the initial stochastics inherent in the initial
formulation of the problem, and the stochastics that arose during smoothing (randomized). It turned out
that in the current literature there are practically no methods of federated learning for non-smooth prob-
lems. Apparently, this was due to the fact that, in the general case, it is impossible to perform batch paral-
lelization (parallelization in ) for non-smooth problems. However, for a gradient-free oracle, batch par-
allelization is possible due to the appearance of an additional (randomized) noise in the form of a random
direction [1]! Actually, due to this, it is possible to transfer the results of [1] to the architecture of federated
learning. To the best of our knowledge, the results obtained in this direction are currently unrivaled, so a
literature review of competing works is not presented here.

2. MAIN CONTRIBUTION AND STRUCTURE

The main contribution of the article is as follows.

• We give a detailed description of two smoothing schemes (in parallel): with  and -randomizations.
We find the Lipschitz constant of the gradient  for the -randomization. To explicitly describe the esti-
mation of the second moment in -randomization with two-point feedback, we find the constant c, which
was not calculated in the original article [3], from which this constant was taken. We obtain an estimate of
the variance (of the second moment) for the one-point case of -randomization. We show that -ran-
domization with a one-point oracle is also superior to -randomization up to , as well as with a two-
point oracle.

• Obtaining optimal upper bounds for the rate of convergence of the first-order Minibatch SMP and
Single-Machine SMP algorithms for solving saddle-point optimization problems in the federated learning
architecture.

• We describe a technique for generating gradient-free algorithms (solutions of saddle-point problems
and problems of convex optimization) that are optimal in terms of the number of communication rounds
N, the maximum value of admissible noise  and oracle complexity . We show that one-point and two-
point algorithms in the federated learning architecture that use -randomization perform better than algo-
rithms using -randomization, up to a logarithmic factor in -norm. We compare one-point algorithms
with two-point algorithms and show that for a solution with  precision (with respect to the function),
one-point algorithms require  more calls to the oracle than two-point algorithms. We analyze the
operation of the Minibatch Accelerated SGD algorithm using different smoothing schemes on a numeri-
cal experiment.
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1602 ALASHQAR et al.
The article is structured as follows: Sections 3 and 4 provide a brief introduction to smoothing tech-
niques and federated learning, respectively. Subsection 4.2 presents the main result of the work. Section 5
gives the main ideas of the proofs of Theorems 1, 2. Numerical experiments are presented in Section 6.

3. SMOOTHING SCHEMES
The smoothing scheme makes it possible to create gradient-free methods for solving non-smooth

problems by modifying first-order algorithms of the same name intended for solving smooth problems.
The smoothing scheme was first described in the book [2], where the idea of solving problems by first-
order methods is presented, using a gradient-free stochastic oracle instead of a stochastic oracle of the first
order, which is obtained through the Stokes theorem. Since then, various smoothing techniques have been
invented, but the main idea comes from [2]. In this section, we present two smoothing schemes in parallel:
with -randomization [4, 5] and with -randomization [1], which includes stochastic optimization and a
biased estimation of a gradient-free oracle. For this, we consider a stochastic non-smooth convex optimi-
zation problem

(2)

where  is a convex and compact set and  is a convex function on the set . Here it
is assumed that the gradient-free oracle returns the value of the function , possibly, with some adver-
sarial noise : .

3.1. Notation and Assumptions

We denote by  the standard scalar product of . By  we

denote -norm ( ) in  and ,  define -
ball and -sphere respectively. The volume of the -ball is determined by

where  stands for the gamma-function. To denote the “distance” between the initial point  and the

solution of the original problem  we introduce , where  is  up to the logarith-

mic factor in .
Assumption 1 (Lipschitz continuous function). The function  is an -Lipschitz continuous

function in the -norm, that is, for all  we have

Moreover, there is a positive constant , which is defined as follows: . In particular, for
 we use the notation  for the Lipschitz constant.

Assumption 2 (Bounded noise). For all  we have , where  is the level of noise.

Assumption 3. For all  we have .

3.2. Smooth Approximation
Since problem (2) is non-smooth, we introduce the following smooth approximation of a non-smooth

function

(3)
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where ,  is a random vector uniformly distributed on  (below, we restrict ourselves to the cases
 and ). Here .

The following lemma presents a set of properties of approximation of the function  depending on the
distribution of the vector . Based on [1, 4, 7] and substituting the found Lipschitz constant of the gradient

 in the case , we write down the properties of the function .

Lemma 1. For all  with Assumption 1,

where  is such that .
The proof is given in Subsection 5.1.

3.3. Randomization with Two-Point Feedback

An approximation of the gradient of the noisy function  from (3) can be obtained through two

points close to . To do this, we define a random vector , uniformly distributed on . Then the gra-
dient can be estimated by the following approximation.

• Gradient estimate for -randomization ( ) [5] (see also [4]):

(4)

• Gradient estimate for -randomization ( ) [3]:

(5)

To evaluate the gradient in (4) and (5), a central finite-difference randomization scheme was chosen,
since in [8] it is explained that in the smooth case, it is more advantageous to evaluate the gradient using
the central finite-difference scheme (CFD), rather than the forward finite difference scheme (FFD). Not
that for  the estimates will be unbiased, i.e. .

Next, we present the properties of  for two randomizations using well-known results from [1,
3–5, 9, 10]. In many papers, for -randomization, the estimate of the second moment is written up to the
constant , therefore, in Lemma 2, estimates of the second moment for  and -randomizations are given
with a refinement of the constant .

Lemma 2. For all  with Assumptions 1 and 2 we have
(i)  with -randomization (4) has the variance estimate (second moment):

where  and
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If  is small enough, then

(6)

(ii)  with -randomization (5) has the variance estimate (second moment):

where  and

If  is small enough, then

(7)

The proof is given in Subsection 5.2.

3.4. Randomization with Single-Point Feedback

For the case where two-point feedback is not available, smoothing schemes can use one-point feed-
back through the following unbiased estimate:

• Gradient estimate for -randomization ( ):

(8)

• Gradient estimate for -randomization ( ) [1]:

(9)

Then the properties of  for the two randomizations will have the following form.
Lemma 3. For all  with Assumptions 2 and 3 we have

(i)  with -randomization (8) has the variance estimate (second moment):

where  and

If  is small enough, then

(10)

(ii)  with -randomization (9) has the variance estimate (second moment):

where  and
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If  is small enough, then

(11)

The proof is given in Subsection 5.3.

3.5. Smoothing Algorithm

Based on the above elements, we will describe a general approach, referred to as the Smoothing
Scheme. Suppose we have some accelerated batch algorithm A  of federated learning architecture
that solves problem (2) with the assumption that  is smooth and satisfies

and using a first-order stochastic oracle that depends on the random variable  and returns at the point 
the biased stochastic gradient 

Then the general approach of the smoothing scheme is to apply A  to the smoothed problem

(12)

for a solution with  accuracy with known parameters , , , and ,
presented in Corollary 1.

Corollary 1. According to Lemma 1, in order to obtain the -accuracy of the solution of problem (2),
it is necessary to solve problem (12) with -accuracy with the following parameter

where  is the desired accuracy of the solution to problem (2) in terms of the suboptimality:
.

Corollary 2. According to Lemma 1, substituting the parameter  from Corollary 1, we have

Corollary 3. According to Lemma 2, equations (6) and (7) for a two-point oracle will take the form

if  is small enough.
Corollary 4. According to Lemma 3, equations (10) and (11) for a single-point oracle will take the form

if  is small enough.
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1606 ALASHQAR et al.
Remark 1. If, instead of a stochastic non-smooth convex optimization problem (2), we consider a sto-
chastic non-smooth convex-concave saddle-point problem

then applying the smoothing scheme described above in this section separately to the , and  variables,
we obtain the same results as for convex optimization with the corresponding changes in  by ,
where , except for one point in Lemma 1:

• ( ) instead of

We have

• ( ) instead of

We have

where ,  and  are the corresponding Lipschitz constants in the -norm.

4. FEDERATED LEARNING
The architecture of distributed learning looks like this: a data set is distributed between “computers”,

each computer makes one local update (a local step, for example, a step of stochastic gradient descent),
after which a global update occurs (a global step, communication of all computers with all), then the chain
of local-global updates repeats. However, a global update, for example, when the data size is large, con-
sumes a lot of computing resources, unlike a local update. Then the federated learning architecture is
introduced, shown in Fig. 1, where in the homogeneous case B computers do in parallel K local updates
before each communication round, the total number of which is N. Thus,  is the total number of iter-
ations of the algorithm, and  is the total number of stochastic gradient calls.
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Fig. 1. Architecture of federated learning.

B

K

1 2 NN –1
4.1. Optimal First-Order Algorithms

In this section, we will stop and consider a class of first-order accelerated methods, namely Minibatch
Accelerated SGD (Mb-Ac-SGD) and Single-Machine Accelerated SGD (SM-Ac-SGD) from [11],
Local-AC-CA from [12] and FedAc from [13], whose convergence rate results are presented in Table 1.
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Table 1. Convergence rate results

Algorithm Reference

Mb-Ac-SGD (Woodworth et al., 2021) [11]

SM-Ac-SGD (Woodworth et al., 2021) [11]

Local-AC-CA (Woodworth et al., 2020) [12]

FedAc (Yuan, Ma, 2020) [13]

Mb-SMP Appendix A

SM-SMP Appendix A
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The following notation was used in the table:  is ;  is the number of working computers;  is
the number of local updates;  is the number of communication rounds;  is smoothness.

For a quadratic objective function, it was proved that  local update leads to optimal convergence
rate estimates (the Local-AC-CA algorithm from [12]). The FedAc algorithm from [13] generalizes the
results of [12] to the case of convex functions.

But already in 2021, optimal convergence rate estimates were obtained in [11]. This article states that
optimal estimates can be obtained only in two cases. The first case (the Minibatch Accelerated SGD algo-
rithm) assumes that each computer performs one local update before a communication round. The sec-
ond case (Single-Machine Accelerated SGD algorithm) assumes that only one computer is running,
which performs  updates. Despite the proved results of [11], in practice, in the general case of convex
functions, it turns out to use  local steps, while losing slightly in accuracy, but significantly gaining
in computational resources. It is the practical results that allow us to expect positive theoretical results in
the future.

Existing first-order algorithms for federated learning architecture often solve the convex optimization
problem. As for saddle-point optimization problems, there are currently no algorithms in the federated
learning architecture. In this paper, we have developed and obtained optimal convergence rate estimates
for the first-order methods, namely, Minibatch SMP (Mb-SMP) and Single-Machine SMP (SM-SMP)
for solving saddle-point optimization problems using a similar approach as in convex optimization [11].
Convergence estimates of algorithms for solving saddle-point problems are also given in Table 1. A
detailed description of obtaining upper convergence rate estimates for the Minibatch SMP (Mb-SMP)
and Single-Machine SMP (SM-SMP) algorithms is given in Appendix A.

4.2. Optimal Zero-Order Algorithms
This subsection presents the main result of this article, which is to combine the two global optimization

ideas presented in Section 3 and Subsection 4.1. Namely, the solution of stochastic non-smooth con-
vex/convex-concave optimization problems by gradient-free algorithms of the federated-learning archi-
tecture. To develop and apply gradient-free methods for solving non-smooth problems, it is proposed to
choose a first-order method used to solve smooth problems in the architecture of federated learning.
Next, it is necessary to modify the algorithm of the chosen method by replacing the calculation of the sto-
chastic gradient with a gradient-free approximation with  (4) or  (5) randomization. The resulting gra-
dient-free algorithm will have the same name as the first order algorithm, but it will not require informa-
tion about the stochastic gradient.

Let the algorithm A  be understood as an accelerated batch algorithm for solving problems of
convex optimization: Minibatch and Single-Machine Accelerated SGD, Local AC-CA and FedAc and

R −0

2*x x B K
N L

> 1K

NK
> 1K

1l 2l

σ2( , )L
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 63  No. 9  2023



1608 ALASHQAR et al.
accelerated batch algorithms for solving problems with a saddle-point: Minibatch SMP and Single-
Machine SMP in federated-learning architecture. Then, in Theorems 1 and 2, we assume that this prop-
erty holds: the algorithm A  (with a biased gradient-free oracle ) is reliable if the bias from
Corollary 5 for -randomization, and from Corollary 6 for -randomization (discussed in Section 5.4)
does not accumulate during the iteration of the method. That is, if for A  with :

then

• for  and  from (6):

(13)

• for  and  from (7):

(14)

The assumption about the fulfillment of this property is based on the article [14], where the convergence
analysis of methods for biased stochastic oracles was developed. Therefore, in Theorems 1, 2 we present
the results, assuming that it is possible by analogy to analyze the convergence of the methods of federated
learning considered in this paper for biased stochastic oracles. However, in the proof of Theorems 1 and
2, we will consider the case with  and give optimal estimates for the parameters of the developed gra-
dient-free algorithms.

Theorem 1. The smoothing scheme from Section 3 applied to problem (2) ensures the convergence of the fol-
lowing two-point gradient-free algorithms: Minibatch and Single Machine Accelerated SGD [11], Local-AC-
SA [12], and FedAc [13]. In other words, to achieve  accuracy of solving problem (2), it is necessary to perform

 iterations with the maximum allowable level of noise  and the total number of calls to the gradient-free
oracle  in accordance with the chosen method and smoothing scheme:
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• Single-Machine Accelerated SGD

(i) for -randomization (4):

(ii) for -randomization (5):

• Local-AC-SA

(i) for -randomization (4):

(ii) for -randomization (5):
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• Federated Accelerated SGD (FedAc)
(i) for -randomization (4):

(ii) for -randomization (5):

A detailed proof of Theorem 1 is given in Appendix B.
According to the results of Theorem 1, it is worth noting that the number of local updates  using

 computers with optimal values of  and  was obtained only for one algorithm, namely Local-AC-
SA, which is used for a particular quadratic case. This confirms that currently there are only two optimal
(in ,  and ) algorithms in theory: Minibatch and Single-Machine Accelerated SGD. It was shown in
[13] that in practice it is possible to obtain a result in which the algorithm performs in parallel  local
updates on every  computers.

In Theorem 2, we also obtain optimal estimates for the parameters considered in Subsection 4.1 of algo-
rithms for solving stochastic non-smooth problems with a saddle-point that are optimal in , N, and T.

Theorem 2. The smoothing scheme from Section 3 applied to the saddle-point problem (see Remark 1)
ensures the convergence of the following two-point gradient-free algorithms: Minibatch SMP and SingleMa-
chine SMP from Appendix A. In other words, to achieve  the accuracy of solving the saddle-point problem (see
Remark 1), it is necessary to perform  iterations with the maximum allow ablelevel of noise  and the total
number of calls to the gradient-free oracle  in accordance with the chosen method and smoothing scheme:
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(ii) for -randomization (5):

• Single-Machine SMP
(i) for -randomization (4):

(ii) for -randomization (5):

A detailed proof of Theorem 2 is given in Appendix C.
According to the results of Theorem 1 and Theorem 2, it is easy to see that for all algorithms the optimal

number of calls to a gradient-free oracle in the -norm is  with -randomization, while

for -randomization it equals , where  is the accuracy of solving a non-smooth problem. This

result confirms that the -randomization smoothing scheme performs better in the federated learning
architecture than the -randomization. In Section 6, we will test this result on a numerical experiment.

Remark 2. To obtain the results of Theorems 1 and 2, we used the assumption that a two-point feed-
back is available (see Subsection 3.3). If one-point feedback is used instead of two-point feedback (see
Subsection 3.4), then this will lead to the same iterative complexity (number of communication rounds)

 and the maximum level of noise , but the oracle complexity will increase by a factor of . This
case is discussed in detail in Appendix D.
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Remark 3. It is worth noting that the idea of combining two techniques, namely, federated learning
with smoothing schemes, is not limited to the considered first-order algorithms and can be used to solve
non-smooth problems by other algorithms used in the federated learning architecture.

5. PROOF SCHEMES
In this section, we present schemes for the proofs of Theorem 1 and Theorem 2. Detailed proofs of

these theorems can be found in Appendix B and C. Here we focus on the proof of Lemmas 1–3 and on
finding an estimate for the level of noise (adversarial noise).

5.1. Proof of Lemma 1

In this subsection, we consider the non-Euclidean case when the random vector  is uniformly distrib-
uted on the -ball. The proof of the Euclidean case can be found in Theorem 2.1 from [1].

For all 

(1) ;

(2)  is -Lipschitz:

(3)  has -Lipschitz gradient:

where  such that .
Proof. For the first inequality of the first property, we use the convexity of the function 

For the second inequality of the first property, applying Lemma 1 from [4], we have:

using the fact that  is -Lipschitz.
For the second property:

And for the third property, applying Lemma 11 from [15] we have for any ,

where the second inequality follows from  and

Next, to evaluate the integral  we apply the same approach as in the proof of Lemma 8 from [16] and
consider the cases where  and .
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Case 1 ( ): For all  let , then we have  , so

Similarly, for all  let , then we have , so

Hence,

Because , and considering the fact that for  satisfies

, we get the following inequality:

Case 2 ( ): Expand the integral  into 4 integrals.

Now let’s consider each integral from the expansion separately:
1. For the first and fourth integrals, the following is true:

Then, substituting into the first integral, we get
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Similarly, substituting into the fourth integral, we get
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2. When  or , we have

where  and  do not intersect, therefore, using this and the symmetry of integrals, and by
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Summing up the values of the four integrals (15)–(17), we get:

(18)

where  is the volume on the set .

Now let’s find the upper bound of  by . Let —the volume of a spherical cap with a dis-
tance of  to the center of the -sphere. Then

(19)

The volume of a -dimensional spherical cap  can be calculated in terms of a -dimensional
-sphere as follows:

where  and . For  we have
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Now substituting the obtained estimate of  in (18), we have

Since , it can be seen that

Now, having obtained an estimate for the integral , we have that

γ

μ − − μ −
γ � � �

2( ) ( ) = ,Sd
dQ

e y e x de V
c

SV S

SV − py x cap( )V r
r 1l

− 
γ −  

 
cap= 2 .

4
d p

S d

y x
V c V

d capV −( 1)d
1l

( )
γ

−
− γ − ρ ρ ∈ γ

1
cap 1( ) = for [0, ],d

d
r

V r c d r

2=
!

d

dc
d

≥ 1d ∈ γ[0, ]r

( ) −
−

−
−

− γ − ≤

− γ − ≥

1
cap 1

2
cap 1

' ( ) = 0,

'' ( ) = ( 1) ( ) 0,

d
d

d
d

V r c r

V r d c r

cap cap' '',V V r capV
γ[0, ]

+ ≤ ∈ γcap cap cap'(0) (0) ( ) for [0, ].V V r V r r

γcap
1(0) =
2

d
dV c −

−− γ 1
cap 1' (0) = d

dV c

−
−γ − γ ≤ ∈ γ1

1 cap
1 ( ) for [0, ].
2

d d
d dc c V r r

− ≤ γ1 /2y x − ≤ − ≤ − 1/4 /2 /2p py x y x y x ∈ [1,2]p
− ≤ γ= /4pr y x

−
−

− − 
γ − ≤ γ 

 

1
cap 1= 2 2 .

4 4
d dp p

S d d

y x y x
V c V c

SV

γ

−
−

μ − − μ − ≤
γ � � �

1( ) ( ) .pd

dQ

y xce y e x de
c

2=
!

d

dc
d

γ

μ − − μ − ≤ −
γ � � �( ) ( ) .

2 p
Q

de y e x de y x

1I

γ γ∇ − ∇ ≤ −
γ

( ) ( ) .
2 pq

dMf y f x y x
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 63  No. 9  2023



GRADIENT-FREE FEDERATED LEARNING METHODS 1615
5.2. Proof of Lemma 2

In this subsection we will focus on the proof of Lemma 2 for -randomization. In many works, for
example in [1, 3, 9], the estimate of the second moment for the gradient-free approximation (5) is given
and proved up to a certain numerical constant . In this proof, we will figure out what this numerical con-
stant  is equal to. And a detailed proof of Lemma 2 for -randomization is given in Lemma 4 [4].

For all  with Assumptions 1 and 2 then  of (5) has a lower bound (second moment):

where  and

Proof. Let’s consider

(21)

where we used the fact that for all . For the first term (21), the following holds with
an arbitrary parameter  taking into account the symmetric distribution of 

(22)

Applying the Cauchy–Schwartz inequality for (22) and using , where

, we get
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The following lemma, which we will consider, is a refinement of Lemma 9 [3] with the indication of a
numerical constant .
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Proof. Let the measure concentration inequality, which uses mathematical expectation, look like this:

where  and  are unknown parameters. Then, in order to find the parameters  and , we write an
inequality using the median of the function using the parameters  and  (since in the literature, for
example, in [10], the inequality of measure concentration on the sphere is usually written using the
median of the function , and not the mathematical expectation):

(24)

Substituting the parameters  and  from inequality (24), we write down the standard
result on the concentration of Lipschitz functions on the Euclidean unit sphere

Hence,

where the last step used the fact that . Thus, a numerical constant  from

Lemma 9 [3] is found.
Then we use Lemma 4 together with the fact that  is -Lipschitz with respect to  in

terms of the -norm. Thus, for (23) and  we have

(25)

For the second term in (21), the following holds:

(26)

Substituting (25) and (26) into the inequality (21) and entering the coefficient  into , we obtain

the statement of Lemma 2 for -randomization with .

5.3. Proof of Lemma 3

In this subsection, we consider a brief proof of Lemma 3 for the case with -randomization. The
Euclidean case can be found in the following works [1, 17].

For all  with Assumptions 2 and 3, and from (8),  has the lower bound (second
moment):
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Further, with Assumptions 2 and 3, we obtain the statement of the lemma:

5.4. Estimates of the Level of Noise

In this subsection, we present the necessary lemmas and corollaries for finding two estimates of the
level of noise (adversarial noise): for -randomization (4) and for -randomization (5). To do this, we use
the known results and the same assertion as in [18].

Lemma 5 (see [4]). The function  is differentiable with the following -stochastic gradient:

Lemma 6 (see [19]). The function  is differentiable with the following -stochastic gradient:

Lemma 7 (see [20]). Let the vector  be a random unit vector from the Euclidean unit sphere .

Then for all  it follows

Lemma 8. For  and  with Assumption 2, the following holds:

where  with -randomization;

where  with -randomization.

Proof. Consider the following statements.

(i) for -randomization (4):

From this equality it follows that
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Applying Lemma 5 to the first term (27), we obtain

(28)

For the second term (27), taking into account  we get

(29)

Using equations (28) and (29) for equation (27), we obtain a statement of the lemma for -randomization.
(ii) for -randomization (5):

From this equality it follows that

(30)

Applying Lemma 6 to the first term (30), we obtain

(31)

For the second term (30), taking into account that  we obtain

(32)

Using equations (31) and (32) for equation (30), we obtain a statement of the lemma for -randomization.
Corollary 5. Note that the vector  in the -norm behaves in a similar way

for a large space dimension  as a vector of independent Rademacher random variables. Then Khinchin’s
inequality implies , where . Applying this inequality to Lemma 8, we obtain

Corollary 6. Applying the assertion of Lemma 7 to Lemma 8, we obtain the same inequality as in [18]
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Now consider how to get estimates of the level of noise.

From (13) and (14), substituting the value of the parameter  from Corollary 1 (  for -ran-

domization,  for -randomization) and , we obtain bounds on the level of noise

for  and -randomization:

Remark 4. It is worth noting that the results of Lemma 8 and Corollaries 5 and 6 for saddle-point prob-
lems are the same and are proved in a similar way. Therefore, the estimates of the level of noise for the
problem with a saddle-point coincide with the estimates for convex optimization. In order to avoid repe-
tition, we will refer to this remark as the result of obtaining estimates of the level of noise for saddle-point
problems.

6. NUMERICAL EXPERIMENTS
In this section, we present a numerical comparison of two smoothing techniques in a federated learn-

ing architecture. We consider a stochastic non-smooth optimization problem on the simplex set
 with function , defined as follows:

where  – a random vector uniformly distributed on the interval . The gradient-free two-point
algorithm Minibatch Accelerated SGD, discussed in Section 4, is used as an optimization method.
Figure 2 shows the dependence of the error  at the last iteration on the change in the number of local
calls of the gradient-free oracle  with a different number of machines  and ,

working in parallel, where , and  is the iteration number. The number of iterations was cho-

sen as . The larger , the smaller the number of communication rounds N, and the converse is
also true. The level of noise  (without adversarial noise), and the dimension of the problem .

It is easy to see from Fig. 2 that as the number of local updates  increases (a decrease in communi-
cation rounds ), the accuracy get worse (thereby confirming the theoretical results), but it is not critical.
That is, when solving practical problems, despite the theory, you can take the number of local updates

, to get a good enough result. It is also worth noting that, in practice, the smoothing scheme with
-randomization is not only matches the smoothing scheme with -randomization, but sometimes sur-

passes it. However, it is interesting to find out in which cases the smoothing scheme with -randomization
will be superior to the smoothing scheme with -randomization. To do this, consider two cases of com-
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Fig. 2. The dependence of the error on the number of machines  and various local updates .
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Fig. 3. The dependence of the error on the number of iterations at different values of the inaccuracy level at 20 runs.
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puting a gradient-free oracle: with adversarial noise and without adversarial noise. Figure 3 shows the

dependence of the error  on the number of iterations and the level of noise (presence of adversarial

noise)  and . The number of machines working in parallel is chosen to be . On

each machine, the number of local calls to the gradient-free oracle is , and the number of commu-

nication rounds . Thus, the total number of iterations is . The dimension of the problem

, the number of launches is 20.

According to Fig. 3, it can be concluded that when adversarial noise is added, the smoothing scheme

with  randomization works better than the smoothing scheme with  randomization in the architecture
of federated learning.

7. CONCLUSIONS

In this paper, we obtained upper bounds for the optimal algorithm for solving saddle-point problems
in the federated learning architecture and found the Lipschitz constant for the gradient in the smoothing

scheme with -randomization. Using smoothing schemes, we have created optimal gradientl-free two-

point and one-point algorithms with  and -randomization, thanks to which it is possible to solve sto-
chastic non-smooth convex optimization problems and convex-concave optimization problems in the
federated learning setting with a stochastic gradient-free oracle. We showed under what conditions the

smoothing scheme with -randomization works better than with -randomization in the federated learn-
ing architecture. It has been shown in practice that the number of local updates can be increased by reduc-
ing the number of communication rounds, while the total number of iterations remains the same.

APPENDIX
A. UPPER BOUNDS

Consider a smooth convex-concave saddle-point problem

(A.33)

where  is a convex-concave Lipschitz continuous function,  and  are convex sets.

For simplicity of presentation, we introduce the set ,  and the monotone operator F:

(A.34)

Then –the solution of the variational inequality (VI), looks as follows:

(A.35)

We estimate the inaccuracy of a possible solution  by the error

(A.36)
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In what follows, we impose on F, in addition to being monotonic, the requirement

(A.37)

where ,  are known constants,  And we assume that  is unbiased

and has bounded variance, i.e.,  we have

To extend the main result of [11] to saddle-point problems and VI, we choose Stochastic Mirror Prox
(SMP) described in [21] as an algorithm. In the future, we will consider two methods of the FL architec-
ture proposed in [11] and call them Minibatch SMP and Single-Machine SMP. To do this, we use the
well-known results and assumptions.

Algorithm 1 SMP

1: Initialization. Select  and step size .

2: Step : According to the known , calculate

(A.38)

When , execute the loop before the step .

3: At the step  output

Assumption 4. For every  with  we have

Assumption 5. For every  and for every  we have

Lemma 9 (see [21]). Let VI (A.35) with a monotone operator  (A.34), satisfying requirement (A.37) be
solved using a  step algorithm 8, using a stochastic oracle ( ), and let the step sizes  satisfy

. Then

(i) with Assumption 4 we have

(ii) with Assumptions 4, 5 for any 

where

Corollary 7. Using the results of Lemma 9, we extend the idea of the optimal algorithm [11] and obtain
upper bounds.

• Minibatch SMP
This algorithm performs  iterations of the SMP using mini-batch gradients of size . During each

round of communication, each machine calculates  stochastic oracle, then the machines send their

mini-batches, averaging into one large mini-batch size , then they update  and  in accordance with
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(A.38). Since the calculation of the processed stochastic oracle reduces the variance by a factor of ,

then we denote . Assume that the step size  of algorithm 8 is

(A.39)

where  is the given number of iterations. Then with Assumption 4

(A.40)

Since the upper bound (A.40) for the error of algorithm 8 with the step strategy (A.39) depends in a similar

way on  and V, we can replace  with . Then

if Assumptions 4 and 5 hold, then

where

• Single-Machine SMP

This algorithm, unlike Mini-batch SMP, ignores  machines and performs  steps of the SMP

algorithm. Then assume that the step size  of the SMP algorithm is

(A.41)

where  is the specified number of iterations. Then with Assumption 4,
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Since the upper bound (A.42) for the error of algorithm 8 with the step strategy (A.41) depends in a similar

way on  and V, we can replace  with . Then

if Assumptions 4 and 5 hold, then

where

Let’s write a lemma using the same approach as Woodworth [11] to combine two algorithms (Mini-
batch SMP and Single-Machine SMP) into one optimal algorithm.
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Corollary 8. For any  the algorithm uses Mini-batch SMP when , and

uses Single-Machine SMP when , then with Assumption 4 we have

where  is some numeric constant.

B. PROOF OF THEOREM 1

Here is a complete proof of Theorem 1. To do this, we divide the proof into two parts: the proof for

-randomization and the proof for -randomization.

For -randomization, we have the following algorithms:

• Minibatch Accelerated SGD
This algorithm, after  rounds of communication gives the rate of convergence for  (see [11, 22])

in accordance with Corollary 5:
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number of machines running in parallel, and

total number of calls to a two-point gradient-free oracle.

• Single-Machine Accelerated SGD

This algorithm, after  rounds of communication gives the rate of convergence for  (see [11,

22]) in accordance with Corollary 5:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need
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Substituting  (from Corollary 2), where  and  (from Corollary 3), into

inequalities (A.46)–(A.48), we get:
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number of local calls of the gradient-free oracle and

total number of calls to a two-point gradient-free oracle.

• Local-AC-SA

This algorithm, after  communication rounds, gives the convergence rate for  (see [12, 22]) in

accordance with Corollary 5:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.49)

(A.50)

(A.51)

Substituting  (from Corollary 2), where  and  (from Corollary 3), into

inequalities (A.49)–(A.51), we get:

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

the number of local calls of the gradient-free oracle,
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number of machines running in parallel and

total number of calls to a two-point gradient-free oracle.

• Federated Accelerated SGD (FedAc)
This algorithm, after  communication rounds, gives the convergence rate for  (see [13]) in

accordance with Corollary 5:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.52)

(A.53)

(A.54)

(A.55)

Substituting  (from Corollary 2), where  and  (from Corollary 3), into

inequalities (A.52)–(A.55), we get

level of noise,

and
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Thus, the smallest number of communication rounds, provided that  and , will
have the form

then we get:

number of local calls of the gradient-free oracle,  is the number of machines running in parallel and

total number of calls to a two-point gradient-free oracle.

For -randomization, we have the following algorithms:

• Minibatch Accelerated SGD

This algorithm, after  communication rounds, gives the convergence rate for  (see [11, 22]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.56)
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(A.58)
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Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.56)–(A.58), we get

level of noise,

number of communication rounds,

number of machines running in parallel and

total number of calls to a two-point gradient-free oracle.

• Single-Machine Accelerated SGD

This algorithm, after  iterations, gives the convergence rate for  (see [11, 22]) in accordance

with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.59)
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(A.61)
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Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.59)–(A.61), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle and

total number of calls to a two-point gradient-free oracle.

• Local-AC-SA

This algorithm, after  communication rounds, gives the convergence rate for  (see [12, 22]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.62)

(A.63)

(A.64)
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Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.62)–(A.64), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle,

number of machines running in parallel and

total number of calls to a two-point gradient-free oracle.

• Federated Accelerated SGD (FedAc)
This algorithm, after  communication rounds, gives the convergence rate for  (see [13]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.65)
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(A.67)
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(A.68)

Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.65)–(A.68), we get

level of noise and

and

Thus, the smallest number of communication rounds, provided that  and , will
have the form:

then we get:

number of local calls of the gradient-free oracle, —the number of machines running in parallel and

total number of calls to a two-point gradient-free oracle.

C. PROOF OF THEOREM 2

In this subsection, we present a complete proof of Theorem 2. To do this, we divide the proof into two

parts: the proof for -randomization and the proof for -randomization.
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For -randomization, we have the following algorithms:

• Minibatch SMP
This algorithm, after  communication rounds, gives a convergence rate for  (see Corollary 7) in

accordance with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need

(A.69)

(A.70)

Substituting  (from Corollary 2), where  and  (from Corollary 3), into

inequalities (A.69) and (A.70), we get

level of noise and

Since , and  directly depends on , the number of communication rounds can be taken ,
then we get:

number of machines running in parallel and

total number of calls to a two-point gradient-free oracle;

• Single-Machine SMP
This algorithm, after  iterations, gives a convergence rate for  (see Corollary 7) in accordance

with Remark 4:
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If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need

(A.71)

(A.72)

Substituting  (from Corollary 2), where  and  (from Corollary 3), into

inequalities (A.71) and (A.72), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle and

total number of calls to a two-point gradient-free oracle.

For -randomization, we have the following algorithms:

• Minibatch SMP

This algorithm, after  communication rounds, gives a convergence rate for  (see Corollary 7) in

accordance with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :
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So, in order to have -accuracy for  you need

(A.73)

(A.74)

Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.73) and (A.74), we get

level of noise and

Since , and  directly depends on , the number of communication rounds can be taken ,
then we get:

number of machines running in parallel and

total number of calls to a two-point gradient-free oracle;

• Single-Machine SMP
This algorithm, after  iterations, gives a convergence rate for  (see Corollary 7) in accordance

with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need

(A.75)

(A.76)
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Substituting  (from Corollary 2), where  and  (from Corollary 3),

into inequalities (A.75) and (A.76), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle and

total number of calls to a two-point gradient-free oracle.

D. SINGLE-POINT GRADIENT ALGORITHMS

Let’s do the same procedure as in Subsection 4.2 to create gradient-free single-point algorithms.

To begin with, using the example of Lemma 10, we show that Lemma 8 also holds for a single-point
oracle.

Lemma 10. For  and  with Assumption 2, the following holds

where  with -randomization;

where  with -randomization.

Proof. Consider

(i) for -randomization (8):

From this equality follows
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Applying Lemma 5 to the first term (A.77), we obtain

(A.78)

For the second term (A.77) with Assumption 2 we get

(A.79)

Using equations (A.78) and (A.79), for equation (A.77), we obtain a statement of the lemma for -ran-
domization.

(ii) for -randomization (9):

From this equality follows

(A.80)

Applying Lemma 6 to the first term (A.80), we obtain

(A.81)

For the second term (A.80) with Assumption 2 we get

(A.82)

Using equations (A.81) and (A.82), for equation (A.80) we obtain a statement of the lemma for -ran-
domization.

Since Lemma 8 holds for a single-point oracle, Corollaries 5–6 and Remark 4 also hold for a single-
point oracle. Thus, we can now obtain estimates of the parameters of single-point gradient-free methods

for  and -randomization, in the same way as in Subsection 4.2, using Subsection 3.4. In Theorem 3,
estimates of gradient-free convex optimization methods are presented, and in Theorem 4, estimates for
saddle problems.

Theorem 3. Smoothing scheme from Section 3, applied to problem (2), provides convergence of the following
single-point gradient-free algorithms: Minibatch and Single-Machine Accelerated SGD [11], Local-AC-CA
[12] and FedAc [13]. In other words, in order to achieve the accuracy  of solving problem (2), it is necessary
to iterate  with the maximum allowable noise level  and the total number of calls to the gradient-free oracle

 in accordance with the chosen method and smoothing scheme:
• Minibatch Accelerated SGD

(i) for -randomization (8):
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(ii) for -randomization (9):

• Single-Machine Accelerated SGD

(i) for -randomization (8):

(ii) for -randomization (9):

• Local-AC-SA

(i) for -randomization (8):
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(ii) for -randomization (9):

• Federated Accelerated SGD (FedAc)
(i) for -randomization (8):

(ii) for -randomization (9):

Proof. Consider the proof for each randomization and each method separately.

For -randomization, we have the following algorithms:

• Minibatch Accelerated SGD
This algorithm, after  communication rounds, gives the convergence rate for  (see [11, 22]) in

accordance with Corollary 5:

where .
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If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.83)

(A.84)

(A.85)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.83)–(A.85), we get:

level of noise,

number of communication rounds,

number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Single-Machine Accelerated SGD

This algorithm, after  iterations, gives the convergence rate for  (see [11, 22]) in accordance

with Corollary 5:

where .
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If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.86)

(A.87)

(A.88)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.86)–(A.88), we have

level of noise and

Since  directly depends on , the number of communication rounds can be taken , then we get:

the number of local calls of the gradient-free oracle and

total number of calls to a single-point gradient-free oracle.

• Local-AC-SA

This algorithm, after  communication rounds, gives the convergence rate for  (see [12, 22]) in

accordance with Corollary 5:

where .
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If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.89)

(A.90)

(A.91)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.89)–(A.91), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle,

number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Federated Accelerated SGD (FedAc)
This algorithm, after  communication rounds, gives the convergence rate for  (see [13]) in

accordance with Corollary 5:

where .
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If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.92)

(A.93)

(A.94)

(A.95)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.92)–(A.95), we get

level of noise,

and

Thus, the smallest number of communication rounds, provided that  and , will
have the form:

then we get:
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number of local calls of the gradient-free oracle, —the number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

For -randomization, we have the following algorithms:

• Minibatch Accelerated SGD

This algorithm, after  communication rounds, gives the convergence rate for  (see [11, 22]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.96)

(A.97)

(A.98)

Substituting  (from Corollary 2), where  and  (from Corol-

lary 4), into inequalities (A.96)–(A.98), we get

level of noise,
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= 1B
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number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Single-Machine Accelerated SGD

This algorithm, after  iterations, gives the convergence rate for  (see [11, 22]) in accordance

with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.99)

(A.100)

(A.101)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.99)–(A.101), we get

level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:
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number of local calls of the gradient-free oracle and

total number of calls to a single-point gradient-free oracle.

• Local-AC-SA
This algorithm, after  communication rounds, gives the convergence rate for  (see [12, 22]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.102)

(A.103)

(A.104)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.102)–(A.104), we get:

level of noise and

Since  directly depends on , the number of communication rounds can be taken , then we get:
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κ
ε

2 2 2

2

4

2304 ( , )
= =

p d M G RT NKB

  
   εκ    
 ε   ∞  ε  

�

�

�

2 2 2 2

2

42 2 2

2

4 2 2 2

2

4

, = 2 ( = 2),
( , )

= =
(ln )

, = 1 ( = ),

d M G RO p q
p d M G RT O

d d M G RO p q

N γ( )f x

γ+
γ

σ Δ− ≤ + +
γ

E

2

1

2 2

4 4
[ ( ) ( )] ,*

fN
ag

L R R d Rf x f x
BKNK N

γ
γ

∈
γ =( ) argmin ( )* x Q

x f x

ε
2

γ( )f x εγ
2

=
2M

ε

( )f x

+ + +
γ γ γ

ε ε− ≤ − γ ≤ − γ + γ ≤ + ε1 1 1

2( ) ( ) ( ) ( ( )) ( ) ( ( )) = .* * * 2 2

N N N
ag ag agf x f x f x f x f x f x M

ε
2

γ( )f x

Δ ε≤
γ

,
6

d R

γ ε≤
2

2 2

4
,

6

fL R

K N
σ ε≤4

.
6

R
BKN

γ γ
=f

dML εγ
2

=
2M

κσ
ε

2 2
2 2

2

4 ( , )
=

p d M G

 γε ε εΔ ≤  Δ ≤  Δ  
 

2 2

2 2

=
6 12

O
dR dM R dM R

≥  ≥
εε

2 1/4
2 2 2 2

2

48 4 3
.

dMM R d MM RN K NK

N K = 1N

 
 ε 

1/4

2= = ,
d MM RNK K O

 κ κσ≥  ≥   ε ε ε 

2 2 2 2 2 22 2
2 2

2 4 4

2304 ( , ) ( , )576
= ,

p d M G R p d M G RRB B B O
KN KN KN
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 63  No. 9  2023



1646 ALASHQAR et al.
number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Federated Accelerated SGD (FedAc)
This algorithm, after  communication rounds, gives the convergence rate for  (see [13]) in

accordance with Corollary 6:

where .

If we have -accuracy for the function  with  (from Corollary 1), then we have -accu-

racy for the function :

So, in order to have -accuracy for  you need

(A.105)

(A.106)

(A.107)

(A.108)

Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.105)–(A.108), we get
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Thus, the smallest number of communication rounds, provided that  and , will
have the form:

then we get:

number of local calls of the gradient-free oracle, —the number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

Theorem 4. The smoothing scheme from Section 3, applied to the saddle problem (see Remark 1), ensures
the convergence of the following single-point gradient-free algorithms: Minibatch SMP and Single-Machine
SMP from Appendix A. In other words, to achieve the accuracy  of solving the saddle problem (see Remark 1),
it is necessary to iterate  with the maximum allowable noise level  and the total number of calls to the gra-
dient-free oracle  in accordance with the selected smoothing method and scheme:

• Minibatch SMP

(i) for -randomization (8):

(ii) for -randomization (9):
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• Single-Machine SMP
(i) for -randomization (8):

(ii) for -randomization (9):

Proof. Consider the proof for each randomization and each method separately.

For -randomization, we have the following algorithms:

• Minibatch SMP
This algorithm, after  communication rounds, gives a convergence rate for  (see Corollary 7) in

accordance with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy
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Substituting  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.109) and (A.110), we get

level of noise and

Since , and  directly depends on , the number of communication rounds can be taken ,
then we get:

number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Single-Machine SMP

This algorithm, after  iterations, gives a convergence rate for  (see Corollary 7) in accordance

with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need
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into inequalities (A.111) and (A.112), we get
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level of noise and

Since  directly depends on K, the number of communication rounds can be taken , then we get:

number of local calls of the gradient-free oracle and

total number of calls to a single-point gradient-free oracle.

For -randomization, we have the following algorithms:

• Minibatch SMP

This algorithm, after  communication rounds, gives a convergence rate for  (see Corollary 7) in

accordance with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need

(A.113)

(A.114)

Substitute  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.113) and (A.114), we get
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Since , and  directly depends on , the number of communication rounds can be taken ,
then

the number of machines running in parallel and

total number of calls to a single-point gradient-free oracle.

• Single-Machine SMP

This algorithm, after  iterations, gives a convergence rate for  (see Corollary 7) in accordance

with Remark 4:

If we have -accuracy for the function  with  (from Corollary 1), then we have -accuracy

for the function :

So, in order to have -accuracy for  you need
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(A.116)

Substitute  (from Corollary 2), where  and  (from Corollary 4),

into inequalities (A.115) and (A.116), we get
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number of local calls of the gradient-free oracle and

total number of calls to a single-point gradient-free oracle.
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