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On the number of independent and k-dominating
sets in graphs with average vertex degree at most k
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Abstract. The following conjecture is formulated: if the average vertex
degree in a graph is not greater than a positive integer k ⩾ 1, then the
number of k-dominating sets in this graph does not exceed the number of
its independent sets, and these numbers are equal to each other if and only
if the graph is k-regular. This conjecture is proved for k ∈ {1, 2}.

Bibliography: 10 titles.

Keywords: independent set, dominating set, k-dominating set, enumera-
tive combinatorics.

§ 1. Introduction

An independent set in a graph is an arbitrary subset of its pairwise nonadjacent
vertices. The number of independent sets in a graph G is denoted by i(G). For
k ⩾ 1 a k-dominating set in a graph G is a subset Dk of its vertices such that each
vertex which is not in Dk is adjacent to at least k vertices in Dk. The number of
k-dominating sets in a graph G is denoted by ∂k(G). A graph is said to be k-regular
if all of its vertices have the same degree k ⩾ 0, and it is said to be non-regular if
it contains two vertices of distinct degrees.

To this date there are a lot of results devoted to counting independent sets in
graphs of various classes. For any n ⩾ 1 the star graph and the simple path are
known to contain the maximum possible and the minimum possible number of
independent sets, respectively, in the class of n-vertex trees (see [1]). In [2], for
any n, d ⩾ 3 the structure of n-vertex trees with maximum degree d that contain
the maximum possible number of independent sets among all trees of this kind
was described. In [3]–[6] an asymptotically sharp upper estimate for the number of
independent sets in an n-vertex k-regular graph was derived and the corresponding
extremal graphs were described. Many other results of this kind were mentioned in
the recent survey [7].

Enumerative results related to k-dominating sets are much fewer, almost all of
them refer to the case k = 1. In the class of n-vertex trees the largest number
of 1-dominating sets is featured by the star graph; at the same time there exist
exponentially many trees containing the minimum possible number of 1-dominating
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sets among all graphs of this class: see [8]. In the subsequent paper [9] this result
was generalized to the class of connected graphs. In the recent work [10], for
any n, k ⩾ 2 the structure of trees containing the maximum possible or minimum
possible number of k-dominating sets among all n-vertex trees is described.

For any k ⩾ 1 the number of independent sets in a k-regular graph coincides
with the number of its k-dominating sets. Indeed, it follows from the definitions of
independent sets and k-dominating sets that the complement to any independent
set in a k-regular graph is a k-dominating set and vice versa. Figure 1 shows
a 3-regular graph whose vertices are divided into the independent set {v3, v5} (the
elements of which are coloured gray) and the 3-dominating set {v1, v2, v4, v6}.

Figure 1. An example of a 3-regular graph.

The problem of establishing a relationship between the number of independent
sets and the number of k-dominating sets in non-regular graphs with average vertex
degree k is much more complicated. The author is confident of the following.

Proposition. If the average vertex degree in a graph G does not exceed a positive
integer k ⩾ 1, then ∂k(G) ⩽ i(G). Moreover, this inequality turns to equality if and
only if the graph G is k-regular.

This paper is devoted to the proof of this proposition for k ∈ {1, 2}. In § 2
we present some standard graph-theoretic notation. In § 3 we introduce additional
notation related to independent sets and k-dominating sets in graphs, and also
prove a series of auxiliary assertions. In § 4 we prove the main result of this work.
Finally, in § 5 we discuss the prospect of further research in the case when k ⩾ 3.

§ 2. Some definitions and notation

By NG(v) we denote the open neighbourhood of the vertex v in the graph G,
that is, the set of all vertices adjacent to v. The closed neighbourhood of the
vertex v in G is the set NG[v] = NG(v) ∪ {v}. Given an arbitrary set of vertices
A ⊆ V (G), we define its closed neighbourhood by NG[A] =

⋃
a∈A NG[a]. If the

graph is clear from the context, then we simplify this notation to N(v), N [v] and
N [A], respectively.

By Pn, Cn and Kn we denote the path graph, the cycle and the complete graph
on n vertices, respectively. Given two adjacent vertices u and v in G, we denote
the graph obtained from G by deleting the vertex u and all edges incident to it by
G \ u and the graph obtained from G by deleting the edge uv by G − uv. For an
arbitrary subgraph H of G we denote by G \H the graph induced by the vertices
of the set V (G) \ V (H). The notation Kn − e is used for the graph obtained from
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the complete graph Kn by deleting the edge e. A triangle in a graph is a subgraph
isomorphic to K3. Given an integer m ⩾ 1 and a graph G, we denote the graph
containing m connected components, each of which is isomorphic to G, by mG.

The average vertex degree of a graph G is denoted by d(G). A vertex of a graph is
called isolated (a pendant vertex or a leaf ) if it has degree 0 (degree 1, respectively).
A tree is a connected graph with no cycles. It is known that a connected graph G
is a tree if and only if d(G) < 2. Moreover, any tree contains at least two pendant
vertices.

We denote an isomorphism between those graphs G and H by G ∼= H. A graph
H ′ is called a spanning subgraph of G if it can be obtained from G by deleting
several edges. A graph H ′′ is called an induced subgraph of G if it can be obtained
from G by deleting several vertices and all edges incident to these vertices.

§ 3. Preliminary results

3.1. Families of k-dominating and independent sets in a graph. Denote by
Dk(G) and I(G) the families of all k-dominating and independent sets in a graph G,
respectively, and by ∂k(G) and i(G) the cardinality of each of these families, respec-
tively. By Dk(G, A+

1 , . . . , A+
m, B−1 , . . . , B−s ) we denote the family of k-dominating

sets in a graph G that contain all vertices from the sets A1, . . . , Am and no vertex
from B1, . . . , Bs. If the set A consists of a single element a, then we use the notation
Dk(G, a+) instead of Dk(G, A+). Set

∂k(G, A+
1 , . . . , A+

m, B−1 , . . . , B−s ) = |Dk(G, A+
1 , . . . , A+

m, B−1 , . . . , B−s )|.

In a similar way we introduce the notation I(G, A+
1 , . . . , A+

m, B−1 , . . . , B−s ) and
i(G, A+

1 , . . . , A+
m, B−1 , . . . , B−s ) for the family of all independent sets in the graph G

and its cardinality, respectively, under the constraints formulated above.
Let us mention several simple facts.

Lemma 1. The following relations hold for any graph G, any integer k ⩾ 1 and
any sets A, B, C ⊆ V (G):

∂k(G, A+, B−) =
∑

X⊆C

∂k(G, A+, B−, X+, (C \X)−) (3.1)

and
i(G, A+, B−) =

∑
X⊆C

i(G, A+, B−, X+, (C \X)−). (3.2)

Proof. It follows from the definition of the family Dk(G) that for any set
X ⊆ C there exists exactly ∂k(G, A+, B−, X+, (C \ X)−) k-dominating sets
D ∈ Dk(G, A+, B−) in the graph G such that D ∩ C = X, which yields (3.1).
Equality (3.2) is established in the same way.

The proof of the lemma is complete.

Remark 1. If C = {c}, then equalities (3.1) and (3.2) take the form

∂k(G, A+, B−) = ∂k(G, A+, B−, c+) + ∂k(G, A+, B−, c−), (3.3)

i(G, A+, B−) = i(G, A+, B−, c+) + i(G, A+, B−, c−). (3.4)
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Lemma 2. The following relations hold for any graph G, any integer k ⩾ 1 and
any sets A1 ⊆ A2 ⊆ V (G) and B1 ⊆ B2 ⊆ V (G):

∂k(G, A+
1 , B−1 ) ⩾ ∂k(G, A+

2 , B−2 ) (3.5)

and
i(G, A+

1 , B−1 ) ⩾ i(G, A+
2 , B−2 ). (3.6)

Inequalities (3.5) and (3.6) readily follow from the inclusions

Dk(G, A+
2 , B−2 ) ⊆ Dk(G, A+

1 , B−1 ) and I(G, A+
2 , B−2 ) ⊆ I(G, A+

1 , B−1 ).

Lemma 3. The following relations hold for any graph G, any integer k ⩾ 1 and
any sets A, B, C ⊆ V (G) such that B ∩ C = ∅:

∂k(G, A+, B−, C−) ⩽ ∂k(G, A+, B−, C+) (3.7)

and
i(G, A+, B−, C+) ⩽ i(G, A+, B−, C−). (3.8)

Proof. Let us prove inequality (3.7). It follows from the definitions of a k-domi-
nating set and the family Dk(G) that for any set D ∈ Dk(G, A+, B−, C−) we have
D ∪ C ∈ Dk(G, A+, B−, C+), as required.

Now we prove (3.8). If either the set A ∪ C is not independent, or A ∩ B ̸= ∅,
then i(G, A+, B−, C+) = 0 and there is nothing to prove. Otherwise the following
equalities hold:

i(G, A+, B−, C+) = i(G \ (N [A] ∪B ∪N [C]))

and
i(G, A+, B−, C−) = i(G \ (N [A] ∪B ∪ C)).

Since the graph G \ (N [A] ∪ B ∪ N [C]) is a subgraph of G \ (N [A] ∪ B ∪ C),
inequality (3.8) is valid too.

The proof of the lemma is complete.

Lemma 4. If H is a subgraph of a graph G, then ∂k(H) ⩽ ∂k(G) for any integer
k ⩾ 1.

Proof. It follows from the definition of a k-dominating set that adding an edge to
a graph does not reduce the number of its k-dominating sets. Hence, if H is a span-
ning subgraph of G, then we have Dk(H) ⊆ Dk(G), which gives ∂k(H) ⩽ ∂k(G).
It remains to consider the case where the set U = V (G) \ V (H) is nonempty. It is
easily verified that by the definition of k-dominating sets, for any set D ∈ Dk(H)
we have the inclusion D ∪ U ∈ Dk(G). Then (3.5) yields the double inequality
∂k(H) ⩽ ∂k(G, U+) ⩽ ∂k(G).

The proof of the lemma is complete.

Remark 2. It is interesting to note that an analogue of Lemma 4 for independent
sets is not true. As is known (see [7], Proposition 1), if H is a spanning subgraph
of a graph G, then i(H) ⩾ i(G), since deleting an edge from a graph results in
a strict increase in the number of its independent sets. In turn, if H is an induced
subgraph of G, then i(H) ⩽ i(G), since deleting a vertex from a graph results in
a strict decrease in the number of its independent sets.
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Lemma 5. Given a graph G, an integer k ⩾ 1 and sets A, B ⊂ V (G) and X =
{x1, . . . , xs} ⊆ V (G) \ (A ∪B), where s ⩾ 2, set Xi = X \ {xi}, 1 ⩽ i ⩽ s. Then

s∑
i=1

∂k(G, A+, B−, x+
i , X−

i ) ⩽
s∑

i=1

∂k(G, A+, B−, x−i , X+
i ). (3.9)

Proof. Relation (3.7) yields the inequality

∂k(G, A+, B−, x+
s , X−

s ) ⩽ ∂k(G, A+, B−, x−1 , X+
1 ).

Also, for any 1 ⩽ i ⩽ s− 1 we have

∂k(G, A+, B−, x+
i , X−

i ) ⩽ ∂k(G, A+, B−, x−i+1, X
+
i+1),

which ensures (3.9).
The proof of the lemma is complete.

Given a graph G, a subgraph G′ obtained by deleting some edges and, perhaps,
isolated vertices, from G, and two sets A, B ⊆ V (G′), we set

∂∗k(G, G′, A+, B−) = ∂k(G, A+, B−)− ∂k(G′, A+, B−). (3.10)

Remark 3. Let k = 2, A = {a}, B = {b}, and suppose that a graph G′ is obtained
from G by deleting the edge ab and, perhaps, isolated vertices. In this case the
quantity ∂∗2 (G, G′, a+, b−) coincides with the number of sets D ∈ D2(G, a+, b−)
such that the vertex b is adjacent in G to exactly one vertex other than a in D.

3.2. The properties of independent sets. The following well-known fact (see
[7], Proposition 4) is stated without proof.

Lemma 6. For any graph G and any edge uv ∈ E(G) the following double inequal-
ity holds:

3
4
· i(G− uv) ⩽ i(G) < i(G− uv). (3.11)

It follows from (3.8) that for any vertex v of the graph G we have i(G, v−) ⩾
i(G, v+). To estimate the difference i(G, v−)−i(G, v+) we need a stronger inequality.

Lemma 7. Let the vertex v of a graph G be adjacent to vertices v1, v2, . . . , vs of
degrees d1, d2, . . . , ds , respectively. Then the following inequality holds:

i(G, v−) ⩾ i(G, v+) ·
(

1 +
s∑

j=1

1
2dj−1

)
. (3.12)

Proof. Set Vj = N [v] \ vj , 1 ⩽ j ⩽ s. It is easily seen that i(G, v+) = i(G, N [v]−),
and the family I(G, v−) \ I(G, N [v]−) consists of precisely those independent sets
G that contain at least one vertex from the neighbourhood N(v). Thus,

i(G, v−)− i(G, v+) ⩾
s∑

j=1

i(G, v+
j , V −j ).
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For fixed j, 1 ⩽ j ⩽ s, we prove that

i(G, v+
j , V −j ) ⩾

1
2dj−1

· i(G, N [v]−).

The following inequalities hold:

i(G, v+
j , V −j ) = i(G \ (N [v] ∪N [vj ])) and i(G, N [v]−) = i(G \N [v]).

Moreover, the graph G\(N [v]∪N [vj ]) is an induced subgraph of G\N [v], which con-
tains at least |V (G \N [v])| − dj + 1 vertices. We denote by G′ the graph obtained
by deleting from G \N [v] all edges not belonging to G \ (N [v] ∪N [vj ]). If follows
from (3.11) that deleting an edge from a graph does not reduce the number of its
independent sets. Therefore,

2dj−1 · i(G \ (N [v] ∪N [vj ])) ⩾ i(G′) ⩾ i(G \N [v]).

The proof of the lemma is complete.

Lemma 8. For any m ⩾ 1 and any 2m-vertex subcubic graph G the inequality
i(G) ⩾ 2m holds.

Proof. We argue by induction on m; the base case m ⩽ 2 is obvious. If G ∼= 2mK1,
then i(G) = 22m and there is nothing to prove. Otherwise, consider two vertices
u, v ∈ V (G) connected by an edge. Since i(G, u+, v+) = 0, we have

i(G)
(3.2)
= i(G, u−, v−) + i(G, u+, v−) + i(G, u−, v+).

It is clear that G\{u, v} is a (2m−2)-vertex subcubic graph. Hence i(G, u−, v−) ⩾
2m−1. The graphs G \N [u] and G \N [v] are subcubic and contain at least 2m− 4
vertices each; hence min{i(G, u−, v+), i(G, u+, v−)} ⩾ 2m−2, which proves the
lemma.

3.3. A lemma on isolated vertices. The following simple fact is frequently
employed in the proof of the main result of this work.

Lemma 9. Suppose that a graph G has no pendant vertices and satisfies the con-
dition d(G) ⩽ 2. Let G′ be obtained from G by deleting p ⩾ 0 vertices and p+q ⩾ 1
edges in such a way that each connected component of G′ has at most one pendant
vertex. Then G′ contains at most q isolated vertices.

Proof. By the hypotheses of the lemma each connected component H ′ of G′ with
at least one edge contains at most one pendant vertex; then H ′ is not a tree and
d(H ′) ⩾ 2. We remove from G′ all of its connected components that contain edges
and denote the graph obtained by G∗. Since d(G) ⩽ 2, we have |V (G)| ⩾ |E(G)|,
so that |V (G′)| ⩾ |E(G′)|+ q and |V (G∗)| ⩾ |E(G∗)|+ q. Thus, G∗ ∼= q′K1, where
q′ ⩾ q. Since G′ contains G∗ as a subgraph, the lemma is proved.
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§ 4. Main result

Theorem 1. If a graph G is not 1-regular and d(G) ⩽ 1, then ∂1(G) < i(G).

Proof. It is easily verified that the claim of the theorem holds true for all n-vertex
graphs with n ⩽ 3. Consider a non-regular graph G with the minimum number of
vertices that satisfies d(G) ⩽ 1 and i(G) ⩽ ∂1(G). Clearly, G contains at least one
isolated vertex. Assume that such a vertex is unique. Since d(G) ⩽ 1, the graph
G contains at most one vertex of degree greater than 1; moreover, in case such
a vertex exists, it has degree 2. Then G ∼= aP3 ∪ bK2 ∪K1 for some a ∈ {0, 1} and
b ⩾ 0, and it follows that ∂1(G) = 5a ·3b < 2·5a ·3b = i(G), which is a contradiction.

Now assume that G contains at least two isolated vertices. Choose an edge
uv ∈ E(G) in such a way that the vertex u has the minimum degree among all
nonisolated vertices of G (if there is no such vertex, then G contains no edges
and there is nothing to prove). Consider a graph G′ obtained from G by deleting
two isolated vertices and the edge uv. Since d(G) ⩽ 1, we have d(G′) ⩽ 1 and
∂1(G′) ⩽ i(G′) by assumption. At the same time, the edge uv has been chosen
so that the vertex u is either isolated in G′ or adjacent in G′ to at least one
vertex of degree at least 2; then the graph G′ is not 1-regular and ∂1(G′) < i(G′).
Inequality (3.11) yields the estimate i(G) ⩾ 3 · i(G′). Let us show that ∂1(G) ⩽
3 · ∂1(G′). We have

3 · ∂1(G′)
(3.1)
⩾ 3 · (∂1(G′, u+, v+) + ∂1(G′, u−, v−))

= 3 · (∂1(G, u+, v+) + ∂1(G, u−, v−))
(3.7)
⩾ ∂1(G, u+, v+) + ∂1(G, u+, v−) + ∂1(G, u−, v+) + ∂1(G, u−, v−)
= ∂1(G).

Thus, ∂1(G) < i(G), which is a contradiction.
The proof of the theorem is complete.

Theorem 2. If a graph G is not 2-regular and d(G) ⩽ 2, then ∂2(G) < i(G).

Proof. It is easily verified that the theorem holds true for all n-vertex graphs with
n ⩽ 3. Consider a non-regular graph G with the minimum number of vertices such
that d(G) ⩽ 2 and i(G) ⩽ ∂2(G). Recall that the condition d(G) ⩽ 2 is equivalent
to the inequality |V (G)| ⩾ |E(G)|. Throughout the proof of this theorem we denote
by Gm a graph obtained from G by deleting m ⩾ 1 vertices and the same number
of edges, and by G′m a graph obtained from G by deleting m ⩾ 1 vertices and
m′ ⩾ m edges.

The proof of the theorem consists of considering the following ten cases.
Case 1: G contains at least one pendant vertex.
Case 2: G contains at least one 2-regular connected component.
Case 3: G contains at least one 3-regular connected component.
Case 4: G contains at least two adjacent vertices u and v, each of degree at

least 4.
Case 5: G contains two triangles that share a common edge, and all of their

vertices have degree at least 3.
Case 6: G contains a triangle with at least one vertex of degree distinct from 3.
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Case 7: G contains a triangle with all vertices of degree 3, and at least two
vertices adjacent to this triangle have degree at least 3.

Case 8: G contains a triangle with all vertices of degree 3, and at least two
vertices adjacent to this triangle have degree 2.

Case 9: G contains a vertex of degree at least 3 which is adjacent to a vertex of
degree 3 and has no common neighbours with it.

Case 10: all vertices of degree greater than 2 in G are pairwise nonadjacent.
In treating each case we assume that the graph G does not meet the assumptions

of any case considered before. In particular, we make the following assumptions:
• in Cases 4–10 the graph G contains at least one isolated vertex, since other-

wise it follows from the condition d(G) ⩽ 2 that G contains either a pendant
vertex, or a 2-regular connected component, and this situation was already
considered in Cases 1 and 2;

• in Cases 7–10 the graph G contains no triangles sharing a common edge,
since such a situation was already considered in Cases 5 and 6.

We turn to the cases mentioned above. In each case we prove the inequality
i(G) > ∂2(G) and thereby arrive at a contradiction with the hypotheses of the
theorem.

Case 1 (the graph G contains at least one pendant vertex u). Denote by v the
only neighbour of the pendant vertex and consider two subcases.

Case 1а: the vertices u and v form a connected component K2. Consider the
graph G′ = (G \K2)∪K1. Since d(G) ⩽ 2, we have d(G′) ⩽ 2 and, by assumption,
∂2(G′) < i(G′). Moreover, ∂2(G) = ∂2(G′) and i(G) = (3/2) · i(G′), so that
∂2(G) < i(G).

Case 1b: the vertex v is adjacent to vertices v1, . . . , vm distinct from u. Denote
by G1 the result of deleting the vertex u from G, and by G′2 the result of deleting
v from G1. It is easily seen that d(G1) ⩽ 2 and d(G′2) ⩽ 2, so that ∂2(G1) ⩽ i(G1)
and ∂2(G′2) ⩽ i(G′2) by assumption. Since we have the equality

i(G)
(3.4)
= i(G, u−) + i(G, u+) = i(G \ u) + i(G \N [u]) = i(G1) + i(G′2),

it is sufficient to prove that ∂2(G) ⩽ ∂2(G1) + ∂2(G′2). As the pendant vertex u is
contained in each 2-dominating set of the graph G, we have

∂2(G) = ∂2(G, u+)
(3.3)
= ∂2(G, u+, v+) + ∂2(G, u+, v−)

= ∂2(G, v+) + ∂2(G \ {u, v}) = ∂2(G1, v
+) + ∂2(G′2)

(3.5)
⩽ ∂2(G1) + ∂2(G′2).

Since at least one of the graphs G1 and G′2 is not 2-regular, at least one of the
inequalities ∂2(G1) ⩽ i(G1) and ∂2(G′2) ⩽ i(G′2) is strict, which yields the strict
inequality ∂2(G) < i(G).

Case 2 (the graph G contains a 2-regular connected component, that is, a cycle
Cm, where m ⩾ 3). Since d(G\Cm) ⩽ 2 and the graph G is not 2-regular, the graph
G\Cm is not 2-regular either. Since ∂2(Cm) = i(Cm) and ∂2(G\Cm) < i(G\Cm),
we obtain ∂2(G) < i(G), as required.
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Case 3 (the graph G contains a 3-regular connected component H). Suppose
that H has 2m vertices and 3m edges for some m ⩾ 2. It is assumed that G contains
no pendant vertices and d(G) ⩽ 2. Then |V (G)| ⩾ |E(G)|, so that |V (G \ H)| ⩾
|E(G \ H)| + m. As the graph G \ H still has no pendant vertices, by Lemma 9
it contains at least m isolated vertices. Denote by G′ the graph obtained from G
by deleting the subgraph mK1 ∪H; then |V (G′)| ⩾ |E(G′)| and i(G′) ⩾ ∂2(G′) by
assumption. Let us show that

i(mK1 ∪H) = 2m · i(H) > ∂2(H) = ∂2(mK1 ∪H).

In fact, i(H) ⩾ 2m by Lemma 8, and the estimate ∂2(H) < 22m is trivial. Thus,
i(G) > ∂2(G), as required.

Case 4 (the graph G contains at least two adjacent vertices u and v, each of degree
at least 4). Consider the vertex sets N(u) \ {v} = {u1, . . . , up} and N(v) \ {u} =
{v1, . . . , vq}. Note that these sets can have common elements, which does not affect
the arguments. Denote by G1 the graph obtained from G by deleting the edge uv
and an isolated vertex. Since degG1

(u) ⩾ 3, the graph G1 is not 2-regular. As
d(G1) ⩽ 2, we have ∂2(G1) < i(G1). It follows from (3.11) that adding an edge
to a graph reduces the number of its independent sets by a factor of 4/3 at most,
hence i(G) ⩾ 2 · (3/4) · i(G1). It remains to show that

∂2(G) ⩽
3
2
· ∂2(G1). (4.1)

Since

∂2(G)
(3.1)
= ∂2(G, u+, v+) + ∂2(G, u+, v−) + ∂2(G, u−, v+) + ∂2(G, u−, v−),

∂2(G, u+, v+) = ∂2(G1, u
+, v+) and ∂2(G, u−, v−) = ∂2(G1, u

−, v−),

from (3.10) we obtain the relation

∂2(G) = ∂2(G1) + ∂∗2 (G, G1, u
+, v−) + ∂∗2 (G, G1, u

−, v+).

Then inequality (4.1) follows from the estimate

∂∗2 (G, G1, u
+, v−) + ∂∗2 (G, G1, u

−, v+)

⩽
1
2
· (∂2(G1, u

+, v+) + ∂2(G1, u
+, v−) + ∂2(G1, u

−, v+)). (4.2)

Since

max{∂2(G1, u
+, v−), ∂2(G1, u

−, v+)}
(3.7)
⩽ ∂2(G1, u

+, v+),

it is sufficient to show that

∂∗2 (G, G1, u
+, v−) ⩽

3
4
· ∂2(G1, u

+, v−) (4.3)

and
∂∗2(G, G1, u

−, v+) ⩽
3
4
· ∂2(G1, u

−, v+). (4.4)
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Let us prove (4.3). Consider two possible values of q.
The case q = 3. We have

∂∗2(G, G1, u
+, v−) = ∂2(G, u+, v−, v+

1 , v−2 , v−3 ) + ∂2(G, u+, v−, v−1 , v+
2 , v−3 )

+ ∂2(G, u+, v−, v−1 , v−2 , v+
3 )

(3.7)
⩽ ∂2(G, u+, v−, v+

1 , v+
2 , v−3 ) + ∂2(G, u+, v−, v−1 , v+

2 , v+
3 )

+ ∂2(G, u+, v−, v+
1 , v−2 , v+

3 )

= ∂2(G1, u
+, v−, v+

1 , v+
2 , v−3 ) + ∂2(G1, u

+, v−, v−1 , v+
2 , v+

3 )

+ ∂2(G1, u
+, v−, v+

1 , v−2 , v+
3 )

(3.1)
⩽ ∂2(G1, u

+, v−)− ∂2(G1, u
+, v−, v+

1 , v+
2 , v+

3 )
(3.7)
⩽

3
4
· ∂2(G1, u

+, v−).

The case q = 4. Set

Vi = NG(v) \ {u, vi} and Vi,j = NG(v) \ {u, vi, vj}

(here 1 ⩽ i, j ⩽ q and i ̸= j). We have

2 · ∂∗2(G, G1, u
+, v−) = 2 ·

q∑
i=1

∂2(G, u+, v−, v+
i , V −i )

(3.7),(3.9)
⩽

(
∂2(G1, u

+, v−, v+
1 , v+

q , V −1,q) +
q−1∑
i=1

∂2(G1, u
+, v−, v+

i , v+
i+1, V

−
i,j)

)

+
q∑

i=1

∂2(G1, u
+, v−, v−i , V +

i )

(3.1)
< ∂2(G1, u

+, v−).

Inequality (4.3) is proved. It is easily seen that (4.4) is established similarly,
hence we obtain (4.2), as required.

Case 5 (the graph G contains triangles abd and bcd sharing a common edge bd,
and deg(a), deg(c) ⩾ 3). Denote by H the subgraph induced by the vertices of
these triangles. Two subcases are possible.

Case 5а: ac ∈ E(G); then H ∼= K4. It can be assumed that only one vertex of H
(say, a) can be adjacent to vertices of G \H (otherwise the graph H contains two
adjacent vertices of degree at least 4 in G, and this case was already considered
before). Denote by G′3 the graph obtained from G by deleting the vertices b, c and d.
It is clear that |V (G′3)| ⩾ |E(G′3)| − 3 and G′3 contains no pendant vertices (except,
perhaps, the vertex a). By Lemma 9 the graph G′3 contains at least three isolated
vertices. Denote by G6 the graph obtained from G′3 by deleting these vertices. By
assumption d(G6) ⩽ 2 and i(G6) ⩾ ∂2(G6). Then

i(G) = 8 · (i(G6, a
+) + 4 · i(G6, a

−))
(3.8)
⩾ 8 · 5

2
· (i(G6, a

+) + i(G6, a
−)) = 20 · i(G6).
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By Lemma 4 we have ∂2(G \H) ⩽ ∂2(3K1 ∪G6) = ∂2(G6). Then we obtain

∂2(G) = ∂2(G, a+)+∂2(G, a−) = 7 ·∂2(G6, a
+)+4 ·∂2(G\H) ⩽ 11 ·∂2(G6) < i(G),

as required.
Case 5b: ac /∈ E(G); then H ∼= K4− e. It can be assumed that deg(b) ⩾ deg(d).

We assume that G contains no adjacent vertices of degree greater than 3. Then
deg(d) = 3. Since by assumption deg(a), deg(c) ⩾ 3, the graph G \ d contains no
pendant vertices. Hence it contains at least two isolated vertices by Lemma 9. Let
G3 denote the graph obtained by deleting these vertices from G\d. Relations (3.2)
and (3.8) yield the inequality i(G3) ⩽ 8 · i(G3, a

−, b−, c−), so that

i(G)
(3.4)
= i(G, d−) + i(G, d+) = i(2K1) · (i(G3) + i(G3, a

−, b−, c−))

⩾ 4 · (i(G3) +
1
8
· i(G3)) =

9
2
· i(G3).

Let us show that ∂2(G) < (9/2) · ∂2(G3). We split the proof into three steps.
Step 1. We use (3.3) to obtain

∂2(G, a+, b+, c+) = ∂2(G, a+, b+, c+, d−) + ∂2(G, a+, b+, c+, d+)

= 2 · ∂2(G3, a
+, b+, c+).

In a similar way,

∂2(G, a+, b−, c+) = ∂2(G, a+, b−, c+, d−) + ∂2(G, a+, b−, c+, d+)

= 2 · ∂2(G3, a
+, b−, c+).

Step 2. We have

∂2(G, a+, b+, c−)
(3.3)
= ∂2(G, a+, b+, c−, d+) + ∂2(G, a+, b+, c−, d−)

(3.7)
⩽ ∂2(G, a+, b+, c+, d+) + ∂2(G, a+, b+, c−, d−)

(3.5)
⩽ ∂2(G3, a

+, b+, c+) + ∂2(G3, a
+, b+, c−).

In a similar way,

∂2(G, a−, b+, c+) ⩽ ∂2(G3, a
+, b+, c+) + ∂2(G3, a

−, b+, c+).

Since each 2-independent set in the graph G that contains at most one vertex of
the set {a, b, c} = NG(d) contains the vertex d, we have

∂2(G, a+, b−, c−) = ∂2(G, a+, b−, c−, d+) ⩽ ∂2(G3, a
+, b+, c−),

∂2(G, a−, b−, c+) = ∂2(G, a−, b−, c+, d+) ⩽ ∂2(G3, a
−, b+, c+),

∂2(G, a−, b−, c−) = ∂2(G, a−, b−, c−, d+) ⩽ ∂2(G3, a
−, b+, c−).
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Step 3. Let us show that ∂2(G, a−, b+, c−) ⩽ 2 · ∂2(G3, a
+, b+, c−). Set C =

NG(c) \ {b, d}. Since degG(c) ⩾ 3, the set C is nonempty. Then we obtain

∂2(G, a−, b+, c−) = ∂2(G, a−, b+, c−, d+)
(3.7)
⩽ ∂2(G, a+, b+, c−, d+)

= ∂2(G3, a
+, b+, c−) + ∂2(G, a+, b+, c−, C−, d+)

(3.9)
⩽ ∂2(G3, a

+, b+, c−) + ∂2(G, a+, b+, c−, C+, d−)

= ∂2(G3, a
+, b+, c−) + ∂2(G3, a

+, b+, c−, C+)
(3.5)
⩽ 2 · ∂2(G3, a

+, b+, c−).

Thus, we have shown that

∂2(G) ⩽ 4 · ∂2(G3, a
+, b+, c+) + 4 · ∂2(G3, a

+, b+, c−) + 2 · ∂2(G3, a
−, b+, c+)

+ 2 · ∂2(G3, a
+, b−, c+) + ∂2(G3, a

−, b+, c−)

<
9
2
· ∂2(G3) ⩽

9
2
· i(G3) ⩽ i(G).

Case 6 (the graph G contains a triangle uvw with at least one vertex of degree
distinct from 3).

Case 6a: at least two vertices of the triangle (for instance, v and w) have degree 2.
We assume that G contains no 2-regular subgraphs. Then deg(u) ⩾ 3. Denote
by G3 the graph obtained from G by deleting the vertices v and w and an isolated
vertex. It is clear that if d(G) ⩽ 2, then d(G3) ⩽ 2 too. Since degG3

(u) ⩾ 1,
it follows from (3.12) that i(G3, u

+) < i(G3, u
−), so that

i(G) = 2 · (i(G3, u
+) + 3 · i(G3, u

−)) > 4 · i(G3).

By Lemma 4 we have ∂2(G3) ⩾ ∂2(G3 \u). Each 2-dominating set D′ ∈ D2(G, u+)
contains at least one vertex from the set {v, w}, and each 2-dominating set D′′ ∈
D2(G, u−) contains both of these vertices. Thus, we obtain

∂2(G)
(3.1)
= ∂2(G, u+, v+, w+) + ∂2(G, u+, v+, w−)

+ ∂2(G, u+, v−, w+) + ∂2(G, u−, v+, w+)

= 3 · ∂2(G3, u
+) + ∂2(G3 \ u) ⩽ 4 · ∂2(G3) < i(G).

Case 6b: exactly one vertex of the triangle (for example, the vertex w) has
degree 2. Denote by G1 the graph obtained from G by deleting the edge uv and an
isolated vertex. Since NG1(w) = {u, v}, we obtain

i(G1, u
−, v−)

(3.4)
= i(G1, u

−, v−, w−) + i(G1, u
−, v−, w+) ⩾ 2 · i(G1, u

+, v+).

It follows from (3.8) that min{i(G1, u
−, v+), i(G1, u

+, v−)} ⩾ i(G1, u
+, v+). Then

4 · i(G1, u
+, v+) ⩽ i(G1, u

−, v+) + i(G1, u
+, v−) + i(G1, u

−, v−). (4.5)
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Consequently,

i(G)
i(G1)

⩾ 2 · i(G1, u
−, v+) + i(G1, u

+, v−) + i(G1, u
−, v−)

i(G1, u+, v+) + i(G1, u−, v+) + i(G1, u+, v−) + i(G1, u−, v−)
⩾

8
5
.

Let us show that ∂2(G) ⩽ (8/5) · ∂2(G1). The same arguments as in Case 4
suggest that it is sufficient to prove the relation

∂∗2(G, G1, u
−, v+) + ∂∗2 (G, G1, u

+, v−)

⩽
3
5
· (∂2(G1, u

+, v+) + ∂2(G1, u
−, v+) + ∂2(G1, u

+, v−) + ∂2(G1, u
−, v−)).

(4.6)

We prove the inequality

5 · ∂∗2 (G, G1, u
−, v+) ⩽ ∂2(G1, u

+, v+) + 3 · ∂2(G1, u
−, v+). (4.7)

Let us show that
2 · ∂∗2(G, G1, u

−, v+) ⩽ ∂2(G1, u
+, v+). (4.8)

We introduce the notation U = NG(u) \ {v, w}. Each 2-dominating set D ∈
D2(G, u−) contains the vertex w. Since deg(w) = 2, we have ∂2(G, u+, v+, w+) =
∂2(G, u+, v+, w−), and thus

2 · ∂∗2 (G, G1, u
−, v+) = 2 · ∂∗2 (G, G1, u

−, v+, w+) = 2 · ∂2(G, u−, U−, v+, w+)
(3.5),(3.7)

⩽ 2 · ∂2(G, u+, v+, w+) = ∂2(G, u+, v+, w−) + ∂2(G, u+, v+, w+)

= ∂2(G1, u
+, v+, w−) + ∂2(G1, u

+, v+, w+)
(3.3)
= ∂2(G1, u

+, v+).

Now we show that
∂∗2 (G, G1, u

−, v+) ⩽ ∂2(G1, u
−, v+). (4.9)

We have

∂∗2(G, G1, u
−, v+) = ∂2(G, u−, U−, v+, w+)

(3.7)
⩽ ∂2(G, u−, U+, v+, w+)

= ∂2(G1, u
−, U+, v+, w+)

(3.5)
⩽ ∂2(G1, u

−, v+).

Inequalities (4.8) and (4.9) yield (4.7). In a similar way we prove the estimate

5 · ∂∗2 (G, G1, u
+, v−) ⩽ ∂2(G1, u

+, v+) + 3 · ∂2(G1, u
+, v−),

which yields (4.6), as required.
Case 6c: at least one vertex of the triangle (for instance, u) has degree at least 4.

Assume that deg(v) = deg(w) = 3 (all other options were covered by Cases 4, 6a
and 6b). We denote by u1, . . . , um the vertices adjacent to u, and by v1 and w1

the only neighbours of v and w, respectively, outside the triangle uvw. It can be
assumed that G contains no pair of triangles sharing a common edge (since this
situation was considered in Cases 5 and 6b). Hence the vertices u1, . . . , um, v1, w1

are pairwise distinct.
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We denote by G1 the graph obtained from G by deleting the edge uv and
an isolated vertex and let us show that i(G) ⩾ (8/5) · i(G1). As in Case 6b,
it is sufficient to establish inequality (4.5). In the graph G \ v the vertex w has
degree 2, and all other neighbours of u have degree at most 3. Then (3.12) yields
i(G1, u

−, v−) ⩾ 2 · i(G1, u
+, v−). Moreover, it follows from (3.8) that

min{i(G1, u
+, v−), i(G1, u

−, v+)} ⩾ i(G1, u
+, v+),

which yields the inequality i(G) ⩾ (8/5) · i(G1).
Now let us show that ∂2(G) ⩽ (8/5) · ∂2(G1). As in Case 6b, it is sufficient to

establish (4.6). We split the proof into two steps.
Step 1. We show that

5 · ∂∗2(G, G1, u
−, v+) ⩽ 3 · ∂2(G1, u

−, v+) + 3 · ∂2(G1, u
−, v−) +

1
2
· ∂2(G1, u

+, v+).

(4.10)
We introduce the notation U = N(u) \ {v, w} and Ui = U \ {ui}, 1 ⩽ i ⩽ m.

Then the inequality

∂∗2 (G, G1, u
−, v+) ⩽ ∂2(G1, u

−, v+) (4.11)

follows from the relations

∂∗2 (G, G1, u
−, v+) = ∂∗2(G, G1, u

−, v+, w+) + ∂∗2(G, G1, u
−, v+, w−)

= ∂2(G, u−, U−, v+, w+) +
m∑

i=1

∂2(G, u−, u+
i , U−i , v+, w−)

(3.7),(3.9)
⩽ ∂2(G1, u

−, U+, v+, w+) +
m∑

i=1

∂2(G1, u
−, u−i , U+

i , v+, w+)

(3.1)
⩽ ∂2(G1, u

−, v+).

Now let us prove that

∂∗2(G, G1, u
−, v+) ⩽ 2 · ∂2(G, u−, v−). (4.12)

We have

∂∗2 (G, G1, u
−, v+) = ∂2(G, u−, U−, v+, w+) +

m∑
i=1

∂2(G, u−, u+
i , U−i , v+, w−)

(3.3),(3.7)
⩽ 2 ·

(
∂2(G, u−, U+, v+, v+

1 , w+) +
m∑

i=1

∂2(G, u−, u+
i , U−i , v+, v+

1 , w+)
)

= 2 ·
(

∂2(G1, u
−, U+, v+, v+

1 , w+) +
m∑

i=1

∂2(G1, u
−, u+

i , U−i , v+, v+
1 , w+)

)

= 2 ·
(

∂2(G1, u
−, U+, v−, v+

1 , w+) +
m∑

i=1

∂2(G1, u
−, u+

i , U−i , v−, v+
1 , w+)

)
(3.1)
⩽ 2 · ∂2(G1, u

−, v−).
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Finally, it follows from (3.7) that ∂2(G, u−, v+) ⩽ ∂2(G, u+, v+). Hence we obtain

∂∗2(G, G1, u
−, v+) ⩽ ∂2(G1, u

+, v+). (4.13)

Inequalities (4.11)–(4.13) yields the required inequality (4.10).
Step 2. Let us show that

5 · ∂∗2(G, G1, u
+, v−) ⩽ 3 · ∂2(G1, u

+, v−) +
5
2
· ∂2(G1, u

+, v+). (4.14)

Indeed,

∂∗2(G, G1, u
+, v−) = ∂2(G, u+, v−, w+, v−1 ) + ∂2(G, u+, v−, w−, v+

1 )
(3.7)
⩽

2
3
· (∂2(G, u+, v+, w+, v−1 ) + ∂2(G, u+, v+, w−, v+

1 )

+ ∂2(G, u+, v+, w+, v+
1 ))

=
2
3
· (∂2(G1, u

+, v+, w+, v−1 ) + ∂2(G1, u
+, v+, w−, v+

1 )

+ ∂2(G1, u
+, v+, w+, v+

1 ))
(3.1)
⩽

2
3
· ∂2(G1, u

+, v+). (4.15)

Moreover,

∂∗2(G, G1, u
+, v−) = ∂2(G, u+, v−, w+, v−1 ) + ∂2(G, u+, v−, w−, v+

1 )
(3.7)
⩽ 2 · ∂2(G, u+, v−, w+, v+

1 ) = 2 · ∂2(G1, u
+, v−, w+, v+

1 )
(3.5)
⩽ 2 · ∂2(G1, u

+, v−). (4.16)

Now (4.15) and (4.16) imply estimate (4.14). Hence we obtain ∂2(G) ⩽
(8/5) · ∂2(G1), as required.

Case 7 (the graph G contains a triangle uvw with all vertices of degree 3, and at
least two of the three vertices u1, v1 and w1 adjacent to this triangle — for instance,
u1 and v1 — have degree at least 3). Consider the graph G′3 obtained from the graph
G by deleting the vertices u, v, and w. All the vertices of G′3, except, perhaps, w1,
are not pendant. Hence the graph G′3 contains at least three isolated vertices by
Lemma 9. We denote by G6 the graph obtained from G′3 by deleting these vertices.
Then d(G6) ⩽ 2 and relation (3.2) yields the equalities

i(G6) = i(G6, u
+
1 , v+

1 , w+
1 ) + i(G6, u

−
1 , v−1 , w−1 )

+ i(G6, u
+
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w+

1 ) + i(G6, u
−
1 , v+

1 , w+
1 )

+ i(G6, u
−
1 , v−1 , w+

1 ) + i(G6, u
−
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w−1 )

and
1
8
· i(G) = i(G6, u

+
1 , v+

1 , w+
1 ) + 4 · i(G6, u

−
1 , v−1 , w−1 )

+ 2 · (i(G6, u
+
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w+

1 ) + i(G6, u
−
1 , v+

1 , w+
1 ))

+ 3 · (i(G6, u
−
1 , v−1 , w+

1 ) + i(G6, u
−
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w−1 )).
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From (3.8) we obtain the inequalities

i(G6, u
+
1 , v+

1 , w+
1 ) ⩽ i(G6, u

−
1 , v−1 , w−1 ),

i(G6, u
+
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w+

1 ) + i(G6, u
−
1 , v+

1 , w+
1 )

⩽ i(G6, u
−
1 , v+

1 , w−1 ) + i(G6, u
+
1 , v−1 , w−1 ) + i(G6, u

−
1 , v−1 , w+

1 ),

and therefore i(G) ⩾ 20 · i(G6). We prove that ∂2(G) < 20 · ∂2(G6). Consider two
situations.

Case 7a: deg(w1) = 2. The proof is split into three steps.
Step 1. Since every 2-dominating sets D ∈ D2(G, u+

1 , v+
1 , w+

1 ) contains at least
one vertex from the set {u, v, w}, we have

∂2(G, u+
1 , v+

1 , w+
1 ) = 7 · ∂2(G6, u

+
1 , v+

1 , w+
1 ).

Since deg(w1) = 2, each 2-dominating sets D′ ∈ D2(G, u+
1 , v+

1 , w−1 ) contains w,
so that

∂2(G, u+
1 , v+

1 , w−1 )
(3.1)
= ∂2(G, u+

1 , v+
1 , w−1 , u+, v+, w+) + ∂2(G, u+

1 , v+
1 , w−1 , u−, v+, w+)

+ ∂2(G, u+
1 , v+

1 , w−1 , u+, v−, w+) + ∂2(G, u+
1 , v+

1 , w−1 , u−, v−, w+)
(3.7)
⩽ 4 · ∂2(G6, u

+
1 , v+

1 , w+
1 ).

Step 2. Let us show that ∂2(G, u−1 , v+
1 , w+

1 ) ⩽ 13·∂2(G6, u
−
1 , v+

1 , w+
1 ). Since every

2-dominating set D ∈ D2(G, u−, u−1 ) contains the vertices v and w, we obtain

∂2(G, u−1 , v+
1 , w+

1 )
(3.3)
= ∂2(G, u−, v+, w+, u−1 , v+

1 , w+
1 ) + ∂2(G, u+, u−1 , v+

1 , w+
1 )

= ∂2(G6, u
−
1 , v+

1 , w+
1 ) + 4 · ∂2(G, u+, v+, w+, u−1 , v+

1 , w+
1 ).
(4.17)

Consider three subcases depending on whether or not the vertex u1 is adjacent to
v1 and w1.

Subcase 1: the vertex u1 is adjacent to both v1 and w1. Then we obviously have

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 ) = ∂2(G6, u
−
1 , v+

1 , w+
1 ).

Thus, it follows from (4.17) that ∂2(G, u−1 , v+
1 , w+

1 ) ⩽ 5 · ∂2(G6, u
−
1 , v+

1 , w+
1 ).

Subcase 2: the vertex u1 is adjacent to precisely one of v1 and w1. Set U1 =
N(u1) \ {u, v1, w1}. Since degG(u1) ⩾ 3, we have U1 ̸= ∅. Then we obtain

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 )

= ∂2(G6, u
−
1 , v+

1 , w+
1 ) + ∂2(G, u+, v+, w+, u−1 , v+

1 , w+
1 , U−1 )

(3.7)
⩽ ∂2(G6, u

−
1 , v+

1 , w+
1 ) + ∂2(G, u+, v+, w+, u−1 , v+

1 , w+
1 , U+

1 )

⩽ 2 · ∂2(G6, u
−
1 , v+

1 , w+
1 ).

Thus, it follows from (4.17) that ∂2(G, u−1 , v+
1 , w+

1 ) ⩽ 9 · ∂2(G6, u
−
1 , v+

1 , w+
1 ).
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Subcase 3: the vertex u1 is adjacent to none of the vertices v1 and w1. Denote by
x1, . . . , xs the neighbours of the vertex u1 distinct from u (here s ⩾ 2 by assump-
tion). Let X = N(u1) \ u and Xi = X \ xi, 1 ⩽ i ⩽ s. Then

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 )

= ∂2(G6, u
−
1 , v+

1 , w+
1 ) +

s∑
i=1

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 , x+
i , X−

i ).

If deg(u1) = s + 1 = 3, then

2∑
i=1

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 , x+
i , X−

i )

(3.7)
⩽ 2 · ∂2(G, u+, v+, w+, u−1 , v+

1 , w+
1 , X+)

= 2 · ∂2(G6, u
−
1 , v+

1 , w+
1 , X+)

(3.5)
⩽ 2 · ∂2(G6, u

−
1 , v+

1 , w+
1 ).

If deg(u1) ⩾ 4, then

s∑
i=1

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 , x+
i , X−

i )

(3.9)
⩽

s∑
i=1

∂2(G, u+, v+, w+, u−1 , v+
1 , w+

1 , x−i , X+
i )

=
s∑

i=1

∂2(G6, u
−
1 , v+

1 , w+
1 , x−i , X+

i )
(3.1)
< ∂2(G6, u

−
1 , v+

1 , w+
1 ).

Thus, it follows form (4.17) that

∂2(G, u−1 , v+
1 , w+

1 ) ⩽ 13 · ∂2(G6, u
−
1 , v+

1 , w+
1 ).

The inequality ∂2(G, u+
1 , v−1 , w+

1 ) ⩽ 13 · ∂2(G6, u
+
1 , v−1 , w+

1 ) is proved in the same
way.

Step 3. It is easily seen that every 2-dominating set D ∈ D2(G, u+
1 , v−1 , w−1 )

contains at least two vertices of the set {u, v, w}. Then

∂2(G, u+
1 , v−1 , w−1 )

(3.1)
= ∂2(G, u+

1 , v−1 , w−1 , u+, v+, w+) + ∂2(G, u+
1 , v−1 , w−1 , u−, v+, w+)

+ ∂2(G, u+
1 , v−1 , w−1 , u+, v−, w+) + ∂2(G, u+

1 , v−1 , w−1 , u+, v+, w−)
(3.7)
⩽ 2 · ∂2(G6, u

+
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v−1 , w+

1 ) + ∂2(G6, u
+
1 , v+

1 , w−1 ).

In a similar way we obtain the inequalities

∂2(G, u−1 , v+
1 , w−1 )

⩽ 2 · ∂2(G6, u
+
1 , v+

1 , w+
1 ) + ∂2(G6, u

−
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v+

1 , w−1 )
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and

∂2(G, u−1 , v−1 , w+
1 )

⩽ 2 · ∂2(G6, u
+
1 , v+

1 , w+
1 ) + ∂2(G6, u

−
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v−1 , w+

1 ).

Inequality (3.7) implies the estimate ∂2(G, u+
1 , v−1 , w−1 ) ⩾ ∂2(G, u−1 , v−1 , w−1 ). Then

we obtain

∂2(G, u−1 , v−1 , w−1 )

⩽ 2 · ∂2(G6, u
+
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v−1 , w+

1 ) + ∂2(G6, u
+
1 , v+

1 , w−1 ).

Thus we have established the relation

∂2(G) ⩽ 19 · ∂2(G6, u
+
1 , v+

1 , w+
1 ) + 15 · ∂2(G6, u

−
1 , v+

1 , w+
1 )

+ 16 · ∂2(G6, u
+
1 , v−1 , w+

1 ) + 3 · ∂2(G6, u
+
1 , v+

1 , w−1 ) < 20 · ∂2(G6).

Case 7b: deg(w1) ⩾ 3. We split the proof into four steps.
Step 1. Similarly to Case 7a we have

∂2(G, u+
1 , v+

1 , w+
1 ) = 7 · ∂2(G6, u

+
1 , v+

1 , w+
1 ).

Step 2. Since min{deg(u1), deg(v1), deg(w1)} = 3, the arguments of Step 2
in Case 7a can be applied to each of u1, v1 and w1. Hence

∂2(G, u−1 , v+
1 , w+

1 ) + ∂2(G, u+
1 , v−1 , w+

1 ) + ∂2(G, u+
1 , v+

1 , w−1 )

⩽ 13 · (∂2(G6, u
−
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v−1 , w+

1 ) + ∂2(G6, u
+
1 , v+

1 , w−1 )).

Step 3. Let us show that

∂2(G, u+
1 , v−1 , w−1 ) + ∂2(G, u−1 , v+

1 , w−1 ) + ∂2(G, u−1 , v−1 , w+
1 )

⩽ 12 · ∂2(G6, u
+
1 , v+

1 , w+
1 ).

Without loss of generality it can be assumed that

∂2(G, u+
1 , v−1 , w−1 ) =max{∂2(G, u+

1 , v−1 , w−1 ), ∂2(G, u−1 , v+
1 , w−1 ), ∂2(G, u−1 , v−1 , w+

1 )}.

Then it is sufficient to establish the inequality

∂2(G, u+
1 , v−1 , w−1 ) ⩽ 4 · ∂2(G6, u

+
1 , v+

1 , w+
1 ).

Since every 2-dominating sets D ∈ D2(G, u+
1 , v−1 , w−1 ) contains at least two vertices

from the set {u, v, w}, we obtain

∂2(G, u+
1 , v−1 , w−1 )

(3.1)
= ∂2(G, u+, v+, w+, u+

1 , v−1 , w−1 ) + ∂2(G, u+, v+, w−, u+
1 , v−1 , w−1 )

+ ∂2(G, u+, v−, w+, u+
1 , v−1 , w−1 ) + ∂2(G, u−, v+, w+, u+

1 , v−1 , w−1 )
(3.7)
⩽ 4 · ∂2(G, u+, v+, w+, u+

1 , v+
1 , w+

1 ) ⩽ 4 · ∂2(G6, u
+
1 , v+

1 , w+
1 ).
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Step 4. Since every 2-dominating set D ∈ D2(G, u−1 , v−1 , w−1 ) also contains at
least two vertices from the set {u, v, w}, we obtain

∂2(G, u−1 , v−1 , w−1 )
(3.1)
= ∂2(G, u+, v+, w+, u−1 , v−1 , w−1 ) + ∂2(G, u+, v+, w−, u−1 , v−1 , w−1 )

+ ∂2(G, u+, v−, w+, u−1 , v−1 , w−1 ) + ∂2(G, u−, v+, w+, u−1 , v−1 , w−1 )
(3.7)
⩽ ∂2(G6, u

+
1 , v+

1 , w+
1 ) + ∂2(G6, u

+
1 , v+

1 , w−1 )

+ ∂2(G6, u
+
1 , v−1 , w+

1 ) + ∂2(G6, u
−
1 , v+

1 , w+
1 ).

Thus we have established the relation

∂2(G) ⩽ 20 · ∂2(G6, u
+
1 , v+

1 , w+
1 ) + 14 · ∂2(G6, u

−
1 , v+

1 , w+
1 )

+ 14 · ∂2(G6, u
+
1 , v−1 , w+

1 ) + 14 · ∂2(G6, u
+
1 , v+

1 , w−1 ) < 20 · ∂2(G6).

Note that the last inequality is strict, since it follows from the condition
degG6

(u1) ⩾ 2 that ∂2(G6, u
−
1 , v+

1 , w+
1 ) ⩾ 1.

Case 8 (the graph G contains a triangle uvw all of whose vertices have degree 3
and at least two of the three vertices u1, v1 and w1 adjacent to the triangle — for
instance, u1 and v1 — have degree 2). Note that some of the vertices u1, v1, w1

can be adjacent to each other, but this does not affect the lines of our reasoning.
We denote by G1 the graph obtained from G by deleting the edge uv and an
isolated vertex. Then (3.11) yields the relation i(G) ⩾ (3/2) · i(G1). It remains
to establish (4.1). As follows from the arguments of Case 4, it is sufficient to
prove (4.2). Let us show that

4 · ∂∗2(G, G1, u
−, v+) ⩽ 2 · ∂2(G1, u

−, v+) + ∂2(G1, u
+, v+).

Note that every 2-dominating set D ∈ D2(G, u−) contains the vertex u1. Moreover,
every 2-dominating set D1 ∈ D2(G1, u

−) contains both u1 and w. Then we obtain

∂∗2 (G, G1, u
−, v+) = ∂2(G, u−, v+, w−, u+

1 )
(3.7)
⩽ ∂2(G, u−, v+, w+, u+

1 )

= ∂2(G1, u
−, v+, w+, u+

1 )
(3.5)
⩽ ∂2(G1, u

−, v+).

Moreover,

2 · ∂∗2(G, G1, u
−, v+) = 2 · ∂2(G, u−, v+, w−, u+

1 )
(3.7)
⩽ ∂2(G, u+, v+, w−, u+

1 ) + ∂2(G, u+, v+, w+, u+
1 )

(3.3),(3.5)
⩽ ∂2(G, u+, v+) = ∂2(G1, u

+, v+).

In a similar way we establish the inequality

4 · ∂∗2(G, G1, u
+, v−) ⩽ 2 · ∂2(G1, u

+, v−) + ∂2(G1, u
+, v+),

so that ∂2(G) ⩽ (3/2) · ∂2(G1).
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Note that the use of the simpler transformation from Case 8 in Case 7 does not
furnish the required result. On the other hand, the transformation from Case 7
does not allow one to use Lemma 9 in Case 8.

Case 9 (the graph G contains a vertex u of degree at least 3, which is adjacent to
a vertex v of degree 3 and shares no neighbours with it). We denote by u1, . . . , us

the neighbours of the vertex u and by v1 and v2 the neighbours of v.
Case 9a: deg(u) ⩾ 4. We denote by G1 the graph obtained from G by deleting

the edge uv and an isolated vertex. Without loss of generality it can be assumed
that deg(u) ⩾ max{deg(v1), deg(v2)}. Let us show that

i(G) ⩾
5
3
· i(G1).

It follows from the arguments of Case 6b that it is sufficient to prove the relation

5 · i(G1, u
+, v+) ⩽ i(G1, u

−, v+) + i(G1, u
+, v−) + i(G1, u

−, v−). (4.18)

We assume that all neighbours of u have degree at most 3 (all other options were
considered in Case 4). If deg(u) ⩾ 5, then

i(G1, u
−, v−)

(3.8)
⩾ i(G1, u

−, v+)
(3.12)
⩾ 2 · i(G1, u

+, v+),

and we obtain (4.18).
Now let deg(u) = 4. Then max{deg(v1), deg(v2)} ⩽ 4 by assumption. In this

case it follows from (3.12) that

i(G1, u
−, v+) ⩾

7
4
· i(G1, u

+, v+) and i(G1, u
+, v−) ⩾

5
4
· i(G1, u

+, v+).

Moreover,

i(G1, u
−, v−) ⩾

5
4
· i(G1, u

−, v+) > 2 · i(G1, u
+, v+),

which yields (4.18) again.
It follows from the condition degG(u) ⩾ 4 that the graph G1 is not 2-regular.

Thus, i(G1) > ∂2(G1) by assumption, and it is sufficient to establish the inequality

∂2(G) ⩽
5
3
· ∂2(G1).

The arguments of Case 4 show that it is sufficient to prove the inequality

∂∗2(G, G1, u
−, v+) + ∂∗2 (G, G1, u

+, v−)

⩽
2
3
·
(
∂2(G1, u

−, v+) + ∂2(G1, u
+, v−) + ∂2(G1, u

+, v+)
)
. (4.19)

We split the proof into two steps.
Step 1. We prove the inequality

3 · ∂∗2(G, G1, u
−, v+) ⩽ 2 · ∂2(G1, u

−, v+) +
1
2
· ∂2(G1, u

+, v+). (4.20)



The number of independent and k-dominating sets in graphs 1647

Let us show that ∂∗2(G, G1, u
−, v+) ⩽ ∂2(G1, u

−, v+). Set Ui = N(u) \ {ui, v},
1 ⩽ i ⩽ s. Then we have

∂∗2(G, G1, u
−, v+) =

k∑
i=1

∂2(G, u−, v+, U−i , u+
i )

(3.9)
⩽

k∑
i=1

∂2(G, u−, v+, U+
i , u−i )

=
k∑

i=1

∂2(G1, u
−, v+, U+

i , u−i )
(3.1)
< ∂2(G1, u

−, v+).

Now let us show that 2 · ∂∗2 (G, G1, u
−, v+) ⩽ ∂2(G1, u

+, v+):

2 · ∂∗2(G, G1, u
−, v+) = 2 ·

k∑
i=1

∂2(G, u−, v+, U−i , u+
i )

(3.7)
⩽ 2 ·

k∑
i=1

∂2(G, u+, v+, U−i , u+
i )

(3.9)
⩽

k∑
i=1

∂2(G1, u
+, v+, U−i , u+

i ) +
k∑

i=1

∂2(G1, u
+, v+, U+

i , u−i )

(3.1)
< ∂2(G1, u

+, v+).

Step 2. We prove the inequality

3 · ∂∗2(G, G1, u
+, v−) ⩽ 2 · ∂2(G1, u

+, v−) +
4
3
· ∂2(G1, u

+, v+). (4.21)

Let us show that 2 · ∂∗2(G, G1, u
+, v−) ⩽ (4/3) · ∂2(G1, u

+, v+):

∂∗2(G, G1, u
+, v−) = ∂2(G, u+, v−, v+

1 , v−2 ) + ∂2(G, u+, v−, v−1 , v+
2 )

(3.7)
⩽

2
3
·
(
∂2(G, u+, v+, v−1 , v+

2 ) + ∂2(G, u+, v+, v+
1 , v−2 )

+ ∂2(G, u+, v+, v+
1 , v+

2 )
)

(3.1)
⩽

2
3
· ∂2(G, u+, v+) =

2
3
· ∂2(G1, u

+, v+).

Next we show that ∂∗2 (G, G1, u
+, v−) ⩽ 2 · ∂2(G1, u

+, v−):

∂∗2(G, G1, u
+, v−) = ∂2(G, u+, v−, v+

1 , v−2 ) + ∂2(G, u+, v−, v−1 , v+
2 )

(3.7)
⩽ 2 · ∂2(G, u+, v−, v+

1 , v+
2 ) = 2 · ∂2(G1, u

+, v−, v+
1 , v+

2 )
(3.5)
⩽ 2 · ∂2(G1, u

+, v−).

Inequalities (4.20) and (4.21) yield (4.19), as required.
Case 9b: deg(u) = 3. It can be assumed that the connected component H

that contains u and v is not 3-regular and contains no pendant vertices (all other
options were covered by Cases 1 and 3). Moreover, we assume that each vertex of



1648 D. S. Taletskii

degree higher than 3 in H is adjacent only to vertices of degree 2 (all other options
were considered in Cases 4 and 9a). At the same time, since H is not 3-regular,
it contains at least one vertex w of degree 2. Consider a shortest path from the
vertex v to w. It is clear that this path goes through at least one vertex of degree 3
adjacent to a vertex of degree 3 and a vertex of degree 2. We rename the vertices
of H so that the vertices u and v are adjacent to each other, have degree 3, and at
least one vertex adjacent to v (for instance, v2) is of degree 2.

We denote by G1 the graph obtained from G by deleting the edge uv and an
isolated vertex. It follows from the conditions max{deg(u1), deg(u2), deg(v1)} ⩽ 3
and deg(v2) = 2 that

i(G1, u
+, v−)

(3.12)
⩾

7
4
· i(G1, u

+, v+) and i(G1, u
−, v+)

(3.12)
⩾

3
2
· i(G1, u

+, v+).

Inequality (3.12) implies that i(G1, u
−, v−) > i(G1, u

+, v−). Then we obtain

5 · i(G1, u
+, v+) < i(G1, u

−, v+) + i(G1, u
+, v−) + i(G1, u

−, v−). (4.22)

Now, as in Case 9a, inequality (4.22) implies that i(G) > (5/3) · i(G1).
It remains to prove that ∂2(G) ⩽ (5/3) · ∂2(G1). As in Case 9a, it is sufficient to

establish relation (4.19). We split the proof into two steps.
Step 1. We prove that

3 · ∂∗2(G, G1, u
−, v+) ⩽ 2 · ∂2(G1, u

−, v+) +
4
3
· ∂2(G1, u

+, v+). (4.23)

Note that every 2-dominating set D ∈ D2(G, u−, v+) contains at least one of the
vertices u1 and u2. On the other hand, every 2-dominating set D′ ∈ D2(G1, u

−, v+)
contains both of them. Then we obtain the relations

∂∗2(G, G1, u
−, v+) = ∂2(G, u−, u+

1 , u−2 , v+) + ∂2(G, u−, u−1 , u+
2 , v+)

(3.7)
⩽ 2 · ∂2(G, u−, u+

1 , u+
2 , v+) = 2 · ∂2(G1, u

−, u+
1 , u+

2 , v+)
(3.5)
⩽ 2 · ∂2(G1, u

−, v+)

and

2 · ∂∗2 (G, G1, u
−, v+) = 2 · (∂2(G, u−, u+

1 , u−2 , v+) + ∂2(G, u−, u−1 , u+
2 , v+))

(3.7)
⩽

4
3
·
(
∂2(G1, u

+, u+
1 , u−2 , v+) + ∂2(G1, u

+, u−1 , u+
2 , v+)

+ ∂2(G1, u
+, u+

1 , u+
2 , v+)

)
(3.1)
⩽

4
3
· ∂2(G1, u

+, v+),

which, in turn, imply (4.23).
Step 2. We prove that

3 · ∂∗2(G, G1, u
+, v−) ⩽ 2 · ∂2(G1, u

+, v−) +
1
2
· ∂2(G1, u

+, v+). (4.24)
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Since deg(v2) = 2, every 2-dominating set D ∈ D2(G, v−) contains v2. Thus,
we have the relations

∂∗2 (G, G1, u
+, v−) = ∂2(G, u+, v−, v−1 , v+

2 )
(3.7)
⩽ ∂2(G, u+, v−, v+

1 , v+
2 )

= ∂2(G1, u
+, v−, v+

1 , v+
2 )

(3.5)
⩽ ∂2(G1, u

+, v−)

and

2 · ∂∗2(G, G1, u
+, v−) = 2 · ∂2(G, u+, v−, v−1 , v+

2 )
(3.7)
⩽ ∂2(G, u+, v+, v−1 , v+

2 ) + ∂2(G, u+, v+, v+
1 , v+

2 )
(3.3),(3.5)

⩽ ∂2(G, u+, v+) = ∂2(G1, u
+, v+),

which, in turn, yield (4.24). Inequalities (4.23) and (4.24) imply (4.19), as required.

Figure 2. An example of the graph G∗ in Case 10.

Case 10 (all vertices of degree higher than 2 in G are pairwise nonadjacent).
We denote by G∗ the graph obtained from G by deleting all isolated vertices
(Figure 2). Consider an arbitrary set D ∈ D2(G∗). It is clear that at least one
endpoint of each edge in G∗ belongs to D, for otherwise the graph G∗ contains
a vertex of degree 2 which does not belong to D and has at least one neighbour
that does not belong to D either, which is impossible. Then V (G∗) \ D ∈ I(G∗)
and F (D) = V (G∗)\D is an injective map from D2(G∗) to I(G∗). Thus, we obtain
∂2(G) = ∂2(G∗) ⩽ i(G∗) < i(G), as required.

The proof of Theorem 2 is complete.

§ 5. Conclusion

The methods that we have employed to investigate the case k = 2 are not very
efficient in the case when k ⩾ 3 for two reasons.

First, in contrast to 2-regular graphs, for k ⩾ 3 k-regular graphs have a nontrivial
structure. Moreover, any non-regular graph with average vertex degree at most 2
contains necessarily at least one pendant or isolated vertex; for graphs with average
vertex degree at most k, where k ⩾ 3, a similar assertion is not true. Thus, Lemma 9
on isolated vertices, which is very important for the case k = 2, is inapplicable
to k ⩾ 3.
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Second, most transformations employed in the case k = 2 consist in deleting
equally many vertices and edges from the graph. In the case when k ⩾ 3 such
transformations have a significantly more complicated structure. For example, for
k = 3 deleting two vertices must be accompanied by deleting at least three edges
(for otherwise the average vertex degree in the graph increases), and it seems unrea-
sonable to delete one vertex and two edges.

In the author’s opinion, the most promising direction of further research consists
in considering some important classes of graphs in which the average vertex degree
obeys some natural constraints (such as the classes of subcubic, outerplanar and
planar graphs). The structure of such graphs is significantly simpler than the
structure of generic graphs with the same average vertex degree. For example, each
maximal outerplanar graph is Hamiltonian, and every inner edge in such a graph
divides it into two maximal outerplanar subgraphs of smaller size. It is probable
that by using structural properties of this type one can develop new approaches to
the solution of the problem under investigation.
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