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Abstract: In this paper, we study spectral properties of non-self-adjoint operators with the discrete
spectrum. The main challenge is to represent a complete description of belonging to the Schatten
class through the properties of the Hermitian real component. The method of estimating the singular
values is elaborated by virtue of the established asymptotic formulas. The latter fundamental result is
advantageous since, of many theoretical statements based upon it, one of them is a concept on the root
vectors series expansion, which leads to a wide spectrum of applications in the theory of evolution
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1. Introduction

Erhard Schmidt, whose advisor had been David Hilbert, studied the integral equations
with nonsymmetric kernels and introduced singular values (s-numbers), which afterwards
were interpreted by the brilliant Allakhverdiyev theorem as a measure of deviation between
a compact operator and finite-dimensional ones. From that time on, singular values have
become a most popular tool for studying spectral properties of non-self-adjoint operators.
However, although the history could have developed in a different way, the fact is that the
eigenvalues of the operator real component are no less suitable for this study. The last idea
fully reflects the plot of this paper.

The idea to write this paper originates from the concept of decomposition of an
element of the abstract Hilbert space on the root vectors series. The latter concept lies
in the framework of abstract functional analysis, and its appearance arises from elabo-
ration of methods of solving evolution equations investigated in the recent century by
Lidskii V.B. [1], Markus A.S., Matsaev V.I. [2], Agaranovich M.S. [3], and others. In its sim-
ple reduced form, applicably to self-adjoint operators, the concept admits the interpretation
through the well-known fact that the eigenvectors of the compact self-adjoint operator
form a basis in the closure of its range. The question of what happens in the case when
the operator is non-self-adjoint is rather complicated and deserves to be considered as a
separate part of the spectral theory.

We should make a brief digression and explain that relevance appears just in the
case when a senior term of a considered operator is not self-adjoint, for there is a num-
ber of papers [2,4–8] devoted to the perturbed self-adjoint operators. The fact is that
most of them deal with a decomposition of the operator on a sum, where the senior
term must be either a self-adjoint or normal operator. In other cases, the methods of the
papers [9,10] become relevant and allow us to study spectral properties of operators
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whether we have the abovementioned representation or not; moreover, they have a natural
mathematical origin that appears brightly while we are considering abstract constructions
expressed in terms of the semigroup theory [10].

Generally, the aims of the mentioned part of the spectral theory are propositions on
the convergence of the root vectors series in one or another sense to an element belonging
to the closure of the operator range; by this, we mean Bari, Riesz, and Abel–Lidskii senses
of the series convergence [11]. The main condition in terms of which the propositions are
mostly described is the asyptotics of the operator singular numbers; here, we should note
that it is originally formulated in terms of the operator belonging to the Schatten class.
However, Agaranovich M.S. made an attempt to express the sufficient conditions of the
root vector series basis property, in the abovementioned generalized sense, through the
asymptotics of the eigenvalues of the real component [3]. The paper by Markus A.S. and
Matsaev V.I. [2] can be also considered within the scope since it establishes the relationship
between the asymptotics of the operator eigenvalues absolute value and eigenvalues of the
real component.

Thus, the interest in how to express root vectors series decomposition theorems
through the asymptotics of the real component eigenvalues arose previously, and the
obvious technical advantage in finding the asymptotics creates a prerequisite to investigate
the issue properly. We should point out that under the desired relationship between
asymptotics, we are able to reformulate theorems on the root vectors series expansion in
terms of the assumptions related to the real component of the operator. The latter idea is
relevant, since in many cases, the calculation of the real component eigenvalues asymptotics
is simpler than direct calculation of the singular numbers’ asymptotics.

If we make a comparison analysis between the methods of root vectors decompo-
sition by Lidskii V.B. [1] and Agaranovich M.S. [3], we will see that the first one formu-
lated the conditions in terms of the singular values but the second one did so in terms
of the real component eigenvalues. In this regard, we will show that the real compo-
nent eigenvalue asymptotics are stronger than that of the singular numbers; however,
Agaranovich M.S. [3] imposed the additional condition—the spectrum belongs to the do-
main of the parabolic type. From this point of view, the results by Lidskii V.B. [1] are
more advantageous since the convergence in the Abel–Lidskii sense was established for an
operator class wider than the class of sectorial operators. Apparently, a reasonable question
that may appear is about minimal conditions that guarantee the desired result, which, in
particular, is considered in this paper.

Here, we can obviously extend the results devoted to operators with the discrete
spectrum to operators with the compact resolvent, for they can be easily reformulated
from one realm to another. In this regard, we should give warning that the latter fact does
not hold for real components since the real component of the inverse operator does not
coincide with the inverse of the operator real component. However, such a complication
was diminished due to the results of [9], where the asymptotic equivalence between the
eigenvalues of the mentioned operators was established.

The following are a couple of words on the applied relevance of the issue. The abstract
approach to the Cauchy problem for the fractional evolution equation is a classic one [12,13].
In its framework, the application of results connected with the basis property covers many
problems in the theory of evolution equations [1,10,14–16]. In its general statement, the
problem appeals to many applied ones, and we can produce a number of papers dealing
with differential equations which can be studied by the abstract methods [17–22]. Appar-
ently, the main advantage of this paper is a method that enables the implementation of the
existence and uniqueness theorem abstract condition verification for concrete evolution
equations. The latter concept may be interesting for the reader, for it allows broadening of
the condition under which the Abel–Lidskii method works, which, in turn, gives a wide
spectrum of applications in the theory of differential equations. Thus, we can claim that
the offered approach is undoubtedly novel from the abstract theory point of view, and is
relevant from the applied one.
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2. Preliminaries

Let C, Ci, i ∈ N0 be real constants. We assume that a value of C is positive and can
be different in various formulas, but values of Ci are certain. Denote by int M, Fr M the
interior and the set of boundary points of the set M, respectively. Everywhere further,
if the contrary is not stated, we consider linear densely defined operators acting on a
separable complex Hilbert space H. Denote by B(H) the set of linear bounded operators
on H. Denote by L̃ the closure of an operator L. We establish the following agreement on
using symbols L̃i := (L̃)i, where i is an arbitrary symbol. Denote by D(L), R(L), N(L) the
domain of definition , the range, and the kernel, or null space, of an operator L, respectively.
The deficiency (codimension) of R(L), dimension of N(L) are denoted by def L, nul L,
respectively. In some places, if it is necessary from the stylistic point of view, we use the
following notation: L−1 := I/L. Assume that L is a closed operator acting on H, N(L) = 0,;
let us define a Hilbert space HL :=

{
f , g ∈ D(L), ( f , g)HL = (L f , Lg)H

}
. Considering a

pair of complex Hilbert spaces H,H+, the notation H+ ⊂⊂ H means that H+ is dense in H

as a set of elements and we have a bounded embedding provided by the inequality

∥ f ∥H ≤ C0∥ f ∥H+ , C0 > 0, f ∈ H+;

moreover, any bounded set with respect to the norm H+ is compact with respect to the
norm H. Let L be a closed operator for any closable operator S such that S̃ = L, its domain
D(S) will be called a core of L. Denote by D0(L) a core of a closeable operator L. Let P(L)
be the resolvent set of an operator L and RL(ζ), ζ ∈ P(L), [RL := RL(0)] denotes the
resolvent of an operator L. Denote by λi(L), i ∈ N the eigenvalues of an operator L, we
numerate them in order of increasing (decreasing) of their absolute values. Suppose L is
a compact operator and N := (L∗L)1/2, r(N) := dim R(N); then the eigenvalues of the
operator N are called the singular values (s-numbers) of the operator L and are denoted by
si(L), i = 1, 2, . . . , r(N). If r(N) < ∞, then we use by definition si = 0, i = r(N) + 1, 2, . . . .
Let Sp(H), 0 < p < ∞ be the Schatten–von Neumann class (Schatten class) and S∞(H) be
the set of compact operators, by definition use

Sp(H) :=

{
L : H → H,

∞

∑
n=1

sp
n(L) < ∞, 0 < p < ∞

}
.

According to the terminology of the monograph [11], the dimension of the root vectors
subspace corresponding to a certain eigenvalue λk is called the algebraic multiplicity of
the eigenvalue λk. Let ν(L) denote the sum of all algebraic multiplicities of an operator L.
Denote by n(r) a function equal to a number of the elements of the sequence {an}∞

1 , |an| ↑ ∞
within the circle |z| < r. Let A be a compact operator, denoted by nA(r) counting function
a function n(r) corresponding to the sequence {s−1

i (A)}∞
1 . Let Sp(H), 0 < p < ∞ be a

Schatten–von Neumann class and S∞(H) be the set of compact operators. Suppose L
is an operator with a compact resolvent and sn(RL) ≤ C n−µ, n ∈ N, 0 ≤ µ < ∞; then
we denote by µ(L) order of the operator L in accordance with the definition given in the
paper [8]. Denote by ReL := (L + L∗)/2, ImL := (L − L∗)/2i the real and imaginary
components of an operator L, respectively. In accordance with the terminology of the
monograph [23], the set Θ(L) := {z ∈ C : z = (L f , f )H, f ∈ D(L), ∥ f ∥H = 1} is called
the numerical range of an operator L. An operator L is called sectorial if its numerical
range belongs to a closed sector Lι(θ) := {ζ : | arg(ζ − ι)| ≤ θ < π/2}, where ι is the
vertex and θ is the semiangle of the sector Lι(θ). If we want to stress the correspondence
between ι and θ, then we will write θι. An operator L is called bounded from below if the
following relation holds: Re(L f , f )H ≥ γL∥ f ∥2

H, f ∈ D(L), γL ∈ R, where γL is called
a lower bound of L. An operator L is called accretive if γL = 0. An operator L is called
strictly accretive if γL > 0. An operator L is called m-accretive if the following relation holds:
(A+ ζ)−1 ∈ B(H), ∥(A+ ζ)−1∥ ≤ (Reζ)−1, Reζ > 0. An operator L is called m-sectorial if L
is sectorial and L + β is m-accretive for some constant β. An operator L is called symmetric if
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one is densely defined and the following equality holds: (L f , g)H = ( f , Lg)H, f , g ∈ D(L).
Let B be a bounded operator acting in H, and assume that {φn}∞

1 , {ψn}∞
1 are a pair of

orthonormal bases in H. Define the absolute operator norm as follows:

∥B∥2 :=

(
∞

∑
n,k=1

|(Bφn, ψk)H|2
)1/2

< ∞.

Everywhere further, unless otherwise stated, we use notations of the
papers [11,23–26].

2.1. Sectorial Sesquilinear Forms and the Hermitian Components

Consider the Hermitian components of an operator (not necessarily bounded):

ReL :=
L + L∗

2
, ImL :=

L − L∗

2i
,

where it is clear that in the case when the operator L is unbounded but densely defined
we need agreement between the domain of definition of the operator and its adjoint, since
in other cases, the real component may be not densely defined. However, the latter claim
requires concrete examples; in this regard, we can refer to Remark 4 [10].

Consider a sesquilinear form t[·, ·] (see [23]) defined on a linear manifold of the Hilbert
space H. Denote by t[·] the quadratic form corresponding to the sesquilinear form t[·, ·]. Let

h = (t + t∗)/2, k = (t − t∗)/2i

be a real and imaginary component of the form t, respectively, where t∗[u, v] = t[v, u], D(t∗)
= D(t). In accordance with the definitions, we have h[·] = Re t[·], k[·] = Im t[·]. Denote
by t̃ the closure of a form t. The range of a quadratic form t[ f ], f ∈ D(t), ∥ f ∥H = 1 is
called range of the sesquilinear form t and is denoted by Θ(t). A form t is called sectorial
if its range belongs to a sector having a vertex ι situated at the real axis and a semiangle
0 ≤ θι < π/2. Suppose t is a closed sectorial form; then a linear manifold D0(t) ⊂ D(t) is
called the core of t, if the restriction of t to D0(t) has the closure t (see [23], p. 166).

Suppose L is a sectorial densely defined operator and t[u, v] := (Lu, v)H, D(t) = D(L);
then due to Theorem 1.27 ([23], p. 318), the corresponding form t is closable, and due to
Theorem 2.7 ([23], p. 323), there exists a unique m-sectorial operator Tt̃ associated with the
form t̃. In accordance with the definition ([23], p. 325), the operator Tt̃ is called a Friedrichs
extension of the operator L.

Due to Theorem 2.7 ([23], p. 323), there exist unique m-sectorial operators Tt, Th

associated with the closed sectorial forms t, h, respectively. The operator Th is called a
real part of the operator Tt and is denoted in accordance with the original definition [23]
by Re Tt.

Here, we should stress that the construction of the real part in some cases is obvi-
ously coincident with that of the real component; however, the latter does not require the
agreement between the domain of definitions mentioned above. The condition represented
below reflects the nature of uniformly elliptic operators being the direct generalization of
the one considered in the context of the theory of Sobolev spaces.

H1: There exists a Hilbert space H+ ⊂⊂ H and a linear manifold M that is dense in H+. The closed
operator W is defined on M and the latter set is its core.

H2: |(W f , g)H|≤C1∥ f ∥H+∥g∥H+ , Re(W f , f )H≥C2∥ f ∥2
H+

, f , g ∈ M, C1, C2 > 0.

Consider a condition M ⊂ D(W∗); in this case, the real Hermitian component
H := ReW of the operator is defined on M, and the fact is that H̃ is self-adjoint, bounded
from below (see Lemma 3 [9]). Hence, a corresponding sesquilinear form (denote this
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form by h) is symmetric and bounded from below also (see Theorem 2.6 [23], p. 323). The
conditions H1, H2 allow us to claim that the form t corresponding to the operator W is
a closed sectorial form; consider the corresponding form h. It can be easily shown that
h ⊂ h, but, using this fact, we cannot claim in general that H̃ ⊂ H, where H := ReW
(see [23], p. 330). We just have an inclusion H̃1/2 ⊂ H1/2 (see [23], p. 332). Note that
the fact H̃ ⊂ H follows from a condition D0(h) ⊂ D(h) (see Corollary 2.4 [23], p. 323).
However, it is proved (see proof of Theorem 4 [9]) that relation H2 guarantees that H̃ = H.
Note that the last relation is very useful in applications, since in most concrete cases we can
find a concrete form of the operator H.

2.2. Previously Obtained Results

Here, we represent previously obtained results that will undergo thorough study since
our principal challenge is to obtain an accurate description of the Schatten–von Neumann
class index of a non-self-adjoint operator.

Further, we consider Theorem 1 [10] statements separately under assumptions H1, H2.
Note that in terms of Theorem 1 [10] the operator W is a closure of the restriction of the
operator L on the set M. Without loss of generality, we can assume that W is closed since
the conditions H1, H2 guarantee that it is closeable. Thus, the given above version of the
conditions H1, H2 allows us to avoid redundant notations, more detailed information in
this regard is given in the paper [10].

We have the following classification in terms of the operator order µ, where it is
defined as follows λn(RH) = O(n−µ), n → ∞.

(A) The following Schatten classification holds:

RW ∈ Sp, inf p ≤ 2/µ, µ ≤ 1, RW ∈ S1, µ > 1.

Moreover, under assumptions λn(RH) ≥ C n−µ, 0 ≤ µ < ∞, the following implication
holds: RW ∈ Sp, p ∈ [1, ∞),⇒ µ > 1/p.

Observe that the above-given classification is far from the exact description of the
Schatten–von Neumann class index p. However, having analyzed the above implications,
we can see that it makes a prerequisite to establish a hypotheses RW ∈ Sp, inf p = 1/µ.
The following narrative is devoted to its verification.

Let us thoroughly analyze the technical tools involved in the proof of the statement
in order to absorb and contemplate the scheme of reasonings. Consider the statement, if
µ ≤ 1, then RW ∈ Sp, inf p ≤ 2/µ. The main result, on which it is based, is the asymptotic
equivalence between the inverse of the real component and the real component of the
resolvent. Indeed, due to application of some technicalities, we have a relation

(|RW |2 f , f )H = ∥RW f ∥2
H ≤ C · Re(RW f , f )H = C · (ReRW f , f )H;

using the minimax principle, we obtain the s-numbers asymptotics through the asymptotics
of the real component eigenvalues.

Consider the statement that if λn(RH) ≥ C n−µ, 0 ≤ µ < ∞, then the following
implication holds: RW ∈ Sp, p ∈ [1, ∞),⇒ µ > 1/p. The main results that guarantee
the fulfilment of the latter relation are inequality (7.9) ([11], p. 123), Theorem 3.5 [10], in
accordance with which we obtain

∞

∑
i=1

|si(RW)|p ≥
∞

∑
i=1

|(RW φi, φi)H|p ≥
∞

∑
i=1

|Re(RW φi, φi)H|p =

=
∞

∑
i=1

|(ReRW φi, φi)H|
p =

∞

∑
i=1

|λi(ReRW)|p ≥ C
∞

∑
i=1

i−µp, p ≥ 1.

Thus, we see that estimation of the series is involved; in this regard, we will make a
more detailed remark further.
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Below, we represent the second statement of Theorem 1 [10], where the peculiar result
related to the asymptotics of the eigenvalue absolute value is given.

(B) In the case ν(RW) = ∞, µ ̸= 0, the following relation holds:

|λn(RW)| = o
(
n−τ

)
, n → ∞, 0 < τ < µ.

It is based on the Theorem 6.1 ([11], p. 81), in accordance with which we have

k

∑
m=1

|Im λm(B)|p ≤
k

∑
m=1

|λm(ImB)|p, (k = 1, 2, . . . , νI(B)), 1 ≤ p < ∞, (1)

where νI(B) ≤ ∞ is the sum of all algebraic multiplicities corresponding to the not-real
eigenvalues of the bounded operator B, ImB ∈ S∞ (see [11], p. 79).

Note that the statement (B) allows us to arrange brackets in the series that converges
in the Abel–Lidskii sense (see [1,14]), which would be an advantageous achievement in
the theory constructed further. However, it has a harmonious correspondence with the
case where we do not have the exact index of the Schatten class, for in this case, due to the
convergence test, we obtain a relation

RW ∈ Sp,⇒ sn = o(n−1/p),

which gives us a relation |λn(RW)| = o
(

n−1/p
)

in accordance with the connection of the
asymptotics (see Chapter II, §3 [11]). Note that the latter relation does not contradict (B) if
we assume p > 1/µ. Thus, along the abovementioned implication RW ∈ Sp, p ∈ [1, ∞),⇒
p > 1/µ, it makes the prerequisite to observe the hypotheses inf p = 1/µ.

Apparently, the used technicalities appeal to the so-called nondirect estimates for
singular values realized due to estimates of the series. As we will see further, the main
advantage of the series estimation is the absence of the conditions imposed on the type of
the asymptotics; it may be not one of the power type. However, we will show that under
the restriction imposed on the type of the asymptotics, assuming that one is of the power
type, we can obtain direct estimates for singular values. In the reminder, let us note that
the classes of differential operators have the asymptotics of the power type, which make
the issue rather relevant.

3. Main Results
The Main Refinement of the Result A

The reasonings produced below appeal to a compact operator B, which represents
a most general case in the framework of the decomposition on the root vectors theory;
however, to obtain more peculiar results, we are compelled to deploy some restricting
conditions. In this regard, we involve hypotheses H1, H2 if it is necessary. The result
represented below gives us the upper estimate for the singular values; it is based on the
result by Ky Fan [27], which can be found as a corollary of the well-known Allakhverdiyev
theorem (see Corollary 2.2 [11]).

Lemma 1. Assume that B is a compact sectorial operator with the vertex situated at the point
zero, then

s2m−1(B) ≤
√

2 sec θ · λm(ReB), s2m(B) ≤
√

2 sec θ · λm(ReB), m = 1, 2, . . . .

Proof. Consider the Hermitian components

ReB :=
B + B∗

2
, ImB :=

B − B∗

2i
,
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where it is clear that they are compact self-adjoint operators, since B is compact and due to
the technicalities of the given algebraic constructions. Note that the following relation can
be established by direct calculation:

Re2B + Im2B =
B∗B + BB∗

2
,

from what follows the inequality

1
2
· B∗B ≤ Re2B + Im2B. (2)

Having analyzed the latter formula, we see that it is rather reasonable to think over
the opportunity of applying the corollary of the minimax principle, pursuing the aim to
estimate the singular values of the operator B. For this purpose, consider the following
relation: Re2B fn = λ2

n fn, where fn, λn are the eigenvectors and the eigenvalues of the
operator ReB, respectively. Since the operator ReB is self-adjoint and compact, then its set
of eigenvalues form a basis in R(ReB). Assume that there exists a nonzero eigenvalue of
the operator Re2B that is different from {λ2

n}∞
1 , then, in accordance with the well-known

fact of the operator theory, the corresponding eigenvector is orthogonal to the eigenvectors
of the operator ReB. Taking into account the fact that the latter form a basis in R(ReB), we
come to the conclusion that the eigenvector does not belong to R(ReB). Thus, the obtained
contradiction proves the fact λn(Re2B) = λ2

n(ReB). Implementing the same reasonings, we
obtain λn(Im

2B) = λ2
n(ImB).

Further, we need a result by Ky Fan [27] (see Corollary 2.2) [11] (Chapter II, § 2.3), in
accordance with which we have

sm+n−1(Re2B + Im2B) ≤ λm(Re2B) + λn(Im
2B), m, n = 1, 2, . . . .

Choosing n = m and n = m + 1, we obtain, respectively,

s2m−1(Re2B + Im2B) ≤ λm(Re2B) + λm(Im
2B),

s2m(Re2B + Im2B) ≤ λm(Re2B) + λm+1(Im
2B) m = 1, 2, . . . .

At this stage of reasoning we need involve the sectorial property Θ(B) ⊂ L0(θ), which
gives us |Im(B f , f )| ≤ tan θ Re(B f , f ). Applying the corollary of the minimax principle to
the latter relation, we obtain |λn(ImB)| ≤ tan θ λn(ReB). Therefore,

s2m−1(Re2B + Im2B) ≤ λm(Re2B) + λm(Im
2B) ≤ sec2θ · λ2

m(ReB),

s2m(Re2B + Im2B) ≤ sec2θ · λ2
m(ReB) m = 1, 2, . . . .

Applying the minimax principle to formula (2), we obtain

s2m−1(B) ≤
√

2 sec θ · λm(ReB), s2m(B) ≤
√

2 sec θ · λm(ReB), m = 1, 2, . . . .

This gives us the upper estimate for the singular values of the operator B.

However, to obtain the lower estimate, we need involve Lemma 3.1 ([23], p. 336),
Theorem 3.2 ([23], p. 337). Consider an unbounded operator T, Θ(T) ⊂ L0(θ); in accor-
dance with the first representation theorem ([23], p. 322), we can consider its Friedrichs
extension—the m-sectorial operator W, in turn, due to the results ([23], p. 337), it has a
real part H which coincides with the Hermitian real component if we deal with a bounded
operator. Note that by virtue of the sectorial property, the operator H is non-negative.
Further, we consider the case N(H) = 0; it follows that N(H

1
2 ) = 0. To prove this fact

we should note that defH = 0; considering inner product with the element belonging to
N(H

1
2 ), we easily obtain the fact that it must equal zero. Having analyzed the proof of
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Theorem 3.2 ([23], p. 337) we see that its statement remains true in the modified form even
in the case where we lift the m-accretive condition; thus, under the sectorial condition
imposed upon the closed densely defined operator T, we obtain the following inclusion:

T ⊂ H1/2(I + iG)H1/2,

where the symbol G denotes a bounded self-adjoint operator in H. However, to obtain
the asymptotic formula established in Theorem 5 [9], we cannot be satisfied by the made
assumptions but require the existence of the resolvent at the point zero and its compactness.
In spite of the fact that we can proceed our narrative under the weakened conditions
regarding the operator W in comparison with H1, H2, we can claim that the statement of
Theorem 5 [9] remains true under the assumptions made above, and we prefer to deploy H1,
H2, which guarantees the conditions we need and at the same time provides a description
of the issue under the natural point of view.

Lemma 2. Assume that the conditions H1, H2 hold for the operator W, moreover,

∥ImW/ReW∥2 < 1,

then
λ−1

2n (ReW) ≤ Csn(RW), n ∈ N.

Proof. Firstly, let us show that D(W2) is a dense set in H+. Since the operator W is closed
and strictly accretive, then in accordance with Theorem 3.2 ([23], p. 268), we have R(W) =
H; hence, there exists the preimage of the set M—let us denote it by M′. Consider an
arbitrary set of elements {xn}∞

0 ⊂ H and denote their preimages by x′n. Using the strictly
accretive property of the operator, we have

∥x0 − xn∥H = ∥W(x′0 − x′n)∥H ≥ C∥x′0 − x′n∥H+ .

Choosing a sequence

{xn}∞
1 ⊂ M, xn

H→ x0,

we obtain the fact that the set M′ is dense in D(W) in the sense of the norm H+; hence, it is
dense in H+ since M ⊂ D(W) is dense in H+ in accordance with condition H1. Therefore,
the set D(W2) is dense in H+ since M′ ⊂ D(W2). Thus, we have proved the fulfilment of
condition H1 for the operator W2 with respect to the same pair of Hilbert spaces.

Note that under the assumptions H1, H2, using the reasonings of Theorem 3.2 ([23],
p. 337), we have the following representation

W = H1/2(I + iG)H1/2, W∗ = H1/2(I − iG)H1/2.

It follows easily from this formula that the Hermitian components of the operator
W are defined, and we have ReW = H, ImW = H1/2GH1/2. Using the decomposition
W = ReW + iImW, W∗ = ReW − iImW, we easily obtain(

W2 + W∗ 2

2
f , f
)
H

= ∥ReW f ∥2
H − ∥ImW f ∥2

H;

(
W2 − W∗ 2

2i
f , f
)
H

= (ImW ReW f , f )H + (ReW ImW f , f )H, f ∈ D(W2).

Using simple reasonings, we can rewrite the above formulas in terms of Theorem 3.2
([23], p. 337); we have

Re(W2 f , f )H = ∥H f ∥2
H − ∥H1/2GH1/2 f ∥2

H, Im(W2 f , f )H = Re(H1/2GH1/2 f , H f )H,
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f ∈ D(W2). (3)

Consider a set of eigenvalues {λn}∞
1 and a complete system of orthonormal vectors

{en}∞
1 of the operator H, the conditions H1, H2 guarantee the existence of the system {en}∞

1
since RH is compact (see Theorem 3 [10]); using the matrix form of the operator G, we have

∥H f ∥2
H =

∞

∑
n=1

|λn|2| fn|2, ∥H1/2GH1/2 f ∥2
H =

∞

∑
n=1

λn

∣∣∣∣∣ ∞

∑
k=1

bnk
√

λk fk

∣∣∣∣∣
2

,

Re(H1/2GH1/2 f , H f )H = Re

(
∞

∑
n=1

λ3/2
n fn

∞

∑
k=1

bnk
√

λk f̄k

)
,

where bnk are the matrix coefficients of the operator G. Applying the Cauchy–Schwartz
inequality, we obtain

∥H1/2GH1/2 f ∥2
H ≤

∞

∑
n=1

λn

∣∣∣∣∣ ∞

∑
k=1

|λk fk|2
∞

∑
k=1

|bnk|2/λk

∣∣∣∣∣ ≤ ∥H f ∥2
H

∞

∑
n,k=1

|bnk|2λn/λk;

|Re(H1/2GH1/2 f , H f )H| ≤ ∥H f ∥H

 ∞

∑
n=1

∣∣∣∣∣ ∞

∑
k=1

b̄nk
√

λnλk fk

∣∣∣∣∣
2
1/2

≤ ∥H f ∥2
H

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

.

In accordance with the definition of the sectorial property, we require

|Im(W2 f , f )H| ≤ tan θ · Re(W2 f , f )H, 0 < θ < π/2.

Therefore, the sufficient conditions of the sectorial property can be expressed as
follows:

∥H f ∥2
H

(
∞

∑
n,k=1

|bnk|2/λk

)1/2

≤ ∥H f ∥2
H

(
1 −

∞

∑
n,k=1

|bnk|2λn/λk

)
tan θ;

∞

∑
n,k=1

|bnk|2λn/λk + cot θ

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

≤ 1,

where θ is the semiangle of the supposed sector. Solving the corresponding quadratic
equation, we obtain the desired estimate:(

∞

∑
n,k=1

|bnk|2λn/λk

)1/2

<
1
2

{√
cot2 θ + 4 − cot θ

}
. (4)

Having noticed the fact that the right-hand side of (4) tends to one from below when θ
tends to π/2, we obtain the condition of the sectorial property expressed in terms of the
absolute norm:

∥H1/2GH−1/2∥2 :=

(
∞

∑
n,k=1

|bnk|2λn/λk

)1/2

< 1, (5)

in this case, we can choose the semiangle of the sector using the following relation:

tan θ =
N

1 − N2 + ε, N := ∥H1/2GH−1/2∥2,

where ε is an arbitrary small positive number. Thus, we can assume that if the value
of the absolute norm is less than one, then the operator W2 is sectorial and the value of
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the absolute norm defines the semiangle. Note that coefficients bnk
√

λn/λk, bkn
√

λn/λk
correspond to the matrices of the operators, respectively,

H1/2GH−1/2 f =
∞

∑
n=1

λ1/2
n en

∞

∑
k=1

bnkλ−1/2
k fk, H−1/2GH1/2 f =

∞

∑
n=1

λ−1/2
n en

∞

∑
k=1

bnkλ1/2
k fk.

Thus, if the absolute operator norm exists, i.e.,

∥H1/2GH−1/2∥2 < ∞,

then both of them belong to the so-called Hilbert–Schmidt class; however, it is clear without
involving the absolute norm since the above operators are adjoint. It is remarkable that
we can formally write the obtained estimate in terms of the Hermitian components of the
operator, i.e.,

∥ImW/ReW∥2 < 1.

Below, for a convenient form of writing, we will use a short-hand notation A := RW ,
where it is necessary. The next step is to establish the asymptotic formula

λn

(
A2 + A2∗

2

)
≍ λ−1

n

(
ReW2

)
, n → ∞. (6)

However, we cannot directly apply Theorem 5 [9] to the operator W2; thus, we are
compelled to modify the proof having taken into account weaker conditions and the
additional condition (5).

Let us observe that the compactness of the operator RW(λ), λ ∈ P(W) gives us
the compactness of the operator W−2. Since the latter is sectorial, it follows easily that
RW2(λ), λ ∈ P(W2) is compact, since the outside of the sector belongs to the resolvent set
and the resolvent compact, at least at one point, is compact everywhere on the resolvent
set. Note that due to the reasonings given above, the following relation holds:

Re(W2 f , f )H ≥ C∥H f ∥2
H ≥ C∥ f ∥2

H+
, f ∈ D(W2), (7)

where the latter inequality can be obtained easily (see (28) [9]). Thus, we obtain the fact
that the operator W2 is a sectorial, strictly accretive operator; hence, it falls in the scope of
the first representation theorem (see Theorem 2.1 [23], p. 322) in accordance with which
there exists one-to-one correspondence between the closed densely defined sectorial forms
and m-sectorial operators. Using this fact, we can claim that the real part H1 := ReW2

is defined and the following relations hold in accordance with the second representation
theorem, i.e., Theorem 3.2 ([23], p. 337).

W2 = H1/2
1 (I + iG1)H1/2

1 , W2∗ = H1/2
1 (I + iG2)H1/2

1 ,

where G1, G2 are self-adjoint bounded operators. Now, by direct calculation, we can verify
that H1 = ReW2, and we should also note that D(W2) is a core of the corresponding closed
densely defined sectorial form h placed in correspondence to the operator H1 by virtue of
the first representation theorem, i.e., D0(h) = D(W2). Let us show that G1 = −G2. We have

H1 f =
1
2

[
H

1
2
1 (I + iG1) + H

1
2
1 (I + iG2)

]
H

1
2
1 =

=H1 f +
i
2

H
1
2
1 (G1 + G2)H

1
2
1 f , f ∈ M′.
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By virtue of inequality (7), we see that the operator H1 is strictly accretive, therefore
N(H1) = 0; (G1 + G2)H1/2

1 = 0. Since

H = R(H1/2
1 )⊕ N(H1/2

1 ),

then G1 = G2 =: G′. Applying the reasonings represented in Theorem 5 [9], we obtain the
fact that H−1/2

1 is a bounded operator defined on H. Using the properties of the operator
G′, we obtain ∥(I + iG′) f ∥H · ∥ f ∥H ≥ Re([I + iG′] f , f )H = ∥ f ∥2

H, f ∈ H. Hence, ∥(I +
iG′) f ∥H ≥ ∥ f ∥H, f ∈ H. It implies that the operator I + iG′ is invertible. The reasonings
corresponding to the operator I − iG′ are absolutely analogous. Therefore,

A2 = H− 1
2

1 (I + iG′)−1H− 1
2

1 , A2∗ = H− 1
2

1 (I − iG′)−1H− 1
2

1 . (8)

Using simple calculation based upon the operator properties established above,
we obtain

ReA2 =
1
2

H− 1
2

1 (I + G′2)−1H− 1
2

1 . (9)

Therefore,(
ReA2 f , f

)
H
=

(
H− 1

2
1 (I + G′2)−1H− 1

2
1 f , f

)
H

≤ ∥(I + G′2)−1∥ ·
(

RH1 f , f
)
H

, f ∈ H.

On the other hand, it is easy to see that ((I + G′2)−1 f , f )H ≥ ∥(I + G′2)−1 f ∥2
H. At

the same time, it is obvious that the operator I + G′2 is bounded and we have ∥(I +
G′2)−1 f ∥H ≥ ∥I + G′2∥−1∥ f ∥H. Applying these estimates, we obtain(

ReA2 f , f
)
H
=

(
(I + G′2)−1H− 1

2
1 f , H− 1

2
1 f

)
H

≥ ∥(I + G′2)−1H− 1
2

1 f ∥2
H ≥

≥ ∥I + G′2∥−2 ·
(

RH1 f , f
)
H

, f ∈ H.

Using relation (7), we obtain the fact that the resolvent RH1 is compact, and the fact
that ReA2 is compact is obvious. Thus, analogously to the reasonings of Theorem 5 [9],
applying the minimax principle, we obtain the desired asymptotic formula (6). Further, we
will use the following formula obtained due to the positiveness of the squared Hermitian
imaginary component of the operator A, and we have

A2 + A2∗

2
=

A2 + A∗2

2
≤ A∗A + AA∗.

Applying the corollary of the well-known Allakhverdiyev theorem (Ky Fan [27]), see
Corollary 2.2 [11] (Chapter II, § 2.3), we have

λ2n(A∗A + AA∗) ≤ λn(A∗A) + λn(AA∗), n ∈ N.

Taking into account the fact sn(A) = sn(A∗), using the minimax principle, we obtain
the estimate

s2
n(A) ≥ Cλ2n

(
A + A2∗

2

)
, n ∈ N,

and applying (6), we obtain

s2
n(A) ≥ Cλ−1

2n

(
ReW2

)
, n ∈ N.

Here, it is rather reasonable to apply formula (3), which gives us

∥ f ∥2
H ≤ ∥ f ∥2

H+
≤
(
ReW2 f , f

)
H
≤ (H f , H f )H, f ∈ D(W2),
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which, in turn, collaboratively with the minimax principle, leads us to the theorem
statement. Here, we should remark that in order to apply the minimax principle, we
need a compact embedding of the energetic space, which is provided by the estimate
from below.

Remark 1. It is remarkable that the central point of the proof is the representation theorems;
in accordance with the first one, we have a plain construction of the operator real part equaling
the Hermitian real component. These allow us to implement the simplified scheme of reasonings
represented in [9].

Consider a rather wide operator class including the operators having the asymptotics
of the resolvent singular values or one of the real component eigenvalues of the power
type, i.e.,

C1nµ ≤ λn ≤ C2nµ, µ < 0.

In order to apply the obtained theoretical results to the class, we can reformulate them
in the following stylistically convenient form.

Theorem 1. Assume that the hypotheses H1, H2 hold for the operator W, moreover,

∥ImW/ReW∥2 < 1,

then
sn(RW) ≍ λ−1

n (ReW).

Proof. Since conditions H1, H2 hold, then the resolvent RW is a compact sectorial operator
with the vertex situated at the point zero (see Theorem 3 [10]). The estimates from the
above and below for the singular values follow from the application of Lemmas 1 and 2,
respectively; here, we should take into account the fact that (Cn)γ ≍ nγ, γ ∈ R and the
fact that λn(ReRW) ≍ λ−1

n (ReW), which is the claim of Theorem 5 [9].

4. Mathematical Applications
4.1. The Low Bound for the Schatten Index of the Perturbed Differential Operator

1. Trying to show an application of Lemma 1, we produce an example of a non-self-
adjoint operator that is not completely subordinated in the sense of forms (see [8,9]).
The pointed-out fact means that we cannot deal with the operator applying meth-
ods [8] for they do not work.

Consider a differential operator acting in the complex Sobolev space:

L f := (ck f (k))(k) + (ck−1 f (k−1))(k−1) + . . . + c0 f ,

D(L) = H2k(I) ∩ Hk
0(I), k ∈ N,

where I := (a, b) ⊂ R, and the complex-valued coefficients cj(x) ∈ C(j)( Ī) satisfy the
condition sign(Recj) = (−1)j, j = 1, 2, . . . , k. Consider a linear combination of the Riemann–
Liouville fractional differential operators (see [26], p .44) with the constant real-valued
coefficients:

D f := pnDαn
a+ + qnDβn

b− + pn−1Dαn−1
a+ + qn−1Dβn−1

b− + . . . + p0Dα0
a+ + q0Dβ0

b−,

D(D) = H2k(I) ∩ Hk
0(I), n ∈ N,
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where αj, β j ≥ 0, 0 ≤ [αj], [β j] < k, j = 0, 1, . . . , n.,

qj ≥ 0, sign pj =

(−1)
[αj ]+1

2 , [αj] = 2m − 1, m ∈ N,

(−1)
[αj ]

2 , [αj] = 2m, m ∈ N0.

The following result is represented in the paper [9]; consider the operator

G = L+D,

D(G) = H2k(I) ∩ Hk
0(I).

It is clear that it is an operator with a compact resolvent; however, for the accuracy we
will prove this fact. Moreover, we will produce a pair of Hilbert spaces so that conditions
H1, H2 hold. It follows that the resolvent is compact; thus, we are able to observe the
problem related to calculating the Schatten index. Apparently, it may happen that the direct
calculation of the singular values or their estimation is rather complicated since we have
the following relation:

GG∗ ⊃ (L+D)(L∗ +D∗) ⊃ LL∗ +DL∗ + LD∗ +DD∗,

where inclusions must satisfy some conditions connected with the core of the operator
form, for in other cases, we have the risk of losing some singular values. In spite of the
fact that the shown difficulties, in many cases, can be eliminated, the offered method of
singular values estimation becomes apparently relevant.

Let us prove the fulfilment of the conditions H1, H2 under the assumptions H :=
L2(I), H+ := Hk

0(I), M := C∞
0 (I). The fulfillment of the condition H1 is obvious; let us

show the fulfilment of the condition H2. It is easy to see that

Re(L f , f )L2(I) ≥
k

∑
j=0

|Recj| ∥ f (j)∥2
L2(I) ≥ C∥ f (j)∥2

Hk
0(I), f ∈ D(L).

On the other hand,

|(L f , f )L2(I)| =
∣∣∣∣∣ k

∑
j=0

(−1)j(cj f (j), g(j))L2(I)

∣∣∣∣∣ ≤ k

∑
j=0

∣∣∣(cj f (j), g(j))L2(I)

∣∣∣ ≤
≤ C

k

∑
j=0

∥ f (j)∥L2(I)∥g(j)∥L2(I) ≤ ∥ f ∥Hk
0(I)∥g∥Hk

0(I), f ∈ D(L).

Consider fractional differential Riemann–Liouville operators of arbitrary non-negative
order α (see [26], p. 44) defined by the expressions

Dα
a+ f =

(
d

dx

)[α]+1
I1−{α}
a+ f ; Dα

b− f =

(
− d

dx

)[α]+1
I1−{α}
b− f ,

where the fractional integrals of arbitrary positive order α, defined by

(Iα
a+ f )(x) =

1
Γ(α)

x∫
a

f (t)
(x − t)1−α

dt,
(

Iα
b− f

)
(x) =

1
Γ(α)

b∫
x

f (t)
(t − x)1−α

dt, f ∈ L1(I).

Suppose 0 < α < 1, f ∈ ACl+1( Ī), f (j)(a) = f (j)(b) = 0, j = 0, 1, . . . , l; then the next
formula follows from Theorem 2.2 ([26], p. 46):

Dα+l
a+ f = I1−α

a+ f (l+1), Dα+l
b− f = (−1)l+1 I1−α

b− f (l+1). (10)
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Further, we need the following inequalities (see [28]):

Re(Dα
a+ f , f )L2(I) ≥ C∥ f ∥2

L2(I), f ∈ Iα
a+(L2),

Re(Dα
b− f , f )L2(I) ≥ C∥ f ∥2

L2(I), f ∈ Iα
b−(L2), (11)

where Iα
a+(L2), Iα

b−(L2) are the classes of the functions representable by the fractional inte-
grals (see [26]). Consider the following operator with the constant real-valued coefficients:

D f := pnDαn
a+ + qnDβn

b− + pn−1Dαn−1
a+ + qn−1Dβn−1

b− + . . . + p0Dα0
a+ + q0Dβ0

b−,

D(D) = H2k(I) ∩ Hk
0(I), n ∈ N,

where αj, β j ≥ 0, 0 ≤ [αj], [β j] < k, j = 0, 1, . . . , n.,

qj ≥ 0, sign pj =

(−1)
[αj ]+1

2 , [αj] = 2m − 1, m ∈ N,

(−1)
[αj ]

2 , [αj] = 2m, m ∈ N0.

Using (10) and (11), we obtain

(pjD
αj
a+ f , f )L2(I)= pj

((
d

dx

)m
D

m−1+{αj}
a+ f , f

)
L2(I)

= (−1)m pj

(
I

1−{αj}
a+ f (m), f (m)

)
L2(I)

≥

≥ C
∥∥∥∥I

1−{αj}
a+ f (m)

∥∥∥∥2

L2(I)
= C

∥∥∥∥D
{αj}
a+ f (m−1)

∥∥∥∥2

L2(I)
≥ C

∥∥∥ f (m−1)
∥∥∥2

L2(I)
,

where f ∈ D(D) is a real-valued function and [αj] = 2m − 1, m ∈ N. Similarly, we obtain
for orders [αj] = 2m, m ∈ N0

(pjD
αj
a+ f , f )L2(I) = pj

(
D

2m+{αj}
a+ f , f

)
L2(I)

= (−1)m pj

(
D

m+{αj}
a+ f , f (m)

)
L2(I)

=

= (−1)m pj

(
D

{αj}
a+ f (m), f (m)

)
L2(I)

≥ C
∥∥∥ f (m)

∥∥∥2

L2(I)
.

Thus in both cases, we have

(pjD
αj
a+ f , f )L2(I) ≥ C

∥∥∥ f (s)
∥∥∥2

L2(I)
, s =

[
[αj]/2

]
.

In the same way, we obtain the inequality

(qjD
αj
b− f , f )L2(I) ≥ C

∥∥∥ f (s)
∥∥∥2

L2(I)
, s =

[
[αj]/2

]
.

Hence, in the complex case, we have

Re(D f , f )L2(I) ≥ C∥ f ∥2
L2(I), f ∈ D(D).

Combining Theorem 2.6 ([26], p. 53) with (10), we obtain∥∥∥pjD
αj
a+ f

∥∥∥
L2(I)

=

∥∥∥∥I
1−{αj}
a+ f ([αj ]+1)

∥∥∥∥
L2(I)

≤ C
∥∥∥ f ([αj ]+1)

∥∥∥
L2(I)

≤ C∥ f ∥Hk
0(I);

∥∥∥qjD
αj
b− f

∥∥∥
L2(I)

≤ C∥ f ∥Hk
0(I), f ∈ D(D).
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Hence, we obtain
∥D f ∥L2(I) ≤ C∥ f ∥Hk

0(I), f ∈ D(D).

Taking into account the relation

∥ f ∥L2(I) ≤ C∥ f ∥Hk
0(I), f ∈ Hk

0(I),

combining the above estimates, we obtain

Re(G f , f )L2(I) ≥ C∥ f ∥2
Hk

0(I), |(G f , g)L2(I)| ≤ ∥ f ∥Hk
0(I)∥g∥Hk

0(I), f , g ∈ C∞
0 (I).

Thus, we have obtained the desired result.
To deploy the minimax principle for eigenvalues estimating, we come to the

following relation:
C1∥ f ∥2

Hk
0(I) ≤ (ReG f , f )L2(I) ≤ C2∥ f ∥2

Hk
0(I),

from which follows easily, due to the asymptotic formula for the eigenvalues of a self-
adjoint operator (see [29]), the fact that

λn(ReG) ≍ n2k, n ∈ N;

therefore, applying Lemma 1 collaboratively with the asymptotic equivalence formula (see
Theorem 5 [9])

λ−1
n (ReG) ≍ λn(ReRG), n ∈ N,

we obtain the fact that
RG ∈ Sp, inf p ≤ 1/2k.

Thus, it gives us an opportunity to establish the range of the Schatten index.

2. Let us show the application of Lemma 2; firstly, consider the following reasonings:

∥ImWH−1∥2 = ∥H−1ImW∥2 =
∞

∑
n,k=1

∣∣∣(ImWen, H−1ek)H

∣∣∣2 =
∞

∑
n,k=1

λ−2
n (H)|(en, ImWek)H|2 =

=
∞

∑
n=1

λ−2
n (H)||ImWen||2H,

where {en}∞
1 is the orthonormal set of the eigenvectors of the operator H. Thus, we obtain

the following condition:
∞

∑
n=1

λ−2
n (H)||ImWen||2H < 1, (12)

which guarantees the fulfilment of the conditions expressed in terms of absolute norm in
Lemma 2. It is remarkable that this form of the condition is quite convenient if we consider
perturbations of differential operators. Below, we observe a simplified case of the operator
considered in the previous paragraph. Consider

L f := − f ′′ + ξDα
0+ f , D(L) = H2(I) ∩ H1

0(I), I = (0, π), α ∈ (0, 1/2), ξ ∈ R,

then

C0(L1 f , f )L2(I) ≤ (ReL f , f )L2(I) ≤ C1(L1 f , f )L2(I), L1 f := − f ′′, D(L1) = D(L).

It is a well-known fact that

λn(L1) = n2, en = sin nx.
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It is also clear that
ImL ⊃ ξ(Dα

0+ − Dα
π−)/2i.

In accordance with the first representation theorem (see Theorem 2.1 [23], p. 322), we
have that H2(I) ∩ H1

0(I) is a core of the form corresponding to the operator L∗; hence,

ImL = ξ(Dα
0+ − Dα

π−)/2i.

Note that (
Dα

0+en
)
(x) =

n
Γ(1 − α)

x∫
0

(x − t)−α cos nt dt.

Applying the generalized Minkowski inequality, we obtain

 π∫
0

|(Dα
a+en)(x)|2dx

1/2

=
n

Γ(1 − α)

 π∫
0

∣∣∣∣∣∣
x∫

0

(x − t)−α cos nt dt

∣∣∣∣∣∣
2


1/2

≤

≤ n
Γ(1 − α)

π∫
0

cos nt dt

 π∫
t

(x − t)−2αdx

1/2

=
n√

(1 − 2α)Γ(1 − α)

π∫
0

(π − t)1/2−α cos nt dt ≤

≤ nπ1/2−α√
(1 − 2α)Γ(1 − α)

.

Analogously, we obtain π∫
0

|(Dα
π−en)(x)|2dx

1/2

≤ nπ1/2−α√
(1 − 2α)Γ(1 − α)

.

Hence,

∥ImLen∥ ≤ nξπ1/2−α√
(1 − 2α)Γ(1 − α)

.

Therefore,

∞

∑
n=1

λ−2
n (ReL)||ImLen||2 <

ξ2π1−2α

(1 − 2α)Γ2(1 − α)

∞

∑
n=1

1
n2 =

ξ2π3−2α

6(1 − 2α)Γ2(1 − α)
.

Using this relation, we can obviously impose a condition on ξ that guarantees the
fulfilment of relation (12), i.e.,

ξ <

√
6(1 − 2α)Γ(1 − α)

π3/2−α
.

In accordance with Theorem 1, the last condition follows that

s−1
n (RL) ≍ n2, RL ∈ Sp, inf p = 1/2.

4.2. Existence and Uniqueness Theorems for Evolution Equations via Obtained Results

In this paragraph, we consider applications to differential equations in concrete Hilbert
spaces and involve such operators as Riemann–Liouville operator, Kipriyanov operator,
and Riesz potential, difference operator. Moreover, we produce the artificially constructed
normal operator for which the clarification of the Lidskii results relevantly works.

Further, we consider a Hilbert space H which consists of element-functions u : R+ →
H, u := u(t), t ≥ 0 and we assume that if u belongs to H then the fact holds for all values
of the variable t. Notice that under such an assumption all standard topological properties,
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such as completeness, compactness, etc., remain correctly defined. We understand such
operations as differentiation and integration in the generalized sense that is caused by
the topology of the Hilbert space H; more detailed information can be found in Chapter 4
Krasnoselskii M.A. [30]. Consider an arbitrary compact operator B; we can form the
operators corresponding to the groups of its eigenvalues, i.e.,

Pν(B, α, t) ⇔ λNν+1, λNν+2, . . . , λNν+1 ,

where {Nν}∞
0 is a sequence of natural numbers,

Pν(B, α, t) =
1

2πi

∫
ϑν(B)

e−λαtB(I − λB)−1dλ, α > 0,

ϑν(B) is a contour on the complex plain containing the eigenvalues λNν+1, λNν+2, . . . , λNν+1

only and no more eigenvalues.
The root vectors of the operator B are called by the Abel–Lidskii basis if

∞

∑
ν=0

Pν(B, α, t) → I, t → 0,

where convergence is understood as the operator pointwise convergence in the
Hilbert space.

The correspondence between the series and the element, given due to the formula, is
known as a convergence in the Abel–Lidskii sense. We can compare this definition with the
main principle of the spectral theorem—the unit decomposition. We place the following
contour in correspondence to the operator:

ϑ(B) := {λ : |λ| = r > 0, |argλ| ≤ θ + ε} ∪ {λ : |λ| > r, |argλ| = θ + ε}.

Consider the following hypotheses:

S1: Under the assumptions B ∈ Sp, inf p ≤ α, Θ(B) ⊂ L0(θ), a sequence of natural numbers
{Nν}∞

0 can be chosen so that

1
2πi

∫
ϑ(B)

e−λαtB(I − λB)−1 f dλ =
∞

∑
ν=0

Pν(B, α, t) f , f ∈ H,

the latter series is absolutely convergent in the sense of the norm.

Combining the generalized integrodifferential operations, we can consider a fractional
differential operator in the Riemann–Liouville sense, i.e., in the formal form, we have

D1/α
− f (t) := − 1

Γ(1 − 1/α)

d
dt

∞∫
0

f (t + x)x−1/αdx, α > 1.

Let us study a Cauchy problem:

D1/α
− u = Wu, u(0) = h ∈ D(W). (13)

Note that it is possible to apply the Abel–Lidskii concept using the methods [1,10,14–16]
in the case RW ∈ Sp, inf p ≤ α. We can assume that the central result of the above-listed
papers is to find conditions under which the hypotheses S1 holds. We can generalize the
results related to the existence and uniqueness theorem (see Theorem 4 [31], Theorem 1 [16],
Theorem 6 [15]), as follows:
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Theorem 2. Assume that S1 holds, then there exists a solution of Cauchy problem (13) in the form

u(t) =
∞

∑
ν=0

Pν(B, α, t)h.

Apparently, under this point of view, the results of the paper become relevant since,
applying Theorem 1, we can find the exact value of the Schatten index p. Therefore, we can
decrease the value of α, satisfying the condition inf p ≤ α in accordance with S1.

To demonstrate the claimed result, we produce an example dealing with well-known
operators. Consider a rectangular domain in the space Rn, defined as follows: Ω := {xj ∈
[0, π], j = 1, 2, . . . , n}; and consider the Kipriyanov fractional differential operator defined
in the paper [25] by the formal expression

Dβ f (Q) =
β

Γ(1 − β)

r∫
0

[ f (Q)− f (T)]
(r − t)β+1

(
t
r

)n−1
dt + (n − 1)! f (Q)r−β/Γ(n − β),

β ∈ (0, 1), P ∈ ∂Ω,

where Q := P + er, P := P + et, e is a unit vector having a direction from the fixed point
of the boundary P to an arbitrary point Q belonging to Ω. Consider the perturbation of the
Laplace operator by the Kipriyanov operator:

L := D2k + ξDβ, D(L) = Hk
0(Ω) ∩ H2k(Ω),

where ξ > 0,

D2k f = (−1)k
n

∑
j=1

D2k
j f .

It was proved in the paper [10] that

C0(D2k f , f )L2(Ω) ≤ (ReL f , f )L2(Ω) ≤ C1(D2k f , f )L2(Ω), f ∈ D(L).

Therefore,
λn(ReL) ≍ n2k/n.

On the other hand, we have the following eigenfunctions of D2k in the rectangular
domain:

el̄ =
n

∏
j=1

sin ljxj, l̄ := {l1, l2, . . . , ln}, ls ∈ N, s = 1, 2, . . . , n.

It is clear that

D2kel̄ = λl̄ el̄ , λl̄ =
n

∑
j=1

l2k
j .

Since the search for the below-given information in the literature (however, it is a
well-known fact) can bring some difficulties, we would like to represent it. Let us prove
that the system {el̄} is complete in the Hilbert space L2(Ω). We will show it if we prove
that the element that is orthogonal to every element of the system is a zero. Assume that

π∫
0

sin l1x1dx1

π∫
0

sin l2x2dx2 . . .
π∫

0

sin lnxn f (x1, x2, . . . , xn)dxn = (el̄ , f )L2(Ω) = 0.
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In accordance with the fact that the system {sin mx}∞
1 is a complete system in L2(0, π),

we conclude that

π∫
0

sin l2x2dx2 . . .
π∫

0

sin lnxn f (x1, x2, . . . , xn)dxn = 0.

Having repeated the same reasonings step by step, we obtain the desired result. Taking
into account the following inequality (see [10]) and the embedding theorems, we obtain

∥Dβ f ∥L2(Ω) ≤ Cβ∥ f ∥H1
0 (Ω) ≤ Cβ,k,n∥ f ∥Hk

0(Ω), (14)

where the constant Cβ is defined through the infinitesimal generator J of the corresponding
semigroup of contraction (shift semigroup in the direction) (9) [10]. Now it is clear that the
conditions H1, H2 are satisfied, where H := L2(Ω), H+ := Hk

0(Ω), M := C∞
0 (Ω). Using

the intermediate inequality (14), by direct calculation, we obtain

∞

∑
l1,l2,...ln=1

λ−2
l̄ (ReL)L2(Ω) ∥ImLel̄∥

2
L2(Ω) ≤ (ξCβ)

2
∞

∑
l1,l2,...ln=1

λl̄(D2)

λ2
l̄ (D2k)

.

Therefore, if the following condition holds,

∞

∑
l1,l2,...ln=1

l2
1 + l2

2 + . . . + l2
n

(l2k
1 + l2k

2 + . . . + l2k
n )2

< (ξCβ)
−2, (15)

then the conditions of Lemma 2 are satisfied. Applying Lemma 2, we can consider the
values of the parameters k, n such that the last series is convergent, and at the same time,
RL ∈ Sp, inf p = n/2k > 1. The latter fact gives us the argument showing the relevance
of Lemma 2 since we can find the range of α appropriate for the Abel–Lidskii method
applicability. Below, we produce the corresponding reasonings.

Assume that the following condition holds:

n
2
+ 1 < 2k < n.

Consider the vector function

ψ(l̄) =
(l2k

1 + l2k
2 + . . . + l2k

n )2

l2
1 + l2

2 + . . . + l2
n

,

then ψ(t̄) = nt2(2k−1), t̄ = {t, t, . . . t}. It is clear that the number s of values ψ(l̄), li ≤ t
equals tn, i.e., s = tn. Therefore,

ψ(t̄) = ns
2(2k−1)

n , ψ(t − 1) = n(s1/n − 1)2(2k−1);

n(s1/n − 1)2(2k−1) ≤ ψ(l̄) ≤ ns
2(2k−1)

n , t − 1 ≤ li ≤ t, i = 1, 2, . . . , n.

Having arranged the values in the order corresponding to their absolute value increas-
ing, we obtain

n(s1/n − 1)2(2k−1) ≤ ψj ≤ ns
2(2k−1)

n , (s1/n − 1)n < j < s.

Therefore,
(s1/n − 1)2(2k−1)

s
2(2k−1)

n

<
ψj

nj
2(2k−1)

n

<
s

2(2k−1)
n

(s1/n − 1)2(2k−1)
,
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from which follows the convergence of the following series, since if we take into account
the condition n/2 + 1 < 2k, we obtain

∞

∑
j=1

ψ−1
j < ∞.

In other words, we have proved that series (15) is convergent. Thus, we have con-
sidered the case showing the relevance of Lemma 2. We can claim that the Abel–Lidskii
method in its classical form is not applicable to the fractional evolution equation for the
values of α less than n/2k. This rather ridiculous result, from one point of view, gives us a
better comprehension of methodology and allows us to avoid disturbing calculation and
difficulties of any kind connected with the verification of opportunity to apply the method.

5. Conclusions

In this paper, we represent an efficient tool for finding the asymptotics of operator sin-
gular values. However, it may be interesting itself since it appeals to the spectral properties
of the operator real component, which are undoubtedly relevant in the framework of the
abstract spectral theory. Some difficulties in the application of the Abel–Lidskii method
were considered under the point of view of the created concept, where the the mathematical
applications cover integrodifferential operators of the real order.
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