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Abstract—In recent decades, several Russian schools have been implementing a world-unique education pro-
gram of mathematics for elementary schools. In it, the landscape of school arithmetic is radically expanded
due to the basic objects of modern mathematics and computer science. These objects and their operations are
visual, making them much more comprehensible than traditional arithmetic. The range of activities also
expands due to, for example, the introduction of strategies for enumeration, game winning, and algorithms
(also operating in a visual environment). At the same time, the student’s position changes: they inde-
pendently discover and build mathematics and constantly solve personally new, but feasible tasks that are
“not-known-how-to-solve.” The student’s resources are saved by using a computer to perform routine arith-
metic operations that have already been discovered and understood. The implementation of this approach is
discussed in detail and is illustrated by examples of actual tasks that are representative of the program under
consideration and the whole approach.
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1. INTRODUCTION

The foundations of the modern mathematical lan-
guage were constructed from the late 19th century to
the first third of the 20th century (see [1]; [2], Intro-
duction; [3], Chap. 4). In the second half of the 20th
century, this language, i.e., a set of concepts, their
meanings, and applications became the basis for the
construction of digital technologies and the whole
digital civilization. Attempts were also made to use this
language as a basis for mathematical education and as
part of human culture. These attempts yielded only
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partial results and faced opposition from different
sides [4].

In the mid-1980s, several representatives of the
Russian mathematical school headed by Academician
Andrei Petrovich Yershov decided to build the founda-
tions of modern mathematical education “from an
opposite end,” namely, from computer science and
high school. The USSR became the first country in
the world where this approach was successfully and
massively implemented, covering all schools of the
country [5–8].

At the same time, work was begun concerning the
construction of mathematical foundations for the
whole school mathematics that match with tasks and
possibilities of modern mathematics and the digital
world. This work has been continued up to now, and
its results have been reflected in teaching in tens of
schools; in publishing officially recognized school
textbooks [9], [10]; and in creating the Federal state
educational standards [11].

This paper describes the system of mathematical
concepts that has been used in the indicated approach
to school mathematics and computer science over the
last decades.
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2. TODAY’S LITERACY
Modern humans have to make self-conscious deci-

sions, independently extract information, and con-
duct research of the environment to an increasing
extent. It is concerned with nearly all kinds of activities
and situations ranging from the household to subtle
technological processes. Today, the ability to act in an
unexpected situation and to solve unexpected tasks is
much more important than the ability to strictly follow
instructions and to implement without reasoning or
discussing. This is caused by the following two equally
important and interrelated circumstances.

● Due to the high level of development of today’s
technologies, nearly any activity based on predeter-
mined rules and algorithms can be entrusted to
machines or digital technologies.

● Societal needs, technology, dependence of
everything on individual decisions and behavior, and
constant turbulence (VUCA [12]) influence the
behavior of humans and decisions they make to a large
degree.

At the same time, legitimate and universally appli-
cable scenarios of school education and the whole
school life are opposite: school is still focused on
reproductive, executive activity models. School in the
21st century still follows the priorities of the 19th cen-
tury.

Elementary school has taught children to read,
write, and count for centuries. All these skills are still
considered the pillars of literacy in the computer age.
However, today some elements of these skills com-
pletely lose their meaning. In most cases, these tradi-
tional skills are radically transformed if you look at
them from the perspective of a modern employee,
employer, or a human as an evolving personality. The
results of this transformation can be described as fol-
lows.

● Reading. Most written sources are now available
in audio format. Sometimes, a video-audio instruc-
tion is preferable to a written one, for example, in
cooking recipes or instructions given in the workplace.
Functional communicative literacy becomes a key
point: the ability to understand others and the ability
to apply and/or convey someone’s understanding to
another person; an information presentation, includ-
ing nontextual, is a matter of pragmatism.

● Writing. Typing on a keyboard has replaced writ-
ing with a pen on paper everywhere, except in school.
The process of writing a text or creating a message has
changed as well. Short instant messages—oral and
written—have transformed communicative culture.
Automatic conversion of speech to a written text is
being used increasingly. At the same time, probably,
work with written texts, such as editing, will make
sense in the coming years.

● Calculating. The need to count the number of
objects with hand or eyes (counting in the ancient ter-
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minology) still remains, but there is no need for exe-
cuting arithmetic operations (e.g., column calcula-
tions on paper); they are delegated to a computer.

3. TODAY’S MATHEMATICAL LITERACY
The educational goals in today’s elementary school

mathematics are as follows.
● Perform arithmetic operations accurately and

quickly, thus making children to perform like an arith-
mometer or calculator.

● Recognize the system of relationships between
numerical variables in a word problem. As a rule, rela-
tionships concern rather few situations denoted by
phrases, such as together, toward each other, f low
from a pipe, against the f low, into equal parts, and
next day. After the necessary system of relationships
has been built, the task is to design a sequence of cal-
culations of (linear algorithm for calculating) the
required quantities either arithmetically or by writing a
set of algebraic equations, which is solved using a stan-
dard algorithm. In the 21st century, this can be suc-
cessfully done by artificial intelligence.

In the elementary school curriculum, the word
“arithmetic” was long replaced by mathematics, and
in the Russian Federation 2010 standards, it was
turned into the integrated field of mathematics and
informatics. However, the curriculum content was
affected insignificantly by these changes.

Note that mathematics opens up almost unlimited
opportunities to form the ability of children to solve
problems that are “not-known-how-to-solve.” This
ability is important not only in mathematics: the abil-
ity to solve new tasks that have not been addressed ear-
lier by people is in demand in almost all fields of
knowledge and technology. Is it possible to change the
current situation and begin to develop these abilities as
early as in elementary school?

Over the last three decades, a team including this
article’s authors has been developing elementary
school courses of Informatics and Mathematics and
Informatics in which the goals of traditional arith-
metics are preserved, but the priority of working out
mechanical skills is reduced, in particular, a calculator
is allowed to be used for calculations. During this time,
the courses have been used in several hundred schools.
The courses rely on the following principles.

● Discovery and invention of mathematics by stu-
dents. Instead of presenting ready rules and algo-
rithms, conditions are created under which students
develop and implement the need to discover and for-
mulate these rules and algorithms under the guidance
and with the help of a teacher.

● Modern basic objects. The class of basic objects
used by learners in educational activities has been
expanded: it includes the basic elementary objects of
modern mathematics and computer science. These
objects, as well as numbers, are presented in visual



S12 POSICELSKAYA et al.
form, which enables all students to be involved in the
learning process regardless of their initial education
level and supports their engagement in the educational
process.

● Reduction in the priority and (motivational and
time) costs of working out calculation skills. Students are
given the opportunity to improve their calculation
skills and, at the same time, to use technological tools
for calculations.

● Novelty. The factors listed above have opened up
the opportunity to implement the important novelty
principle, by which we mean that students are invited
to solve problems of high degree of novelty and unex-
pectedness. Nevertheless, most students can solve
such problems personally or with the help of teacher’s
discussion.

● Link to everyday life of learners and the real
world.

● Feedback. Visualization of objects and operations
over them allows students to find their mistakes inde-
pendently or with the help of a teacher. When objects
are used in a digital environment, the feedback possi-
bilities are even higher.

● Systematicity. All the above-mentioned princi-
ples are implemented within a result-based system,
including the one provided by the learning standards.

Below, the indicated principles are explained in
more detail on examples.

Discovery and invention of mathematics by learners.
Major elements of arithmetic can be constructed by
learners on their own in mathematics classes. For
example, the decimal number system can be invented
by a child as a way of counting any number of objects
in a box (e.g., matches or beans) if only ten digits are
available. Addition and multiplication tables can be
constructed by counting cells in strips and rectangles.

We encourage learners to solve particular arithme-
tic problems autonomously. Mental calculation is not
a competition in speed, but rather the development of
skills in validating and checking the correctness of a
result. For example, the result 7 + 8 = 15 can be
checked in different ways: by adding two 7’s and sup-
plementing one of them to 8, expanding each term into
a sum of 5 and another number, supplementing one of
the terms to 10, etc. Checking and validating a numer-
ical result via calculation in a different way is also an
example of a life strategy. On the one hand, we teach
children the absoluteness of truth in mathematics, but,
on the other hand, we draw their attention to the fact
that humans may be mistaken in assuming that they
have discovered this truth. The teacher repeatedly asks
the children “How did you calculate?” and helps them
formulate their invented calculation methods in an
appropriate mathematical language clear to their
classmates. The technique can even receive the name
of its creator: “Vanya’s method of addition,” this is
especially important if the child who invented it is not
the strongest mathematician in the class. It is also
D

important to use feedback, i.e., the responses of the
outside world and other people to your actions,
including calculations. Today, the ability to take
advantage of this reaction, to find a mistake, and to try
to correct it is more important than pure correctness.
This will be discussed in more detail below.

Modern basic objects. They will be described in
detail in the basic part of this paper. Now we only note
that these are the basic objects of mathematics and
computer science; moreover,

● they are the basis for the whole mathematics;
● objects of infinite mathematics are constructed

from finite objects: the properties of and reasoning
about infinite objects are based on the properties of
and reasoning about finite objects (of course, this
“naive constructivism” is only the beginning…).

To enter the world of mathematics, children are set
the task of building discrete (combinatorial) objects
that satisfy prescribed conditions. These conditions
can be a logical (primarily, quantifier) combination of
others, simpler conditions.

Real world and feedback. The statement of a prob-
lem can be a narrative, a story about the real, or “real”
world (as in word problems in a traditional course of
mathematics). Such a story can be written as a short
tale or a suitable fragment of a children’s book can be
taken. The text may describe a situation that the child
encounters in the store, café, or at the station. Of
course, the statement of the problem can also be a
technical abstract description, but this is usually not as
interesting to children. Natural and mathematical lan-
guage phenomena, school schedules, and individual
plans are also an important part of the real world.

A component of a problem solving technique is
modeling, i.e., the construction of a mathematical
model, identification of objects, processes, and rela-
tionships involved in a problem with mathematical
objects, processes, and relationships. Some of the
relationships and properties can be numerical, i.e.,
ones that can be measured or counted. Logical rela-
tionships and properties are also possible (for exam-
ple, you need to ride the bus until you can get on the
train, or you need to understand whether there is
enough money to buy something).

The described class of problems includes, for
example, constructing a height diagram for classmates
and its variations over the year, calculating the number
of different kinds of student’s pets, the distribution of
the sum of points obtained by rolling three dice, draw-
ing up the budget of a party for classmates; scheduling
tours to a neighboring city, and drawing up the budget
for purchasing equipment for the school computer
class.

Numbers, relationships, and dependences between
them remain an essential element of a mathematical
view of the world. However, a radical change in the
priorities is taking place. In traditional school for mass
students, the stage of modeling was not central, and a
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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model was always created according to standard tem-
plates: “the path is the speed multiplied by time,” “the
distances for pedestrians should be added.” The stu-
dent only had to be able to recognize which template
to choose from a small number of standard templates.
In the worst case, a model will be built by the teacher,
and you will only need to solve an equation and pre-
cisely calculate everything. In 21st century school,
computations can be fully delegated to a computer,
and the main educational load will be transferred to
the modeling stage [13], [14]. In this case, the variety
of modeled situations can be significantly increased,
including beyond situations that are normally consid-
ered in school physics.

The construction, use, and discussion of discrete
mathematics structures and their properties make it
possible for learners to construct models in social
humanitarian fields. Relationships on strings (finite
sequences) provide the students and the teacher with a
clear system of concepts, in fact, constantly used in
linguistic and, for example, historic courses. Various
cycles arise in the “World Around” course: seasons,
moon phases, and a week cycle. Tree structures (finite
graphs) are used in biology for classification and in
“World Around” and historic courses for constructing
genealogical trees, including family trees of students.
In computer science and programming, strings
describe software codes and the course of a particular
computation, while bags describe possible choices.

Finally, we note that, along with mathematical
models of reality, actual representations of mathemat-
ical objects are constantly used in the course. More-
over, these representations are objects of mathematical
activities of students. A string of digits written on paper
is a (natural) number.

Feedback. It is utterly important not to finish prob-
lem solving with a numerical answer: work of this kind
is similar to the motion of a robot that has no feedback
to reality when following its algorithm. The result
obtained by modeling should be tested for mathemat-
ical and life likelihood, i.e., should be compared with
a specific reality. A comparison of results with the
problem statement, reality, and context and the ability
to doubt calculations and reasoning form a set of skills
important not only for mathematics. Considerations
concerning the order of magnitude (whether the stu-
dents in a school can make up an eight-digits number),
integrality (classical “two and a half diggers”), and
divisibility (if by condition all children stand in pairs,
there must be an even number of them) provide the
student with feedback that helps correct the wrong
reasoning in problem solving and find the mistake.
This makes it possible to increase the reliability of
solutions in a more adequate way than traditional
worked-out calculation algorithms without feedback.
The teacher helps students invent and follow various
strategies that help them find mistakes and discrepan-
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cies in both mathematical contexts and a wider variety
of tasks.

Novelty. According to the practice of mathematical
classes in the USSR and Russia, novelty and feasible
difficulty of problems is an important motivating fac-
tor for various children [15].

Following Galperin [16] and his interpretation of
Wolfgang Köhler’s research into cognitive behavior of
animals [17], we note the following characteristic fea-
tures of a personally invented solution as compared
with a solution based on a standard algorithm.

● Flexibility. A found solution can easily be trans-
ferred to other similar situations: a monkey that got an
idea of using a stick to reach a banana will try to use a
stick later to solve other tasks.

● Generalizability and modifiability. Galperin gives
an example of the same monkey that, in the absence of
a stick, rolls a blanket to use it as a stick. Another mon-
key that did not previously hit on the idea of using a
stick, but instead saw it in others, does not come up
with an idea of using a blanket in this way.

● Emotional significance. A person is proud of his or
her invention or personally found solution, remem-
bers it, and gets pleasure from problem solving in the
future. The fact that experience of a self-discovery
stimulates search activity in the future was noted by
other researchers, for example, in [18].

The importance (proof of concept) of the pedagogy
of unexpected problems is supported by the Kangaroo
Mathematics Competition [19], [20] held among 1–11
grade students. In Russia, the Competition has been
held since 1994. Thirty tasks of various difficulty other
than standard textbook problems are offered to chil-
dren. Unusual problems often give an opportunity to a
student unsuccessful in school mathematics to get a
high score in the competition. This attracts children,
their parents, and teachers, so the number of partici-
pants of the Competition grows from year to year: in
2022, almost 350 thousand students from 72 regions of
Russia took part in the competition. More than 6 mil-
lion schoolchildren participate in the International
Kangaroo Competition every year [21].

Systematicity. Visual objects of discrete mathemat-
ics, judgments of them, and operations with them
form the foundation of mathematics and computer
science and, accordingly, the basis for our elementary
school course. Nearly all introduced concepts, struc-
tures, and operations are further developed in second-
ary school and are used later, including professional
activities of 21st century’s humans just as professionals
used numbers and decimal fractions in the 19th cen-
tury.

Additionally, we form:
● a system of reasoning generalizing individual

examples;
● “big ideas” as orientation in the world, including

general problem solving methods.



S14 POSICELSKAYA et al.
The concept of a big idea emerged in natural sci-
ence education as an opposition to the notion of a col-
lection of facts [22]. A big idea is an orientation part of
the human’s view of the world without which the
whole representation and the behavior in the world
become different. Most of the 21st century skills make
up a more ancient system inherent in an educated
human than the rest of education results of the 20th
century. Such skills include the abilities to learn,
understand another person, set goals, analyze failures,
etc. Orientation in the world is changing faster and
especially rapidly now.

Big ideas of digital literacy become increasingly
necessary for orientation [23], [24]. The ability to use
orientation, in conjunction with the ability to solve
completely new problems developing in the study of
mathematics and computer science, forms the basis
for pre-adaptability [25].

A general method and a big idea cannot be learned;
you can only accumulate situations where they are
applied. A student who has mastered the general
method as applied to some class of situations begins to
see the solution to the next situation that is not new for
him or her. Then it is desirable to go to a new material.
However, if solving similar problems and demonstrat-
ing skills in such a solution remains a factor of positive
motivation, such problems can nourish motivation.

In the next sections of this paper, in parallel with
introducing the basic mathematical structures of ele-
mentary school (almost all of them appear in the first
grade), we give examples of initial exercises and prob-
lems. These examples are intended, in particular, to
illustrate the thesis of combining constant novelty with
systematicity and big ideas. Examples are taken from
two sets of textbooks: Mathematics and Informatics
Grades 1–4 [26], taking four or even five hours a week,
and Informatics Grades 1–4 [9], taking 1 h a week. The
course Mathematics and Informatics Grades 1–4 was
coauthored by A.L. Semenov, M.A. Posicelskaya,
S.E. Posicelsky, N.A. Soprunova, I.A. Khovanskaya,
T.V. Mikhailova, and T.A. Rudchenko. The course Infor-
matics Grades 1–4 was coauthored by A.L. Semenov and
T.A. Rudchenko. Although both courses were created
within the same author’s concept and under the gen-
eral guidance of Prof. Semenov, their curricula and
sizes differ. The courses were created by different
teams, so the approaches and the implementation of
particular topics differ. In what follows, we sometimes
indicate to which course particular points apply.

4. BASIC STRUCTURES

Even before school, a child encounters ordered and
unordered sets, cycles, and tables.

A chain of events is ordered: one event follows
another. Words in speech go one after another: they
can be separated from oral speech and transformed
D

into writing to obtain strings of letters, which form
words; strings of words form sentences, etc.

A shopping list is an example of a language string.
However, the purchases lying in a cart are no ordered.
They can may two loaves of bread, four bananas, a
dozen eggs, and three packs of milk. When making
these purchases, we most likely believe that all the
loaves are identical and all the eggs in the package are
identical, but an egg and a loaf are different objects.

In the child’s life, the change of day and night, the
weekdays, and the seasons form a long periodic chain
and a closely related cycle. Finally, tables arise early in
the modern children’s life as a way of structuring their
daily routine. They are also present in schedules of
trains and buses and opening hours of clinics and
shops, which children encounter in everyday life.
Often tables appear in some mobile or computer appli-
cations for preschoolers.

In our elementary school courses of mathematics
and informatics, all these structures are defined on
visual examples: this is how the child usually learns
new words. Moreover, comments are made on the
examples, for instance, “a string necessarily has a
beginning and an end” or “there are no first and last
elements in a cycle.” This creates a smooth transition
from everyday thinking to scientific thinking, about
which Vygotsky wrote [27].

Important objects are empty structures (empty
bag, empty string, and empty cycle). There is only one
empty structure of each type.

A key point is the isomorphism or identity of struc-
tures.

All objects, atomic and more complicated, can
have names. The name is usually a string of characters,
i.e., Russian or Latin letters and numbers.

5. ELEMENTARY (ATOMIC) OBJECTS
At school, symbols, elements of strings, bags, and

cycles can be:
● material objects—beads of different shapes and

colors—made of wood or plastic;
● picture cards, in particular, cards with drawn

beads;
● various graphic objects on paper, namely, on sep-

arate sheets or in a notebook;
● various graphical objects on the screen, i.e., in a

digital environment.
The elements can be combined into strings and

bags, for example, beads cut from cardboard can be
stringed together. Actual objects and graphic images
on the screen are easy to move by hand or mouse. We
can take something out of a bag and put something in
it. A string can be moved as a whole. Something can be
added to or removed from a string only at its beginning
or end. A string of cards arranged in a row on the table
can be treated more f lexibly. For example, we can
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 1. Beads used in the course. 

These are beards:

Fig. 2. Definition of identity of figures in the course Math-
ematics and Informatics. Here, all the figures are consid-
ered identical.
agree that the cards in a string can be swapped as we
wish, which means that we deal with a bag of cards,
rather than with a string. The same arrangements can
apply to elements in a digital environment.

The elements with which children work in solving
most problems of in course are beads, coins, figures
(pictures), digits and symbols of different alphabets,
traffic signs, etc. We call them atomic objects.

The beads come in eight colors (red, orange, yel-
low, green, light blue, dark blue, violet, and black) and
three shapes: triangular, round, and square. Two beads
are identical if they have the same color and shape.
The beads do not differ in size (see Fig. 1).

Two coins are identical if they have the same value.
Sometimes coins are depicted realistically, in a pic-
ture, and sometimes schematically, namely, as a circle
with a number inside.

Figures can be different; their list is not limited. In
the course Mathematics and Informatics, figures are
considered identical if there is a plane motion transfer-
ring one figure into the other. Student can stick figures
in a bag not only vertically (see Fig. 2).

In the course Informatics, the definition of identity
of figures is narrower, but more universal. Figures are
considered identical if they can be obtained from each
other by a parallel translation. In this case, say, for
road signs, we do not need to introduce a new defini-
tion of identity and, for letters and digits, we can use
the same definition, without going into details com-
plicated for first-graders. Within this definition, Fig. 3
depicts pairs of different figures.

An additional class of atomic objects consists of
symbols: digits, letters, punctuation marks, and even
hieroglyphs.

6. PROPERTIES, RELATIONS, 
STATEMENTS, AND ACTIONS

We believe that, for a teacher working with a course
in the classroom, it is useful to have a structured sys-
tem of concepts that can be used in the teacher’s inter-
nal language to describe situations and processes in
solving problems; in particular, these concepts can be
used to discuss the student’s solution with the teacher.
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
Students can learn the meaning of these concepts
gradually on examples.

At the same time, both the students and the teacher
use key concepts introduced in the textbook consis-
tently and explicitly, also on examples. We assume that
the child’s understanding of a situation appears
quickly and, later, it is strengthened and broadened in
solving problems.

An example of a key concept is the color of a bead—
one of eight. The general concept of bead properties
that beads may or may not possess refers to the
teacher’s internal language.

A key concept is the successor relation between the
beads in a string: “this yellow bead follows that blue
one”: we show this to students on examples from
sheets of definitions of the textbook. This relation is
mastered in solving problems from this and the follow-
ing lessons.

The students performs specific actions with
objects, such as connecting identical figures with a
green line. The general idea of the action, which is
understood by the teacher, is gradually formed in the
students’ mind.

The general concept of a statement that can be true
or false for some system of objects is first an element of
the teacher’s internal language. The understanding of
the fact that all statements from a problem formulation
hold for a given string is an element of learner’s work.
At some point in the course, previously trained stu-
dents are given the concepts of truth and false state-
ments. They are used to identify individual statements
in a problem formulation, which are written individu-
ally, and to explicitly state the requirement that all
these statements must take the specified values
(mostly true, but, in some problems, false as well).

An example of a statement that can be true or false
is given in Fig. 4.

In an educational situation, students can usually
check quickly and reliably whether the object they cre-
ated satisfy the problem formulation. As a rule, prop-
erties of objects are formulated as sets of statements.
These statements may include words connected with
the structure of an object and the identity of its ele-
ments. We use phrases, such as:

● there are three different beads,
● there are no three identical consecutive objects,
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Fig. 3. Definition of identity of figures in the course Informatics. The figures in these pairs are considered different.

Fig. 4. Example of a statement that can be true or false. 

“These two strings are identical: .”
● every blue bead is followed by either a red one or
another blue bead,

● a triangular bead is preceded by a red one.

To check the fulfillment of all conditions, against
each statement, it is necessary to put its value. If all
values are true, the task is performed correctly.

Authors pay special attention to quantifier words,
such as “all,” “every,” “there is,” “exists,” and others,
the meanings of which corresponds to quantifiers used
D

Fig. 5. Example of using quantifiers in a problem. 

Here, all triangular beads are ticked:

Each triangular bead is ticked.
No square bead is ticked.
None of the round beads are ticked.

Fig. 7. Example of using

Here, not all one-ruble coins a

Find a one-ruble coin that is no
in mathematics: ∀, ∃. Figure 5 gives several examples
of their use.

It is possible to use a quantifier over a subset spec-
ified by a certain property (see Fig. 6).

In the case of relatively few objects, a statement
with a quantifier is easy to verify (see Fig. 7).

If a false statement concerns objects from some
class, it is possible to give a counterexample (see
Fig. 8).
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023

Fig. 6. Example of using quantifiers in a problem. 

All red beads are round.
Not all round beads are red. 

 quantifiers in a problem. 

re ticked: 

t ticked.
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Fig. 9. Examples of true statements with quantifiers. 

There is no mushroom in this bag.

There are two mushrooms in this bag.
There are exactly two mushrooms in this bag.
There are no three mushrooms in this bag.

There is a mushroom in this bag.

There is a mushroom in this bag.
There are two mushrooms in this bag.
There are exactly three mushrooms in this bag.

There is a mushroom in this bag.

Fig. 8. Counterexamples to false statements. 

Determine whether the statements in the table are true. Give a counterexample
to each false statement.

The sum of two one-digit numbers cannot
be a two-digit number. 8 + 9 = 17F

The sum of a one-digit number and a three-digit
number cannot be a two-digit number.

The sum of a one-digit number and a three-digit
number cannot be a three-digit number.

The sum of a one-digit number and a three-digit
number cannot be a four-digit number.

The sum of a one-digit number and a three-digit
number cannot be a five-digit number.

Statement Counterexample
In the Russian language, there are no articles, but
there are many defaults expressed in the mathematical
language by formulas with quantifiers. In our course,
much attention is paid to the explication of such
defaults and their discussion with children. Figure 9
gives examples of true statements about bags.

7. STRINGS (SEQUENCES)

Examples of strings in everyday life are sequence of
events and their recording, i.e., a sequence of sounds
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
of speech and their written representation, a sequence
of moves in a game, and a recording of a game round.

On the one hand, a string is a recording, a model of
a sequence of choices. On the other hand, the creation
or drawing of a string is the result of choosing its cur-
rent symbol from the bag of symbols. A string appears
when objects are stringed; we try to get children to do
it with their hands and material beads at least once (see
Fig. 10).

A string is symbolically shown in Fig. 11.
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Fig. 12. Definition of a following element in a string. 

bead following 
the dark blue bead

bead following
the yellow bead

bead following
the light blue bead

Fig. 13. Definition of a preceding element in a string. 

bead preceding
the red bead

bead preceding
the green bead

bead preceding
the violet bead

Fig. 14. Definition of different strings, an example. 

Strings A and B are different.

identical

identical

identical

different

The first three beads in string B are the same as in string A.
But the fourth beads in these strings are different.

A B

Fig. 10. Emergence of a string of beads—bead stringing.
Fig. 11. Example of a string of beads.
A string has a beginning, which is marked with a
perpendicular bar, and an end, which is marked with
an arrow. For each object, except the last, there is an
object following it (see Fig. 12).

For each object, except the first, there is an object
preceding it (see Fig. 13).

An empty string is a rope with no beads, but with
marked beginning and end.

Two strings are identical if they coincide term by
term: the first bead in one string is the same as the first
bead in the other, the second bead in one string is the
same as the second bead in the other, and so on; the
D

number of beads in the strings also has to be identical
(see Fig. 14).

All empty strings are identical.

8. BAGS (SETS)
Bags are natural mathematical objects, at least, for

finite mathematics. From a point of view of work with
physical objects, bags are more natural than sets. One
of mathematical names for a bag is a multiset, i.e., a set
in which each element occurs with some multiplicity.
To demonstrate a bag to children, we need to take a
transparent plastic bag and put some items in it. If the
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 15. Definition of identical bags. 

These are identical bags:

Here are three identical bags:

Fig. 16. Comparison of bags, an example.

Fig. 17. Example of a table for a bag.
bag is shaken, the objects inside it will move, so we
know about the bag only what is inside it, but there is
no order on the elements of the bag.

Sometimes bags really look like bags, but some-
times they look more like boxes. Sometimes a bag has
the form of a wallet, and sometimes it is just a contour
drawn around figures (see Fig. 15).

Bags are called identical if there is a one-to-one
correspondence between them with identical objects
in them joint in pairs. Children establish such corre-
spondences, connecting pairs of identical figures with
lines. To establish the identity of bags is a more diffi-
cult task than establishing the identity of strings: it is
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
not clear where to start pairing and it is easier to get
confused (see Fig. 16).

If a bag contains beads, it is convenient to compare
the numbers of beads of each type. For this purpose, it
is possible to use the so-called bag table (see Fig. 17).
In such a (one-dimensional) table, the upper (“head-
ing”) line presents all types of beads present in the bag
(see Fig. 17).

Of course, in the course there is a wide variety of
problems that use the identity of bags: in addition to
direct comparison of two bags, the course offers find-
ing two identical among numerous ones, finding all
pairs of identical bags, building two identical bags
(material or drawn), completing bags so that they
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become identical, and so on. Complicated problems
are offered in which it is necessary to change exactly
one object in one bag so that two identical bags appear
in the picture (see Fig. 18).

The most natural operation over bags is the sum
(generalization of the sum of positive integers): “add-
ing” two bags means joining their contents in a single
bag. The other two important operations over bags are
union (maximum) and intersection (minimum). Of
course, bags with these operations form a lattice. It is
also clear that these operations naturally apply not
only to two bags, but also to an arbitrary bag of bags.

The just described operations over bags show that
not only atomic objects can lie in bags, but also struc-
tures, such as bags, strings, and words (strings of let-
D

Fig. 19. Example of a problem

р

р рм

м р

р

р

мм

рм

р м

Вставь буквы в окошки так, чт

Fig. 20. Example of a problem in which 

Use an explanatory dictionary (p
to determine whether the stateme
Mark them as T, F, or U.

Hypocrite is a type of t

Tympanum is a type of

Sustenance is an eleme

Fig. 18. Example of a complic

Color one figure in one bag so as
to obtain two identical bags.

Check your solution: join two identical b
ters). Working with a bag of words makes it possible to
precisely formulate the standard task of inserting miss-
ing letters from the Russian language course. Possible
exact wording is as follows: “write one letter in each
window so as to obtain a word from the dictionary.” Of
course, it should be clear what dictionary is meant.
The dictionary may be a standard school (paper or
electronic) one created by the student himself, or the
dictionary given in the problem or at the end of the
textbook, etc.

In our context, complicated and meaningful prob-
lems arise of establishing the correspondence between
two bags of strings, which need to be made identical
(see Fig. 19).
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 with identical bags of words. 

дрёма

обы мешки стали одинаковыми.

марка

мох

роман

хром

комар

мор

мохер

хорда

ром

an explanatory dictionary has to be used. 

aper, computer, or online)
nts are true.

ightly-woven cotton cloth.

 firearms.

nt of harnessing.

ated problem of identical bags. 

ags with a line.
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Fig. 21. Rectangles on a grid.
This problem is good because it allows simple rea-
soning steps and division into subproblems. For exam-
ple, we can notice that there is only one four-letter
word in the bag and sort out three-letter words; there
are only two words beginning with r, etc. These con-
siderations can be shared with classmates, thus mas-
tering mathematical speech and increasing the set of
heuristic techniques.

Note that such problems do not assume that chil-
dren know the meaning of all words used. The prob-
lem is formal and requires only the use of a mathemat-
ical definition. It is good if someone of the students
gets interested in some word and looks it up in a dic-
tionary on their own or with the help of the teacher. In
the methodological comments, we often recall such a
possibility. In addition, the course contains a series of
problems that require looking up specified words in an
explanatory dictionary to understand their meaning
and evaluate the truth of the statement given in the
problem. An example of a problem is given in Fig. 20.

Of course, a bag can contain numbers (strings of
digits). All numbers lying in a bag can be added or
multiplied. In this case, the commutativity and asso-
ciativity of these operations are put directly in the defi-
nition: the numbers lying in the bag are not ordered.
On the other hand, these properties receive a mean-
ingful interpretation. For example, the children can be
asked to find the sum of a bag of four 3’s and a bag of
three 4’s and to discuss why these sums are different.
Here, it is necessary to pass to another definition of
multiplication, namely, through the area of the corre-
sponding rectangle (see Fig. 21).

In the modern world problem, the addition of sev-
eral numbers is met even more often than the addition
of a pair of numbers: shopping in the store, salaries,
and the number of visitors rarely occur in pairs, rather
large amounts of such data are added up. There are
also problems in which sums have to be compared
without calculating them. Working with bags of num-
bers allows us to easily formulate such problems in the
course (see Fig. 22).

Such problems also offer a wide range of opportu-
nities for reasoning. For example, it is possible to cross
out identical numbers in bags: this operation influ-
ences the sum of each of the bags, but does not influ-
ence the difference between these sums. The remain-
ing numbers can be compared, rather than added: if
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one number from the first sum is greater by 9 and
another is smaller by 1, then the first sum is greater by
8. It is possible, crossing out close in value numbers in
two bags, to put the difference of these numbers near
the bag that contained the larger number. Of course, it
is easier to perform crossing out numbers (deleting
them, taking numbers out of the bag, etc.) in a digital
environment than on paper.

With the use of the language of bags, it is easy to
formulate arithmetic enumeration problems in which
the order of terms is not important. For example, chil-
dren can learn about Waring’s conjecture and
Lagrange’s theorem (see Fig. 23).

Of course, an important and necessary application
of numerical bags is modeling the factorization of
numbers. It is possible to enumerate all factorizations
or to specify certain constraints on the factors. An
example is given in Fig. 24.

Of course, it is natural to compare a number with a
bag where all numbers are prime and the product of
the bag is equal to the given number: this is the bag of
prime factorization of the number. Then the product
of numbers is associated with the operation of the sum
of two such bags, and GCD and LCM are obtained as
the minimum and maximum (union and intersection)
of two such bags.

9. TABLES
It is instructive to pay attention to the place of

tables in traditional school. On the one hand, they are
obviously used there: these are tables of addition and
multiplication, various tables in Russian and foreign
language courses, a great achievement of humanity—
Mendeleev’s table—is used in high school. A school
schedule, a report card, and a school register are all
tables.

However, despite the constant use of tables, they
are not learned in school as an independent mathe-
matical object. A table turns out to be something like a
notebook, which does not make sense to learn in
mathematics. The reason is that tables somehow do
not fit into a strict sequence of understanding arith-
metic. However, at the same time, the school proceeds
from the fact that students somehow know about
tables and are able to use them.

A table consists of a string of line names (the left-
most column), a string of column names (the top
line), and cells. Mathematically speaking, a table is a
map that assigns to a pair “line name, column name”
the content of the cell at the intersection of this line
and this column. One-dimensional tables were men-
tioned earlier in this paper.

For example, it is convenient to put all types of
beads occurring within the course in a table (see
Fig. 25).

A school schedule is a table with line names being
classes and column names being weekdays.
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Figure 26 gives an example of problem of drawing
up a school schedule.

More life-like conditions are possible, for example:
“every day there is a lesson of Russian language class,”
“there is exactly one music class every week,” “certain
classes go before other ones”—such requirements can
be found in state sanitary regulations. There may also
be restrictions related to workdays of physical educa-
D

Fig. 22. Problem o

M1 M2 M3

Here are bags with numbers.

Insert words and numbers such that

The sum of bag M4 is

The sum of bag M1 is

The sum of bag M3 is

The sum of bag M2 is

The sum of bag M1 is les

129
238
439
438

20

436
438
239
129
29

Fig. 23. Waring’s conjecture and Lagran

In each bag, write four numbers such tha
the following statements are true:

In each bag, all numbers are squares.

All bags are different.

The sum in each bag is equal
to fifty-four.

Fig. 24. Example of a num

In each bag, write one single-digit numb
number such that the following stateme

The product of the numbers in each bag
All bags are different.
tion or music teachers, who do not come to school
every day.

The classical use of tables concerns the solution of
logical problems that involve several statements. An
example is given in Fig. 27.

The task is to find out which drink is poured in
which vessel. The most convenient method of struc-
turing the given information is to put it in a table,
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023

f bags of numbers.

M4 M5

 true statements are obtained.

 than the sum of bag M5.

 than the sum of bag M5.

 than the sum of bag M4.

 than the sum of bag M3.

 than the sum of bag M2.s

428
239
129
29

438

127
439
238

19
438

239
438

19
438
127

ge’s theorem in a problem of the course. 

t

ber factorization problem. 

er and one two-digit
nts are true:

 is equal to ninety-six.
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Fig. 25. Two-dimensional table of a bag of beads. 

In this column all beads are orange.
In this line all beads are triangular.

Fig. 26. Example of a scheduling problem. 

Some classes are missing in the schedule.

Monday

1 class

2 class Mathematics Informatics

Informatics Russian Language4 class

5 class

6 class

3 class Literature

Music

Write down classes in the table so that the following
statements are true:

On Monday the fourth class after Reading is World Around.
On Monday Russian Language is earlier than Music.

On Wednesday History is later than Russian Language.
On Wednesday English Language is earlier than History.
On Wednesday the third class after Mathematics is English Language.

On Friday Music is later than History.
On Friday Mathematics is earlier than History.

On Friday Mathematics is earlier than History.

Wednesday Friday
marking the true statements about liquid in a vessel
with a plus sign and crossing out false statements (see
Fig. 28).

The novelty of this problem for students may be
that, in addition to explicit “something in something
else” statements, it also involves statements with nega-
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
tion and two statements combined in a single sentence.
Statements about the spatial arrangement, including
ones with terms like “adjacent” and “between,” are
good if the students have a question related to the lin-
earity of the vessel arrangement. The difficulty in solv-
ing this problem may be associated with the statement
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Fig. 28. Example of solving a traditional logical problem by constructing a table. 

Put the information in the table: cross out cells or write a plus sign.

milk lemonade kvass water

jug

glass

bottle

jar

Which liquid is in which vessel?

Fig. 29. Definition of a cycle. 

This is an empty cycle. This is not a cycle.

Fig. 30. Definition of identical cycles. 

R R RA

If cycle M1 is cut between letters I and R,
then we obtain the string RAKI.

If cycle M2 is cut between letters I and R,
then we obtain the string RAKI.

If cycle M3 is cut between letters I and R,
then we obtain the string RAKI.

A AK K KI I I

R A K I

R AK I

R A KI

Fig. 27. Example of a traditional logical problem. 

There are four liquids: milk, lemonade, kvass, and water.
They are in four vessels: a bottle, jar, jug, and glass. It is known that:

the water and milk are not in the bottle;

the lemonade vessel is between the jug and the kvass vessel;

there is no lemonade or water in the jar;

the glass is next to the jar and the milk vessel.
that “the glass is next to the jar and the milk vessel.” Is
it equivalent to saying that “the glass is next to the jar
and next to the milk vessel” or “the glass is next to the
jar and the glass is next to the milk vessel”? Why do not
we think that the glass is next to itself? Due to the dif-
D

ficulty of usage of “and” and “or” in the natural lan-
guage, we avoid them in some variants of our course
and formulate this as follows: “all statements in this
bag are true” and “among the statements is this bag,
there are true ones.”
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 31. Example of a complicated problem of cycles. 

Color all beads in the cycles so that the latter become identical.

Fig. 32. Problem of a periodic sequence. 

Fill out the table.

Number

Insert digits in cells such that each number in the cycle
is obtained from the preceding one by multiplying
by 2 and taking the last digit.

What is the last digit in the product of 10 twos?
What is the last digit in the product of 32 twos?
What is the last digit in the product of 99 twos?

Last digit
Examples of using tables for finding ALL objects
satisfying a system of conditions can be found, for
example, in [28], [29].

10. CYCLES
In a cycle, each element has a preceding and a fol-

lowing one. There is no beginning or end in a cycle.
The direction from the preceding element to the fol-
lowing one is indicated by arrows (see Fig. 29).

A cycle can be cut to obtain a string. Two cycles are
identical if they can be cut so that two identical strings
are obtained (see Fig. 30).

In the case of cycles, even the problem of creating
two or three identical objects can be complicated and
informative (see Fig. 31).

Cycles find a variety of mathematical appendices:
periodic sequences, arithmetic of remainders (see
Fig. 32).

The problem in Fig. 32 is an introductory one in
experimental mathematics. Filling out the table (it can
be supplemented by a top line with products them-
selves, which can be found using a calculator), we see
that the last digit in the products of 2’s repeats. The
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
drawn cycle prompts the idea of the proof. In the
course of solving the problem, or after its completion,
the teacher can offer other problems of the same type.
For example, someone of the students turns away
(closes their eyes), two numbers are written on the
board, and their digits, except for the last one, are cov-
ered. Can the student determine the last digit of the
product? Why would it be so?

The problem becomes quite feasible if the students
have invented some algorithm for multiplication of
multidigit numbers, for example, the ancient Indian
algorithm of “diagonal” multiplication, but discussing
this issue would take us away from the main topic of
this article.

11. TREES1

Trees are finite directed graphs with one node
(root) having no incoming edges and with any other
node having exactly one incoming edge. Nodes of a
tree can contain any elements used previously for con-

1 This description is relevant only to the Informatics course. The
course Mathematics and Informatics is restricted to only binary
trees.
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Fig. 34. Problem of constructing all paths in a tree. 

R

V

Construct the bag V of all strings from tree R. For this purpose,
color all beads in strings in V.

Check your solution: connect each leaf of tree R with
the string from the bag that was constructed for this leaf.

Fig. 33. Definition of a tree based on examples in the course Informatics. 

SISKIN

F

A

J

SERVES

A LADLE

A FIRE IRON

A CARRYING POLE

A SIEVE

X

P

C

X

У

M

M

А

А

А

А

Е

В

В

CALLS

POURS OUT

HANDS OUT

This is the beginning of the tree

WITH
structing strings and bags, namely, beads, figures, let-
ters, words, etc. By analogy with strings, the beginning
(root node) of a tree is marked with a bar. Each node
of a tree has exactly one preceding node (parent) (if it
does not lie at the first level of the tree) and a finite
number of succeeding nodes (children). If there are no
children, then the node is called a leaf. Leaves of a tree
are marked with outgoing arrows by analogy with the
D

end of a string. A string is also a tree with each node
(bead) other than the last having exactly one child.

Suppose that, in a tree, this is a string going from its
root node to a leaf.

Examples of trees with a linguistic meaning are
given in Fig. 33: following a path in the tree, we read a
phrase or word.
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 35. Work with a tree of descendants. 

Alexander I
1801�1825

Paul I
1796�1801

Peter III
1761�1762

Peter II
1727�1730

Anna
1730�1740

AnnaAlexei

Sofia

Irina Pelagia

Boris Nikita

Feodor
1676�1682

Ioann V
1682�1696

Alexei
1645�1676

Feodor Nikitich
(Filaret)

Alexander I was a grandson of Peter I.

Paul I was a son of Peter III.

One of Sofia’s brothers had the same name as his great-grandfather.

Peter I reigned earlier than his brother Feodor.

Anna Ioannovna was a cousin of Yelisaveta.

Peter I had five children.

Statement P

P

Ioann

Ioann

Anna

Peter I
1682�1725

Michael
1613�1645

Yelisaveta
1741�1761

Margarita

Fyodora Natalya

Vasili

Peter
The authors have decided that the identity of trees
is too complicated and lengthy subject for elementary
school, so it is not discussed in the course.

On trees, we define the operation of transition from
a tree to the bag of paths consisting of all strings that
can be read on the paths of the tree (see Fig. 34).

Trees can be found in various classes. The example
in Fig. 35 is a tree of ancestors and descendants.

Such trees are also used in biology classes. They
present various classifications and identifications
based on them.
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
The construction of a tree helps to solve the prob-
lem of enumeration of variants; for this purpose, we
construct a tree, write in all its paths, and calculate the
resulting different strings (see Fig. 36).

It is also useful to construct a tree in the study of
perfect information games and in the construction of
a winning strategy (see Fig. 37).

A tree allows us to investigate the possible positions
of Robic after performing, say, two commands (see
Fig. 38).
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Fig. 36. Example of the problem of searching for all variants. 

In a sewing workshop, there are red, blue,
and yellow buttons. The clown’s costume
should have three big buttons of three colors.
How many variants of buttons are there?

K

Fig. 37. Example of a branch of the tic-tac-toe tree. 

M

M is a branch of the tree of a tic-tac-toe game. Each string from M is a possible
end of the game round from a given position, which is placed at the first level of M.
All strings from M are all possible ends of the game round from the given position.

As in the complete tree of the game,
each leaf node of the branch
is an ending position.
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Fig. 38. Example of a tree of executing a two-command
program. 

After executing a command of a right
move, Robic can move left, down,
or right. After executing a command
of down move, Robic can
move up, right, or down.

D

D is the tree of executing programs
of two commands from a given
initial position.

Fig. 39. Definition of a binary tree in the course Mathe-
matics and Informatics. 

Here is a binary tree:
leaf node

edge

edge

root
edge

branch node

branch node

The tree has edges, branch nodes, and leaf nodes.

Every edge ends with the next branch node or a leaf node.

Every edge, except the root one, begins at a branch node.

The tree begins with a root edge.
12. BINARY TREES2

A variant of the tree topic in our courses is based
only on binary trees. In this case, the system of defini-
tions is somewhat different from the one considered
above. A binary tree consists of a root node, edges,
branch nodes, and leaf nodes (example in Fig. 39).

Exactly one edge leaves the root node. Each edge
comes a branch node or a leaf node. Exactly two
edges—left and right—leave each branch node.

Trees can be bent differently, but they remain the
same (example in Fig. 40).

The path from the root node to a leaf can be speci-
fied as a sequence of left and right choices at all branch
nodes, i.e., by a string of letters L and R. This string
receives the name of the corresponding leaf node. For
example, if we go from the root node to the left and, at
the second branch node, again to the left and come to
a leaf node, then this leaf is called LL (see Fig. 41).

Having a bag of names of all leaves, we can draw the
whole tree. Several students can be invited to construct
their own trees, having the same bag. Can they obtain
different trees? If this happened, we propose that chil-
dren exchange the figures and explain each other what
they did. For comparison of trees, leaves with identical
names can be colored the same color, etc. Eventually,
the error will probably be found and it will become
clear that there is only one correct tree.

2 Not only binary, but also any finite trees are considered in the
course Informatics.
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The problem arises how to explain and prove that
identical trees are always obtained from the same bag.
In an attempt to sort out this issue, we can begin with
very simple bags, for example, ones consisting of sin-
gle- and two-letter names (see Fig. 42).

In constructing trees, we can try to apply the
divide-and-conquer method, which is known to the
children. Specifically, the bag is divided into two: one
contains all names beginning with L, and the other
bag, all names beginning with R. Quite quickly in the
discussion, one of the children comes up with the idea
of throwing away the first letter in all names (strings)
in these two bags. Now we can construct a tree for each
of these bags. It seems that we begin to understand
why everyone gets the same tree from the same bag.

If a tree has complex geometry, it is not always easy
to distinguish between its left and right parts (see
Fig. 43).

In this figure, the leaf nodes of the left subtree are
colored red, while the leaf nodes of the right subtree
are colored blue.

Binary trees have a deep arithmetic application.
Children sometimes do not understand the meaning
of taking an expression in brackets. Here is an example
of calculation:

27 + (45 : 9) =
(i) 45 : 9 = 5
(ii) 27 + 45 = 72
What is the mistake? The student does not under-

stand that the result of the first action has to be used in
the second action. To resolve this difficulty, it is useful
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Fig. 40. Definition of identity of binary trees. 

Here are five trees:

Here are another five trees:

Here, all trees are also identical:

Fig. 41. Definition of the bag of paths of a binary tree. 

Near each leaf node
of the tree D, we have
written the path to this leaf.
M is the bag of paths of tree D.

LRLR

LRLR
LRLL

LRRL
LRRR
R

LL

LRRL

R
M

LL

D

LRLL
LRRR

Tree D has six leaf nodes.
Bag M contains six string
of letters L and R.
to enclose this pair in an oval, having added brackets
from above and below:

Then the oval is replaced by the result of the first
action and the final result is calculated.
D

Binary trees perfectly describe this process of per-
forming operations with two arguments. To find the
value of the expression, the numbers involved in the
expression are “paired” in a certain order (see Fig. 44).

Enumerating binary trees, we can simultaneously
enumerate all ways of placing brackets in this numeri-
cal expression (see Fig. 45).
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 42. Preparing to the proof of the fact that identical (binary) trees are always obtained from the same bag. 

Color the leaf nodes of the trees according to the table.

Tick the same tree as D1.

Find another pair of identical trees. Connect them to each other.
D2 D3 D4 D5

D1

L red green

orange blue

violet

LR RL

LL RR

R

Path Color ColorPath

yellow
These problems are similar to ones often found in
collections of recreational math problems where the
task is to place brackets in an expression so that it
receives a given value (see Fig. 46).

If earlier children could solve such a problem only
intuitively, now they, generally speaking, can systemi-
cally enumerate all bracket arrangements and prove
the possibility or impossibility of obtaining the given
value of the expression.

Finally, we note that the binary property of asso-
ciative and commutative operations, such as addition
and multiplication, is not the natural necessity. A sin-
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023

Fig. 43. Coloring of the left and right parts of the binary
tree.
gle bracket (oval) can contain several terms or factors;
in this case, of course, it is necessary to use a nonbi-
nary tree (see Fig. 47).

13. OPERATIONS WITH STRINGS AND BAGS

Joining bags together is the analogue of the union
of sets. Two bags can be joined together to obtain a
new bag (see Fig. 48).

A bag can be divided into parts (see Fig. 49).
In this case, some part may turn out to be empty

(see Fig. 50).
The operations with bags thus introduced can be

used to formulate a wide variety of problems accessible
to children that may go beyond the informatics curric-
ulum, for example, work with numbers and with lan-
guage structures (letters, words) (Fig. 51).

The operation of joining strings together is an exam-
ple of a noncommutative operation important for ele-
mentary school (different from addition and multipli-
Fig. 44. Construction of a tree for calculation of an arith-
metic expression.
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Fig. 45. Example of calculating the value of an arithmetic expression with the help of a binary tree. 

Each window contains a numerical expression without brackets. In each
window, draw a calculation tree such that all of them are different. Place
brackets in the expressions so that the calculation trees correctly
depict the order of operations. Solve the resulting expressions.

Fig. 46. Traditional recreational math problem of placing
brackets.

Place brackets in the expression to obtain
the true equality. Draw the calculation tree and
check the solution.

Fig. 47. Example of a nonbinary tree of calculating the
value of an arithmetic expression in the Informatics course. 

Multiplication

U

Division
Addition
Subtraction

Fig. 48. Definition of the operation of joining bags
together. 

A

Adding all beads from bags A and B together,
we obtain bag C.

B

C

Fig. 49. Definition of the operation of partitioning a bag.

K M

Y
Partition bag Y into two parts: bags K and M.
cation). Joining two strings together yields a new
string. If the order of the strings in joining is changed,
a different result is obtained (see Fig. 52).

If one of two strings to be joined together is empty,
the joining result is the other string (see Fig. 53).

The operation of joining bags of strings together is
useful in solving combinatorial and linguistic problems
(see Fig. 54).
D

Due to the operation of joining bags of strings
together (introduced in Informatics 3 Grade), the rules
in Russian and foreign language courses, for example,
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 50. In partitioning a bag, some of the resulting parts
can be empty. 

Y

T C
concerning word change and word formation can be
explained in rigorous mathematical terms and can
simultaneously be made visual.

An example from etymology is given in Fig. 55.
For the operation of joining bags together, it is con-

venient to use the table presented in Fig. 56.
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023

Fig. 51. Problem of parti

C

F

Construct a partition of bag F int
such that each number in C is les
in T is greater than 50. Fill out as

Fig. 52. Definition of the operation of joining toge

Fig. 53. Definition of the operation of joining togethe
14. TRANSFORMATION OF STRUCTURES 
INTO OTHERS

Table of a bag. The table of a bag indicates the
number of objects in the bag and their type. The table
can be one-dimensional (such tables were mentioned
in the definition of identity of bags) or two-dimen-
sional. Sometimes, a table is supplemented with

● another column on the right, with each of its cells
containing the sum of the numbers from the preceding
cells of the row,

● another row at the bottom, with each of its cells
containing the sum of the numbers from the above
cells of the column.

In the table, there is a corner cell added both in the
row and in the column. It also contains a sum. In this
case, we could obtain two sums: from the row and the
column. However, they are identical! A remarkable
research problem for each student is why so? (See
Fig. 59).
tioning a bag of numbers. 

T

o two parts (bags C and T)
s than 50 and each number
 many windows as required.

ther (concatenation of) strings. Noncommutativity.

r (concatenation of) strings. Joining an empty string.
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Fig. 54. Definition of the operation of joining together (concatenation of) bags of strings.

Table 1

Honey Ginger Total

Biscuits
Cakes
Total

Fig. 55. Example of a problem of gluing bags of words.

D S

Bag D contains bases of Russian words, while bag S 
contains endings of nouns. Joining bags D and S yields a bag 
of Russian words, each one given in all cases. 
Do the joining and fill out the window.
A bag is uniquely determined by its table if the
string of row and column names is specified. Bags are
identical if and only if their tables are identically filled
(we mean that the tables are identical, i.e., they have
the same strings of row and column names).

Interesting problems are obtained if some of the
added cells and some of the original are filled out
(Fig. 58).

Students also can think up problems that involve
filling out a table (see, e.g., Table 1) using numerical
information on objects. Possibly, they will face situa-
tions when the problem has no solutions or, on the
contrary, there are several solutions. That is where real
mathematics begins.

On the counter, there are Christmas pastries
arranged in 10 rows with 9 items in each: different
cakes and 70 biscuits. There are only 10 ginger cakes
left… Pity! But there are honey ones, not only cakes,
but also biscuits. A total of 60. How many honey bis-
cuits are there on the counter?

Work with tables is the first step in understanding
and applying spreadsheets.

Joining a string in a cycle can be performed in only
one way (see Fig. 59).
D

Cutting a cycle to obtain a string can be done along
any arrow (see Fig. 60).

Sometimes it is not easy to reconstruct the string
from the cycle from which it was obtained by cutting
(see Fig. 61).

The number of different strings obtained cutting a
given cycle does not exceed the number of elements in
the cycle, but can be smaller if the cycle has symme-
tries.

Cutting a cycle of length 7 yields either one or seven
different strings. For any divisor m of the cycle length
N, it is possible to think up a cycle of length N that
when cut yields exactly m different strings.

Bag of beads of a string or a cycle. From all beads of
a bag, it is possible to construct numerous different
strings (see Fig. 62).
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 57. Example of a problem of joining two bags together: generation of numbers of the second ten. 

Fill out the windows so that the equality is true and the bag X � Z
contains all Russian names of numbers from 13 to 19.

TEEN@

X Z

Y Z

THIRX

Fig. 56. Example of a problem of gluing three bags: roots, suffixes, and endings.

V S F

W

If necessary, it is possible to join three bags. The result will be a bag 
of all strings produced by joining a string from the first bag, 
a string from the second bag, and a string from the third one. 
For this joining operation, it is convenient to draw a tree. 
Using the tree W, build the bag V � S � F 
and fill out the window. 
However, a given string has only one bag of beads.
How many different cycles can be made from a

given bag of beads? If all beads are identical, then only
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
one. And what if some of them are different or some of
them are identical? An exhaustive search of variants is
discussed in more detail in M.A. Posicelskaya’s paper
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Fig. 61. Joining a string into a cycle. 

Monday Monday

Sunday Sunday

Saturday SaturdayWednesday Wednesday

ThursdayFridayFriday Thursday

Tuesday Tuesday

Fig. 58. Use of a two-dimensional table for joining two bags of strings together. 

Bag B
Bag A

Fig. 59. Example of the table of a bag with added total column
and row. 

Total

Total

Fig. 60. Example of a problem of filling out the table of a
bag with added sum cells. 

Vasya saw a bag with figures and began filing out its table.
Without looking at Vasya’s bag, complete the table.

apples pears

red 2 5

1

6 56

3

10

0yellow

green

plums total

total
“Constructive combinatorics in elementary school
mathematics” published in this issue.

15. PROCESSES

Processes developing in a visual environment and
their specification with the help of software programs
and game rules provide important meaningful classes
of problems. These problems clearly contribute to the
D

achievement of the goals of modern mathematical
education in elementary school, to the formation of
computational thinking, and to the preparation for
further education and life in the digital world. This was
stated by Ershov with his slogan “Programming is the
second literacy” [6], [7].

We only mention this range of problems without
providing all necessary definitions. The interested
reader is referred to the Russian informatics courses
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 62. Problem of cutting cycles. 

Join each cycle to all strings that can be obtained from it by cutting.
р р

т o o

o к

к ч

у

ирост
торс
трос
сорт

отрок
рокот
роток

лучик
кулич
чулки

лс

т

Fig. 63. Problem of reconstructing a string from a cycle. 

C1

C2

C

C3

C4

Which of the strings can be colored up so that this string is obtained
by cutting the cycle C? Color the beads in this string.

Fig. 64. Making a string from all beads in a bag. 

Task: Make a string from all beads in bag F.

F

Another possible result:

Yet another:

Result: all beads from bag F arranged in a string.
created over the last decades we the participation of
this paper’s authors [9], [10], [30].

The Virtual robot Aquarius (implemented as a
stand-alone computer program) simplifies the formu-
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
lation of water pouring problems for teachers, while,
for second-graders, it helps to make numerous prob-
lem solving attempts and, when an answer is obtained,
it demonstrates the path that led to it, namely, a string
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Fig. 65. Problem in a paper textbook about the virtual robot Aquarius. 

On the computer control panel for the Fox-Aquarius, each button
is a command. Olya worked with the Aquarius program and
performed the following task: Obtain four measures of water in any
of the vessels. Here is the table with a string of commands
obtained by Olya. The capacities of the vessels (in measures) are given
in the table below their names. Write in the windows to the right
of each command how many measures of water there are in each
of the vessels after executing this command.

Button-command “Fill up C”: vessel C is filled
with water from the tap.

Button-command “Pour the water
from A into B”: The water from A is poured
into B until it is full. The rest
of the water remains in A.

Button-command “Pour all the water
from the vessel B” into the sink.

Control panel for the Fox-Aquarius

fill up B
pour from B to C

No. Command
A

(8)

0 0 0

C

C

C

C

B

B

C

A

A

A

A
A

A

A A

AA B

B

B

B

B

C

C

C

C C

C

B A

A

B

B
(5)

C
(3)

pour from A to B
fill up A
pour from A to B

Control panel
of commands. To solve such a problem on paper, it is
necessary to fill out a table of states, which, of course,
takes much more time than in a screen environment
(see Fig. 63).

Problems with the Robic performer are propaedeu-
tics preparing for work with a Robot performer in mid-
dle school. Robic works on a grid of squares. It can
perform four commands (up, down, right, and left)
and automatically colors the square that has been
passed through. In addition to simple linear programs,
a repeat structure (cycle) is introduced into the course
(see Fig. 64).
D

Perfect information game is one in which, after
every move, all players know all previous game posi-
tions and all positions that can be obtained after the
player’s current move. The course involves several
two-player games with simple rules: stones, tic-tac-
toe, sliders, and Sim. A game round is a string of game
positions (see Fig. 65).

For simple games with a small number of possible
positions, one can construct a complete game tree. It
is a convenient tool for investigating all positions and
constructing a winning strategy, if any. For example,
Fig. 66 shows the complete tree of a stone game with
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 66. Problem in a paper textbook about the Robic performer. 

Given a program G (with some commands missing)
and Robic’s positions before and after executing G
(Robic’s location is not given). Insert the missing
command in each window. Mark Robic’s location
in the field before and after the execution of G.

Initial position:
Position after the execution
of program G:

down
down

down
down

left
up

left
up

G

Fig. 67. Problem of constructing tic-tac-toe rounds with an indicated winner in each round. 

A

Here are two identical starts of tic-tac-toe rounds.
Complete strings A and B so that the first player wins
in round A and the second player wins in round B.

B

seven stones in the initial position and with one, three,
or four stones allowed to be taken every move. For
each position, the number of remaining stones is indi-
cated. The losing and winning positions (from the
point of view of the player whose turn it is) are colored
in blue and red, respectively (see Fig. 66).

Final positions (tree leaves) are always losing (the
game is up, and the player whose turn it is has lost).
Next, moving from the leaves to the root node, we
color a position red if there at least one blue position
among the ones succeeding it. As a result, we find that
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
the initial position of the game is blue, so the first
player has no winning strategy, while the second player
can win if each of his or her moves leaves a losing posi-
tion to the opponent.

16. CONCLUSIONS

Today, looking back at the 35-year experience in
creating teaching materials, textbooks, programs, and
standards and their use by hundreds of teachers and
tens of thousands of students, we can say that the pro-
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Fig. 68. Complete tree of a stone game with seven stones in
the initial position and with 1, 3, or 4 stones allowed to be
taken every move.
posed approach is sustainable and accessible to teach-
ers who are ready to look anew at school mathematics,
student’s work, and the environment of this work.
Among the courses we created, there were ones that
successfully combined the main material discussed
above with more traditional topics of school arithme-
tic. It seems that such a combination can also be pro-
ductive, effectively helping the traditional component.
It also seems obvious that this new mathematical
framework is relevant for the development of compu-
tational thinking [31], [32] and a mathematical digital
competency [33].

It seems that our approach is free from obvious
shortcomings of New Math. The only essential obsta-
cle to its further spread is intellectual inertia and natu-
ral resistance to everything new and “different.”

Concluding this discussion, let us once again dwell
on the obstacles that arise in the way of implementing
our approach, both from the point of view of the sys-
tem of basic objects and types of tasks, and from the
point of view of methodology. We discussed the need
to have tasks of varying degrees of difficulty, in partic-
ular task sequences where each increment of difficulty
would be optimal for each student. Thus, the total
number of tasks is increased compared to the option
for one student. Another problem is related to the fol-
lowing. A traditional arithmetic example or text prob-
lem takes up little space on the page in a problem book
or textbook. We manage to place our tasks on the page,
usually no more than five, and sometimes one task
takes more than a page. If both circumstances are
taken into account—the need to have more tasks and
D

use more space on the page for each—then we get an
increase in the volume of the problem book several
times compared to the traditional one. Naturally, this
is reflected in the cost of publication, especially con-
sidering the use of color printing. Nevertheless, our
paper manuals are used in dozens of public and private
schools. But our experience shows that the cost of pro-
ducing a textbook is a significant barrier. The way out
of this situation is obvious today: this is a textbook
(task book) on a digital medium—on the screen of a
tablet.

We continue our work and consider it important to
introduce it to teachers, parents, mathematicians and
the wider community.
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