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Abstract—This paper considers an approach to mathematical education adequate to the task of developing
mathematics and its applications in the 21th century. This approach is based on improving the efficiency of
the educational process by maintaining the motivation of students of various categories. The basis for the for-
mation of motivation is, on the one hand, independent design; invention of mathematical objects, methods
of action, and models of the world around us; and the discovery of facts of mathematical reality and, on the
other hand, solving of new, unexpected, and feasible tasks for the student. The student’s work is similar to the
work of a mathematician–researcher and programmer. The possibilities of research work in educational
mathematics are significantly expanded due to computer-based intramathematic experiments. Debugging a
computer program is a special kind of mathematical experiment.
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1. INTRODUCTION

The need for public high-quality mathematical
education and the generation and preservation of
interest in mathematics is growing all over the world.
However, modern mass education does not meet this
need. One of the reasons for this is that the education
that a child receives in school is irrelevant to what he is
interested in today and what he will need tomorrow.

Simultaneously, an idea of the system of mathe-
matical education has already been developed, in
which
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• the subject content meets the needs of the digital
economy and the entire digital world;

• the methods of work mastered by the student
from the very beginning of learning are natural for
him, correspond to natural curiosity, and, at the same
time, are the methods of activity of a professional
mathematician and programmer;

• the educational process is accessible and motiva-
tional for most students and easily establishes individ-
ual trajectories that correspond to personal goals; and

• the main educational outcomes outside of math-
ematics (metasubject, personal, etc.) are also key in
the world of today and that of the future.

This article, in describing the general perspective of
the approach under consideration, focuses on the role
of a mathematical experiment in the work of a
researcher and a student; an experiment is a necessary
and, perhaps, central element of this approach.

2. PROBLEMS OF MASS MATHEMATICAL 
EDUCATION AND WAYS TO SOLVE THEM

The system of mathematical education at different
levels was created in Russia at the beginning of the
20th century, became widespread in our country in the
late 1930s. and was restored after the Great Patriotic
War. This system was based on the need to prepare
strong public-school students (the “upper quarter of
the class”) to continue their education in engineering
universities. The results of the rest were evaluated “by
8
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subtraction.” Individual schoolchildren with out-
standing results had the opportunity to receive indi-
vidual help from a good teacher; attend a preparatory
group for a university, including a correspondence
schools; attend a specialized mathematical school;
and then enter the university’s mathematical faculty.

Today, we are faced with a paradox: the role of
mathematics in society is growing and civilization is
becoming digital, while interest in school mathematics
in society is declining. Indirect, but clear, evidence of
this is the shortage of students (at least motivated,
capable ones) in the IT specialties of many universities
that has persisted for decades.

The basic reason for this, we believe, is that the lit-
eral content of school mathematics is not needed in
the modern world, as all this can be done by computer.
The fact that it is this content that is checked in the
Unified State Examination (USE) only exacerbates
the situation, but the USE itself is not the main factor.
Mathematics appears to be an archaic school subject
out of touch with daily life.

The key slogan of the ongoing transformation is the
very simple and, for many of us, obvious statement of
Paul Halmos that “the only way to learn mathematics
is to do mathematics” ([1], p. 7).

We believe that we have the opportunity to stop and
reverse the process of declining student interest in
mathematics. We can make mathematics a truly main-
stream school subject, so that its content will be
needed in the digital world, and educational outcomes
will go far beyond just mathematics. This is due, in
particular, to the achievement of goals that are already
constantly proclaimed for mathematical education,
but are not implemented in a public school: the devel-
opment of logical thinking (“Logic”), modeling of
the real world (“Modeling”), and awareness of the
beauty of mathematical objects and constructions
(“Aesthetics”).

Along with these goals, which are becoming realis-
tically achievable, we emphasize the importance of
another, also not new, goal. This most important goal
is the creation of the ability to solve completely new,
unforeseen, and unexpected tasks, readiness and
interest in such a solution (“Novelty”). Asmolov pro-
posed the term “preadaptation” for this personality
trait [2, 3]. We will explain this in more detail, but let
us start with the fact that such a quality is an obvious
quality of a professional mathematician that is neces-
sary in his professional work. Accordingly, it is (or
should be) developed in the training of professional
mathematicians. The most remarkable thing is that
this quality is becoming more and more necessary for
a modern person in any workplace and just in everyday
life.

It is fundamental that, by bringing the mathemati-
cal activity of a schoolchild closer to the activity of a
professional mathematician, the listed goals can
become real goals of public mathematical education.
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Of course, this does not mean that the mass of school-
children will discover really new mathematical results,
but the public schoolchildren will gain experience in
discovering new results for themselves and will be able
to use this experience in later life.

When speaking about results “outside of mathe-
matics,” we mean the general, clear understanding in
the mathematical community that Khinchin called
“the educational effect of mathematics lessons” [4],
that Firsov called “teaching mathematics” [5–7], and
what in today’s official texts is called “metasubject and
personal results.”

The most significant, in our opinion, is the possi-
bility and necessity of switching the goals of public-
school mathematics (real ones, not proclaimed ones)
from memorization of “close to the text” algorithms,
rigidly formalized heuristic (often mnemonic) rules,
formulations of theorems, definitions, and proofs to a
completely different system of studying mathematics.
This other the system entails:

• independent invention and discovery, instead of
memorization; experimentation, trial and error, and
“debugging” (in a broader sense than debugging a pro-
gram), including using a computer; and finding and
exploring suitable visualization as a basis for observa-
tion and intuition;

• using error as a source of advice from the teacher
and the progress of the student, and not as an indis-
putable basis for punishment with a bad grade;

• constantly solving nonstandard tasks that are
new for the student (and in many cases for the teacher)
instead of working out error-freeness and speed in
solving standard problems;

• the joint search for a solution by a teacher and a
student, including solutions unknown to the teacher;
the teacher as a master of mathematical search, dis-
covery, experiment, and use of error;

• solving problems similar to those already solved
is by no means prohibited if it contributes to better
understanding, helps in solving new creative prob-
lems, and at the same time promotes motivation:
“That’s what I can do quickly and accurately”; how-
ever, such a decision cannot be based on coercion or
be the main element in assessing the student’s results;
and

• for calculations, including arithmetic and alge-
braic ones, solving equations, etc., which are now
included in mathematics programs, the use of digital
technologies is allowed: a calculator or computer alge-
bra systems, just as happens outside the school walls.

One can express doubts about the fundamental fea-
sibility of the described system, including the achiev-
ability of the “Novelty” goal for the majority of stu-
dents. However, we possess serious arguments in favor
of such achievability. This system is based on produc-
tive traditions that are intellectually much more pow-
erful than the Soviet school system and the schools of
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a number of other countries that were created for the
purposes of industrialization (the “industrial revolu-
tion”). This has become a stable practice of mathe-
matical education in a number of Russian schools in
recent decades. These traditions and practices include
the following.

• Traditions of entertaining problems (beginning
from antiquity, Alcuin’s problem book, continued by
Ignatiev, Perelman, et al. [8–12]).

• The International Kangaroo Olympiad, covering
dozens of countries [13], was largely supported in Rus-
sia by the St. Petersburg professional mathematician
Bashmakov [14], despite the negative attitude towards
it of a number of influential, including administrative,
educators. This Olympiad constantly attracts tens of
percent of all primary-school students in the country
and meets the enthusiasm of a large number of pri-
mary-school teachers. The tasks of this Olympiad are
varied and completely different from the problems in
elementary-school textbooks, while most students of
each class successfully solve several problems; even the
most difficult and, we repeat, unexpected tasks are
accessible to many people.

• The system of circles and mathematical classes in
different communities, dating back to Russian univer-
sity-circle education. One of the most significant and
stable is that of Konstantinov, the origins of which can
be found in the Luzin group in Moscow [15].

• In parallel with the Russian tradition of modern
mathematical education, traditions were also formed
in other countries. In the United States, this tradition
is usually associated with the name of Robert Moore,
who began teaching undergraduate students at the
University of Pennsylvania in 1911, which was based
on what was later called “inquiry-based learning,” an
exploratory approach to mathematics. Moore’s favor-
ite principle was a saying attributed to Confucius: “I
will hear and forget, I will see and remember, I will do
and understand.” In this text, we turn to one of the
most prominent representatives of this tradition, Paul
Halmos. This approach was limited to higher educa-
tion (the journal [16] devoted to this approach is called
the Journal of Inquiry-Based Learning in Mathemat-
ics); the contingent of students to whom this approach
was addressed, in terms of mathematical level, is
apparently closest to that of our high-school students
from public mathematical and IT-oriented schools.

• The tasks for constructing and debugging algo-
rithms (programming) included in textbooks on the
subject “Computer Science” (formally “Fundamen-
tals of Informatics and Computer Science” or “Com-
puter Science and ICT”), introduced in all schools of
the country in 1985–1986, have a high level of diver-
sity and individual novelty. This line continued in the
following decades and witnesses no large-scale rejec-
tion. Education in algorithmics and creative program-
ming is developing in the world at different levels of
D

education [17–22]; in the last decade, it has been
booming under the somewhat strange name “coding.”

• An innovative computer-science course for ele-
mentary schools, integrated with mathematics or
studied separately, has been successfully studied in
various variants [23–25] by tens of thousands of stu-
dents in a number of elementary schools in the Rus-
sian Federation for decades, which convinces us that it
is possible to achieve results in working with each stu-
dent. The course provides for the possibility of optimal
selection of tasks for each student with a combination
of novelty effects with the effect of “reliability and
confidence.”

The spread of the traditions of training professional
mathematicians in the best universities and working
with highly motivated children in specialized mathe-
matical schools and mathematical circles to public
mathematical education is dictated by the needs of
digital civilization and becomes possible thanks to the
digital technologies of the modern world.

The following characteristics are essential for our
construction of the content of mathematical educa-
tion.

1. Content relevant to the digital age:
• in the professional and private life of a person,

the need for technical computing skills has disap-
peared, as computers help, and routine calculations
and other standard elements of educational work are
also allowed to be performed using a computer at
school;

• at the school level, the general foundations of
modern mathematics and computer science are sys-
tematically visualized, significantly expanding tradi-
tional arithmetic with its four actions; and

• the content of the mathematics course is inte-
grated with a computer-science course and is the basis
for understanding “how” digital technologies and arti-
ficial intelligence work.

2. Mathematical experiment and discovery is an
essential part of learning activity. Time for this is freed
up as a result of reducing the amount of training in
manual calculations.

3. A high level of novelty, “nonstandard” tasks is
provided that is individually selected for each student
at the optimal level of complexity.

One of the main (perhaps the most important) of
the projected and actually achieved effects is the
growth of interest in mathematics among children.

A computer is explicitly mentioned in characteris-
tic 1; at the same time, it is necessary in most of the
experiments of schoolchildren (characteristic 2) and
ensures the reality and effectiveness of the personal-
ization of mass education (characteristic 3): the num-
ber of various tasks that can be stored in a digital envi-
ronment is fundamentally greater than in a paper
problem book; individual goals, degrees, and ways to
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023



THE WORK OF A MATHEMATICIAN AS A PREFIGURING S81
achieve them in the digital environment are built nat-
urally and comfortably for the student and teacher.

We summarize the results of the changes for the
public-school student:

• acquisitions: development of mathematical and
general intellectual abilities; interest in mathematics
and learning; the ability to apply digital technologies
in solving a wide class of problems; mastering the ele-
ments of modern mathematics; and experience in
independent discovery and proof of mathematical
statements, in particular, (a small number of) geomet-
rical ones and

• losses: the ability to perform fluent and reliable
arithmetic and algebraic calculations without a com-
puter, which was useful 50 years ago, and knowledge
close to the text of some formulations and proofs of
geometrical theorems in a volume close to that that
would have existed 100 years ago.

It is the use of digital technologies, in particular, com-
puter experiments, that makes it possible to make serious
mathematical education public.

At the end of this section, let us recall that the sym-
bol of mathematical education in our country has
become N.P. Bogdanov-Belsky’s (1868–1945) 1895
painting Verbal Counting. In the Folk School of
S.A. Rachinsky [26]. Note that in this painting, stu-
dents are not “asked” to mentally multiply two five-
digit numbers at speed or to solve a problem about dig-
gers. On the contrary: each student is offered to try to
solve an unexpected problem, which is clearly not sim-
ilar to what he had seen before, and at the same time
at an individual speed in an individual discussion with
the teacher (forcibly, not in a digital environment).

3. THE GENERAL MATHEMATICAL 
PERSPECTIVE

The last decades of the 19th century and the first
decades of the 20th century were a period of meta-
mathematical understanding and modeling of human
mathematical activity. The works of Frege, Cantor,
Hilbert, Gödel, Turing, and Tarski offered a mathe-
matical description of what the language of mathe-
matics is and what mathematical proof, mathematical
definition, and mathematical calculation are. The
ideas that were developed had a unambivalent influ-
ence on mathematical education. The natural inclina-
tion of mathematicians to apply this influence in the
practice of the public-education system led to a num-
ber of large-scale dramas (New Math, “Kolmogorov’s
reform”). Among the reasons for the failures in these
realizations were moving away from the world of the
child, rather than approaching it; ignoring tradition;
weakness in working with the teachers of today and
those of tomorrow. It is important for us that, instead
of activities with real, tangible (in one sense or
another) objects, children were presented with work
with abstract definitions, which, unfortunately, often
DOKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
degenerated into memorization. Today, these reasons
are supplemented by a lack of connection with digital
reality. However, the analysis of these causes is not the
subject of this work. Possible problems with the imple-
mentation of our approach and ways to solve these
problems are discussed will be discussed in a special
section.

One hundred years after the advent of metamathe-
matics, the final decades of the 20th century and the
first decades of the 21st became the period when the
indicated mathematical understanding spread beyond
mathematics: mathematical models of human lan-
guage, thinking, and activity in various spheres of life
already beyond mathematics arose. It is no less signif-
icant that these models were implemented in the form
of computers (“hardware”) and microprocessors
(“chips”), as well as software (“codes”), the individu-
ally designed integral elements and complexes of
which were several orders of magnitude larger than any
mathematical or literary works created by man before.
The same can be said about processors and chips—
computer hardware—in comparison with mechanical
devices. This software and hardware today control the
physical processes that take place in the world around
us: transport, energy, manufacturing, medicine, trade,
social processes, etc.

The 21st century has been marked by accelerating
changes in our ideas about the human person, in par-
ticular, about what it means that a person—including
a student at school—knows and is able to do some-
thing. As Plato once noted, followed by Lev Vygotsky,
the emergence of writing led to the expansion of a per-
son’s personality: a person’s memory expanded due to
writing (from Homer and Socrates, who remembered
their works in the cells of their brains, to Tolstoy and
Kant, who remembered them on paper), as did com-
putational abilities due to calculations on accounts or
paper [27, 28]. Today, a person remembers what he
needs (for example, the phones of friends) in a piece of
his extended personality—a mobile phone—and this
same mobile phone instantly connects a person with
the memory of all humanity on the Internet.

Along with models of rationality in the human psy-
che, models of intuition have emerged, for example,
pattern recognition based on machine learning.

4. EXPERIMENTS IN MATHEMATICS 
FROM AN IMAGINARY EXPERIMENT 

TO A REAL ONE. EXPERIMENTAL 
MATHEMATICS AND THE COMPUTER

In his paper “On Teaching Mathematics” [29],
written on the basis speaking at a discussion on the
teaching of mathematics at the Palais de Découverte
in Paris on March 7, 1997, Vladimir Igorevich Arnold
says, “Mathematics is part of physics. Physics is an
experimental, natural science, a part of natural sci-
ence. Mathematics is that part of physics where exper-
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iments are cheap.” The deliberately paradoxical
nature of this statement by the great mathematician
emphasizes for us the role of the mathematical exper-
iment.

Another great mathematician of the last century,
Halmos, whom have already quoted, said, 

“Mathematics is not a deductive science, as it is
presented in the common cliché. When you are
trying to prove a theorem, you do not just write
down hypotheses and then start reasoning.
What you are doing is trial and error, experi-
mentation, guesswork. You want to find out
what the facts are, and what you are doing is like
the work of an experimenter or a laboratory
assistant … The joy of suddenly discovering a
hitherto unknown truth … accompanied by a
flash of enlightenment, an almost incredible
improvement in vision, ecstasy and euphoria of
liberation and release” [30].

In previous centuries, this experiment could have
taken place in the brain of a mathematician or on
paper. The history of one of the most important trends
in mathematics began when Euclid proved the infinity
of the set of primes by setting up a thought experiment
that consisted in their finiteness and led to the conclu-
sion that there are still prime numbers beyond this
finiteness. Carl Friedrich Gauss went to a university
(Charles College) in Braunschweig at the age of 15 and
became interested in the question of how many primes
are contained in the initial segments of the natural
series and based on experiments, now on paper, he
suggested that π(x) is the number of primes that do not
exceed the number x, asymptotically comes to π(x) 

. It is true that, like the other findings of his stu-

dent days, he did not make this observation public for
a long time. The proof of this fact was obtained only
100 years after its experimental discovery by Gauss.
More accurate hypotheses about the behavior of this
function are equivalent to one of the main problems of
modern mathematics—the Riemann Hypothesis—
which has been confirmed by numerous thought
experiments regarding the consequences derived from
it. Today, Yurii Matiyasevich is trying to conduct an
experimental study of the behavior of series related to
the Riemann function, already with the help of mod-
ern computers [31]. The largest prime numbers today
exist in the framework of a massive computer experi-
ment (see below).

The concept of a thought experiment (Gedanken-
experiment) was introduced into scientific research by
Albert Einstein. An example quote is that “I was sitting
on a chair in my patent office in Bern. Suddenly the
thought dawned on me: if a person fell freely, he would
not feel his own weight. I was stunned: a simple
thought experiment made a deep impression on me.
This led me to the theory of gravity” [32, 33].

≈

ln
x

x

D

Today, in the expanded personality of the
researcher and the student as a researcher, the thought
experiment is easily transferred to the computer
screen. This consideration is key to us.

Models of mental activity realized outside the brain
began to return to mathematics, helping mathemati-
cians to set up experiments, observe mathematical
reality, perform numerical and symbolic calculations,
and enumerate options. One of the famous early
examples is Appel and Haken’s solution to the four-
color problem, which was put into a format that math-
ematicians can trust by Georges Gontier [34].

While observing the emerging computing practice,
such new phenomena as the Appel and Haken prece-
dent and a number of others, Michael Atiyah pub-
lished a wonderful paper back in 1984 called “Mathe-
matics and the Computer Revolution” [35], which was
published in Russian 32 years later in Izvestiya AN
[36]. (We do not believe that it took the Russian math-
ematical community these 32 years to realize the
importance of the topic.) Today, this paper sounds
more than modern, and we will continually return to it.

In describing the perspective associated with the
“experiments and computers in mathematics,” M.
Atya writes, “In mathematics, as in the natural sci-
ences, discovery consists of several stages, and formal
proof is only the last stage of it. The very first stage is
to identify the essential facts, arrange them into mean-
ingful structures, and extract some kind of plausible
law or formula. Next comes the turn of checking this
proposed formula for compliance with new experi-
mental facts, and only then is the question of proof
considered” ([35], p. 10).

Of course, what is here called a “plausible law or
formula” may turn out to be a ratio of segments or
numbers in a problem, or an element of strategy in a
game, etc.

It is essential that the scope of experimentation is
fundamentally expanded by means of a the computer.
Atyah writes, 

“At each of the early stages, computers can play
some role, particularly when large or complex
systems are being considered. For example,
interesting questions in number theory may
involve very large prime numbers, and some of
the deepest hypotheses currently being studied
have been based on extensive computer calcula-
tions. Similarly, the problems of the theory of
differential equations, which involve the evolu-
tion over a very long time of some systems (for
example, f luid f low), have been very strongly
influenced by experimental facts found on com-
puters.
… the computer turns out to be practically very
useful for mathematicians at all stages of their
work, but, perhaps, primarily at the stage of
research or experiment. The great mathemati-
cians of the past, such as Euler or Gauss, did a
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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lot of tedious manual calculations in order to
provide themselves with primary material, ‘raw
materials’ from which they could guess some
general law or discover some wonderful exam-
ple. As mathematical research gets deeper and
we get more ambitious, the raw material
becomes correspondingly more messy and
complex. The computer can help us analyze this
material and point the way to further progress
and understanding” ([35], p. 10).
Further developments confirm Atiyah’s observa-

tions and predictions. Moreover, in the case of the
four-color hypothesis and in a number of other cases,
it turns out to be possible to construct an “exhaustive”
mathematical experiment that “closes” an important
problem. An example from number theory is, in par-
ticular, Goldbach’s ternary problem on the possibility
of representing any odd number, starting from 7, as the
sum of three primes. Ivan Matveevich Vinogradov in
1937 proved this possibility for all sufficiently large
odd numbers. However, the final solution to the prob-
lem—for all odd numbers—was obtained only in 2013
by Harald Helfgott using modern computers [37].

From a purely mathematical, applied, technologi-
cal, social, and educational perspective, interest is
presented by the “folk” search for Mersenne primes—
the largest known primes, that is, primes of the form
Mp = 2p − 1, where p is a prime. Until 1914, 12 Mer-
senne numbers were found. The largest of them con-
tained 39 digits. Further progress had to wait for the
advent of computers: in 1952–2018, the next 39 num-
bers were found. Since 1996, they have been found by
“ordinary people” conducting an experiment on many
thousands of computers as part of the “Great Internet
Mersenne Prime Search” project [38]. The largest
number was found by the programmer Patrick Laro-
che on a regular (in his case, at a local church) per-
sonal computer for p = 82589933; in this number,
there are 24862048 decimal places [39]. The experi-
ment here is to test for simplicity: if it succeeds, we
obtain proof simplicity or complexity [40].

Many mathematicians are prejudiced against
proofs that use a computer. They rejoice when a com-
puter proof is followed by “real,” “manual,” or
“paper” evidence that a person can check. Sometimes
(but not often), it is. The statement that McHale attri-
butes to Halmos, “computers are important, but not in
mathematics,” are characteristic [41]. Of course, this
was said (if it was) more than 20 years ago, but it was
said by a mathematician who fully shares the general
approach of this article (see the quote above).

Another point of view is also possible: that a proof
constructed and/or verified using a computer deserves
more confidence. Vladimir Voevodsky came to the
program of using a computer to create mathematics
from this very end. Having discovered and corrected
errors in his proofs of results that were important for
other mathematicians, Voevodsky decided that, in
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some cases, automating the proof was the only way to
guarantee the correctness of complex proofs [42].
Moreover, he began the construction of mathematics
on new (so-called “univalent”) foundations, sup-
ported by a number of other mathematicians, to some
extent revising, to some extent using the ideas of the
foundation of mathematics at the beginning of the
20th century [43]. In this regard, it is worth mention-
ing one of the most complex and undoubtedly import-
ant achievements of mathematics in the 20th cen-
tury—classification of finite simple groups. Here, the
computer is already considered as a tool for increasing
the reliability and availability of evidence, for exam-
ple, for the Coq proof of the Feit–Thomson theorem
in the work of Georges Gontier [44].

Note that an interesting effect has also arisen in the
field of computer simulation of human intuitive activ-
ity. Machine-learning specialists have recently tried to
treat datasets of mathematical experiments and data-
sets of mathematical proofs and other texts as raw
material for machine learning. It is argued that, in this
case, the machine finds patterns that are significant
for a person, offers correct texts for solving problems,
etc. [45, 46].

Computer identification of the coincidence of the
values of two differently specified numerical constants
calculated with high accuracy leads to the hypothesis
that this coincidence is not accidental, but the exact
values of the constants are equal [46]. As a final exam-
ple, we point to the experimental discovery in 1995 by
the Bailey–Borwein–Pluff formulas to calculate binary
expansion digit π according to its numbering [47].

5. VISUALIZATION IN A MATHEMATICAL 
EXPERIMENT AND MATHEMATICAL PROOF

Another quote from Atiyah is that “One of the
advantages of current computers, which mathemati-
cians are just beginning to appreciate, is their ability to
display information graphically (and even in color).
For many complex mathematical problems involving
geometrical properties, this provides a new, extremely
effective tool for studying phenomena” ([35], p. 10).

Atiyah’s last consideration can be attributed, in
particular, to the language in which we formulate
mathematical statements. The greatest example of the
construction of a mathematical theory in the history of
mankind was ancient Greek geometry, which is
reflected in the Elements of Euclid. This theory con-
sisted in a combination of precise reasoning with
visual representations. As we now understand, visual-
ization played an essential role, which made it possible
to use and not prove certain “obvious” premises that
were not formulated explicitly in proofs. The Carte-
sian algebraization of geometry—analytic geometry—
in a certain sense completed the question of what is a
true geometric statement. Thereafter, however, it
turned out that matters were not so simple. School
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constructions of geometry done in the style of Euclid
still suffer from gaps.

Returning to the language of formulating mathe-
matical statements, today we see the following possi-
bility. A mathematical statement is formulated in the
form of a picture, for example, in the form of a parti-
tion of a part of the plane into polygons [48]. The
polygons of the picture correspond to some partition
of the mathematical plane, each of which is given by a
system of inequalities. The picture captures a huge
number of statements about abstract objects: certain
polygons do not intersect, they border each other, etc.
Each of these statements can be verified by a com-
puter. The assertion that the mathematical reality is
exactly as it appears in the picture receives an exact
computer proof. A computer proof can also receive a
statement expressed by a picture. Finally, the assertion
that computer constructions correspond to mathe-
matical reality can also be proved, perhaps, but not
necessarily, with some help from a computer. The pic-
ture becomes a no less accurate representation of an
abstract mathematical statement than a formula or
text.

A simpler example is the representation of a repre-
sentation of a finite number of finite graphs justified by
a computer calculation, and the assertion that these
graphs exhaust all possibilities for the realization of
certain conditions (cf. [49]).

For the possibilities of formulating mathematical
theorems in natural language, see [50].

6. DEBUGGING 
AS A MATH EXPERIMENT

Let us pay attention to the fact that a huge array of
mathematical activities are going on in the field of IT.
As a rule, designers in this field deal with mathemati-
cal objects and mathematical methods of working with
these objects. At the same time, they often have to deal
with mathematically new, unexpected situations. As
soon as the situation becomes repetitive, an appropri-
ate software tool is invented that replaces a person’s
repetitive, routine actions.

In the same area of IT, a special kind of computer
mathematical experiment has been created—debug-
ging. In the process of debugging, the constructed
mathematical object is experimentally compared with
some condition and requirement. The identified dis-
crepancy leads to a change in the object and the previ-
ously constructed formal or intuitive “proof” of the
“correct” operation of the object. Sometimes this also
leads to a change in the formal requirement.

Briefly touching on the problem area “computer in
mathematical proofs,” we deliberately did not men-
tion the obvious: a computer is used in the implemen-
tation of mathematical algorithms in numerical mod-
eling of objects and processes, accounting calcula-
tions, writing texts, image processing, etc. The list is
D

huge; people use digital technologies in almost every
field of activity.

7. ROLE IN THE FORMATION 
OF MATHEMATICAL INVENTION 

AND DISCOVERY THROUGH EXPERIMENT
So, as Jonathan Borwein stated [51, 52], “… the

power of modern computers, combined with modern
mathematical software and powerful mathematical
methods, is changing the way we approach mathemat-
ical activity.”

We believe that even more significance is presented
by the regular change in our understanding of the
mathematical activity of all people who study mathe-
matics, starting from the very first stages of such study
in elementary school and, perhaps, even earlier.

In this section, we will try to explain how the per-
spective of the professional activity of a modern math-
ematician helps to solve the aforementioned problems
of mathematical education, focusing on one key
aspect in this perspective—the role of an experiment.
Let us repeat after Halmos and Atiyah that the mathe-
matical experiment is a key element of mathematical
activity.

It is generally accepted that a story told to children
about mathematical experiments and inventions can
be useful: it inspires and motivates them. We believe
that this story will motivate them even more if the
invention is made by them! It is possible, but not nec-
essary, that they will repeat the path of some great
mathematician of antiquity. It is possible, and very
likely, that the solution of some new task or system of
tasks will lead the student to universal (for him) dis-
coveries and inventions, which form the understand-
ing of “big ideas.” The optimal situation is when the
task is initially comprehended and interesting to the
student, and this interest increases in the course of his
search for a way to solve, set up, and conduct an exper-
iment and unexpected discoveries.

A few examples related mainly to elementary
school are as follows.

• Even before school, children know (albeit per-
haps tentatively) the names of numbers up to 9 and
how to write them in numbers. The task that the
teacher sets for the students is to invent a way to write
down larger numbers and name large numbers (quan-
tities). The process in which students can be assisted
by a teacher leads to their invention of the decimal
number system. The experiment here is to look at dif-
ferent collections of the same items, group them
together, and try to invent a way to write down the
answer to the question “How many items are there?”;
i.e., by counting them. One will need many identical
objects, such as matches or beans, and some way of
physically grouping them together, such as tying them
with an elastic band or folding them into a separate
container. In the process of work, for naming groups
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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of objects, of course, one needs the appropriate words,
with these words being provided (or recalled) by the
teacher, without making a secret of the fact that chil-
dren are now inventing what humanity invented thou-
sands of years ago—“ten,” “hundred,” and so on. This
grouping is then transferred to the grouping of objects
drawn on paper (for example, small beads), with the
binding here being replaced by a line. Objects on a
sheet can be placed exactly in rows or randomly. The
result of the grouping is reflected in the table, where
there are columns for “units,” “tens,” “hundreds,” etc.
One can see how much less space the record of the
quantity takes up than the page with drawn beads
itself. Now, one can erase the names of the columns of
the table and invite the children to find out what num-
ber is written down by laying out the required number
of matches on the table: units or connected tens and
hundreds. One can discuss what to do if columns are
added to the table and numbers are written in them,
but the names of the columns are not set. This is how
the discovery/invention of the positional number sys-
tem occurs.

• Students create addition and multiplication
tables by counting areas (the number of unit squares)
in lines and rectangles. The experiment consists in
drawing various rectangles in cells or on a grid, count-
ing the number of unit squares in them, and writing
the result in the correct cell of the table. Important
effects arise in the interaction of two students who
have obtained different products for the same pair of
numbers, as well as those who have obtained the same
products for two different pairs.

• Experience with the area of a rectangle leads to
important ideas about names (notations). The symbol ×
has a fixed “multiply” value, and the L and W in the
expression L × W can have different values for the
length and width of the rectangle. The gradual inven-
tion of a correspondence between name and value
begins. There are names the meaning of which we try
to determine and always consider the same, such as
the symbols of addition and multiplication, and names
the meanings of which can change, for example,
“length and width.” A general formula is invented for
the area of the sum of two rectangles with the same
width—this being humanity’s most important mathe-
matical discovery, algebra—and it is great if the stu-
dent makes this discovery on his own.

• Students invent algorithms for addition and mul-
tiplication with detailed (sometimes, graphic) record-
ing on paper; a method is invented and used for writing
two-digit numbers in one cell, divided by a diagonal
from the upper right corner to the lower left: tens are
written above the diagonal, and units are written under
the diagonal. The multiplication algorithm according
to the Indian method brought to Europe by Leonardo
of Pisa (Fibonacci) is invented: two-digit products of
single-digit numbers are written in cells with a diago-
nal, a method is invented for organizing the record of
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multiplying a single-digit number by an integer num-
ber of tens, etc. [53].

• Students invent a way to find the area of an arbi-
trary polygon with vertices at integer points and dis-
cover the additivity property of the area.

• Students invent ways to organize an exhaustive
search to find an object that satisfies a condition, for
example, searching for the right one among the objects
on the page, or finding one of the solutions to an equa-
tion.

• Students invent general formulas for solving lin-
ear and quadratic equations that work for any values of
the names (coefficients) included in them.

• Students develop winning strategies in games
with pebbles, discover the general concept of strategy,
and define it. They open a method for inductively
proving the correctness of the program and strategy.

• Students invent rational numbers by experiment-
ing with areas.

• Students invent an algorithm for finding a com-
mon measure of segments (Euclid’s algorithm), find-
ing the greatest common divisor of two numbers and
discovering a geometric situation where the algorithm
works indefinitely - with decreasing similar figures,
thereby discovering irrational numbers and, possibly,
their expansion into continued fractions.

• Students invent a way to decompose a number
into prime factors, discover the main theorem of arith-
metic.

• And so on.
To show the range in which a school mathematical

experiment can unfold, we will give one example of a
purely mathematical problem, the search for a solution
to which can be programmed by the students them-
selves by enumeration. In 1953, Mordell proposed
[54–57] to find solutions to the equation:

The next largest set of numbers yield the equality

Above, we have already mentioned the search for
large prime numbers, such a search is also available to
a school student.

In the traditional school, there is no stage of inven-
tion, but considerable time is allotted for the student to
learn the algorithm, sometimes even in some of its ver-
bal formulation, and then train to quickly and accu-
rately apply it. It takes more (sometimes much more)
time for the students and the teacher to invent some-
thing than for the teacher to say something at the

+ + =
+ + = + − =

3 3 3

3 3 3 3 3 3

   3 in integers except

1  1  1  3,  4  4  5  3.
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blackboard and the students write it down in a note-
book. However:

• To write down is not to understand.
• Repeatedly mechanically applying what has been

learned does not mean understanding; such applica-
tion may act against understanding.

• The concept can be transferred to a computer
that will do it instead of a person. We have already
mentioned this general situation above as a model of
the activity of a professional in the field of program-
ming and, in general, in the field of IT.

8. PHYSICALITY AND VISUALIZATION 
IN A SCHOOL COMPUTER MATHEMATICAL 

EXPERIMENT
One mathematician who clearly realized the enor-

mous power of a computer as a device for mathemati-
cal experiment and discovery in the hands of a child
was Simor Papert [58, 59]. The most important child-
hood impression for him, in precomputer reality, was
an active bodily acquaintance with gears, a differential
in an old auto repair shop. Papert came up with the
idea of visualization and materialization of the numer-
ical mathematical world in the digital age [60]. Taking
a version of Lisp designed by his friends as a learning
environment for children, he proposed to attach a
robot to the computer, first a turtle on the f loor, and
then on the screen [61]. Numerical entities—a given
distance to move, a given angle of rotation—were rep-
resented (materialized) as actions of moving and turn-
ing the turtle.

Mathematical education, according to Papert,
begins with programming [62]. Let us explain why
programming at school can be an essential element in
the development of mathematical thinking.

• The tasks of creating programs with an expected
result can be more varied and meaningful than solving
an equation or a word problem (“resulting in a qua-
dratic equation”) in most cases.

• The work of the program and its result can obtain
a visual, meaningful representation in the form of an
image, action in the real world, text, melody, or ani-
mation. Numerical results can also be graphically pre-
sented visually.

• The process of creating (inventing) an algorithm,
transferring it to a computer, and executing this algo-
rithm by the computer with various initial data, as well
as the ability for the student to independently detect
and eliminate computational errors, creates a positive
emotional context, as well as debugging a program,
leading to the desired result and, sometimes, to a new,
unexpected, and interesting one.

• The construction and proof of the correctness of
the program forms an area parallel to the geometric
construction and proof. In this area, important gen-
eral concepts and constructions appear (have been
invented): invariants, induction, division of a problem
D

into subtasks, analysis of cases, etc. The strategies of
reasoning and action developed at the same time are
transferred beyond the limits of programming and
mathematics.

• Debugging, including stepping, is a rich experi-
mental environment that enhances natural motiva-
tion. In the 21st century, debugging, correcting one’s
actions as a result of receiving feedback, and self-crit-
icism are becoming much more relevant personality
traits than memorization and deterministic execution
of a given order or a given algorithm.

The Logo environment, which has been used for
decades in the mathematical education of children in
dozens of countries around the world, is today com-
plemented by Scratch, developed in the same con-
structionist circle and in the same constructionist phi-
losophy of Papert as Logo [63]. The programming of
LEGO devices (by Seymour Papert, LEGO Professor
at the Massachusetts Institute of Technology) were
supplemented by the Arduino electronic designer [64].

Another powerful “microworld” for the develop-
ment of mathematical thinking is a “Robot in a
Maze.” The environment for the existence of the
Robot in the classical version is a rectangle on check-
ered paper bounded by a wall, inside which there are
also walls. The size of the rectangle and the location of
the walls are a priori unknown. The Robot executes
commands to move one cell in one of four directions;
in addition, it determines when it has hit a wall. The
task is to write a program that will ensure the move-
ment of the Robot, for example, from the upper left
corner to the lower right margin. A large spectrum of
concretizations arises from one general statement. For
example, one can consider restrictions on the location
of walls. For example, inside a rectangle, there can be
exactly two walls, with both of them going north to
south, etc. The cells of the labyrinth can be pre-
painted, and the Robot can determine their shading
and can repaint them, etc. The nontriviality of the task
lies in planning in advance the moves of the Robot that
achieves the desired result in the specified class of
mazes [65].

The effective implementation of the function of
developing mathematical thinking can be facilitated by
reducing the “purely linguistic” complexity (vocabu-
lary and syntax) of the programming system due to

• allocation of the minimum core of algorithmic
constructions (in the format of structured program-
ming operators or f lowcharts), fixing this core even in
primary classes;

• the use of native language or pictograms (see, for
example, Pervologo, a programming language without
words and, at first, even numbers [66] and PictoMir
[67];

• a block structure editor that allows one to con-
struct programs with arbitrary functions and reduce
the possibility of syntactic errors (similar to a spell
checker when editing texts).
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We indicate another basic example of the effective
use of digital technology to form a mathematical rep-
resentation.

• The student moves in a straight line in the class-
room (for example, along the blackboard). At the end
of his path, a sensor (ultrasonic, infrared) is installed
that measures the distance to the student’s body.

• A graph of movement on the screen is shown to
the whole class: positions (coordinates on a straight
line), a graph of speed, acceleration, and distance
traveled can be added to it.

• The student may have a tablet in his hands,
which also displays graphs.

For more than 40 years, the research module based
on the described experimental environment has been
an extremely effective way for students to understand
the motion schedule and other neighboring concepts
of physics and mathematics. The task for the student
may be to match the given schedule as much as possi-
ble or, after completing the movement and not seeing
the screen during the movement, drawing a schedule,
etc.

One environment that, in recent decades, has sig-
nificantly influenced the study of geometry in many
schools around the world, including in Russia, is
dynamic geometry. Exact constructions are possible in
it, using straight lines and circles, equality of seg-
ments, parallelism, etc. These constructions are dis-
played on the screen. Of course, the accuracy of con-
struction on the screen is limited, but the computer
can use internal symbolic representations, using cal-
culations with radicals, and “rounding correctly” on
the screen, “understanding” what the student wanted
to construct. On the screen, one can specify (with the
cursor, that is, with one’s hand) a point on a segment
or circle and give it a name. In common school imple-
mentations of dynamic geometry, such as GeoGebra
[68], Live Mathematics (the Russian version of
Geometer’s Sketchpad) [69, 70], and 1C Mathemati-
cal Constructor [71], as well as already in the earliest
one, along with Geometer’s Sketchpad, Cabri Geom-
etry [72], the key idea of dynamic geometry was imple-
mented: the student changes the configuration on the
screen (it “takes” a point and moves it), the computer
changes the drawing, keeping the necessary ratios (for
example, an inscribed triangle remains inscribed,
although the radius of the circle, angles, etc., change).
The student sees that some properties are preserved,
can formulate a hypothesis that these properties will
always be true, and try to prove his hypothesis.

Note that, in many of the above examples of data
entry for an experiment, we are dealing with a whole
series of experiments, parameterized by a numerical
parameter (vector). In particular, the following meth-
ods of setting and generating data for the experiment
are possible.

• Generation of a numerical parameter (including
a vector of numbers) as a reflection of the position or
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movement of a hand moving a mouse, a finger on a
tactile screen, an object or a student’s body in relation
to an ultrasonic (or other remote, for example, infra-
red, radio) sensor, or a head wearing virtual glasses. In
the future, a more complex response to the position of
the hands, the body, the direction of the gaze, the
electrical activity of the brain, the reaction to the speed
of movement, etc., is possible. In most cases, the use
of feedback is fundamental: the student sees the result
of the movement in the form of the movement of an
object (cursor, point, slider); changes in the situation,
for example, transformations of a geometric figure;
and changes in the “position and point of view of the
observer” and, in fact, the result of the experiment: in
the form of numerical parameters, as a rule, reflected
in the new configuration, animation, etc.

• Automatic generation of a random numerical
parameter as an analogue of spatial input, with visual-
ization similar to the previous case.

• The student’s choice of a combinatorial, discrete
object, for example, an initial state in the game Life (or
in another cellular automaton), a move in a game with
a discrete set of states: a game of pebbles or a card
game.

• Random selection of a combinatorial object by a
computer.

• Organization of enumeration by the student in a
suitable (including visualized) environment.

9. COMPUTER PROCESSING OF RESULTS 
OF AN ACTUAL EXPERIMENT

The use of a computer to process data from a real
physical experiment is a separate topic. We started
with this use in the previous section. Further examples
are obvious: almost all school physics experiments
become much more efficient, “operational,” if one
uses the digitization of the quantities with which this
experiment works. There are also new features, for
example, digitizing the position and speed of a point in
a video recording. In any case, data visualization helps
to hypothesize about a mathematical pattern that links
physical quantities.

Computer simulation of a real process, obtaining
and checking predictions, is a related topic. In this
case, the model can be built by the student, for exam-
ple, in the form of a system of equations, not necessar-
ily “school” ones. A computer can find an explicit
solution to the system or “calculate” it given some ini-
tial data. The program for this calculation can be writ-
ten by the student.

When speaking about the transfer of mathematical
activity to the school context, as in other cases, we
must “scale” the situation. At both the school and uni-
versity levels, we can note a number of key points when
experimentation is important both for understanding
and for finding a nontrivial proof. Some examples can
be found in Shabat [73, 74]. It is important that under-
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standing is not necessarily accompanied by a strict
definition and the same proof. An obvious and
important example of this is represented by the con-
cepts of mathematical analysis and probability theory
in school. It would be superfluous to note the diffi-
culty and not obvious usefulness of the formalization
of these concepts in school. One can construct deriv-
atives and antiderivatives “by eye,” determine the area
under the curve, carry out an experiment with throw-
ing a die, etc.

10. MAIN PROBLEMS IN THE 
IMPLEMENTATION OF THE PROPOSED 
APPROACH AND WAYS TO SOLVE THEM

Teacher inertia is a natural obstacle to any change
in school. Such inertia, which is characteristic of a
person in general, has always been a part of profes-
sionalism in the case of a school employee: the task of
the school is to transmit the knowledge accumulated
by humanity in the past so that the graduate can use it
tomorrow. Today, however, the task of education
should be different: to prepare a person for an unpre-
dictable tomorrow, to acquire the necessary knowl-
edge himself and learn how to apply it. If the education
system is not reconstructed, it will become less and
less needed, and people, including children, will
switch to education outside of school. The prediction
of Illich in Deschooling Society [75] will pass from a
warning and a constructive metaphor to something
obvious and necessary.

Changing things, on the other hand, begins with a
change in the role of the teacher: from an authority
who knows the answers to all questions to a master of
teaching who really does not know these answers, but
searches with the children and, at the same time,
teaches them to learn, to look for these answers. Such
a change in the role of the teacher obviously also pro-
vides an (incomplete, of course) solution to the prob-
lem of the teacher’s work with the constantly updated
content of education. as he is not at all obliged to know
everything in advance.

It is most natural to try to change the attitude of the
public-school teacher by starting work with teachers of
pedagogical universities, and their position should be
“learning throughout life,” including mastering the
constantly updated digital technologies in their field of
knowledge. In our case, we are talking about mathe-
matics, but the possession of a microphone and a
video camera and searching the Internet should obvi-
ously characterize a professor.

Another significant group consists of teachers of
engineering, economics, and similar universities. We
hear from them the fair statement that a significant
proportion of the students entering them do not know
the “formula for the sine of the sum” and other things
that they themselves knew when they entered the insti-
tute. The proposed changes are unlikely to improve
D

matters. Applicants will be even worse than today at
solving equations and inequalities. However, gradu-
ates will be able to prove the simplest formulas on their
own, understand their meaning, and remember the
experiment in which they themselves reached this for-
mula. And that is all—they will do it more successfully
than today’s students, and at the same time, they will
ask university teachers why they are required to find
the 20th integral in parts, although they understood
the idea, and the computer finds all these integrals
perfectly by itself.

Naturally, the question arises about the goals and
content of university mathematical education for dif-
ferent areas of training and the role of digital technol-
ogies in this training. This issue requires serious pro-
fessional discussion.

Parents are the next hurdle. The most successful
and most influential parents, although few in number,
turn out to be the greatest adherents of the old school:
and the role of the school in obtaining a good educa-
tion for them could be positive and significant. The
ides of the “learning teacher” may be rejected by par-
ents, and the school will have to defend it as a peda-
gogical device.

A certain role in shaping the position of parents can
be played by the dialogue that the school will have with
them, as well as the demonstration by the school and
the student of his success and interest in learning. This
can be facilitated by the implementation of the con-
cept of effective education, where the goal of parents is
not “an excellent student in all subjects” and “a gold
medalist,” but a young person who achieves real goals
constructed by him together with his parents and the
school [15]. These goals may include the result of the
final assessment and the possibility of continuing edu-
cation, joint prediction of this result and opportuni-
ties, based on the progress of the child’s learning.
However, the preservation of physical and mental
health, interest in life, and harmonious relationships
in the family are goals that the school should also have
in mind.

The proposed approach to the involvement of
teachers and parents in the proposed process is based
on the voluntary use of digital technologies in educa-
tional work for all. On an exam, one will have the
option to use a computer or not when completing
assignments. In the same way, regardless of comput-
ers, one can use or not use a drawing in a geometric
problem, solve an algebraic problem in one way or
another, use limited enumeration or logical reasoning,
etc.

Let us pay attention to the problem of the state final
certification in the form of the USE or another certifi-
cation. In our opinion, the main negative element of
the existing USE system is the very high degree of pre-
dictability of the tasks received by the graduate in the
exam. This narrows the range of preparation for the
exam (on which a public school focuses) in compari-
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son with the content of textbooks and leads to coach-
ing and tutoring for speed. As the reader may note, one
of the main features of the proposed changes is the
increase in the variety of tasks to be solved, as well as
the surprise that they may hold for the student, includ-
ing in the exam.

The use of digital technologies is not prohibited by
federal standards and curricula. It is just not assumed
by default, and so it is not on the exam. As a result,
teachers generally prohibit the use of digital technolo-
gies based on the fact that, earlier, in particular, when
they themselves studied, students did not use digital
technologies, and the use of technologies is not
expected in exams, as well as in problems in textbooks.

The following may be significant factors in the
implementation of the proposed approach:

• gradualness and predictability; advance planning
of changes; at the first stages, the time spent on the
experiment will be small and the share of nonstandard
tasks will increase gradually; the computer will be used
as a tool for educational work will be allowed only in
individual tasks and used in exams only, for example,
in revisions, etc.;

• voluntariness of changes; and
• more explicit highlighting of the possibility of

changes in federal regulations (Federal State Educa-
tional Standards, etc.) and the inclusion of a require-
ment that the use, as well as the nonuse, of digital
technologies in certain types of activities and topics,
be clearly indicated in the main educational program
of the school and curriculum on the school website.

11. CONCLUSIONS
It is beyond the scope of this article to experiment

with the use of modern technologies for working with
big data (“intuitive artificial intelligence”), and we
also did not consider the use of artificial-intelligence
technologies in school to check evidence and the use
of virtual and augmented-reality technologies. We
tried to limit ourselves to the most natural, important,
and reliable applications of digital technologies, but
this does not mean that we do not believe that these or
other areas will appear promising in the future. On the
other hand, we did not consider what are called “com-
puter simulators,” for example, arithmetic ones. They
can be quite effective; however, in very many cases, we
believe, as can be seen from the preceding text, that
their use is consistent with the goal of “training skills,”
and we suggest that such goals be treated with great
caution and proceed primarily from the interests of the
student.
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