
S9

ISSN 1064-5624, Doklady Mathematics, 2023, Vol. 107, Suppl. 1, pp. S92–S116. © The Author(s), 2023. This article is an open access publication.
Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2023, Vol. 511, pp. 111–136.

MATHEMATICAL EDUCATION 
OF THE DIGITAL AGE

a Russian State University for the Humanities, Moscow, Russia
b Moscow State Pedagogical University, Moscow, Russia
c Independent Moscow University, Moscow, Russia
d Faculty of Mechanics and Mathematics, 
Lomonosov Moscow State University, Moscow, Russia
e Institute of Education, HSE University, Moscow, Russia
f Moscow Institute of Physics and Technology, Moscow, Russia
*e-mail: george.shabat@gmail.com
**e-mail: alsemno@ya.ru
Dear reader, this paper with color illustrations can be found 
at https://www.springer.com/journal/11472
Computer Experiment in Teaching Mathematics
G. B. Shabata,b,c,* and Academician of the RAS A. L. Semenovd,e,f,**

Received January 1, 2023; revised January 21, 2023; accepted January 31, 2023

Abstract—A mathematical experiment has always been a key source for a mathematical discovery. Over the
past 50 years, thanks to digital technologies, its role in mathematical research has grown significantly. Digital
technologies have opened up fundamentally new opportunities for experimentation in mathematics educa-
tion, bringing mathematical education closer to mathematical research for the majority of students. This ten-
dency is especially desirable in the modern world, where it becomes possible thanks to digital technologies.
The article discusses the results of the authors’ work over the past decades on the application of a computer
mathematical experiment at different levels of school and university education. Particular attention is paid to
dynamic geometry environments. The possibilities of using computer algebra systems are also discussed.
A project concerning schoolchildren’s work on generalizations of Napoleon’s theorem is considered in detail.
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1. INTRODUCTION

The paper is devoted to the prospects of a radical
renewal of approaches to the study of mathematics.
The renewal is based on systematic use of computer
experiments (sometimes abbreviated as CEs) primar-
ily in the work of students.

The main thesis supported by the authors and dis-
cussed in detail in [1] is as follows:

In today’s world, for the majority of students, in terms
of their motivation and mathematical and general intel-
lectual development, the mastery of general mathemati-
cal methods should have a higher priority than knowl-
edge of theorem formulations, their proofs, and algo-
rithms and strategies for solving known classes of
problems.
In the work of mathematicians and mathematical
students, we distinguish an experimental phase of
mathematical activities, which involves the planning
and setting of an experiment, observation, and sugges-
tion, confirmation, and refutation of hypotheses. The
world’s existing practices convince us that the com-
puter is an extremely powerful tool for mathematical
experimentation. It makes the experimental work of
every student a reality. Of particular importance is the
visual environment of an experiment and presentation
of its results.

Attempts to prove something should logically fol-
low from an experimental material and should be
motivated and constantly correlated with it. Proofs
constructed individually by every student at their level
are also created with visual computer support: proofs
are illustrated by drawings, certain calculations are
carried out on a computer, etc.

We argue that mathematical experiments at the
school level can be as spectacular as physical, chemi-
cal, and biological ones. In such experiments, the
computer usually plays a crucial role in helping stu-
dents to understand the beauty of mathematics.

Finally, even in the traditional approach to teach-
ing, when statements and proofs are told to students
and they have to memorize them (at best, with an
understanding of them), a “demonstration experi-
ment” or illustration presented by the teacher is useful
(as well as demonstrations in natural sciences).
2
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Fig. 1. Intersection of circles.
This paper gives examples of relevant educational
situations and strategies both for standard topics of
school and university “general” mathematics and for
research projects that supplement these standard top-
ics. Within our approach, the answer to the question
“What do we teach?” is tautological: we teach mathe-
matics, rather than skills in solving standard problems.
As to the question why? we refer to [2]:

Mathematics is a wonderful discipline and, no
matter who is taught, our main goal is to con-
vince them of it. … However, it is impossible to
convey our feelings just by allowing the student
to observe other people’s reasoning and actions,
even admirably, like the dance of Maya Plisets-
kaya (“I’ll never make it anyway”); it is also not
enough to confine student to ready patterns,
incomprehensible and uninteresting. It is nec-
essary to help every student to build their own
relationships with mathematics, honest, mean-
ingful, and enjoyable; within these relation-
ships, they must learn to do something, under-
stand something, and formulate something.
In a well-planned series of computer experiments

(with teacher’s participation), students of all levels can
learn all this, having fun and feeling proud in the case
of success.

More should be said about the role of proofs. The
traditional objection to the expansion of mathematical
experiments is that proof-based reasoning—the basis
of mathematics—is overshadowed or disappears alto-
gether.

These objections are partially justified. However,
first, the notion of proof in mathematics is not some-
thing absolute and perfectly clear (see [3], [4]). We will
return to this point later. Second, a fundamental mis-
take is to use a uniform approach to the task of teach-
ing proof-based reasoning to different categories of
students.

For students who are far from mathematics, the
today’s situation is reduced at best to thoughtless
memorization of other people’s proofs, without any
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understanding, let alone “appropriation.” One of the
authors (Shabat), who has worked at the Russian State
University for the Humanities (RSUH) for more than
30 years, can say this with full responsibility. For these
learners, the understanding of mathematics as an
experimental discipline in which the truth of at least
some of the statements allows verification is preferable
to the perception of mathematics as a set of texts some-
times in special languages (some of which are labeled
with words, such as theorem, consequently, necessary,
etc.) and to the mastering of mathematics as the ability
to reproduce these texts. The view that some of these
texts actually prove something and make it more
grounded and convincing is also almost exclusively a
repetition of the text and a thoughtless reproduction of
the teacher’s point of view. Thus, we get a picture
completely opposite to the desired one: instead of
respecting the truth and discovering it ourselves, we
get following authority backed by nothing (except the
exam mark).

A more serious issue is about keeping proof-based
learning (sometimes boring) for future mathemati-
cians, physicists, IT scientists, engineers, etc. The
approach we propose combines experiments as a
source of hypotheses and a tool for their verification
with proofs. Of course, the proof can be a complete
enumeration of a set if the completeness of the enu-
meration is proved (for example, obvious). Develop-
ing the ability to prove something is part of the profes-
sional qualification. The lack of proof of some claim
can result in the ineffectiveness of work or even danger
to life.

The proposed approach looks natural to students if
both experiments and proofs emerge, are used, give
pleasure, and provide confidence, in other words, they
become part of mathematical culture even in elemen-
tary school. At a later age, it is useful to undermine the
credibility of “obvious” “experimental facts” by refut-
ing plausible statements, for example, that he

sequence  generated by Newton’s

method always (and very quickly) converges to the
solution of the equation . Due to this “under-
mining,” we go back to the necessity of proof.

However, even with enough time and attention
paid to classical proofs, we should not idealize them
and believe that difficulties in teaching rigorous think-
ing can be overcome by returning to pre-computer
standards. The fact is that the notion of the full rigor of
even venerable axiomatic disciplines, such as Euclid-
ean plane geometry, requires serious reservations. A
classic example of a formal gap in Euclid’s Elements
(see [5]) is the statement on a nonempty intersection
of circles (see Fig. 1), which underlies an “algorithm”
for constructing an equilateral triangle with a given
side (see, e.g., [6]). A successful attempt to fill gaps of
this type was made in [7], but this book in no way can
be used as a basis for a school course (even for most
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Fig. 2. Distances from colored points to the black one.

Fig. 3. First congruence criterion.

Fig. 4. Second congruence criterion.

Fig. 5. Third congruence criterion.
advanced students).1 An improvement of the situation
was outlined in [8], but that attempt needs to be
advanced and completed.

Even in the best schools of the pre-computer era,
different levels of rigor of proof were allowed, which
certainly contradicts the “purist” professional view of
proof (cf. Mikhail Bulgakov’s dialogue of Woland with
the bartender about the sturgeon’s first- and second-
grade fresh). Of course, the value of school geometry
proofs is not in reproducing “the whole Euclid,” but
rather in giving every student experience of their own
activity in the most important field—mathematical
proof—supported by visuality. From this point of view,
the kind of visibility (paper or computer) is not as
important, but computer visibility ensures a faster
search for proofs for more students, expands the circle
of participants, and makes their work more creative
and exciting. Another argument in favor of a computer
experiment is that any proofs of nontrivial facts are
better understood from experiments with proof steps
verified in the same computer environment where the
experiments were carried out.

Summarizing, we can formulate our position.
Mathematics is not just a set of formulas, formulations,
and methods whose knowledge and application skills are
necessary for receiving different certificates and diplo-
mas. This is an area of intellectual activities of human-
kind, some understanding of which based on human’s
own experience is highly desirable for modern cultured
people. A computer experiment makes it possible to gain
such experience.

Various aspects of computer experiments are dis-
cussed in the main part of this paper.

2. GEOMETRY

Traditional Euclidian geometry seemed to be a nat-
ural field for school mathematical experiments with
the use of a computer as early as the 1980s. During the
past decades, many thousands of teachers and stu-
dents, including in Russia, have used experimental
environments, such as Cabri Geometry, Live Mathe-
matics (Geometer’s Sketchpad), Mathematical Con-
structor, and GeoGebra (a freeware system). Note that
in the 1980s the creation of high-quality dynamic
(experimental) geometry environments was a nontriv-
ial task from both mathematical and programming points
of view and required high-level qualifications and talent,
which were demonstrated by J.-M. Laborde and
N. Jackiw.

1 The brief and elegant axiomatics proposed in [9] defines a plane
over an arbitrary field and, in principle, supplemented by the
characterization of the real number field  as the only locally
compact connected ordered field, it could underlie a rigorous the-
ory of the Euclidean plane. However, this approach, though
accessible to strong school students, is far beyond the traditions
of modern pedagogy and practice of modern school.

R
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In 1993, on Semenov’s initiative, Shabat became
the head and, in 1993–1996, was the main developer
(with participation of N.Kh. Rozov, A.V. Pantuev,
et al.) of a large-scale project undertaken at the Insti-
tute of New Educational Technologies (INET) (the
main promoter of the educational philosophy of con-
structionism in Russia) concerning the implementa-
tion of dynamic geometry in Russian education.
Within this project, all definitions, theorems, proofs,
and exercises in basic sets of Russian textbooks on
geometry (coauthored by teams led by Atanasyan and
Kolmogorov) were converted into dynamic geometry
format “Live geometry” implemented at the INT on
the basis of Geometer’s Sketchpad. This work was
continued in the Mathematical Constructor headed
by V.N. Dubrovskii. Simultaneously, educational
activities with school and college students based on
GeoGebra were performed by M.V. Shabanova’s team
at the Lomonosov Northern (Arctic) Federal Univer-
sity in cooperation with a Bulgarian team of educators.
Finally, an approach to dynamic (call it algorithmic)
geometry based on Logo versions was developed at the
INT under the direction of S.F. Soprunov in coopera-
tion with Canadian (LCSI) and Bulgarian (PGO)
researchers and teachers.

A traditional objection to geometric courses based
entirely on computer experiments reads as a picture
cannot replace logical reasoning. This objection was
discussed above in the general form. In fact, this
implies that memorizing someone else’s proof (with a
doubtful understanding) is fundamentally more
important than student’s own hypothesis about the
truth of a geometric statement. This position, which
was basic and obvious in mass school in the 19th and
20th centuries, today becomes progressively less justi-
fied and merely archaic.

We believe, as a number of other well-known
mathematicians, that independent analysis of mathe-
matical reality (good, if visually represented) is a nec-
essary element of work of a mathematician and a stu-
dent learning mathematics.

It should be emphasized once again that, in the
clearest form, a geometric statement is proved in the same
dynamic environment in which this statement was discov-
ered experimentally (prior to and in the course of the
proof). It is preferable that the proof be also found by
students: with the help of the teacher or inde-
pendently. However, any amount of proofs we deem
necessary for a particular student to master will require
less time and effort of the teacher and the student if
these proofs are done in a visual environment, namely,
on the screen in the classroom or on students' individ-
ual tablets.

Summarizing, visuality is the backbone of school
geometric proofs, and the evidence of facts always
helps to prove them. The use of dynamic geometry
expands the scope of this help.
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Deciding on the priority of independent observa-
tion, hypothesizing, and the construction of proofs
about geometric reality, we get a basis for revising the
set of theorems in the school course of geometry. The
need for such a revision of the course, which is over-
loaded for mass school students, is clear today.

Below, we consider only planimetric topics. How-
ever, due to computer experiments, even more signifi-
cant changes can be made in teaching school stereom-
etry as facilitated by the modern high-definition com-
puter graphics, processors' computing power, and the
application of virtual and augmented reality and 3D
printers.

Below, we give several illustrative examples, start-
ing with simple ones.

(a) Circle. One of the main children’s impressions
of the great mathematician Alexander Grothendieck
was the definition of a circle (see his famous text in
[10]). Grothendieck was fascinated with the possibility
of expressing perfect roundness by a rigorous formula-
tion (according to the thirty-year experience of one of
the authors, rather few modern students of a non-
mathematical university know the definition of a circle
as the locus of points equidistant from a given center).

Grothendieck wrote that2 
… around the age of twelve, I was interned in the
Rieucros concentration camp (near Mende). It
was there that I learned, from an inmate, Maria,
who was giving me voluntary private lessons, the
definition of a circle. This one had impressed
me by its simplicity and its obviousness,
whereas the property of “perfect roundness” of
the circle appeared to me before as a mysterious
reality beyond words. It was at this moment,
I believe, that I glimpsed for the first time (of
course, without formulating it in these terms)
the creative power of a “good” mathematical
definition, a formulation describing the essence.
Even today, it seems that the fascination exer-
cised over me by this power has lost none of its
force.
These words were written by a mathematician

famous for his “abstract” definitions in various fields of
mathematics (primarily in algebraic geometry). His
views on proper definitions and their understanding,

2 In the original: “…vers l’âge de douze ans, j’était interné au
camp de concentration de Rieucros (près de Mende). C’est là
que j’ai appris, par une détenue, Maria, qui me donnait des
lecons particulières bénévoles, la dninition du cercle. Celle-ci
m’avait impressionné par sa simplicité et son évidence, alors que
la proprité de “rotondité parfaite” du cercle m’apparaissait
auparavant comme une rélité mystérieuse au-del‘a des mots.
C’est á ce moment, je crois, que j’ai entrevu pour la premiére
fois (sans bien sûr me le formuler en ces termes) la puissance
crétrice d’une “bonne” définition mathématique, d’une formu-
lation qui décrit l’essence. Aujourd’hui encore, il semble que la
fascination qu’a exercé sur moi cette puissance-lá n’a rien perdu
de sa force.”
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Fig. 6. “Dido number” experiments.
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sometimes emotionally charged, should be regarded as
extremely authoritative.

Our discussion is concerned not so much with the
relationship of learners with texts of definitions, but
rather with computer experiments clarifying these
definitions. In this case, we mean the not very obvious
(according to both Grothendieck and the authors’
pedagogical experience) relationship between round-
ness and the distance to a fixed point.

The measurement of distances between a fixed
point and numerous randomly selected ones, compar-
isons of these distances with fixed ones, and different
colorings resulting from these comparisons visually
and gradually form the definition of a circle in the
memory of even most “non-mathematical” students.

(b) Theory of triangles. Congruence criteria for tri-
angles can be learned experimentally as problems of
constructing triangles with given elements.

An experiment shows that constructions associated
with the first and second congruence criteria are pos-
sible for various combinations of initial data, whereas
in the case of the third congruence criterion, the trian-
gle disappears from the drawing as soon as the length
of any side exceeds the sum of the other two. Accord-
ingly, the possibility, impossibility, and uniqueness of
the result (the last follows from the congruence crite-
rion) look obvious. Moreover, the causes of this
become evident as well. School “proofs” of these facts
pale in the light of this evidence. However, this is due
not so much to the convincingness of visuality, but
rather to the blurred bases of school geometry.

In the same drawings, it is easy for students to
experimentally discover the necessity of the
“between” condition for the first criterion and the
“adjacent” condition for the second criterion.

In dynamic environments, the congruence of tri-
angles can also be examined in terms of isometrics,
including orientation-reversing ones. A triangle can be
actually (not mentally) superimposed on another one
either directly or by reflection.

(c) Isoperimetric problem for polygons. The ratio of
the squared perimeter of a polygon to its area is invariant
under homothety (similarity transformations). This fact,
D

which is unobvious for school students that are far
from mathematics (squared perimeter seems an intan-
gible abstraction), is conclusively justified with the
help of a computer experiment. The minimization of
this ratio can be interpreted as Dido’s problem (see,
e.g., [8]). In a dynamic environment, the problem of
finding the best, in terms of this ratio, n-gon for a fixed
n is very useful.

Given a polygon P, we introduce the notation

Experiments in dynamic geometry can yield
results, for example, as shown in Fig. 6.

These results show than the Dido number is
smaller for a “rounder” polygon. On the contrary, for
polygons that, for example, “wrinkled” or “flattened,”
the Dido number can be arbitrarily large, which can be
experimentally by drawing all possible polygons and
observing how the Dido number changes for them.
After finding some pattern, it is possible to suggest a
sequence of polygons for which the Dido number is
greater than a given bound. The task is accessible to
interested eighth graders, and it is important that the
computer take over the calculations, while the stu-
dents do the research and creative part.

A somewhat simpler problem is widely known: is
there a triangle with sides longer than one meter (kilo-
meter) and an area less than one square centimeter
(millimeter). In this case, similarly, if the problem is
not solved immediately, we can start experimenting by
drawing a triangle, calculating its area (the computer
will do this), and then moving its vertices, so that the
sides “remain long,” while the area decreases.

In the context of Dido’s problem, as the study con-
tinues, the question arises about the minimum possible
value of the Dido number over all n-gons for a fixed n.
Experiments suggest that this value is reached for a
regular n-gon, although this is rather difficult to prove.

The experiments also prompt us to consider the
problem as , i.e., for polygons with an arbi-
trarily large number of sides. An experiment suggests
that the champion among the “polygons” will be

=
2perimeter( )Dido( ) : .

area( )
PP

P

→ ∞n
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Fig. 7. Ceva’s theorem.
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Fig. 8. Napoleon’s theorem.

Fig. 9. Varignon’s theorem.
the circle. For a circle of radius r, the Dido number is
given by

and this number bounds from below all Dido number
values, which the experimenter can observe (in
dynamics!). A theoretical ref lections concerning of
this fact involves much good mathematics, in particu-
lar, the definition of the length of a circle.

Dido’s problem is also remarkable in that it intro-
duces the student into resource optimization tasks,
which play a fundamental role in the modern world.

(d) Ceva’s theorem. Suppose that the Experimenter
(student) draws an arbitrary triangle, chooses three
arbitrary points on its sides, and join them to the
opposite vertices (the joining segments are called cev-
ians; in Fig. 7, they are depicted by dashed lines).
Then the side segments are colored as shown in Fig. 7
in three colors with alternating “thick” and “thin”
segments. This is a preparation for an experiment
called “design of an experimental setup” with the use
of elementary graphical and computational capabili-
ties of dynamic geometry.

The next step is to measure parameters of interest,
namely, segment lengths in “experimental environ-
ment” within “the experimental setup.” The results
can be described as follows.

In this text and its illustrations, we simplify the
exposition: in actual dynamic geometry, as in usual
geometric considerations, all points, segments, etc.,
can be named. Next, we can operate with the lengths
of named segments. After that, the unnecessary nota-
tion, computations, and other details can be hidden on
the screen. The result is presented in the illustrations.

The task posed by the teacher for the students is to
write two products: of all thick segments and of all thin
segments.

π π ≈
π

2

min 2

(2 )
Dido = 4 12.56,

r
r
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The next phase of the experiment can be to con-
sider well-known segments in the triangle, such as
medians, bisectors, and heights, as cevians and com-
pare two products (thick and thin) for them. It is easy
to see that these products are equal to each other.

It is possible to do differently, namely, to experi-
ment with three arbitrary segments, trying to achieve
an equality.

Now, returning to our experimental setup, we can
again consider the general situation and raise the
question about the conditions for the equality of two
products. Many students make an empirical discovery
and suggest a simple hypothesis: “the products are
equal when three cevians pass through a single point.”

The experiment can motivate the proof of Ceva’s
theorem and, additionally, can provide an opportunity
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Fig. 10. Quadratoid theorem.
to surge into a historical digression about Italy and its
mathematicians and engineers.

The proof, in different variants, can be constructed
together with students with the help of dynamic geom-
etry. Someone can begin with proving the special cases
of medians, heights, and bisectors: after these lines
have been built, the resulting sextuplets of segments
are displayed on the screen. Here, in each of the cases,
a new experiment begins with thinking about its result:
properly named (even better colored) segments are
measured, algebraic expressions for them are found
(possibly, with someone’s help), and the products of
these expressions are repeatedly calculated in the
dynamic environment, after which the corresponding
algebraic identity is checked ONCE. The correspond-
ing expressions for medians, heights, and bisectors are
given by

Thinking about the special cases shows, for exam-
ple, how strong the generalizing formulation is.

(e) Napoleon’s theorem and its generalizations. The
following theorem is attributed to the emperor Napo-
leon Bonaparte.

Theorem 1 (Napoleon’s). The centers of the equilat-
eral triangles erected externally on the sides of an arbi-
trary triangle form an equilateral triangle.

This theorem is an example of an entertaining and
deep “mathematical trick”: starting with an arbitrary
irregular object and applying beautiful and clear oper-
ations to it, we obtain an absolutely regular, symmetric
object (of the same kind). Of course, the beauty of this
fact can be fully appreciated (and independently dis-
covered prior to its proof!) by mass school students
only in the environment of dynamic geometry. It is
there that the student, first slightly shifting the triangle
vertices and, then, getting a taste for it and trying to
move them to the most exotic places of the screen, sees
a miracle: Napoleon’s triangle is always equilateral.

At present, we cannot expect that mass school stu-
dents would prove Napoleon’s theorem by themselves
even with the help of a teacher. However, many would
be satisfied with observation and suggestion of hypoth-
eses. The next step is to consider equilateral triangles
erected internally with respect to the original one.

Related to Napoleon’s theorem, the following
result can be not only seen, but also proved by an ordi-
nary school student.

Theorem 2 (Varignon’s). Given an arbitrary quadri-
lateral, the midpoints of its sides form a parallelogram.

Following our general principle of treating any
school student as a working mathematician, we invite
the student to construct a “midpoint” quadrilateral for

⋅ ⋅ = ⋅ ⋅ ,
2 2 2 2 2 2

a b c a b c

γ ⋅ α ⋅ β = γ ⋅ α ⋅ βcos cos cos cos cos cos ,a b c b c a

⋅ ⋅ = ⋅ ⋅
+ + + + + +

.
ab bc ca bc ca ab

a c b a c b a c b a c b
D

various original quadrilaterals and to answer the ques-
tion as to whether all middle quadrilaterals have a
common property.

Someone can even be asked to make the original
quadrilateral invisible, leaving only its vertices, which
can be used to shift the whole configuration.

Then the stage of proof begins. Students who fail to
do it immediately can be advised to draw a diagonal
and consider part of the drawing, a triangle, etc.

The ones who have succeeded in doing the proof
can be asked to consider the case of a nonconvex
quadrilateral, trying to find experimentally and with
proof the area of midpoint quadrilateral, etc.

This supposition was largely justified. Here is a
detailed account of those events. Zhenya Lisitsyn, the
eighth-grader of school no. 45, experimentally discov-
ered a “quadratoid theorem” (by quadratoid, we mean
a quadrilateral with equal and perpendicular diago-
nals). This theorem is stated as follows.

Theorem 3 (on the quadratoid). The centers of
squares constructed externally on the sides of any quad-
rilateral are the vertices of a quadratoid.

This result has a peculiar history. In 2002–2003,
one of the authors (Shabat) participated in teaching
math classes with the use of “Live Geometry.” Specif-
ically, he worked with 8th grade students of Moscow
school no. 45 (now named after L.I. Milgram, its prin-
cipal of that time) together with teacher V.V. Kulagina.
Along with learning the basic material, the students
were invited to implement research projects, which
included Napoleon’s theorem. It was natural to con-
sider some more general situations. The other author
(Semenov) supposed that, due to the use of powerful
tools based on visual computer experiments, it would
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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Fig. 11.

zk

zk � 1

zk + 1

wk
�

be possible to find new theorems unknown not only to
school students or school teachers, but also to the
mathematicians participating in the work and, possi-
bly, even “absolutely new” results.

In 2004, a Russian team of 100 people led by
Semenov participated in the 10th International Con-
gress on Mathematical Education in Copenhagen (see
[11], [12]). During a special “Russian day,” a Russian
mathematical exhibition was arranged on an area of

400 m2, where we promoted the research work of
schoolchildren, illustrating its fruitfulness by Lisi-
tsyn’s result. Quadratoids were even depicted on the
delegation shirts. Shabat gave a presentation on this
topic, which was well received. This mathematical
result was treated as new, being essentially so.

Later, Shabat developed techniques for geometric
research in dynamic environments together with the
MSPU student Polina Makarova and the MSPU
teacher Teslya [13]. An important example was gener-
alizations of Napoleon’s theorem. It was then that
Polina found that “Lisitsyn’s theorem” is a result
known as van Aubel’s theorem, and it was proved in the
19th century (see [14]).

Some other generalizations of Napoleon’s theorem
can be found in [13].

The next section (until the transition to algebra),
written by Shabat, shows how higher algebra, namely,
complex numbers and matrices, can be used to prove
theorems of elementary geometry.

This circumstance makes the field of elementary
geometry especially valuable in training mathematics
teachers. Today, this training is overloaded with math-
ematics branches that have nothing to do with school
even in their formulations, and students are given
materials that they never will need and poorly assimi-
late and that do not contribute to their mathematical,
intellectual, and cultural development.

Our approach is associated with considering trans-
formations of sets of polygons; the same approach was
developed in [15], which is a wonderful work combin-
ing simplicity and depth.

3. NAPOLEON–DAVIS TRANSFORMATION

For any positive integer  we introduce a (sim-
plicial) cone of polygons

∈Nn
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Obviously, the set  is nonempty only for .

For an arbitrary angle , the Napoleon–
Davis transformation is defined as

and it maps every polygon to a new one with vertices
lying outside3 the initial polygon at vertices of isosceles
triangles constructed on the sides of the initial one and
having equal angles  at the vertices opposite to the
sides of the initial polygon (see Fig. 11).

This transformation is attributed to Napoleon. In

the introduced notation, it is given by , and

Napoleon’s theorem states that the image of

 consists of points of  corresponding to

equilateral triangles.

Proposition. The Napoleon–Davis transformation
extends to a linear mapping

If wk is a vertex of an isosceles triangle based on the side
, then this mapping is given by the formulas

where .

Proof. By definition of the Napoleon–Davis trans-
formation, we have the equalities

for all , which yield the proposition. Q.E.D.

Corollary. In the standard basis, the Napoleon trans-
formation is given by a matrix proportional to the matrix

3 For simplicity, we do not consider new polygons lying within the
original one.

⊂
… …1 1

 are the vertices of 

:= { = (

a con

, , ) |

vex

, ,

}- .gon

n n n
n

z z z z z

n

3

C

3n ≥ 3n
α ∈ π(0, )

α →1$ 3 3, : ,n n n

α

π1$ 2
3,

3

π1$ 32 3
3,

3

( ) C
3

α →C C1$ , : .
n n

n

−1[ ]k kz z
α α−

− −
α

i i
2 2

1e ei
= ,

2 sin
2

k k
k

z zw

∈ Z

Z
k

n

α− −
−

i1 = e ,k k

k k

z w
z w

∈ Z

Z
k

n

α α−

α α−

α α−
α

α α−

 
− 
 
 −
 
 = − 
 
 
 
  − 

… … …

… …

…

… … … … … …

… … … … … …

…

i i

2 2

i i

2 2

i i

2 2
,

i i

2 2

e 0 e

e e 0 0

: .0 e e 0 0

0 0 0 e e

nND



S100 SHABAT, SEMENOV
Geometrically meaningful generalizations of
Napoleon’s theorem are associated with finding
parameters of the Napoleon–Davis transformation
for which the results of this transformation have spe-
cial properties, i.e., the transformation is not surjec-
tive. Since it is linear, it is not surjective if and only if
it is degenerate.

Main theorem. The Napoleon–Davis transformation
 is degenerate if and only if .

Proof. We apply a simple auxiliary result.

Lemma. The determinant of an  matrix is given
by the formula

Proof. It is based on induction on  with the cofac-
tor expansion along the first column. Q.E.D.

To prove the main theorem, we need to set 

and  in the lemma. Q.E.D.

The main theorem implies that, when we deal with
transformations of n-gons, it suffices to consider only

angles multiple of ; according to the historical tradi-

tion, we interpret these angles as the central angles of
regular polygons. In other words, on sides of arbitrary
n-gons, we will construct regular m-gons.

Regular m-gons and angles . According to

our main theorem, the transformation  is not

surjective if and only if , i.e., m divides n.

We indicate several pairs  for which the poly-
gons from the image of the Napoleon–Davis transfor-

mation  can be described geometrically.

Degenerate case m = 1. The transformation 

with α = 2π has the form

For example,
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i.e.,

This mapping takes a triangle to a sequence of its
directed sides. The mapping  has a similar inter-

pretation for n-gons with an arbitrary .

Degenerate case m = 2. Although the construction
of a regular 2-gon on sides of an arbitrary n-gon has no
traditional geometric meaning, the angle  can be
substituted into the transformation formula to obtain

i.e., we obtain a transformation of a polygon into the one
formed by the midpoints of the sides of the original poly-
gon!

This construction is discussed in detail in [15]. The
main result concerning the image of the Napoleon–
Davis transformation in this case is known as Vari-
gnon’s theorem, which was mentioned above.

In our language, the Napoleon–Davis transforma-
tion  maps an arbitrary quadrilateral to a parallel-
ogram.

Case . It is where we meet what is know
as Napoleon’s theorem.

In our notation, it is verified as follows:

so if we introduce the notation

then
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(the last reduction holds, since ). This is
Napoleon’s theorem.

Case . We have

Now, introducing the notation

we can calculate

We have established the following analogue of
Napoleon’s theorem:

The Napoleon–Davis transformation  maps

an arbitrary quadrilateral to a quadratoid.

The geometric section is completed with the com-
ment to Napoleon’s theorem and its generalizations
sent by V.N. Dubrovskii, associate professor in the
Department of Mathematics of AESC MSU, who
read the draft of this paper.

There is a geometric proof of the main theorem on
the Napoleon–Davis transformation that is compre-
hensible to strong school students. In fact, it is con-
tained in the solution to problem 19 from Yaglom’s
classic book [16]. Let us try to construct an inverse
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transformation: given any -gon  and an arbitrary

point , we begin to construct its preimage, i.e., the

polygonal line  Each vertex  of this polyline

must be the image of  under rotation by  around

the corresponding vertex  We obtain an -segment

polyline  not necessarily closed. If  is the

image of the -gon  then  (the

polyline is closed), i.e.,  is a fixed point of the com-
position of  rotations by the angle  If  0 mod

, then this composition is a rotation, i.e.,  is
uniquely defined and, hence, the transformation is

nondegenerate. However, if   0 mod , then the
composition is a translation by a vector depending on

. Then the following two cases are possible. For

“most” polygons , the vector is nonzero; these poly-
gons do not belong to the image of the Napoleon–

Davis transformation. However, there are special 
for which the vector is zero. Then the composition is

the identity mapping and, for any choice of , there is

a (single) polyline with vertex  mapped under the

Napoleon–Davis transformation to  i.e., this trans-
formation is degenerate. The next task is to describe

these special polygons . In the case of triangles, we

see that  is an equilateral triangle (Napoleon’s theo-

rem). In the case of quadrilaterals,  is a quadratoid
(van Aubel’s theorem).

School students can be led to the formulations of
these theorems and their geometric proofs through an
experiment. The task is to construct an -gon from its

image  for various values of  After completing the
above-described construction in the dynamic geome-

try program, we try to superpose the ends  and  of

the polyline  with a mouse. If we succeed,
then we have the nondegenerate case; otherwise, we

see that  and  are connected via parallel transla-
tion, but they can be superposed by moving the verti-

ces of  Moreover, it suffices to move only one vertex:
this leads to both the Napoleon case and a quadratoid.
Tasks based on this experiment have been imple-
mented in the Mathematical Constructor [17]. Con-
tinuing this study, one can answer the more difficult

question as to when an -gon  is regular for

 (Napoleon–Barlotti theorem).

An important advantage of these experiments is
that they form a series beginning with the simple case

 and lead students to the formulation of results
gradually in the course of examining solutions to a not
very complicated construction problem.

4. ALGEBRA

Computer algebra allows us to pass from the pre-
scription school theory of quadratic polynomials and
quadratic equations to research generalizations.
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Fig. 12. Axial symmetry of the parabola.
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Fig. 13. Central symmetry of the cubic parabola.
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Fig. 14. Central symmetry of the cubic parabola.
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(a) Graphs of polynomials. Few of the humanities
students met by the authors (and even some mathe-
matics teachers) know that, along with the axial sym-
metry of graphs of quadratic polynomials (see Fig. 12)
there is a central symmetry of graphs of cubic parabo-
las (see Fig. 13).

Students working in a dynamic mathematics envi-
ronment are tasked to determine visually whether the
graphs of polynomials have symmetry. The situation is
especially illustrative if there are sliders on the screen,
so that the coefficients of a polynomial can change
gradually.

The next step is, by moving the graph, to try to
superpose the axis of symmetry on the vertical axis and
the center of symmetry on the origin. In doing so, the
students can see how the coefficients vary in value.

The next step is to understand what the algebraic
transformation is that corresponds to such a shift in
the various special cases.

After that, stronger students might devise a general
translation formula, while the others can assimilate
the general nature of the symmetries under discussion
from teacher’s explanations: given the graph of the
polynomial

with , the substitution  for n = 2

turns it into the graph of an even function, while, for
n = 3, into the graph of an odd function shifted in the
vertical direction.

It is useful to note that the graph of a cubic polyno-
mial has a center of symmetry at the inflection point of
this graph (see Fig. 14).

In the preceding example, we productively com-
bined formulas with visuality. However, not every,
(even school) computer experiments are built on visu-
ality, although it is desirable.

−+ + +…

1

1=
n n

ny x a x a

∈ {2,3}n − 1= '
ax x
n

D

What is the tool for computer experiments that
expands the possibilities of dynamic geometry? Of
course, this is computer algebra. Computer algebra
tools are now successfully used wherever complicated
analytical computing was once required. They may
seem to “trivialize” school algebra. To some extent, it
is true, because these tools trivialized professional
analytical calculations that were discussed above.
However, as in other cases, the computer opens up
opportunities for creative research activities of stu-
dents supported by the teacher.

In the following examples, we sometimes drop a
clear and detailed description of the computer experi-
ment conducted by students and omit teacher’s expla-
nations, tasks, and research aims.

In detailed planning of an educational situation, it
is advisable to highlight the following points:

0. motivation: why the problem is of interest to pro-
fessional mathematicians and can be of interest to stu-
dents;
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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1. the experiment to be conducted;

2. observation of results;

3. the discovery to be expected and hypotheses that
may arise;

4. proofs of the hypotheses and related NON-
experimental mathematics.

(b) Cubic Cardano formula over . The issue of
solving equations of degree higher than the second has
drawn attention since ancient times (cf. doubling the
cube). Closer to our time, its solution marked a renais-
sance in mathematics (we are able not only to reproduce
ancient results, but also to yield our own results inacces-
sible to ancient people), which occurred later than the
Renaissance in literature, architecture, and painting.
The solution of cubic equations by Italian mathemati-
cians in the 16th century led to the origin of modern
algebra.

Note that cubic equations are adjacent to quadratic
ones and, in individual problems of increased diffi-
culty, they are systematically found in school mathe-
matics, for example, in modern England. Accordingly,
a natural “extracurricular” question asked by inter-
ested students is as follows:

for cubic equations, is there a formula analogous to
the one for quadratic equations?

Answer: yes, but it is much more complicated.

The general cubic equation has the form

(1.2a)

with . By making the substitution 

(which was mentioned above in the context of explain-
ing the central symmetry of graphs of cubic polynomi-
als) with the subsequent division by a, Eq. (1.2a) takes
the more compact form

(1.2b)

In contrast to Italians of the Renaissance, for a
modern human, it is sufficient to give the command
solve to a computer algebra system. Using MAPLE as
such a system, we obtain the solution

(1.2c)

The experimenter receives a preliminary answer to
the question: there is a formula with radicals, and it
should be analyzed.

One of the arising difficulties (which complicated
the life of Italians in the 16th century as well) is that
negative numbers may appear under the sign of the
square root, but there always exists at least one root.
This fact can also be discovered experimentally: the
same computer algebra systems involve tools for con-
structing graphs. Observations of them lead to a

R
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hypothesis, which can be proved by combining opera-
tions with inequalities and arguments of analysis or
topology. This experiment can be conducted even
before calculating the roots in computer algebra.

Systematic algebraic experiments are connected
with substitution of numbers for variables in the Cardano
formula. Cases are distinguished when the formula
numerically gives the correct answer; it can be checked
by substitution. However, in these cases, there is a field
for experiments by applying a giveaway strategy: for

given , we should work with the polynomial

. Application of
the Cardano formula yields mysterious equalities con-
necting seemingly irrational numbers with rational
ones. These equalities are easy to verify numerically,
and the task is to UNDERSTAND then. It is useful to
create our own structured collection.

 Can the denominator on the right-hand side of
(1.2c) vanish? A simple analysis shows that it is possi-
ble, but only if p = 0, in which case Eq. (1.2b) is solved
via simple extraction of the cube root.

Further observations show that the Cardano for-
mula sometimes gives a correct and meaningful
answer, but sometimes fails. Inspecting the graphs of
cubic polynomials, we can determine the boundary
between several types of real cubic equations (as in the
case of quadratic equations). Special attention should
be payed to the boundaries between the types (once
again a parallel with quadratic polynomials!), namely,
polynomials with MULTIPLE roots. In our case,

these are the polynomials ,
and the Cardano formula for them should be analyzed
separately.

 Does formula (1.2c) remain valid if the number

under the square root sign  is negative?
The answer within rigorous school mathematics is no.
However, it is in this case that a computer experiment
can clarify the situation. Indeed, substituting (ran-

dom) numerical values of  into the left-hand
side of Eq. (1.2b), we can see the graph of this polyno-
mial and, with its help, one or three approximate solu-
tions of Eq. (1.2b). Substitution of the chosen values of
p, q into formula (1.2c) will convince a school student
that formula (1.2c) has an out-of-school sense and, in
some cases, will prompt them to master the complex
numbers.

 Why is the irrationality 
involved in the terms on the right-hand side of (1.2c) in
an asymmetric way? In contrast to the first two ques-
tions, this one is inaccurate, and it does not have the
exact answer. More precisely, the answer is that
MAPLE gives formula (1.2c), which is valid; more-
over, it can be verified by the program in symbolic
form, in contrast to the more beautiful and traditional
one (see, e.g., [18]), which derivation we will recall
now.

∈ Q1 2,x x
− − + +1 2 1 2( ) = ( )( )( )P x x x x x x x x

•

− α + α2
( ) = ( ) ( 2 )P x x x

•
+3 2

12 81p q
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Substituting

(1.2d)

into Eq. (1.2b) (to create an additional degree of free-

dom), we obtain , which
can be transformed into

(1.2e)

We postulate (using the above-mentioned free-
dom)

(1.2f)

Simplifying (1.2e) with the help of (1.2f) and cubing
the slightly transformed equation (1.2f), we obtain the
system of equations

which shows that  and  are the roots of a quadratic
equation constructed using the coefficients of the
original cubic equation, i.e.,

(1.2h)

and, therefore,

(1.2i)

whence, finally, in view of (1.2d),

(1.2j)

A comparative analysis of formulas (1.2j) and (1.2c)
requires a computer experiment (CE). Formula (1.2j)
is nicer and clearer than (1.2c), but (for reasons
unknown to the authors) it cannot be verified in the
general form with the help of MAPLE, in contrast to
(1.2c). Accordingly, it is reasonable to use wide CEs
with consideration of numerous special cases and ver-
ification of both nontrivial equalities between irratio-
nalities and approximate numerical values of the roots
produced by both formulas. Moreover, it is useful to
apply the giveaway strategy of analyzing the formulas

with known roots, i.e., to choose numbers  satis-

fying  and to examine the cubic poly-

nomials  with
given roots. This work leads to a deeper understanding
of Vieta’s theorem than in the standard school
approaches.

Finally, the validity of both formulas depends on
the sign of the number
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This number is defined (as in the case of quadratic tri-
nomials) up to multiplication by a squared rational
number, and it deserves the name of the discriminant
of the cubic polynomial. It is useful to understand its

relation to  for the cubic
polynomial

All these operations are labor-intensive in manual
calculations, but they can be quite convincing within
properly organized computer experiments.

After the corresponding classification and specifi-
cations, the Cardano formula always yields ONE root.
In the case of extracting the square root of a negative
number, the formula should be transformed and
related to angle trisection.

The rigorous proofs carried out in two cases
(known as reducible and irreducible according to the
today impossible archaic Italian terminology) leave a
sense of dissatisfaction: how can these different cases
be treated so differently? This suggests the transition to
complex numbers. After the theory of decomposing
cubic trinomials into linear factors has been completely
clarified, a natural question is concerned with fourth-
degree polynomials. Probably, a surprising fact is that
the Italians reduced it to third-degree polynomials by
considering, for a fourth-degree polynomial with roots

, a third-degree polynomial with roots

In the course of extra-experimental arguments, it is
useful to address examples of their experimental part
(here, the computer is absolutely necessary, since the
calculations are terribly cumbersome). After this
material has been mastered, the learners are ready to
deal with the fundamental theorem of algebra and
Galois theory.

(c) Pell’s equation. This name4 belongs to the fol-
lowing equation in integers (see, e.g., [19]):

our consideration is restricted to the case D = 2. This
is one of the simplest equations of (the least nontrivial)
degree 2 in integers, but it is associated with interesting
mathematics going back to ancient times [20].

The first task is to find some solutions experimen-
tally. The next task is to find as many solutions as pos-
sible.

A natural question arises: are there arbitrarily large
solutions to the equation ? With the help of

4 The name of Pell’s equation arose from Leonhard Euler mistak-
enly attributing the solution of William Brouncker (1620–1684)
of the equation to John Pell (1611–1685).

− − − 2
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CE, progress in this task can be achieved even by
learners with minimal mathematical training and pro-
gramming skills: solutions can be sought by simple
enumeration. For students, this is a fine introduction
into the use of a computer in number theory.

Next, interested learners can be told about the

number ring , and we can introduce the con-

jugate  and the norm ,
so that Pell’s equation can be interpreted as

The multiplicative property of the norm (i.e., the

identity , which can be directly
checked by learners with minimal training) allows us
to present an infinite sequence of solutions with the

initial pair  and the recurrence

Here, CE not only helps to conclusively answer the
above question about infinitely many solutions, but
also offers a wide range of opportunities for establish-
ing and checking numerous provable estimates and
asymptotics.

Additionally, it is natural to discuss one application
of Pell’s equation: after establishing the relation

(which is almost obvious, but nevertheless requires
proof), the introduced sequence makes it possible to

approximate the number . Table 1 lists the values of

the above-defined positive integers  and decimal

approximations of the rational numbers  computed

in MAPLE (which, in contrast to classic programming
languages, works with arbitrarily large positive integers
and yields arbitrarily accurate decimal approximations
of rational numbers).

The stabilizing digits in the approximations are
shown in red. It is useful to prove that these are signifi-
cant decimals of the number . One look at the color
table is enough to notice that the number of correct dig-
its is approximately proportional to the approximation
index. Refinements and proof of this statement (which
resulted from a simple CE!), together with mastering
the constructive definition of the limit, are much more
useful than memorizing the standard definition
(which is not constructive).

In the following presentation, we no longer high-
light the various stages of student’s and teacher’s com-
puter experiment, but give illustrative examples
demonstrating experience gained from such an exper-
iment, while the reader can build an experiment to
their own taste.

+Z Z 2
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(d) Numerical solution of polynomial equations. The

above-mentioned Newton method5 is highly effective
and nearly universal. It is applicable to arbitrary
smooth functions

(we use the notation of variables typical of complex
analysis, since we are going to compare the results of
this and preceding sections) and relies on the recur-
sion (see Fig. 15)

which has a clear geometric interpretation.

As an example, we consider the polynomial

and find its root  by applying Newton’s method

starting from the (rather rough) initial guess .

We have , or

The corresponding decimal approximations are
given in Table 2.

Obviously, Newton’s method as applied to the cal-

culation of  is much more efficient than the above-
described method based on solving Pell’s equation.
As was noted above, the number of significant digits was
approximately proportional to the index of the approxi-
mation. In the case of Newton’s method, the law is less
obvious:

the number of correct digits is approximately propor-
tional to the squared approximation index.

A more careful check of this law and its more accu-
rate formulation and justification require further CEs.
Students’ interest in mathematics will manifest itself
in that they would want to consider similar issues for

other approximations, at least for .

Finally, we note that the efficiency of algorithms,
which naturally arises during work in the spirit of the
considered examples, is a modern concept of impor-
tance from both theoretical and practical points of
view. It is not included in the modern Unified State
Examination program, but can be introduced and
studied with the help of CE.

5. CALCULUS

Below, we will only discuss the possibility of illus-
trating the basic concepts of calculus with the help
of CE.

5 Also known as the Newton–Raphson method (e.g., in England).
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Table 1

1 3 2 1. 50000000000000000000000000000000

2 17 12 1.41666666666666666666666666666667

3 99 70 1.41428571428571428571428571428571

4 577 408 1.41421568627450980392156862745098

5 3363 2378 1.41421362489486963835155592935240

6 19601 13860 1.41421356421356421356421356421356

7 114243 80782 1.41421356242727340249065385853284

8 665857 470832 1.41421356237468991062629557889013

9 3880899 2744210 1.41421356237314199715036385699345

10 22619537 15994428 1.41421356237309643083203725697474

11 131836323 93222358 1.41421356237309508948486370619374

12 768398401 543339720 1.41421356237309504999928957890286

13 4478554083 3166815962 1.41421356237309504883694280179329

14 26102926097 18457556052 1.41421356237309504880272650735873

15 152139002499 107578520350 1.41421356237309504880171927369328

16 886731088897 627013566048 1.41421356237309504880168962350253

17 5168247530883 3654502875938 1.41421356237309504880168875068241

18 30122754096401 21300003689580 1.41421356237309504880168872498898

n nx ny n

n

x
y

Table 2

1 2

2 1.50000000000000000000000000000000

3 1.41666666666666666666666666666667

4 1.41421568627450980392156862745098

5 1.41421356237468991062629557889013

6 1.41421356237309504880168962350253

7 1.41421356237309504880168872420970

n nz
(a) Derivative. Here, the concepts of secant and
tangent lines have to be mastered graphically.

The formulation saying that the tangent line is the
limit position of the secants is preserved in the memory
of many graduates from modern school, but is usually
not related to visual images or rigorous mathematical
concepts. Possibly, the matter is that the graphs of ele-
mentary functions (except for parabolas and hyperbo-
las) are difficult to draw accurately on the chalkboard;
the same is true of secant and tangent lines.

The secant line of a graph is given by

(1.3a)
+ −+ −0 0

0 0

( ) ( )
= ( ) ( )

f x h f xy f x x x
h

D

which is an important formula in calculus (see Fig. 16).6

The difficulty in its understanding is that the involved
letters

correspond to four different levels of “constancy.”

(1) f is the function for which we discuss secant
lines to its graph;

(2) x0 is the abscissa of a point through which a

family of secants pass;

6 The first author (Shabat) is a vocal opponent of the traditional
notation h = Δx, which is usually used together with the “term”
increment of the argument. Both the notation and the terminol-
ogy, though having a venerable history, have no mathematical
meaning. We follow the wonderful textbook [22].

0; ; ; ,f x h x y
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Fig. 17. Secant lines.
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Fig. 18. Secants and a tangent line.
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Fig. 16. Secant line.
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        (x � x0) f(x0 � h) ��f(x0)  
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Fig. 15. Newton’s method.
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w = f(z) 
(3) h is a parameter of this family;

(4) x, y are the coordinates in the plane (where we
work) in terms of which the equations of secants are
written.

Can computer experiments help understand for-
mula (1.3a)? We think they can. For this purpose, we
need to give the students the opportunity to see
numerous families of secants, first, ready ones and,
then, families constructed on their own with suitable
tools.

In the example given in Fig. 17, f(x) = sinx, x0 = 1,

.

The understanding of the definition of the deriva-
tive

(1.3b)

{ }∈ 3 1
1, ,

4 42
h

→

+ −0 0
0

0

( ) ( )
'( ) := lim

h

f x h f xf x
h
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is complicated by the same factors as those indicated
in the discussion of formula (1.3a), but there is an
additional factor, namely, the definition of the limit.
Memorizing the “  – ” definition lies beyond the
mnemonic capabilities of a modern nonmathemati-
cian with secondary education (see, though, [21]).
However, the above-mentioned combination tangent
is the limit position of secants, which can be rigorously
defined, together with another one

derivative is the slope of the tangent,
can be well understandable with enough illustra-

tions based on CE. For example, the above figure with
several secants can be supplemented with the tangent
line (see Fig. 18) given by the equation

which involves unpopular, but easily computable sin1 =

 and .

As the experience of one of the authors shows, after
constructing a number of pictures of this type, a per-

ε δ

+ −= sin1 (cos1)( 1),y x

…0.841470984 …cos1 = 0.540302305
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Fig. 19. Approximation of the sine function by a Taylor
series, degree 1.
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Fig. 20. Approximation of the sine function by a Taylor
series, degree 3.
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Fig. 21. Approximation of the sine function by a Taylor
series, degree 5.
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Fig. 22. Approximation of the sine function by a Taylor
series, degree 7.
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son most distant from mathematics (e.g., an RSUH
student, i.e., a linguist or psychologist) masters deriv-
atives with no less confidence than negative numbers.

The general equation of a tangent line realized from
the described considerations is

(1.3c)

(b) Taylor series. This branch of classical calculus—
a beautiful and deep topic of great application impor-
tance—lies far beyond the current school curriculum.

Meanwhile, after learners have mastered the con-
struction of tangents, i.e., linear approximations of
elementary functions, it is natural to consider their
approximations by polynomials of higher degrees.
Answers were obtained as early as the 18th century,
and this topic is easily mastered with the help of CE.

+ −0 0 0= ( ) '( )( ).y f x f x x x
D

As a striking example, we consider several approx-
imations of the sinusoid, i.e., the graph of the function

, by segments of the Taylor series

(see Figs. 19–22).

Demonstrating these approximations to linguistic
students, one of the authors usually met with their
desire to try to approximate something on their own and
several times heard the question of why we were not
shown this in school? The answer remains unknown.

Computer algebra systems can produce an arbitrary
number of truncated Taylor series for elementary
functions, and the answer is usually guessed easily,
especially by people familiar with factorials. Excep-
tions are Taylor series for the tangent function

= siny x

− + − ±…

3 5 7

sin =
3! 5! 7!

x x xx x
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and the secant function

These enigmatic numbers are related to a question
that was only briefly touched upon earlier while we
discussed the graphs of quadratic and cubic polynomi-
als, namely, the number of possible shapes of graphs of
real polynomials of arbitrary degrees. The relationship
between these numbers and the coefficients of Taylor
series expansions of the tangent and secant functions
can be found in [23].

After mastering several Taylor series expansions of
well-known functions and checking these expansions
graphically and numerically, the computer experi-
menter realizes the continuation of formula (1.3c),

(1.3d)

as an indisputable pinnacle of classical calculus.

(c) Some integrals. We say a few words only about
definite integrals, since the development of the (rather
complicated) technique for indefinite integration
seems like an outdated teaching approach in the age
when computer algebra systems give an answer by
pressing a button. This point of view is concerned with
teaching mathematics to (future) nonmathematicians,
who nevertheless should learn to understand and
check answers produced by a computer.

The first nontrivial (transcendental) integral is

Together with a rather nontrivial interpretation of
this integral as the area of the unit disk, it is useful to
teach a rigorously thinking student to understand the
equality

as the definition of the number . CEs are associated
with its approximate computation.

The other two definite integrals to be considered
are not taken in elementary functions. For future
mathematicians, this impossibility result as important
as the unsolvability of fifth-degree equations in radi-
cals or the impossibility of doubling the cube with a

+ + + +

+ + + +…

7 93 5

11 13 15

17 622
tan =

3 15 315 2835

1382 21844 929 569

155925 6 081075 638512 875

x xx xx x

x x x

+ + + +

+ + + +…

4 6 82

10 12 14

5 61 2771
= 1

cos 2 24 720 8064

50 521 540 553 199360 981

3628800 95800320 87178 291200

x x xx
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x x x
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1
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compass and ruler; for others, this small inconve-
nience does not interfere with the numerical study of
integrals.

The integral

plays a central role in probability theory. The approxi-
mate equality

puzzles the experimenter. Apparently, only the idea of
working with the multiple integral

can help clarify the equality

A separate issue is concerned with rigorous proof of this
equality, which can be accessible to school students.

The other integral, also important for probability
theory, depends on the parameter x; we temporarily
denote it by

It is easy to see that the integral converges for .
With some integration skills, it is found that this inte-

gral can be taken in the case . Moreover, it turns
out that

Now we can extrapolate the function

by defining

MAPLE can construct the graph of this function (see
Fig. 23) and compute

Once again, the experimenter can discover the
mysterious approximate equality

but this time the authors are able to explain the exact
equality

∞
−

−∞


2

e d = 1.772453851...
x x
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Fig. 23. Graph of the factorial.
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only with the help of the theory of the Euler gamma
function, which relies heavily on the theory of functions
of a complex variable.

6. PROBABILITY THEORY

Contrary to the dominant traditions, we believe it is
possible to teach probability theory as a branch of
mathematics rather than as its applied field. However,
in any case, computer experiments are undoubtedly a
natural part of the course.

(a) Random numbers. Stochastic CEs based on ran-
dom number generators correspond to the spirit of
probability theory. However, the results they produce
should be interpreted as hypotheses relying on random
samples and should be compared with exact results of

( )
∞

− π= 
0

1
! e d =

2 2

tt t
D

CEs based on exhaustive search. Let us give two exam-
ples.

Monte Carlo calculation of . Here, for a positive

integer , we estimate the cardinality of the set

it is useful to prove rigorously that

even though the equality appears evident. This
sequence converges very slowly; here, it is also useful
to obtain rigorous bounds. However, this inefficient
method agrees well with an intuitive idea of the num-
ber π as the area of the unit disk. A curious experi-
menter can get interested in the search for faster meth-
ods (including the above-mentioned integral), which
are abundant in both classical and modern literature.

According to the Monte Carlo method, the points

of the square  are chosen
not consecutively one after another, but rather at ran-
dom. With luck, we obtain better results.

What is the probability that a fraction taken at ran-
dom is reducible? Here, by applying exhaustive search,
we can obtain numerical results in a similar manner to
the preceding example, but to understand them, we
should rely on our probabilistic intuition.

[The fraction  is reducible] 

(1.4a)

(disjunction of a countable set of statements parame-
terized by prime numbers).

Taking the negation of  and using de Mor-
gan’s laws, we obtain

π
∈Nr

∈
× + ≤

…

…

2 2 2

Q := {( , ) {0,1,2, , }

{0,1,2, , } | };

r x y n

n x y r

→∞
π

2

#Q
= 4 lim ,r

r r

×… …{0,1,2, , } {0,1,2, , }n n

a
b

⇔

⇔ ∈ ∧ ∈ ∨ ∈
∧ ∈ ∨ ∈ ∧ ∈ ∨…

[[[ 2 ] [ 2 ]] [[ 3 ]

[ 3 ]] [[ 5 ] [ 5 ]] ]

a b a
b a b

Z Z Z

Z Z Z

(1.4 )a
[The fraction  is irreducible]

(1.4b)

a
b

⇔ ∈ ∧ ∈ ∨ ∈ ∧ ∈ ∨ ∈ ∧ ∈ ∨…Z Z Z Z Z Z[[[ 2 ] [ 2 ]] [[ 3 ] [ 3 ]] [[ 5 ] [ 5 ]] ]a b a b a b

⇔ ∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧…[[ 2 ] [ 2 ]] [[ 3 ] [ 3 ]] [[ 5 ] [ 5 ]]a b a b a bZ Z Z Z Z Z
(conjunction of a countable set of statements parame-

terized by prime numbers).

It is at this moment that we should turn on our

probabilistic intuition. Assuming that the probability

P on the set of pairs of positive integers makes sense

(as the limit of probabilities on a finite set of fractions

with bounded numerators and denominators) and that

the conjuncts in (1.4b) are pairwise independent, we

obtain P (random fraction is irreducible)
(1.4c)

“Inverting” formula (1.4c) and, for each prime num-
ber p, using the formula for the sum of an infinite geo-
metric progression, i.e.,

= − ∈ ∧ ∈
× − ∈ ∧ ∈

× − ∈ ∧ ∈ …

(1 ([ 2 ] [ 2 ]))

(1 ([ 3 ] [ 3 ]))

(1 ([ 5 ] [ 5 ]))

a b
a b

a b

P
P

P

Z Z

Z Z

Z Z

( ) ( ) ( ) ( )       − − − −       
       

…

2 2 2 2
1 1 1 1

= 1 1 1 1 .
2 3 5 7
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Fig. 24. Decomposition of the sine function into a sum and
a product.
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we obtain

(1.4d)

According to Euler’s brilliant idea, on the right-
hand side of (1.4d), it is possible to expand all brackets
and, according to the fundamental theorem of arithme-
tic, to obtain the answer to the considered question:

(1.4e)

With the help of modern computational tools, the answer

can be obtained numerically: since , we

have

Thus, the random fraction is irreducible with prob-
ability of about 61% and, therefore, it is reducible with
probability of about 39%. These theoretical results can
be verified in CEs with the use of random number gen-
erators.

This result could be considered exhaustive, espe-
cially since the numerical result was obtained with
accuracy traditional for probability theory.

However, as we went through, we encountered a
remarkable number, namely, the sum of inverse

+ + + +
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…
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squares . We cannot ignore the classical math-

ematics associated with this number, especially taking
into account the enormous possibilities of CEs in
explaining it.

The problem concerning the exact value of the sum
of inverse squares was posed in the 17th century by
Pietro Mengoli, a little known student of famous
Bonaventura Cavalieri (see [24]). It is now known as
the Basel problem after Basel, hometown of the Ber-
noulli family, who worked much on this problem (see
[25]). The answer was not obtained until the 18th cen-
tury (see [26]). Euler applied the identity

(1.4f)

which he understood as equality of “polynomials of
infinite degree” based on the coincidence of their sets
of roots; in the given case, this is the set of integers.
This identity, together with the above-discussed Tay-
lor series expansion of the sine function, is a wonderful
field for CEs, both graphical and numerical. For
example, Fig. 24 shows the graphs of three functions:

(of course, the parameters can be varied and
improved). Applying “Vieta’s theorem” to an identity
following from (1.4f), namely, to

(1.4g)

more precisely, equating the coefficients of x3 in
(1.4g), we obtain the solution to the Basel problem:

(1.4h)

Combining the above results yields the answer to
the original question:

(b) Bernoulli trials. Along with heuristics, this time
not CE, but rather actual tossing of a coin a suffi-

ciently large number n of times,7 we suggest consider-

7 One of the authors (Shabat) regularly makes this experiment
with n = 100, asking 10 students to f lip a coin 10 times.
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fraction taken at random is reducible with probability
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Fig. 25. Gaussian approximations for n = 4, 10, 100.
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ing an exact mathematical model with the space of
equiprobable outcomes

and a random variable (for its agreement with the the-
ory of Bernoulli trials, it is convenient to call it success)

which assigns to a series of trials the number of result-
ing heads.

The upper envelope of the histogram of this random
variable is the “graph” of the th row of the Pascal’s
triangle

and the central limit theorem in its simplest form
states that the properly scaled form of this “graph” stabi-
lizes as . In view of the above-considered
extrapolation of the factorial, we can talk about the
graph of the actual function

defined on the interval  (an alternative is CE-
mastering of Stirling’s formula).

The probability-theoretic aspect of the above stabi-
lization effect is associated with the normalization of

the random variable :

where M is the expectation and D is the variance.

In the case under consideration,  and we have

 and , so the graph of  is

transformed according to the formulas
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We obtain the graph of the function

According to Stirling’s formula,

and, as , these graphs are approximated by a
Gaussian (see Fig. 25). This figure depicts

for .

As we can see, the approximations are very accu-

rate: for  and , the blue and red curves are
nearly indistinguishable, which reflects the three-
sigma rule.

Returning from analytical and graphical consider-
ations to numerical probability-theoretic ones, we
should realize that the above-mentioned (on a slightly
different scale) integral

is the total probability and should get familiar both
graphically and numerically with the probabilities for
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which can be verified in both computer and actual
experiments.

It is useful and possible to extend the above results
to both Bernoulli trials with nonequiprobable out-
comes and to series of pairwise independent trials with
a larger number of outcomes.

7. COMBINATORICS

We discuss two traditional topics.

(a) Catalan numbers. They can be defined in many
different ways, and the equivalence of these defini-
tions is good mathematics requiring CE (see [27]).

One of the definitions of the Catalan numbers is as
follows:

The corresponding enumeration problem is
instructive and is solvable with the help of CE. To
make lists of trees, it is convenient to use “Live mathe-
matics” or GeoGebra.

The generating function

can be defined in several equivalent ways. It is elemen-
tary, and its values can be checked using CE. Very
promising are various generalizations of the Catalan
numbers.

(b) Particio numerorum. The number of representa-
tions of a positive integer by the sum of smaller positive
integers (partition of a pile of objects into smaller
piles…) can be studied even by preschool children, but
it is associated with serious “adult” mathematics. We
introduce the standard notation

(2.1a)

Compiling complete lists of partitions for small n is a
nontrivial enumeration problem. As in the preceding
case, for this purpose, it is convenient to use “Live
mathematics” or GeoGebra. Making complete lists

 at least for  is a nontrivial computer prob-
lem.

This problem can be effectively solved with the help
of the (Euler) generating function
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(2.1b)

A crucial role is played by the factorization of this
function:

(2.1c)

which implies that

(2.1d)

Manually expanding (an infinite number) brackets
on the right-hand side is a rather labor-consuming
task, but it can easily be implemented in CE with the
help of, say, MAPLE. The result, as in Euler’s times,
is amazing: the series is “quadratically” sparse! More
precisely, it is true that

(2.1e)

It is not so easy to guess the pattern on the right side
of (2.1e). For some combinatorial reasons, it is called
Euler’s pentagonal number theorem, which states that

(2.1f)

Once again inverting series (2.1f), we can effec-
tively make lists of values of p(n).

Concerning CE with partitions (see [28]), the spar-
sity of some powers on the left-hand side of (2.1f) is
explained in [29].

8. TOPOLOGY

We mention two indeed research (not only educa-
tional) problems.

(a) Harer–Zagier numbers. Here, we mean random
gluings of polygons. Let  denote the number of

orientable gluings of a 2n-gon (results of pairwise iden-
tification of sides from which a Möbius strip cannot be
cut off). Enumeration of such gluings is a good com-
puter problem, which can be accompanied by various
CEs over Gaussian words. 

Tables of Harer–Zagier numbers can be con-
structed using the well-known recurrence:

This recurrence is important for many areas of
mathematics, and several of its “professional” proofs
are available. However, presumably, there are no
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transparent proofs with a clear combinatorial-topo-
logical meaning.

Most likely, no fundamental structures underlying

the theory of graphs  on orientable surfaces S with

complements  being homeomorphic to disks
(children’s one-cell drawings) are known to modern
science. CEs that group gluings in a meaningful way
for transparent proof of the recurrence can help dis-
cover such structures. An elementary introduction to
the theory can be found in [30].

(b) Homotopy groups of spheres. Somewhat myste-
rious mappings of spheres

for m > n that are nonhomotopic to identity maps have
been known for more than half a century. They begin
with the complex and quaternion Hopf fibrations

It is unlikely beginning mathematicians can put
things in order (i.e., compute all homotopy groups of
spheres) in multidimensional topology, in which
renowned mathematicians have worked since the mid-
dle of the 20th century.

However, modern computer technologies provide
tools for working with multidimensional objects that
were not available 70 years ago, for example, CEs with
piecewise linear mappings of spheres divided into small
pieces (simplices). Possibly, young mathematicians
who start thinking early on questions of these kinds
will develop a multidimensional topological intuition
that previous generations did not possess.

Some materials can be found, for example, in [31].

9. DYNAMICS

Hard work, especially experimental, has been con-
ducted in the proposed directions in recent decades.
Nevertheless, there are open questions, and further
CEs are desirable.

(a) Collatz conjecture (3n + 1 problem). We mean
iterations of the mapping

It is believed that any orbit comes to a cycle

, but nobody has been able to prove
this for decades. A direct computer study of this system
is easy to perform, so we should begin with it. Further
CEs would presumably be associated with statistical
data processing. Specifically, they would be concerned
with how the orbit lengths are distributed before
reaching the basic cycle, how far a randomly taken
number can go, etc.

In doing this project, student should probably learn
what 2-adic numbers are and should understand the

Γ
Γ\S

→m nS S

→ →   and   .
3 2 7 4S S S S

 ∈→ 
 + ∈ +

�

N
N N

N

        if   2
: 2

3 1   if   2 1.

n n
n

n n

� � �1 4 2 1
D

analogy between the considered map and the tent one.
Probably, it is useful to read [32]. We do not think that
significant progress can be made by students in this
area, but the simplicity of the task and the possibility
of experiments, visualization, etc., are fascinating.

(b) Iterations of quadratic maps. With the capabili-
ties of modern computers, it is worth drawing a variety
of Julia sets and the unique Mandelbrot set, just to
admire them.

A serious mathematical issue is the study of the Fei-
genbaum constant (for quadratic maps). Today its exis-
tence can be rigorously proved (see [33]). However, we
do not even know whether it is rational, as we were not
sure about the irrationality of the number π for thou-
sands of years.

Apparently, one of the main conditions for a suc-
cessful reflection on the Feigenbaum constant is to
never cease to wonder at the phenomenon of univer-
sality that it governs.

10. CONCLUSIONS

Having been teaching mathematics with the use of
computer experiments for many years, the authors can
try to draw some conclusions, particularly because one
of them in the same years intensively taught mathe-
matics in a more traditional way.

A striking property of reasonable CEs is that they
save efforts spent on routine operations and ensure
some certainty of results, provided that they are
checked repeatedly preferably by different people on
different computers. More important, of course, is the
possibility of obtaining results that are inaccessible at
all with manual calculation, enumeration, or drawing.

An important pedagogical aspect of CE is that it is
not sufficient for future mathematicians to get results
with CE as many times as they like: for a full under-
standing, they need something else (hardly only a for-
mal proof; rather an understanding of the picture of
the world whose fragment was seen with the help of
CE). Apparently, based on this parameter, it is possi-
ble to judge the prospects that a young human would
be professionally engaged in mathematics. In any case,
this parameter is no less important than the ability to
solve same-type problems quickly and correctly.

Concerning the prospects of CEs in teaching, the
authors are rather cautious. Many of the theses pre-
sented in this paper express the authors’ opinion about
the topic. In recent decades, the popularity of CE in
geometry teaching has increased markedly. It is not
clear whether this process will continue (rather yes
than no) and how soon CEs will begin to spread to
other areas of mathematics.

Based on many years of experience, we can say with
absolute confidence that teachers get great pleasure
resulting from successful CEs and this pleasure is usu-
ally transmitted to students. This pleasure (or some-
OKLADY MATHEMATICS  Vol. 107  Suppl. 1  2023
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times lack of it) is a baseline parameter in the relation-
ship between the human and Mathematics.
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