
ISSN 1560-3547, Regular and Chaotic Dynamics, 2024, Vol. 29, No. 1, pp. 156–173. c© Pleiades Publishing, Ltd., 2024.

On Homeomorphisms of Three-Dimensional Manifolds with

Pseudo-Anosov Attractors and Repellers

Vyacheslav Z. Grines1, Olga V. Pochinka1*, and Ekaterina E. Chilina1**

1International Laboratory of Dynamical Systems and Applications, HSE University,
ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia

Received September 17, 2023; revised December 25, 2023; accepted January 10, 2024

Abstract—The present paper is devoted to a study of orientation-preserving homeomorphisms
on three-dimensional manifolds with a non-wandering set consisting of a finite number of surface
attractors and repellers. The main results of the paper relate to a class of homeomorphisms
for which the restriction of the map to a connected component of the non-wandering set
is topologically conjugate to an orientation-preserving pseudo-Anosov homeomorphism. The
ambient Ω-conjugacy of a homeomorphism from the class with a locally direct product of a
pseudo-Anosov homeomorphism and a rough transformation of the circle is proved. In addition,
we prove that the centralizer of a pseudo-Anosov homeomorphisms consists of only pseudo-
Anosov and periodic maps.
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1. INTRODUCTION

In [3, 6] the dynamics of three-dimensional A-diffeomorphisms was studied under the assumption
that their nonwandering set consists of surface two-dimensional basic sets. It is proved that
diffeomorphisms of this class are ambiently Ω-conjugate to locally direct products of an Anosov
diffeomorphism of a two-dimensional torus and a rough transformation of a circle. This work is a
generalization of these results to a wider class G of maps, which we define as follows.

This work is a generalization of the results of [3, 6] to a wider class of maps G, which we define
as follows. The set G consists of orientation-preserving homeomorphisms f of a closed orientable
topological 3-manifold M3 with the nonwandering set NW (f) consisting of a finite number of
connected components B0, . . . , Bm−1 satisfying for any i ∈ {0, . . . ,m− 1} the following conditions:

1) Bi is a cylindrical1) embedding of a closed orientable surface of genus greater than 1;

2) there is a natural number ki such that fki(Bi) = Bi, f
k̃i(Bi) �= Bi for any natural number

k̃i < ki and the restriction of the map fki |Bi is topologically conjugate to an orientation-
preserving pseudo-Anosov homeomorphism (see the definition in Section 2.1);

*E-mail: olga-pochinka@yandex.ru
**E-mail: k.chilina@yandex.ru
1)A subspace X of a topological space Y is called a cylindrical embedding into Y of a topological space X̄ if there
is a homeomorphism onto the image h : X̄ × [−1, 1] → Y such that X = h(X̄ × {0}).
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ON HOMEOMORPHISMS OF THREE-DIMENSIONAL MANIFOLDS 157

3) Bi is either an attractor2) or a repeller for the homeomorphism fki .

The simplest representatives of the class G are homeomorphisms of the set Φ which are
constructed as follows.

Represent the circle as a subset of the complex plane S1 = {ei2πθ |0 � θ < 1} and define a covering

p : R → S
1 so that p(r) = s, where s = ei2πr.

Consider sets of numbers n, k, l such that n, k ∈ N, l ∈ Z, where l = 0 if k = 1, and l ∈
{1, . . . , k− 1} is coprime to k if k > 1. For each set n, k, l we define a diffeomorphism ϕ̄n,k,l : R → R

by the formula

ϕ̄n,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
.

Since ϕ̄n,k,l(r) + 1 = ϕ̄n,k,l(r + 1), it follows that the diffeomorphism ϕ̄n,k,l is the lift of the

circle map ϕn,k,l(s) = p
(
ϕ̄n,k,l

(
p−1(s)

))
, where p−1(s) is the preimage of the point s ∈ S

1 (see

Statement 8).

Theorem 1. A homeomorphism of a closed orientable surface that commutes with a pseudo-

Anosov one is either pseudo-Anosov, or periodic3).

Denote by Sg a closed orientable surface of genus g > 1, by Z(P ) the centralizer Z(P ) =
{J : Sg → Sg|PJ = JP} of a homeomorphism P : Sg → Sg and by P the set of all pseudo-Anosov
homeomorphisms on the surface Sg.

Consider orientation-preserving homeomorphisms P ∈ P and J ∈ Z(P ) such that the map J lP k

is a pseudo-Anosov homeomorphism. Let us represent the manifold MJ as the quotient space of the
manifold Sg × R by the action of the group Γ = {γi, i ∈ Z} of degrees of homeomorphism γ : Sg ×
R → Sg ×R, given by the formula γ(z, r) =

(
J(z), r− 1

)
, with natural projection p

J
: Sg ×R → MJ .

Define the map ϕ̄P,J,n,k,l : Sg × R → Sg × R by the formula

ϕ̄P,J,n,k,l(z, r) =
(
P (z), ϕ̄n,k,l(r)

)
.

It is readily verified that ϕ̄P,J,n,k,lγ = γϕ̄P,J,n,k,l. Then the orientation-preserving homeomor-
phism ϕP,J,n,k,l : MJ → MJ is correctly defined (see Statement 8) and given by the formula

ϕP,J,n,k,l(w) = p
J

(
ϕ̄P,J,n,k,l

(
p−1
J

(w)
))

,

where w ∈ MJ and p−1
J (w) is the preimage of the point w ∈ MJ . We call homeomorphisms of the

form ϕP,J,n,k,l model maps. Denote by Φ the set of all model maps.

Theorem 2. Any homeomorphism from the class Φ belongs to the class G.

Theorem 3. Any homeomorphism from the class G is ambiently Ω-conjugate4) to a homeomor-
phism from the class Φ.

2)An invariant set B of a homeomorphism f is called an attractor if there is a closed neighborhood U of the set
B such that f(U) ⊂ int U ,

⋂

j�0

f j(U) = B. The attractor for the homeomorphism f−1 is called the repeller of the

homeomorphism f .
3)A homeomorphism f is called periodic if there exists m ∈ N such that fm = id.
4)Recall that homeomorphisms f1 : X → X and f2 : Y → Y of topological manifolds X and Y are called ambiently
Ω-conjugated if there is a homeomorphism h : X → Y such that h

(
NW (f1)

)
= NW (f2) and hf1|NW (f1) =

f2h|NW (f1).
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158 GRINES et al.

2. MAIN DEFINITIONS AND AUXILIARY STATEMENTS

2.1. Pseudo-Anosov Homeomorphisms

Let Mn be a topological manifold of dimension n.

A family F = {Lα;α ∈ A} of path-connected subsets in Mn is called a k-dimensional foliation
if it satisfies the following three conditions:

• Lα ∩ Lβ = ∅ for any α, β ∈ A such that α �= β;

•
⋃

α∈A
Lα = Mn;

• for any point p ∈ Mn there is a local map (U,ϕ), p ∈ U , so that if U ∩ Lα �= ∅, α ∈ A, then
the path-connected components of the set ϕ(U ∩Lα) have the form {(x1, x2, . . . , xn) ∈ ϕ(U);
xk+1 = ck+1, xk+2 = ck+2, . . . , xn = cn}, where the numbers ck+1, ck+2, . . . , cn are constant
on the path-connected components.

A foliation F with a set of singularities S of Mn is a family of path-connected subsets of Mn

such that the family of sets F \ S is a foliation of Mn \ F .

Let q ∈ N. The foliation Wq on C with the standard saddle singularity at the point O and q
separatrices is a family of path-connected subsets in C such that Wq \O is a foliation on C \O and

Im z
q
2 = const on leaves of Wq \O. Rays l1, . . . , lq ∈ Wq satisfying equality Im z

q
2 = 0 are called

separatrices of the point O.

Fig. 1. The foliation Wq on C with the standard saddle singularity at the point O and q separatrices for
q = 1, 2, 3, 4.

A one-dimensional foliation F on M2 is called a foliation with saddle singularities if the set S
of singularities of the foliation F consists of a finite number of points s1, . . . , sc and for any point
si (i ∈ {1, . . . , c}) there is a neighborhood Ui ⊂ M2, a homeomorphism ψi : Ui → C and a number

qi ∈ N such that ψi(si) = O and ψi(F ∩ Ui) = Wqi \ {O}. The leaf containing the curve ψ−1
i (lj),

j ∈ {1, . . . , qi}, is called the separatrix of the point si. The point si is called a saddle singularity
with qi separatrices.

The transversal measure μ for a foliation F with saddle singularities on M2 associates with each
arc α transversal to F a nonnegative Borel measure μ|α with the following properties:

1) if β is a subarc of the arc α, then μ|β is a restriction of the measure μ|α;

2) if α0 and α1 are two arcs transversal to F and connected by a homotopy α : [0, 1]× [0, 1] → M2

such that α([0, 1] × {0}) = α0, α([0, 1] × {1}) = α1 and α({t} × [0, 1]) for any t ∈ [0, 1] is
contained in a leaf of F (see Fig. 2), then μ|α0(α0) = μ|α1(α1).

An orientation-preserving homeomorphism P : Sg → Sg of a closed orientable surface of genus
g > 1 is called a pseudo-Anosov map (pA-homeomorphism) with dilatation λ > 1 if on surface Sg

there is a pair of P -invariant transversal foliations Fs
P , Fu

P with a set of saddle singularities S and
transversal measures μs, μu such that:

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No. 1 2024
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Fig. 2. Curves α0 and α1 are connected by homotopy α.

• each saddle singularity from S has at least three separatrices;

• μs

(
P (α)

)
= λμs(α) (μu

(
P (α)

)
= λ−1μu(α)) for any arc α transversal to Fs

P (Fu
P ).

Let P : Sg → Sg be a pseudo-Anosov homeomorphism. Define the stable (unstable) mani-

fold W s(x) = {y ∈ M3 : d(Pn(x), Pn(y)) → 0, n → +∞} (W u(x) = {y ∈ M3 : d(Pn(x), Pn(y)) →
0, n → −∞}) of x ∈ Sg, where d is a metric on Sg. Note that the stable (unstable) manifold of
the point x /∈ S is a leaf of the foliation Fs

P (Fu
P ) and a stable (unstable) manifold of the point

x ∈ S is the union of a finite number of separatrices belonging to the foliation Fs
P (Fu

P ) and the
point x.

A rectangle is a subset Π ⊂ Sg that is the image of a continuous map υ of the square [0, 1]× [0, 1]
into Sg with the following properties: υ is one-to-one on the interior of the square and maps segments
of its horizontal partition into arcs of leaves Fs

P , and segments of its vertical partition into arcs

of leaves Fu
P . Denote by Π̇ the image of the interior of the square. We will call the images of the

horizontal and vertical sides contracting and stretching sides of the rectangle Π.

A Markov partition for a pseudo-Anosov homeomorphism P is a finite family of rectangles

Π̃ = {Π1, . . . ,Πn} for which the following conditions are satisfied:

•
⋃
i
Πi = Sg; Π̇i ∩ Π̇j = ∅ for i �= j;

• let ∂sΠ̃ (∂uΠ̃) be the union of all contracting (stretching) sides of rectangles Π1, . . . ,Πn, then

P (∂sΠ̃) ⊂ ∂sΠ̃; P (∂uΠ̃) ⊃ ∂uΠ̃.

Statement 1 ([1, Proposition 10.17]). A pseudo-Anosov homeomorphism has a Markov parti-
tion.

A foliation F is called uniquely ergodic if it admits a single transversal measure (up to
multiplication by a scalar).

Statement 2 ([1, Theorem 12.1]). The foliations Fs
P and Fu

P of the pseudo-Anosov homeomor-
phism P are uniquely ergodic.

Statement 3 ([1, Theorem 12.5]). Two homotopic pseudo-Anosov diffeomorphisms are conju-
gate by a diffeomorphism isotopic to the identity.

Statement 4 ([9, Lemma 3.1]). A homeomorphism that is topologically conjugate to a pseudo-
Anosov homeomorphism is also pseudo-Anosov.

Statement 5 ([9, Theorem 3.2]). The set of periodic points of a pseudo-Anosov homeomor-
phism is dense everywhere on the surface.

Statement 6 ([9, Note 3.6]). Every leaf of foliations Fs
P and Fu

P of the pseudo-Anosov homeo-
morphism P is everywhere dense on Sg.
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2.2. Group Action on a Topological Space

Let us recall some facts related to the action of a group on a topological space (for more details,
see [4]).

For a continuous mapping h : X → Y of a topological space X into a topological space Y , denote
by h−1(V ) the preimage of the set V ⊂ Y , that is, h−1(V ) = {x ∈ X|h(x) ∈ V }.

Let the action of a group G be free and discontinuous on a Hausdorff space X and let the orbits
space X/G be connected. The definition of the projection pX/G : X → X/G implies that p−1

X/G(x)

is an orbit of some point x̄ ∈ p−1
X/G(x). Let c be a path in X/G for which c(0) = c(1) = x. The

monodromy theorem implies that there is a unique path c̄ in X starting from x̄ (c̄(0) = x̄) which
is a lift of the path c. Therefore, there is an element g ∈ G for which c̄(1) = g(x̄). Hence, the map
ηX/G,x̄ : π1(X/G, x) → G defined by ηX/G,x̄([c]) = g is well defined, i. e., it is independent of the

choice of the path in the class [c].

Statement 7 ([4, Statement 10.32]). The map ηX/G,x̄ : π1(X/G, x) → G is a nontrivial homo-

morphism. It is called the homomorphism induced by the cover pX/G : X → X/G.

Let G be an abelian group and let c̄′ be the lift of a path c ∈ π1(X/G, x) starting from a
point x̄′ = c̄′(0) distinct from the point x̄ and let g′(x̄′) = c̄′(1). Since there is the unique element
g′′ ∈ G for which g′′(x̄) = x̄′ the monodromy theorem implies g′′(c̄) = c̄′. Then g′′g = g′g′′ and,
therefore, g′ = g. Thus, ηX/G,x̄ = ηX/G,x̄′ and from now on we omit the index x̄ in the notation of
the epimorphism ηX/G,x̄ and we write ηX/G if G is an abelian group.

Statement 8 ([4, Statement 10.35]). Let cyclic groups G, G′ act freely and discontinuously on
G, G′-space X and let g, g′ be their respective generators. Then

1) if h̄ : X → X is a homeomorphism for which h̄(g(x̄)) = g′(h̄(x̄)) for every x̄ ∈ X, then

the map h : X/G → X/G′ defined by h = pX/G′

(
h̄
(
p−1
X/G(x)

))
is a homeomorphism and

ηX/G = ηX/G′h∗;

2) if h : X/G → X/G′ is a homeomorphism for which ηX/G = ηX/G′h∗, then there is a unique

homeomorphism h̄ : X → X which is a lift of h and such that h̄
(
g(x̄)

)
= g′

(
h̄(x̄)

)
, h̄(x̄) = x̄′

for x̄ ∈ X and x̄′ ∈ p−1
X/G′(x

′), where x′ = h
(
pX/G(x̄)

)
.

3. ON THE CENTRALIZER OF A PSEUDO-ANOSOV MAP

In this section we prove that a homeomorphism J ∈ Z(P ), where P ∈ P, is either a pseudo-
Anosov homeomorphism or a periodic homeomorphism.

Let P ∈ P and J ∈ Z(P ). Since P = JPJ−1, it follows that J maps stable manifolds of P
into stable ones, and unstable ones into unstable ones. Therefore, J(Fs

P ) = Fs
P and J(Fu

P ) = Fu
P .

The foliations Fs
P , Fu

P have transversal measures μs, μu. Let us define for the foliation Fs
P

(Fu
P ) a transversal measure μ̃s(αs) = μs

(
J(αs)

) (
μ̃u(αu) = μu

(
J(αu)

))
, where αs (αu) is the arc

transversal to the foliation Fs
P (Fu

P ). Since foliations Fs
P , Fu

P are uniquely ergodic (Proposition 3),

there exist numbers νs, νu ∈ R+ such that μ̃s = νsμs and μ̃u = νuμu. Thus, μs

(
J(αs)

)
= νsμs(αs),

μu

(
J(αu)

)
= νuμu(αu) for arc αs transversal to Fs

P and the arc αu transversal to Fu
P .

Since the pseudo-Anosov homeomorphism P has a Markov partition (see Statement 1) consisting
of n rectangles Π1, . . . ,Πn, it follows that on each rectangle Πi (i in{1, . . . , n}) the measure
μs ⊗ μu is defined by the formula μs ⊗ μu(Πi) = μs(αs,i)μu(αu,i) = μi, where αs,i is the stretching
side of the rectangle Πi and αu,i is the contracting side. Since the foliations Fs

P , Fu
P are

invariant under J , it follows that the set J(Πi) (i ∈ {1, . . . , n}) is also a rectangle with measure
μs ⊗ μu

(
J(Πi)

)
= μs

(
J(αs,i)

)
μu

(
J(αu,i)

)
= nusνuμi. Thus, μs ⊗ μu(Sg) = μs ⊗ μu(

⋃
i
Πi) =

⋃
i
μi
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and μs ⊗μu

(
J(Sg)

)
= μs⊗μu

(⋃
i

(
J(Πi)

))
= νsνu(

⋃
i
μi). Since J(Sg) = Sg, it follows that νsνu = 1.

Let ν = νs.

Consider the case ν �= 1. The homeomorphism J has a pair of invariant transversal foliations
Fs
P , Fu

P with a common set of saddle singularities having at least three separatrices, and transversal

measures μs, μu such that μs

(
J(α)

)
= νμs(α)

(
μu

(
J(α)

)
= ν−1μu(α)

)
for any arc α transversal

to Fs
P (Fu

P ). Consequently, for ν > 1 (ν < 1) the homeomorphism J is a pseudo-Anosov map with

dilatation ν > 1
(
1
ν > 1

)
.

Consider the case ν = 1. Since the foliation Fs
P is invariant under J , it follows that separatrices

of saddle singularities under the action of J are mapped into separatrices of saddle singularities.
Since the set of separatrices is finite, there exists m ∈ N such that Jm(si) = si and Jm(l) = l for
some separatrix l of the saddle singularity si of the foliation Fs

P .

Let us prove that Jm(x) = x for any point x ∈ l. Let [si, x] be the arc of the curve l bounded
by points si and x. Since μu(J

m[si, x]) = μu([si, x]), it follows that J
m([si, x]) = [si, x]. Therefore,

Jm(x) = x.

Since the leaf l is dense everywhere on Sg (see Statement 6) and Jm|l = id, it follows that
Jm(z) = z for any z ∈ Sg.

Consequently, the map J is a periodic homeomorphism for ν = 1 and is pseudo-Anosov for ν �= 1.

4. ON THE MODEL MAPS

In this section we prove Theorem 2 and auxiliary lemmas.

Recall that a map f2 : Y → Y of a topological space Y is called a factor of a map f1 : X → X of
a topological space X if there is a surjective continuous map h : X → Y such that hf1 = f2h. The
map h is called semiconjugacy.

Lemma 1. Let f1 : X → X, f2 : Y → Y be homeomorphisms of topological spaces X and Y such
that f2 is a factor of f1 with semiconjugacy h : X → Y . Then:

1) h
(
NW (f1)

)
⊂ NW (f2);

2) if fk
2 (Vy) = Vy for some k ∈ N, Vy ⊂ Y , then fk

1 (Vx) ⊂ Vx for Vx = h−1(Vy);

3) if fk
1 (Vx) = Vx for some k ∈ N, Vx ⊂ X, then fk

2 (Vy) = Vy for Vy = h(Vx).

Proof. Let f1 : X → X, f2 : Y → Y be homeomorphisms of topological spaces X and Y such that
f2 is a factor of f1 with semiconjugacy h : X → Y , that is, hf1 = f2h. Let us prove each point of
the lemma separately.

1) Consider the point x ∈ NW (f1) and the point y = h(x) with an arbitrary open neighborhood
Uy. Let Ux = h−1(Uy). Since h is a continuous map, the inverse image Ux of the open
set Uy is also open. Then, by the definition of a nonwandering point x, there exists

n ∈ N such that fn
1 (Ux) ∩ Ux �= ∅. Let fn

1 (Ux) ∩ Ux = Ûx and Ûy = h(Ûx). Since Ûx ⊂ Ux,

then h(Ûx) ⊂ h(Ux), that is, Ûy ⊂ Uy. Note that hfn
1 = fn

2 h. Since Ûy ⊂ h
(
fn
1 (Ux)

)
, then

Ûy ⊂ fn
2 (h(Ux)) = fn

2 (Uy). Therefore, f
n
2 (Uy) ∩ Uy �= ∅. Thus, y = h(x) ∈ NW (f2).

2) Let fk
2 (Vy) = Vy, where k ∈ N, Vy ⊂ Y , Vx = h−1(Vy) and fk

1 (Vx) = V ′
x. Then fk

2

(
h(Vx)

)
=

fk
2 (Vy) = Vy and h

(
fk
1 (Vx)

)
= h(V ′

x). Since hf
k
1 = fk

2 h, it follows that h(V
′
x) = Vy. Therefore,

V ′
x ⊂ Vx, that is, f

k
1 (Vx) ⊂ Vx.

3) Let fk
1 (Vx) = Vx, where k ∈ N, Vx ⊂ X and Vy = h(Vx). Then h

(
fk
1 (Vx)

)
= h(Vx) = Vy. Since

hfk
1 = fk

2 h, then fk
2

(
h(Vx)

)
= fk

2 (Vy) = Vy. Therefore, f
k(Vy) = Vy. �
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We will call a set of numbers n, k, l correct if n, k ∈ N, l ∈ Z, where l = 0 for k = 1 and
l ∈ {1, . . . , k − 1} is coprime to k for k > 1. Everywhere else in this section the set of numbers
n, k, l is correct. Let us recall the main notation and formulas.

• The manifoldMJ is the quotient space of Sg ×R under the action of the group Γ = {γi, i ∈ Z}
of degrees of homeomorphism γ : Sg × R → Sg × R given by the formula γ(z, r) = (J(z), r −
1), where J : Sg → Sg is an orientation-preserving homeomorphism;

• pJ : Sg × R → MJ is a natural projection inducing the homomorhisms ηMJ
: MJ → Z;

• ϕ̄n,k,l : R → R is a diffeomorphism given by the formula

ϕ̄n,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
; (4.1)

• S
1 = {ei2πθ|0 � θ < 1}, p : R → S

1 is a covering given by the formula p(r) = s, where s =
ei2πr;

• ϕn,k,l : S
1 → S

1 is a diffeomorphism given by the formula

ϕn,k,l(s) = p
(
ϕ̄n,k,l

(
p−1(s)

))
; (4.2)

• ϕ̄ = ϕ̄P,J,n,k,l(z, r) : Sg × R → Sg × R is a homeomorphism given by the formula

ϕ̄(z, r) =
(
P (z), ϕ̄n,k,l(r)

)
, (4.3)

where P : Sg → Sg is an orientation-preserving pseudo-Anosov homeomorphism such that
J ∈ Z(P );

• model homeomorphism ϕ = ϕP,J,n,k,l : MJ → MJ is given by the formula

ϕ(w) = pJ

(
ϕ̄
(
p−1
J

(w)
))

; (4.4)

• Φ is a set of model homeomorphisms.

Let us introduce the following notation:

• Bi = p
J
(Sg × { i

2nk}) ∈ MJ (i ∈ {0, . . . , 2nk − 1});

• bi = p( i
2nk ) ∈ S

1 (i ∈ {0, . . . , 2nk − 1});

• pJ,r : Sg × {r} → p
J
(Sg × {r}) is a homeomorphism given by the formula

pJ,r = pJ |Sg×{r}, r ∈ R; (4.5)

• ρ : Sg × R → Sg is a canonical projection given by the formula

ρ(z, r) = z; (4.6)

• ρr : Sg × {r} → Sg is a homeomorphism given by the formula

ρr = ρ|Sg×{r}, r ∈ R. (4.7)

Note that the Eq. (4.4) is obtained from the relation

pJ ϕ̄ = ϕpJ , (4.8)

and Eq. (4.2) is obtained from the relation

pϕ̄n,k,l = ϕn,k,lp. (4.9)
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Since p
J
: Sg × R → MJ is a natural projection, it follows that

p
J
γ = p

J
. (4.10)

Denote by hJ : MJ → S
1 the continuous surjective map given by the formula

hJ(w) = p(r), where w = pJ(z, r) ∈ MJ . (4.11)

It is readily verified that hJϕ = ϕn,k,lpJ . Thus, the following lemma is true.

Lemma 2. The homeomorphism ϕn,k,l : S
1 → S

1 is the factor of the homeomorphism ϕ : MJ → MJ

with semiconjugacy hJ : MJ → S
1.

It is directly verified (see Eqs. (4.1) and (4.2)) that the nonwandering set of the diffeomorphism
ϕn,k,l consists of 2nk points b0, . . . , b2nk−1 of period k such that points with odd indices i are sinks
and points with even indices are sources.

Let us prove Theorem 2, that is, prove the inclusion Φ ⊂ G.
Proof. Consider the model homeomorphism ϕ = ϕP,J,n,k,l : MJ → MJ . Since the homeomorphism
J preserves orientation, it follows that the manifold MJ is orientable. Preserving the orientation
of homeomorphisms P and ϕn,k,l implies preserving orientation by homeomorphism ϕ inducing by

map ϕ̄(z, r) =
(
P (z), ϕ̄n,k,l(r)

)
.

Let us prove that the connected component Bi (i ∈ {0, . . . , 2nk − 1}) is a cylindrical embedding

of the surface Sg. For i ∈ {0, . . . , 2nk − 1} we set Ūi = Sg × [ i
2nk − i

4nk ,
i

2nk + i
4nk ] and Ui = pJ(Ūi).

Since p
J
: Sg × R → MJ is a covering, it follows that for any i ∈ {0, . . . , 2nk − 1} its restriction

p
J
|Ūi

: Ūi → Ui is a homeomorphism. In addition, p
J
|Ūi

(Sg × { i
2nk}) = Bi. Therefore, Bi

(
i ∈

{0, . . . , 2nk − 1}
)
is a cylindrical embedding of Sg.

Let us prove that ϕk(Bi) = Bi, ϕ
k̃i(Bi) �= Bi (i ∈ {0, . . . , 2nk− 1}) for any natural number k̃i < k.

In accordance with Lemma 2, the map ϕn,k,l is the factor of a homeomorphism ϕ with semiconjugacy

hJ . Note that h−1
J (bi) = Bi (i ∈ {0, . . . , 2nk − 1}), where bi ∈ S

1 is a point of period k. It follows

from Lemma 1 that ϕk(Bi) ⊂ Bi. Since the map ϕk is a homeomorphism and the component Bi

is homeomorphic to Sg, it follows that ϕk(Bi) = Bi. Suppose that ϕk̃(Bi) = Bi for some natural

number k̃ < k. Then Lemma 1 implies that ϕk̃
n,k,l(bi) = bi. We come to a the contradiction that

point bi has period k.

Let us prove that the map ϕk|Bi (i ∈ {0, . . . , 2nk − 1}) is topologically conjugate to the
orientation-preserving pseudo-Anosov homeomorphism. Since

γl
(
ϕ̄k

(
z,

i

2nk

))
=

(
J l
(
P k(z)

)
,

i

2nk

)
, (4.12)

it follows that

ρ i
2nk

(
γl
(
ϕ̄k

(
ρ−1

i
2nk

(z)
))

Big) = J l
(
P k(z)

)
. (4.13)

For any point w ∈ Bi we get

ϕk(w)
(4.4)
= p

J

(
ϕ̄k(p−1

J
(w))

)
(4.10)
= p

J
(γl(ϕ̄k(p−1

J
(w))))

(4.12)
= pJ, i

2nk

(
γl
(
ϕ̄k

(
p−1
J, i

2nk

(w)
))) (4.13)

= pJ, i
2nk

(
ρ−1

i
2nk

(
J l
(
P k(ρ i

2nk
(p−1

J, i
2nk

(w)))
)))

.

Consequently, the homeomorphism ϕk|Bi is topologically conjugate to the orientation-preserving

pseudo-Anosov homeomorphism J lP k via the homeomorphism pJ, i
2nk

ρ−1
i

2nk

.

Lemmas 1 and 2 imply that NW (ϕ) ⊂ (B0 ∪ · · · ∪ B2nk−1).
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Since the set of periodic points of a pseudo-Anosov homeomorphism is dense everywhere
on the surface (Proposition 5) and ϕk(Bi) = Bi (i ∈ {0, . . . , 2nk − 1}), it follows that NW (ϕ) =
B0 ∪ · · · ∪ B2nk−1.

Let us prove that the connected components Bi with odd indices i belong to the set of attractors
of the homeomorphism ϕ. Points bi with odd indices i are sink points of the diffeomorphism ϕk

n,k,l.

Therefore, ϕk(ui) ⊂ int ui and
⋂
j�0

ϕjk
n,k,l(ui) = bi for the neighborhood ui = hJ (Ui) = p([ i

2nk −
i

4nk ,
i

2nk + i
4nk ]) of point bi with odd index i. Since h−1

J (p[a, b]) = pJ(Sg × [a, b]) for any a, b ∈ R,

hJϕ
jk = ϕjk

n,k,lhJ and h−1
J (bi) = Bi, it follows that ϕ

k(Ui) ⊂ int Ui,
⋂
j�0

ϕjk(Ui) = Bi. Consequently,

connected components Bi with odd indices i are attractors of the map ϕk.

Analogously one proves that connected components Bi with even indices i belong to the set of
repellers.

Thus, ϕ ∈ G. �

5. THE AMBIENT Ω-CONJUGACY OF A HOMEOMORPHISM f ∈ G
TO A MODEL MAP

Recall that the set Φ consists of model homeomorphisms of the form ϕP,J,n,k,l. This section
contains a proof of Ω-conjugacy of homeomorphisms of the class G with homeomorphisms of the
set Φ and auxiliary lemmas. We will also use the notation introduced in Section 3 below.

Let us denote by H the set of all homeomorphisms f satisfying the following conditions:

1) there exists an orientation-preserving homeomorphism J : Sg → Sg such that f : MJ → MJ ;

2) f preserves the orientation of MJ ;

3) there exists m ∈ N such that the nonwandering set NW (f) of the homeomorphism f consists
of 2m connected components B0 ∪ · · · ∪ B2m−1;

4) for any i ∈ {0, . . . , 2m− 1} there is a natural number ki such that fki(Bi) = Bi, f
k̃i(Bi) �= Bi

for any natural k̃i < ki and the map fki |Bi preserves the orientation of Bi;

5) f(Bi) = Bj , where the numbers i, j ∈ {0, . . . , 2m− 1} are either even or odd at the same
time.

Note that the homeomorphisms of the set Φ belong to the class H.

For m ∈ N we denote by Tm the set Tm = { i
2m , i ∈ Z}. Then p−1

J (NW (f)) = Sg × Tm, where
f ∈ H.

Lemma 3. For any homeomorphism f ∈ H with a nonwandering set consisting of 2m connected
components, there exist a unique correct set of numbers n, k, l and a lift f̄ : Sg × R → Sg × R such
that

f̄(z, r) =
(
fr(z), r +

l

k

)
, ∀r ∈ Tnk,

where nk = m and fr : Sg → Sg is an orientation-preserving homeomorphism given by

fr = ρr+ l
k
f̄ ρ−1

r .

Proof. Let f : MJ → MJ be a homeomorphism from the class H.

Let us prove that there is a lift f̄ : Sg × R → Sg ×R of the homeomorphism f . By Statement 8
it sufficies to show that ηMJ

= ηMJ
f∗.

Consider the loop c ∈ MJ which is the projection of the curve c̄ ∈ Sg × R (pJ(c̄) = c),

bounded by points c̄(0) = (z, 1), c̄(1) = γ
(
c̄(0)

)
=

(
J(z), 0

)
and intersecting each set Sg × { i

2m},
i ∈ {0, . . . , 2m− 1} at exactly one point. By construction, the curve c intersects each connected
component B0, . . . ,B2m−1 at exactly one point and ηMJ

([c]) = 1. We set C = f(c) and C(0) =
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f
(
c(0)

)
. Since f is a homeomorphism such that f(Bi) = Bi′ , i, i

′ ∈ {0, . . . , 2m− 1}, it follows that
the curve C = f(c) also intersects each component of B0, . . . ,B2m−1 at exactly one point. We

set Bj = f(B0). If we choose a point C̄(0) ∈ p−1
J

(
C(0)

)
such that C̄(0) ∈ Sg × { j

2m + 1}, by the

monodromy theorem there is a unique lift C̄ of the path C starting at the point C̄(0). Since the
loop C intersects each component B0, . . . ,B2m−1 at exactly one point, it follows that there are 2
cases: 1) C̄(1) = γ−1

(
C̄(0)

)
, 2) C̄(1) = γ

(
C̄(0)

)
.

Let us show that case 1) does not take place.

Consider the case m = 1. Then f(B0) = B0. Since the homeomorphism f preserves the orienta-
tionMJ and the orientation B0, it follows that the curve C(t) must be parameterized in one direction
with the parameterization of the curve c(t) with respect to the surface B0. Thus, C̄(1) = γ

(
C̄(0)

)
.

Consider the case m > 1. Let us denote by ξc : S
1 → c, ξC : S1 → C homeomorphisms such that

ξc(bi) = Bi ∩ c, ξC(bi) = Bi ∩C, where i ∈ {0, . . . , 2m− 1}. Define the homeomorphism ψ : S1 → S
1

by the formula ψ = ξ−1
C fξc. Let us prove that the homeomorphism ψ preserves orientation.

Assume the converse. Let us prove that there exists q ∈ {0, . . . , 2m− 1} such that ψ(bq) = bq. Let
Bj = f(B0). Then ψ(b0) = bj. If j = 0, then q = 0. Let j �= 0. By the condition of the class H, the

number j is even. Since, by assumption, ψ changes the orientation of S1 and the set b0 ∪ · · · ∪ b2m−1

is invariant, it follows that the arc of the circle (b0, bj) is mapped into itself and ψ(bi) = bj−i,

i ∈ {0, . . . , j2}. Thus, ψ(b j
2
) = b j

2
and q = j

2 . Therefore, f(Bq) = Bq. Since ψ changes orientation, it

follows that the curve C(t) is parameterized in the direction opposite to the parameterization of
the curve c(t) with respect to the surface Bq (see Fig. 3). Since the homeomorphism f preserves
the orientation MJ and the orientation Bq, then the parameterization of the curve C(t) must
be parameterized in one direction with the parameterization of the curve c(t) with respect to
the surface Bq. We have got a contradiction. Consequently, the homeomorphism ψ preserves the

orientation of S1. Then C̄(1) = γ
(
C̄(0)

)
.

Fig. 3. Direction of increasing parameter t ∈ [0, 1] on curves c and C.

Thus, C̄(1) = γ
(
C̄(0)

)
and ηMJ

(
f∗([c])

)
= 1. Consequently, ηMJ

= ηMJ
f∗ and there is a unique

lift f̄ : Sg × R → Sg × R of the homeomorphism f such that f̄(c̄(1)) = C̄(1) and

f̄ γ = γf̄ . (5.1)

Let us find the correct set of numbers n, k, l for the homeomorphism f . The case m = 1
corresponds to the correct set of numbers n = 1, k = 1 and l = 0. Consider the case m > 1. Since
the homeomorphism ψ is orientation-preserving, it follows that it has a rational rotation number l

k ,
where k ∈ N, l ∈ {0, . . . , k− 1} and (l, k) = 1 (see [7, Theorem 4.1]). From [7, Theorem 4.2] it follows
that all periodic points of the homeomorphism ψ have period k. Since point bi with even (odd)
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index i is mapped to point bi′ with even (odd) index i′, it follows that 2m points b0, . . . , b2m−1 are
divided into 2 invariant sets of equal power, each of which consists of points of period k. Therefore,
m is divisible by k. We set n = m

k . Thus, n, k, l is the required correct set of numbers.

Since the rotation number of ψ is equal to l
k , it follows that ψ(b0) = b2nl, that is, f(B0) = B2nl.

Let us find a formula that defines the map f̄ for the point (z, r) ∈ Sg × Tnk. Since C̄(1) =

γ
(
C̄(0)

)
, it follows that C̄(1) ∈ Sg × { 2nl

2nk} = Sg × { l
k}. Invariance of the set p−1

J (NW (f)) =

Sg × Tnk under f̄ implies that f̄(Sg × [0, 1]) = Sg × [ lk , 1 +
l
k ], where f̄(Sg × {0}) = Sg × { l

k}. From
this we find that f̄(Sg × { i

2nk}) = Sg × { i
2nk + l

k} for any i ∈ {0, . . . , 2nk − 1}. Using Eq. (5.1), we

find that f̄ = γmf̄γ−m for any m ∈ Z. Then f̄(Sg × {r}) = γ[r]
(
f̄
(
γ−[r](Sg × {r})

))
, where [r] is

the integer part of the number r ∈ R. Thus, it is readily verified that f̄(Sg × {r}) = Sg × {r + l
k}

for r ∈ Tnk. Then for any r ∈ Tnk the homeomorphism fr : Sg → Sg is correctly defined and given

by the formula fr = ρr+ l
k
f̄ρ−1

r . Thus, f̄(z, r) =
(
fr(z), r +

l
k

)
for any r ∈ Tnk.

It remains to prove that fr preserves the orientation of Sg, where r ∈ Tnk. Preserving the

orientation of MJ by f implies preserving the orientation of Sg ×R by its lift f̄ . Since f̄(Sg ×{r} =

fr(Sg)× {r + l
k} for any r ∈ Tnk, it follows that the homeomorphism f̄ preserves the orientation of

R. Therefore, f̄ preserves the orientation of Sg, that is, fr preserves the orientation of Sg. �

Note that in the case f = ϕP,J,n,k,l the equality fr(z) = P (z) holds for any r ∈ Tnk and

f̄ = ϕ̄P,J,n,k,l.

Lemma 4. Let f ∈ H. Then fr is isotopic to f0 for any r ∈ Tnk.

Proof. Let f ∈ H. Let us prove that fr is isotopic to f0 for any r ∈ Tnk.
Define a family of continuous maps Fr,t : Sg → Sg by the formula Fr,t(z) = ρ(f̄(z, rt)), where

t ∈ [0, 1], r ∈ Tnk. Then Fr,t defines a homotopy connecting the maps Fr,0 = f0 and Fr,1 = fr. Thus,
homeomorphisms f0 and fr are homotopic. It follows from [10, p. 5.15] that they are isotopic for
any r ∈ Tnk. �

Lemma 5. Let f : M3 → M3 be a homeomorphism from the class G. Then there exists a homeo-
morphism f ′ ∈ H topologically conjugate to f .

Proof. Let f : M3 → M3 be a homeomorphism from the class G with a nonwandering set consisting
of q connected components B0, . . . , Bq−1.

In accordance with [2, Lemma 2.1], the set M3 \ (B0 ∪ · · · ∪Bq−1) consists of q connected
components V0, . . . , Vq−1, bounded by one connected component of an attractor and one connected
component of a repeller. Therefore, q = 2m, where m ∈ N. Without loss of generality, for m > 1 we
can assume that cl Vi ∩ cl Vi−1 = Bi−1, where i ∈ {1, . . . , 2m− 2} and cl V0 ∩ cl V2m−1 = B2m−1.

In accordance with [2, Lemma 2.2], each connected component Vi, i ∈ {0, . . . , 2m− 1} of the set
M3 \ (B0 ∪ · · · ∪B2m−1) is homeomorphic to Sg × [0, 1]. It follows from [5, Lemma 2] that there

exists a continuous surjective map H : Sg × [0, 1] → M3 (see Fig. 4) such that mapsH|Sg×{ i
m
} : Sg ×

{ i
m} → Bi (i ∈ {0, . . . , 2m− 1}), H|Sg×{1} : Sg × {1} → B0 and H|Sg×(0,1) : Sg × (0, 1) → M3 \B0

are homeomorphisms.

Let J(z) = ρ0

(
(H|Sg×{0})

−1
(
H|Sg×{1}(ρ

−1
1 (z))

))
(see Fig. 5).

Denote by [r] the integer part of the number r ∈ R. Define a continuous map h : Sg × R → M3

by the formula h(z, r) = H
(
γ[r](z, r)

)
.

Let the homeomorphism ξ : M3 → MJ be given by the formula ξ = pJ

(
h−1(w)

)
. Set f ′ = ξfξ−1.

Let us prove that the homeomorphism f ′ satisfies all 5 conditions of the class H. Since M3 is
orientable and homeomorphic toMJ , it follows that J preserves the orientation of Sg and condition 1
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Fig. 4. Action of the homeomorphism H in the case m = 2.

Fig. 5. Homeomorphism J : Sg → Sg.

is satisfied. Since f preserves the orientation ofM3, it follows that f ′ preserves the orientation of MJ

and condition 2 is satisfied. Since ξ(NW (f)) = NW (f ′) and h−1(NW (f)
)
= Sg × Tnk, it follows

that NW (f ′) = pJ

(
h−1

(
NW (f)

))
= pJ(Sg × Tnk) = B0 ∪ · · · ∪ B2m−1. Therefore, condition 3 is

satisfied. Since for any Bi (i ∈ {0, . . . , 2m− 1}) there is a natural number ki such that fki(Bi) = Bi,

f k̃i(Bi) �= Bi for any natural k̃i < ki and the map fki |Bi preserves the orientation of Bi, it follows
that the same is true for the connected component Bi of the nonwandering set NW (f ′), that
is, condition 4 is satisfied. The connected components of the nonwandering set NW (f) of the
homeomorphism f are numbered in such a way that, if Bi is the connected component of an
attractor of the homeomorphism f , then Bi+1 (mod 2m) is the connected component of a repeller

of the homeomorphism f . Therefore, f(Bi) = Bj, where i, j ∈ {0, . . . , 2m− 1} are either even or
odd at the same time. Since ξ(Bi) = Bi (i ∈ {0, . . . , 2m− 1}), it follows that f ′(Bi) = Bj , where
i, j ∈ {0, . . . , 2m− 1} are simultaneously either even or odd, that is, condition 5 is satisfied. Thus,
f ′ ∈ H. �

Everywhere below in this section we mean by f̄ , fr and n, k, l the lift of the homeomorphism
f ∈ H, the homeomorphism fr : Sg → Sg, r ∈ Tnk, and the correct set of numbers n, k, l from
Lemma 3.
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Lemma 6. Let f ∈ H∩ G. Then f0 is isotopic either to some periodic homeomorphism or to some
pseudo-Anosov homeomorphism.

Proof. Let f ∈ H ∩ G.
Let us prove that f0 is isotopic either to some periodic homeomorphism or to some pseudo-

Anosov homeomorphism.

Since f̄ is a lift of a homeomorphism f , it follows that

pJ f̄ = fpJ . (5.2)

Therefore,

f(w) = pJ

(
f̄
(
p−1
J (w)

))
. (5.3)

For r ∈ Tnk denote by φr : Sg → Sg the homeomorphism given by the formula

φr = J lf
r+

(k−1)l
k

· · · fr+ l
k
fr. (5.4)

Then it is readily verified that

γl
(
f̄k|Sg×Tnk

(z, r)
)
=

(
φr(z), r

)
, where r ∈ Tnk. (5.5)

Therefore,

φr = ρrγ
lf̄kρ−1

r . (5.6)

Thus, fk|B0(w)
(5.3)
= pJ(f̄

k(p−1
J (w)))

(4.10)
= pJ

(
γl
(
f̄k

(
p−1
J (w)

))) (5.5)
= pJ,0

(
γl
(
f̄k

(
p−1
J,0(w)

))) (5.6)
=

pJ,0

(
ρ−1
0

(
φ0

(
ρ0(p

−1
J,0(w))

)))
, that is,

fk|B0 = pJ,0ρ
−1
0 φ0ρ0p

−1
J,0. (5.7)

Therefore, the homeomorphism φ0 is topologically conjugate to the homeomorphism fk|B0 via

the map pJ,0ρ
−1
0 . Since the homeomorphism fk|B0 is topologically conjugate to the pseudo-

Anosov homeomorphism, it follows that the homeomorphism φ0 is also a pseudo-Anosov map
(see Statement 4).

Equation (5.1) implies that
(
J
(
fr(z)

)
, r + l

k − 1
)
=

(
fr−1

(
J(z)

)
, r − 1 + l

k

)
and

Jfr = fr−1J for any r ∈ Tnk. (5.8)

Therefore, f0J
l = J lfl. Then f0

(
J lf (k−1)l

k

· · · f l
k
f0

)
=

(
J lflf (k−1)l

k

· · · f l
k

)
f0, that is,

φ0 = f−1
0 φ l

k
f0. (5.9)

It follows from Eq. (5.9) and Statement 4 that φ l
k
is also a pseudo-Anosov homeomorphism.

Since fr is isotopic to f0 for any r ∈ Tnk by Lemma 4, it follows that J lf (k−1)l
k

· · · f l
k
f0 is isotopic

to J lflf (k−1)l
k

· · · f l
k
, that is, φ0 is isotopic to φ l

k
. Then, according to Statement 3, there exists a

homeomorphism h : Sg → Sg, isotopic to the identity, such that

φ0 = hφ l
k
h−1. (5.10)

Substituting Eq. (5.10) into Eq. (5.9), we find that φ0 = f−1
0 (h−1φ0h)f0, that is, (hf0)φ0 = φ0(hf0).

Since φ0 ∈ P and hf0 ∈ Z(φ0), it follows that the homeomorphism hf0 is either periodic or
pseudo-Anosov by Theorem 1. The isotopism of h to the identity implies that f0 is isotopic either
to some periodic homeomorphism or to some pseudo-Anosov homeomorphism. �

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No. 1 2024



ON HOMEOMORPHISMS OF THREE-DIMENSIONAL MANIFOLDS 169

Lemma 7. Let f ∈ H ∩ G and f0 be isotopic to some periodic homeomorphism. Then there exists
a homeomorphism f ′ ∈ H such that f ′ is topologically conjugate to f and f ′

0 is isotopic to some
pseudo-Anosov homeomorphism.

Proof. Let f : MJ → MJ be a homeomorphism from the class H ∩ G with a nonwandering set
consisting of 2nk connected components of period k, and let f0 be isotopic to some periodic
homeomorphism.

Let us show that k �= 1. Assume the converse. Then l = 0 and the homeomorphism φ0 has
the form φ0 = f0 (see Eq. (5.4)). According to Eq. (5.7), the homeomorphism φ0 is topologically

conjugate to the pseudo-Anosov homeomorphism fk|B0 . We come to a contradiction with the fact
that k = 1. Therefore, k > 1.

Define the homeomorphisms h̄, γ′ : Sg ×R → Sg ×R by the formulas h̄(z, r) = (z,−r), γ′(z, r) =
(J−1(z), r − 1). Recall that γ(z, r) = (J(z), r − 1). Since (J(z),−(r − 1)) = (J(z), (−r) + 1), it
follows that h̄γ = (γ′)−1h̄. Therefore, the homeomorphism h̄ projects into the homeomorphism

h : MJ → MJ−1 (see Statement 8), given by the formula h = pJ−1

(
h̄
(
p−1
J (w)

))
, where pJ−1 : Sg ×

R → MJ−1 is a natural projection.

Set f ′ = hfh−1. Recall that for a homeomorphism f ∈ H there is a unique lift f̄ : Sg × R →
Sg ×R such that f̄Sg×Tnk

(z, r) =
(
fr(z), r +

l
k

)
, where n, k, l is the correct set of numbers. Consider

the lift f̄ ′ of the homeomorphism f ′ given by the formula f̄ ′ = γ−1h̄f̄ h̄−1. Then for any r ∈ Tnk
we have f̄ ′(z, r) =

(
J
(
fr(z)

)
, r + k−l

k

)
. Since k �= 1, it follows that l ∈ {1, . . . , k − 1}. Therefore,

(k − l) ∈ {1, . . . , k − 1} and is coprime to k. Thus, n, k, (k − l) is the correct set of numbers and
f ′
r = Jfr.

Let us prove that the homeomorphism f ′
0 is isotopic to some pseudo-Anosov homeomorphism.

By Lemma 6, the homeomorphism f ′
0 is isotopic either to some periodic map or to some pseudo-

Anosov map. Suppose that the homeomorphism f ′
0 = Jf0 is isotopic to a periodic homeomorphism.

Then the homeomorphism J = f ′
0f

−1
0 is also isotopic to a periodic homeomorphism. Since J and

f0 are isotopic to periodic homeomorphisms and, according to Lemma 4, f0 is isotopic to fr for
any r ∈ Tnk, it follows that the homeomorphism φ0 = J lf (k−1)l

k

· · · f l
k
f0 is also isotopic to a periodic

homeomorphism. We come to a contradiction with the fact that φ0 is topologically conjugate to
the pseudo-Anosov homeomorphism fk|B0 (see Eq. (5.7)). Consequently, the homeomorphism f ′

0 is
isotopic to the pseudo-Anosov homeomorphism. Thus, f ′ ∈ H is topologically conjugate to f and f ′

0
is isotopic to some pseudo-Anosov homeomorphism. �

Lemma 8. Let f ∈ H ∩ G and f0 be isotopic to some pseudo-Anosov homeomorphism P . Then
there is a homeomorphism f ′ : MJ ′ → MJ ′ from the class H such that f ′ is topologically conjugate
to f , J ′P = PJ ′ and f ′

0 is isotopic to P .

Proof. Let f : MJ → MJ be a homeomorphism from the class H ∩ G and P be a pseudo-Anosov
homeomorphism of the surface Sg, isotopic to f0.

Let us construct a homeomorphism J ′ : Sg → Sg. Set

P ′ = J−1PJ. (5.11)

Denote by Ft the isotopy connecting the homeomorphisms F0 = f0 and F1 = P . Then the family
of maps J−1FtJ defines an isotopy connecting the maps J−1F0J = J−1f0J = f1 and J−1F1J =
J−1PJ = P ′. Since f0 is isotopic to f1 (see Lemma 4) and to P , f1 is isotopic to P ′, it follows
that P is isotopic to P ′. Homeomorphism P is topologically conjugate to the pseudo-Anosov
homeomorphism P ′, P is isotopic to P ′. Then by Statement 3 there exists a homeomorphism ξ,
isotopic to the identity, such that

P ′ = ξPξ−1. (5.12)
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Set

J ′ = Jξ, γ′ =
(
J ′(z), r − 1

)
. (5.13)

Note that J ′P
(5.13)
= JξP

(5.12)
= JP ′ξ

(5.11)
= PJξ

(5.13)
= PJ ′.

Let us construct a homeomorphism Y : MJ → MJ ′ . Denote by ξt the isotopy connecting the
homeomorphism ξ0 = ξ and the identity map ξ1 = id. Define the homeomorphism yr : Sg → Sg by
the formula

yr =

{
ξ6nk(1−r) for r ∈ [1− 1

6nk , 1];

id for r ∈ [0.1− 1
6nk ].

Define the homeomorphism y : Sg × [0, 1] → Sg × [0, 1] by the formula y(z, r) = (yr(z), r). Note that

y(z, 0) = (z, 0) and y
(
z,

l

k

)
=

(
z,

l

k

)
. (5.14)

Denote by [r] the integer part of the number r ∈ R. Define the homeomorphism Ȳ : Sg ×R → Sg ×R

by the formula

Ȳ (z, r) = (γ′)−[r]
(
y
(
γ[r](z, r)

))
. (5.15)

Since γ′Ȳ = Ȳ γ, it follows that the homeomorphism Ȳ projects into the homeomorphism Y : MJ →
MJ ′ (see Statement 8), given by the formula Y = pJ ′

(
Ȳ
(
p−1
J (w)

))
, where pJ : Sg × R → MJ ,

pJ ′ : Sg × R → MJ ′ are natural projections.

Set f ′ = Y fY −1 : MJ ′ → MJ ′ . By construction, f ′ ∈ H. Let us prove that f ′
0 is isotopic to P .

Consider the lift

f̄ ′ = Ȳ f̄ Ȳ −1 (5.16)

of the homeomorphism f . It is readily verified that f̄ ′(z, r) = (f ′
r(z), r +

l
k ), where r ∈ Tnk and f ′

r

is a homeomorphism of Sg. Let us show that f ′
0 = f0. Indeed, f̄

′(z, 0)
(5.16)
= Ȳ

(
f̄
(
Ȳ −1(z, 0)

)) (5.15)
=

Ȳ
(
f̄
(
y−1(z, 0)

)) (5.14)
= Ȳ

(
f̄(z, 0)

)
= Ȳ

(
f0(z),

l
k

) (5.15)
= y l

k

(
f0(z),

l
k

) (5.14)
=

(
f0(z),

l
k

)
. Thus, f ′

0 is also

isotopic to P . �

Let us prove that any homeomorphism from the class G is ambiently Ω-conjugate to a
homeomorphism from the class Φ.

Proof. Let f ∈ G.
According to Lemma 5, without loss of generality, we may assume that f is defined on

MJ = Sg ×R/Γ with natural projection pJ : Sg × R → MJ , where J is an orientation-preserving

homeomorphism of the surface Sg and Γ = {γi|i ∈ Z} is a group of degrees of the homeomorphism
γ : Sg ×R → Sg ×R given by the formula γ(z, r) = (J(z), r − 1). It follows from Lemma 3 that the
nonwandering set of the homeomorphism f consists of 2nk connected components B0, . . . ,B2nk−1

and there is a lift f̄ of the homeomorphism f such that f̄(z, r) = (fr(z), r +
l
k ) for any r ∈ Tnk,

where fr : Sg → Sg is an orientation-preserving homeomorphism of the surface and n, k, l is the
correct set of numbers.

According to Lemmas 4, 6, 7, 8, without loss of generality we may assume that fr is isotopic
to some orientation-preserving pseudo-Anosov homeomorphism P for any r ∈ Tnk and J ∈ Z(P ).

Since J preserves the orientation of Sg, it follows that the homeomorphism J lP k also preserves the
orientation of Sg.

Let us prove that the homeomorphism J lP k is a pseudo-Anosov homeomorphism. Using
Eqs. (5.5) and (5.6), we obtain

fk|pJ(Sg×{r}) = pJ,rρ
−1
r φrρrp

−1
J,r, r ∈ Tnk, (5.17)
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that is, the homeomorphism φr (r ∈ Tnk) is topologically conjugate to the pseudo-Anosov home-

omorphism fk|pJ(Sg×{r}). Since, by Lemma 4, the homeomorphism fr for any r ∈ Tnk is isotopic

to P , it follows that the homeomorphism φr = J lf
r+

(k−1)l
k

· · · fr+ l
k
fr is isotopic to J lP k, that is, the

homeomorphism J lP k is isotopic to the pseudo-Anosov homeomorphism. According to Theorem 1,
we find that the homeomorphism J lP k is a pseudo-Anosov map.

Note that homeomorphisms J lP k and φr are isotopic for any r ∈ Tnk and are pseudo-Anosov
homeomorphisms. Then, according to Statement 3, maps φr and J lP k are topologically conjugate
for any r ∈ T via some homeomorphism isotopic to the identity. Denote such a homeomorphism
by hr. Then for any r ∈ Tnk we find that

J lP k = hr(φr)h
−1
r . (5.18)

Thus, each homeomorphism f ∈ G corresponds to the correct set of numbers n, k, l and
orientation-preserving homeomorphisms P : Sg → Sg, J : Sg → Sg such that the homeomorphisms

P , J lP k are pseudo-Anosov and J ∈ Z(P ). Therefore, there is a correctly defined model map
ϕP,J,n,k,l ∈ Φ.

Let us prove that the homeomorphism f is ambiently Ω-conjugate to ϕP,J,n,k,l. We construct a
homeomorphism f ′ : MJ → MJ , topologically conjugate to f and coinciding with the homeomor-
phism ϕP,J,n,k,l on the nonwandering set (f ′|NW (f ′) = ϕP,J,n,k,l|NW (ϕP,J,n,k,l)).

We divide the construction into steps.

Step 1. Construct a homeomorphism x : Sg × U → Sg × U , where U =
⋃

j∈{0,...,k−1}
Uj, Uj =

[− 1
4nk − j l

k ,
1
k − 1

4nk − j l
k ).

Let T = {0, 1
2nk , . . . ,

2n−1
2nk }. Note that T = Tnk ∩ U0 and r ∈ Tnk ∩ Uj has the form r = i− j l

k ,
where j ∈ {0, . . . , k− 1} and the number i ∈ T is uniquely determined. For i ∈ T and j ∈ {0, . . . , k−
1} we define the homeomorphism ξi,j : Sg → Sg by the formula

ξi,j = P−jhi fi−j l
k
+(j−1) l

k
· · · fi−j l

k︸ ︷︷ ︸
j maps

. (5.19)

Since the homeomorphism fi−j l
k
+(j−1) l

k
· · · fi−j l

k
+ l

k
fi−j l

k
is isotopic to P j for j ∈ {1, . . . , k − 1}

and the homeomorphism hi is isotopic to the identity, it follows that the homeomorphism ξi,j
is isotopic to the identity for any j ∈ {0, . . . , k − 1}. Let ξi,j,t denote the isotopy connecting the
homeomorphism ξi,j,0 = ξi,j and the identity map ξi,j,1 = id.

For r ∈ U we define the homeomorphism xr : Sg → Sg by the formula

xr =

⎧
⎨
⎩
ξi,j,6nk|r−(i−j l

k
)| for |r − (i− j l

k )| �
1

6nk ;

id for other r ∈ U.

Define the homeomorphism x : Sg × U → Sg × U by the formula

x(z, r) = (xr(z), r).

Note that

x
(
z, i− j

l

k

)
=

(
ξi,j(z), i − j

l

k

)
. (5.20)

Step 2. Let us extend the homeomorphism x : Sg × U → Sg × U to the homeomorphism

X̄ : Sg × R → Sg × R.

Let us prove that for any point r ∈ R there is a unique integer m ∈ Z such that (r −m) ∈ U .

Divide the half-interval
[
− 1

4nk , 1−
1

4nk

)
into k half-intervals:

[
− 1

4nk , 1−
1

4nk

)
=

[
− 1

4nk ,
1
k −

1
4nk

)
∪
[
− 1

4nk + 1
k ,

2
k − 1

4nk

)
∪ · · · ∪

[
− 1

4nk + k−1
k , 1− 1

4nk

)
. Obviously, for any r ∈ R there is a
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unique number a ∈ Z such that r− a ∈
[
− 1

4nk , 1−
1

4nk

)
. Let r− a ∈

[
− 1

4nk +
j
k ,

j+1
k − 1

4nk

)
, where

j ∈ {0, . . . , k − 1}. Since j runs through the complete system of residues {0, 1, . . . , k − 1} modulo
k and l is coprime to k, it follows that (−jl) also runs through a complete system of residues
{0,−l, . . . ,−l(k− 1)} modulo k [8, p. 46]. Consequently, there are integers i ∈ {0,−l, . . . ,−l(k− 1)}
and b such that j + bk = i. Then (r− a+ b) ∈

[
− 1

4nk +
j+bk
k , j+1+bk

k − 1
4nk

)
=

[
− 1

4nk +
i
k ,

1
k +

i
k −

1
4nk

)
⊂ U . Thus, m = a− b is the required integer such that (r −m) ∈ U .

Let �(r) denote an integer �(r) ∈ Z such that
(
r − �(r)

)
∈ U . Define the map X̄ : Sg × R →

Sg × R by the formula X̄(z, r) = γ−�(r)
(
x
(
γ�(r)(z, r)

))
for (z, r) ∈ Sg × R. Then X̄γ = γX̄.

Step 3. Construct a homeomorphism f ′ : MJ → MJ .

Let us set f̄ ′ = X̄f̄X̄−1. Since X̄γ = γX̄ and f̄γ = γf̄ , it follows that f̄ ′γ = γf̄ ′ and homeomor-
phisms X̄ and f̄ ′ project into homeomorphisms f ′ : MJ → MJ , X : MJ → MJ (see Statement 8),

given by the formulas f ′ = pJ

(
f̄ ′(p−1

J (w)
))

, X = pJ(X̄
(
p−1
J

(
(w)

))
and f ′ = XfX−1.

Let us prove that f̄ ′|Sg×Tnk
= ϕ̄P,J,n,k,l|Sg×Tnk

. Since X̄(Sg × {r}) = Sg × {r} and f̄(Sg × {r}) =
Sg × {r+ l

k} for any r ∈ Tnk, it follows that f̄ ′(Sg ×{r}) = X̄
(
f̄
(
X̄−1(Sg ×{r})

))
= Sg ×{r+ l

k}.
Then for any r ∈ Tnk the homeomorphisms f ′

r : Sg → Sg, Xr : Sg → Sg are correctly defined by

f ′
r = ρr+ l

k
f̄ ′ρ−1

r , Xr = ρr+ l
k
X̄ρ−1

r and

f ′
r = Xr+ l

k
frX

−1
r . (5.21)

Then

Xr = J−m(r)xrJ
m(r). (5.22)

By construction, ϕ̄P,J,n,k,l(z, r) =
(
P (z), r + l

k

)
and f̄ ′(z, r) =

(
f ′

r(z), r +
l
k

)
for any r ∈ Tnk.

Let us prove that f ′
r = P for any r ∈ Tnk. Let us represent r ∈ Tnk in the form r = i− j l

k +m,

where i ∈ T , j ∈ {0, . . . , k − 1} and m ∈ Z.

Let k = 1. Then

f ′
r = f ′

i+m
(5.21)
= Xi+mfi+mX−1

i+m

(5.22)
= J−mxiJ

mfi+mJ−mx−1
i Jm (5.20)

= J−mξi,0J
mfi+mJ−mξ−1

i,0 J
m

(5.8)
= J−mξi,0fiξ

−1
i,0 J

m (5.19)
= J−mhifih

−1
i Jm (5.4)

= J−mhiφih
−1
i Jm (5.18)

= J−mPJm = P.

Let k > 1. We consider the cases 1) j � 1 and 2) j = 0 separately.

1) If j � 1, then j − 1 ∈ {0, . . . , k − 2} and the homeomorphism ξi,j−1 is correctly defined. We
find that

f ′
r = f ′

i−j l
k
+m

(5.21)
= Xi−(j−1) l

k
+mfi−j l

k
+mX−1

i−j l
k
+m

(5.22)
= J−mxi−(j−1) l

k
Jmfi−j l

k
+mJ−mx−1

i−j l
k

Jm

(5.20)
= J−mξi,j−1J

mfi−j l
k
+mJ−mξ−1

i,j J
m (5.8)

= J−mξi,j−1fi−j l
k
ξ−1
i,j J

m

(5.19)
= J−mP−j+1hifi−(j−1) l

k
+(j−2) l

k
. . . fi−(j−1) l

k
fi−j l

k
f−1
i−j l

k

. . . f−1
i−j l

k
+(j−1) l

k

h−1
i P jJm

= J−mP−j+1hih
−1
i P jJm = P.
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2) If j = 0, then r + l
k = i+ l

k +m = i− (k − 1) l
k + (m+ l). We find that

f ′
r = f ′

i+m
(5.21)
= Xi−(k−1) l

k
+(m+l)fi+mX−1

i+m

(5.22)
= J−m−lξi,k−1J

m+lfi+mJ−mξ−1
i,0 J

m

(5.8)
= J−m−lξi,k−1J

lfiξ
−1
i,0 J

m (5.19)
= J−m−lP−k+1hifi−(k−1) l

k
+(k−2) l

k
. . . fi−(k−1) l

k
J lfih

−1
i Jm

(5.8)
= J−m−lP−k+1hiJ

lfi+(k−1) l
k
. . . fi− l

k
fih

−1
i Jm (5.4)

= J−m−lP−k+1hiφih
−1
i Jm

(5.18)
= J−m−lP−k+1J lP kJm = P.

We find that f̄ ′(p−1
J (NW (f ′)) = ϕ̄P,J,n,k,l(p

−1
J (ϕP,J,n,k,l).

Consequently, f ′|NW (f ′) = ϕP,J,n,k,l|NW (ϕP,J,n,k,l) and the homeomorphism f is ambiently Ω-

conjugate to the homeomorphism ϕP,J,n,k,l via the map X. �
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