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Abstract
We present a Fefferman-type construction from Lagrangian contact to split-
signature conformal structures and examine several related topics. In particu-
lar, we describe the canonical curves and their correspondence. We show that
chains and null-chains of an integrable Lagrangian contact structure are the
projections of null-geodesics of the Fefferman space. Employing the Fermat
principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics.
Using recent rigidity results, we show that ‘sufficiently many’ chains determ-
ine the Lagrangian contact structure. Separately, we comment on Lagrangian
contact structures induced by projective structures and the special case of
dimension three.
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1. Introduction

An LC (Lagrangian or Legendrian contact) structure on a smooth manifold M consists of a
contact distribution D ⊂ TM equipped with a decomposition D = E⊕F such that both E and
F are maximal isotropic subdistributions with respect to the Levi form on D. LC structures
are of considerable interest as they are closely related to numerous classical topics in differ-
ential geometry and geometric differential equations, from projective geometry to symmetries
of PDEs, see e.g. [20, 27, 34]. Equivalently, an LC structure can be defined by an almost
para-complex structure on D that is compatible with the Levi form. The integrability of an
LC structure means the integrability of the subdistributions E and F in the Frobenius sense,
equivalently, the integrability of the almost para-complex structure in the Nijenhuis sense. The
latter definition is analogous to that of almost CR structures (more precisely, non-degenerate
almost CR structures of hypersurface type). In fact, both LC and CR structures can be seen as
different real forms of a common complex structure. CR geometry has seen continued devel-
opment for decades, while LC geometry is comparatively unexplored.

In the present article, we focus on several topics related to the Fefferman construction,
canonical curves and their correspondence. We combine the abstract language of Cartan geo-
metry with concrete coordinate expressions, algebraic model observations with analytic tech-
niques, etc. We now summarize what can be found in individual sections.
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We start with a careful description of the homogeneous model. Besides the standard inter-
pretation of the model LC structure as a flag variety of particular type, we develop another
interpretation as a para-complex projectivization of the null-cone of para-Hermitian space,
see section 2.3. This provides both the closest analogue to the model description of CR struc-
tures and the key instrument for many later accounts. An affine realization of the previous
picture and its potential deformations yield the notion of induced LC structure on a generic
hypersurface in a para-complex space. It is shown in proposition 2.7 that a LC structure can be
locally realized this way if and only if it is integrable. This contrasts the CR situation, where
the problem is much more intricate and still partially open, see the discussion at the beginning
of section 2.4.

Concerning the classical Fefferman construction, it yields a circle bundle over a CR mani-
fold which is equipped with a conformal class of pseudo-Riemannian metrics. It allows several
descriptions and has many applications, see [6, 23, 24, 31]. Our adaptation of the construction
for LC structures in section 3 is based on the general scheme in the framework of parabolic
geometries as in [25]. In particular, the induced conformal structure has the split signature.
The rough portrayal generalizes the model observations to the curved setting, while an expli-
cit description of a representative metric from the conformal class is a more subtle task. For
integrable LC structures, we achieve this by suitably calibrating a Cartan gauge, expressed in
adapted local coordinates, see theorem 3.3. The resulting formula is quite direct in the sense
that it involves only the defining functions (and their partial derivatives) of the LC structure.
In particular, we do not use any compatible affine connection of Tanaka–Webster type, which
are popular in the CR literature.

The most prominent canonical curves for LC structures, just as in CR geometry, are the
chains. On the one hand, they exhibit geodesic-like properties in the sense that every unpara-
metrized chain is uniquely determined by an initial direction which has to be transverse to
the contact distribution, see [12, 17, 28]. On the other hand, chains form a more complicated
system of curves as they cannot be geodesics of any affine connection. Chains also play an
important role in the rigidity of structures: both for CR and LC structures, the path geometry
of chains determines the structure so that chain preserving diffeomorphisms are either iso-
morphisms or anti-isomorphisms of the structure, see [11, 15]. Following the results of [16],
we generalize the previous conclusions for integrable LC structures so that they are still valid
even if the whole family of chains shrinks to a ‘sufficiently big’ subset. Details are specified
in section 4.4, where the whole discussion culminates. The key objects there are the Kropina
metrics, which are metrics of pseudo-Finsler type (see e.g. [5, § 2.2 and definition 2.10]),
defined (off the contact distribution) via a representative metric on the Fefferman space. The
point is that chains are precisely the geodesics of any such constructed Kropina metric, see the-
orem 4.7. Besides the just mentioned applications, this realization provides an efficient tool for
deriving ODE systems for chains, namely, as Euler–Lagrange equations of the corresponding
functional.

The preceding discussion is based on a careful analysis of the correspondence of curves
under the Fefferman projection. The outcomes are packed in theorem 4.6, where chains of
an integrable LC manifold are identified with projections of null-geodesics of the Fefferman
conformal structure that are not perpendicular to the vertical subbundle of the projection.
Projections of null-geodesics that are perpendicular to the vertical subbundle are identifiedwith
null-chains, the contact canonical curves which also have a counterpart in (Levi-indefinite) CR
geometry, see [29]. It is worth mentioning that, in the present article, this correspondence is
the content of theorem rather than definition, which is often the case in CR references. All
canonical curves encountered in this article are defined uniformly in the framework of para-
bolic geometries and specified by a subset of the Lie algebra which underlies the structure
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in question. This primarily determines canonical curves in the homogeneous model, the pas-
sage to the general curved setting is provided by the notion of the development of curves, see
section 4.1. This is why we devote some space to model interpretations both of chains and
null-chains in section 4.2. Besides their auxiliary purposes, they are also of interest on their
own, see [4].

An important class of LC structures consists of those induced by projective structures, see
[34]. In higher dimensions, such structures are only half-integrable (unless flat) and have no
analogy in the CR case. We comment on some of the previously discussed topics for this
class in section 5. On the way, we obtain a characterization of which LC structures come from
projective structures, formulated in terms of defining functions, see proposition 5.2. This result
generalizes Cartan’s criterion in the 3-dimensional case, which we recall in section 6. In this
dimension, every LC structure is automatically integrable and equivalent to a path structure
on a 2-dimensional leaf space. In this case, we can confront our general formulas with their
elusive explicit companions, see [4, 32]. For the sake of illustration, we also elaborate on some
ideas in more detail, see our approach to proposition 6.1, originally proved in [4].

2. Cartan geometries and LC structures

In this section, we collect the background for LC structures that is used throughout the article.
LC structures can be described in several equivalent ways, which are presented in section 2.2.
One of the approaches is in terms of (parabolic) Cartan geometries, and it is this approach
which we predominantly employ. Section 2.1 is devoted to treating the necessary background
concerning Cartan geometry. Section 2.2 then treats LC geometry. There is nothing truly novel
in these two subsections, basic references for this part are [10, 33]. In section 2.3, we discuss
in detail several interpretations of homogeneous models for LC structures. Besides the com-
mon ones, we discuss a para-complex analogue of the standard model for CR structures (the
CR quadrics). This interpretation is by no means surprising but, to our knowledge, nowhere
published. The development in later sections relies heavily on these observations.

2.1. Cartan and parabolic geometries

Given a Lie group G and a closed subgroup P⊂ G, let p⊂ g be the corresponding pair of
Lie algebras. The homogeneous model for the Cartan geometry of type (G,P) consists of
the homogeneous space G/P, the P-principal bundle G→ G/P and the Maurer–Cartan form
ω : TG→ g. This data encodes the geometric structure on G/P in Klein’s sense. In addition,
the Maurer–Cartan form defines the absolute parallelism on G, reproduces the infinitesimal
generators of the principal P-action on G, and is P-equivariant.

Abstracting this picture leads to the notion of general Cartan geometry of type (G,P): it
consists of a base manifold M, a P-principal bundle G →M and a Cartan connection, which
is a g-valued 1-form ω : TG → g satisfying the following three properties,

• ωz : TzG → g is a linear isomorphism, for each z ∈ G,
• ω

(
d
dt

∣∣
0
rexp(tX)(z)

)
= X, for each X ∈ p and z ∈ G,

• (rp)∗ω = Adp−1 ◦ ω, for each p ∈ P,

where rp : G → G and Adp : g→ g denote the right multiplication action and the adjoint action,
respectively, of an element p ∈ P. The composition of ω : TG → g with the quotient projection
g→ g/p provides an identification of the tangent bundle TM with the associated bundle with
the standard fiber g/p (whose P-module structure is induced by the adjoint action),
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TM∼= G ×P g/p. (2.1)

A morphism of two Cartan geometries of the same type is a morphism of the corresponding
principal bundles that preserves the Cartan connections.

The curvature of the Cartan connection ω is the g-valued 2-form on G defined by

Ω(u,v) := dω (u,v)+ [ω (u) ,ω (v)] , (2.2)

for vector fields u and v on G, where [ , ] denotes the Lie bracket in g. The curvature van-
ishes identically if and only if the Cartan geometry is locally isomorphic to the homogeneous
model. The curvature Ω is horizontal, i.e. it vanishes under insertion of any vertical vector.
This means that the curvature is represented by a P-equivariant map G → ∧2(g/p)∗ ⊗ g, the
so-called curvature function. Further composition with the projection g→ g/p yields a map
G → ∧2(g/p)∗ ⊗ (g/p) representing a tensor field of type ∧2T∗M⊗TM, the torsion of the
Cartan connection ω.

As in the model case, the Cartan-geometric view provides a new perspective and tools for
studying the underlying geometric structure. The relationship between the underlying structure
and the corresponding Cartan-geometric data can often be made bijective by imposing certain
conditions on the Cartan curvature. In particular, for a large family of parabolic geometries,
this is guaranteed by the notions of regularity and normality. Most of the geometric structures
discussed below belong to this family. The key concepts are introduced as follows.

A parabolic geometry is a Cartan geometry of type (G,P) where G is a semisimple Lie
group and P⊂ G is a parabolic subgroup. Parabolic subalgebras p⊂ g are related to gradings
of semisimple Lie algebras as follows. Let

g= g−k⊕ ·· ·⊕ g0 ⊕ ·· ·⊕ gk (2.3)

be a grading of depth k of a semisimple Lie algebra g, i.e. [gi,gj]⊆ gi+j, where gl = 0, for
|l|> k. If the subalgebra p+ := g1 ⊕ ·· ·⊕ gk is generated by g1 or, equivalently, g− := g−k⊕
·· ·⊕ g−1 is generated by g−1, then p := g0 ⊕ p+ is a parabolic subalgebra with nilradical p+.
The obvious P-invariant filtration of g induces a filtration of the tangent bundle TM, yielding an
associated graded module gr(TM). The parabolic geometry is called regular if the algebraic
bracket on gr(TM) induced by the Lie bracket in g agrees with the Levi bracket on gr(TM)
induced by the commutator of vector fields on M.

The Killing form on g provides an isomorphism of P-modules (g/p)∗ ∼= p+, hence the
curvature function of a parabolic geometry is seen as a function G → ∧2p+ ⊗ g. The natural
normalization condition is provided by the Kostant codifferential, which is the codifferential
in the complex

· · · ∂∗

−−−−→∧2p+ ⊗ g
∂∗

−−−−→ p+ ⊗ g
∂∗

−−−−→ g−−−→ 0

determining the Lie algebra cohomology of p+ with coefficients in g. The parabolic geo-
metry is called normal if its curvature function has values in ker∂∗. In such cases, the com-
position of the curvature function with the quotient projection onto the cohomology space
ker∂∗ → ker∂∗/ im∂∗ yields the so-called harmonic curvature. For regular and normal para-
bolic geometries, this is a fundamental curvature object which determines the entire curvature.
In particular, its vanishing is equivalent to the local flatness of the parabolic geometry. The
harmonic curvature typically consists of only a few components that can be interpreted in
underlying geometric terms.

5



Nonlinearity 37 (2024) 015007 T Ma et al

Instead of the Cartan connection, i.e. a globally defined 1-form ω : TG → g, one may con-
sider the Cartan gauges, i.e. local pull-backs φ∗ω : TU→ g, where U⊂M and φ : U→G is a
section of the bundle projection G →M. Under a change of section φ̂ = rp ◦φ, for p : U→ P,
the corresponding gauge is expressed as

φ̂∗ω = Adp−1 (φ∗ω)+ p∗ωP, (2.4)

where ωP : TP→ p denotes the Maurer–Cartan form on P. In this way, the Cartan geometry
is treated via an atlas of Cartan gauges with the equivalence relation given by (2.4) on inter-
sections of domains. Choosing a basis of g, any gauge is represented by a cluster of ordinary
1-forms on the base manifold which allow a very straightforward analysis. The Cartan gauge
approach is repeatedly used in the article.

2.2. LC structures

LetM be a smooth manifold of odd dimension with a contact distributionD ⊂ TM. This means
that D has codimension one and it is maximally non-integrable, equivalently, the Levi form
L : ∧2D→ TM/D, given by the Lie bracket of vector fields as L(X,Y) = [X,Y] modD, is
non-degenerate.

Definition 2.1. An LC structure on amanifoldM of dimension 2n+ 1 consists of a contact dis-
tributionD ⊂ TM equipped with a decompositionD = E⊕F into transversal subdistributions
of rank nwhich are both isotropic with respect to the Levi form. If either E or F is an integrable
distribution then the LC structure is called half-integrable, if both E and F are integrable then
the structure is called integrable.

To get closer to the CR situation, a LC structure can be equivalently described by an
almost para-complex structure K on the distribution D such that the Levi form is of type
(1,1) with respect to K. This means that K is an endomorphism of D such that K ◦K= id
and L(KX,KY) =−L(X,Y), for all X,Y ∈ D. The ±1-eigenspaces of K then define the trans-
versal maximal isotropic subdistributionsE andF. The integrability of the LC structure is equi-
valent to the vanishing of the Nijenhuis tensor of K. The map Φ :�2D→ TM/D, defined by
Φ(X,Y) := L(KX,Y) =−L(X,KY), is clearly symmetric and non-degenerate. The null-vectors
of Φ form a cone inD containing E and F; they are called the null-vectors of the LC structure.

A morphism of LC structures is a morphism of contact manifolds that preserves the
Legendrian decompositions, or equivalently, the partial para-complex structures.

Locally, the contact distribution D ⊂ TM is the kernel of a contact form, i.e. a 1-form σ
such that the top-form σ ∧ (dσ)n is nowhere vanishing. There is a 1-parameter freedom in
the choice of contact form, so they play a role of scales. In this article, we only deal with (at
least) half-integrable LC structures. Let us keep the convention that the subdistribution F⊂D
is always integrable. By the Darboux and Frobenius Theorems, the local coordinates (xi,u,pj)
onM can always be chosen so that σ = du− pi dxi and the leaves of F correspond to (xi) and
u constant. Here and below, the indices i, j etc run from 1 to n and repeated indices indicate
the sum (i.e. the summation symbol is omitted if there is no danger of confusion). In such
coordinates, the LC structure is fully determined by a collection of functions fij = fij(xk,u,pl)
so that fij = fji and

E=

〈
∂

∂xi
+ pi

∂

∂u
+ fij

∂

∂pj

〉
, F=

〈
∂

∂pi

〉
. (2.5)
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Dually, the LC structure is described by the coframe

σ = du− pi dx
i, θi = dxi, πi = dpi − fij dx

j, (2.6)

so that E= ker〈σ,πi〉 and F= ker〈σ,θi〉. Note that the forms are related by dσ = θi ∧πi. A
coframe satisfying the previous three conditions is called adapted. There is a 1-parameter
family of adapted coframes corresponding to the choice of contact form, namely,

σ̂ = e2fσ, θ̂i = e f
(
θi− 2f iσ

)
, π̂i = e f (πi+ 2fiσ) , (2.7)

where f is an arbitrary function on M and the functions f i and fi are given by the (unique)
decomposition df = f iπi+ fiθi+ f0σ. In particular, there is a conformal class of symplectic
forms dσ = θi ∧πi, or split-signature metrics θi�πi, on D.

Remark 2.2. To a half-integrable LC structure described by the defining functions f ij as in (2.5)
or (2.6), one may associate the following system of 2nd-order PDEs

∂2u
∂xi∂xj

= fij

(
xk,u,

∂u
∂xk

)
, (2.8)

for the unknown u= u(xi). It follows that the compatibility of this system is equivalent to the
integrability of the LC structure, see [20, lemma 2.3]. In such case, the leaves of E correspond
to graphs of solutions in the (xi,u)-space.

In the 3-dimensional case, i.e. for n= 1, the LC structure is automatically integrable and
the previous system reduces to a single second-order ODE. This encodes the so-called path
geometry in the underlying 2-dimensional space. More details on this specific situation are
located in section 6.

For our purposes, the key fact is that LC structures are the underlying structures of parabolic
geometries corresponding to the contact grading of simple Lie algebras of the sl-type. To be
more precise, for g= sl(n+ 2,R), the contact grading can be described by the following block-
matrix decomposition

g=

 g0 gE1 g2
gE−1 g0 gF1
g−2 gF−1 g0

 , (2.9)

where the blocks have sizes 1, n and 1 along the diagonal. As the group G with the Lie algebra
g we take G= SL(n+ 2,R). The subgroup P⊂ G with the Lie algebra p⊂ g is the one con-
sisting of block upper triangular matrices according to the previous schematic description. The
homogeneous space G/P is studied in detail in section 2.3. The whole tangent space corres-
ponds to the P-module g/p, cf (2.1), and has dimension 2n+ 1. Under the linear isomorphism
g/p∼= g−, the P-action on g/p is truncated to g−. In this manner, the contact distribution cor-
responds to g−1 ⊂ g−, the Legendrian decomposition to g−1 = gE−1 ⊕ gF−1 and the Levi form to

the bracket ∧2g−1 → g−2. The contact null-vectors correspond to the elements
(

0 0 0
X 0 0
0 Yt 0

)
∈ g−1

such that YtX= 0.
Normal parabolic geometries of the current type are always regular. The harmonic curvature

decomposes as follows. In the 3-dimensional case, i.e. for n= 1, there are two components,
both of homogeneity 4 which, in particular, means the geometry is torsion-free. In the case of
higher dimension, there are two components of homogeneity 1 and one component of homo-
geneity 2, which correspond to two torsions and one curvature of Weyl type, respectively.

7
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Vanishing of either torsion component is equivalent to the integrability of the corresponding
subdistribution.

The moral of the present preparation can be summarized as follows.

Proposition 2.3 ([10, section 4.2.3]). For the pair P⊂ G as above, the category of normal
parabolic geometries of type (G, P) is equivalent to the category of LC structures. Under
this correspondence, (half-)torsion-free Cartan connections correspond to (half-)integrable
LC structures.

2.3. The homogeneous model in detail

The homogeneous model for the LC geometry is given by G/P, where G= SL(n+ 2,R) and
P⊂ G is the block upper-triangular subgroup with blocks of sizes 1, n and 1 as above. The
common interpretation of G/P is given as follows. We denote the standard and the dual bases
of Rn+2 and R(n+2)∗ by (e0,ei,en+1) and (e0,ei,en+1), respectively, where i = 1, . . . ,n. The
standard action of G on Rn+2 yields a transitive action of G on any flag variety of subspaces
in Rn+2. The subgroup P stabilizes the flag 〈e0〉 ⊂ 〈e0,e1, . . . ,en〉. Thus G/P is identified with
the flag variety of type (1,n+ 1) in Rn+2.

Another interpretation of the model is given by projectivizing. Then previous flag vari-
ety corresponds to the set of incident pairs of points and hyperplanes in real projective space
RPn+1. Noting that hyperplanes are equivalent to kernels of 1-forms, up to a scalar multiple,
further identifies G/P with the projectivized cotangent bundle of real projective space RPn+1.
In this context, the subgroup P⊂ G can be realized as P= P∩P, where P is the stabilizer of
〈e0〉 and P is the stabilizer of 〈e0,e1, . . . ,en〉. Since 〈e0,e1, . . . ,en〉= ker(en+1), P is the stabil-
izer of 〈en+1〉 under the dual action of G on R(n+2)∗. This gives the standard double fibration:

The previous picture can also be drawn on the para-complex canvas so that the resulting
interpretation most closely resembles the standard CR model. Since para-complex numbers
do not form a field, one has to be careful with some basic notions. To start with, we introduce
the necessary background, partly reacting to and extending that of [25, section 3.2].

By a para-complex vector space of dimension n+ 2 we mean a real vector space of dimen-
sion 2n+ 4 equipped with a para-complex structure K, i.e. an endomorphism of V such that
K ◦K= id and the corresponding±1-eigenspaces, denoted by V±, have the same dimension.
The complement of these subspaces is denoted byV0 := V \ (V+ ∪V−). A para-complex sub-
space of dimension d is a real subspace of V of dimension 2d such that its intersection with
both V+ and V− has real dimension d. For d= 1 and 2, we speak about para-complex lines
and planes, respectively. Note that any para-complex subspace isK-invariant, but the converse
is not true in general. For example, the para-complex hull 〈v,K(v)〉 of an element v ∈ V is a
para-complex line if and only if v ∈ V0.

8
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A para-Hermitian vector space is a para-complex vector space equipped with an inner
product, denoted by ·, with respect to whichK is skew. This compatibility means that the ±1-
eigenspaces V± are both null and are dual one another. In particular, the inner product must
have the split signature. A choice of basis of V+, together with the dual basis of V− ∼= V∗

+,
provides an identification of V with (n+ 2)-ary Cartesian power of para-complex numbers
with their standard norm; this is denoted by Rn+2,n+2.

Let a para-complex line L⊂ V be represented as 〈v+,v−〉, where v± ∈ V±. Under the iden-
tification V− ∼= V∗

+, the intersection L∩V− = 〈v−〉 determines a hyperplane kerv− ⊂ V+

which contains v+ ⊂ V+, if and only if v− · v+ = 0. Thus, the pair (〈v+〉,〈v−〉) represents
a flag in V+

∼= Rn+2 if and only if the para-complex line 〈v+,v−〉 is null. Altogether, the flag
variety G/P is identified with the set of para-complex null-lines in V. Forgetting about the
para-complex structure K, the previous is identified the set of real null-planes in V having a
non-trivial intersection with both V+ and V−.

The principal group G is naturally seen as a subgroup in the special orthogonal group of
the pseudo-euclidean space V. This embedding, denoted by

η : G= SL(n+ 2,R) ↪→ SO(n+ 2,n+ 2) = G̃, (2.11)

is given by the standard and the dual action of G on V+
∼= Rn+2 and V− ∼= R(n+2)∗, respect-

ively. In this way, we may think of G as a special ‘para-unitary group’. Adapting the nota-
tion from above, the subgroup P⊂ G is seen as the stabilizer of the para-complex null-line
〈e0,en+1〉=: O.

The preceding discussion is summarized in the following proposition:

Proposition 2.4. Let M= G/P be the homogeneous model for a LC structure of dimension
2n+ 1. Then M is naturally identified with each of the following:

(a) The flag variety of type (1,n+ 1) in the real vector space Rn+2.
(b) The set of incident pairs of points and hyperplanes in the real projective space RPn+1.
(c) The projectivized cotangent bundle of the real projective space RPn+1.
(d) The set of real null-planes in the pseudo-euclidean space Rn+2,n+2 having a non-trivial

intersection with both Rn+2 ×{0} and {0}×Rn+2.
(e) The set of para-complex null-lines in the para-Hermitian space Rn+2,n+2.

Remark 2.5. Denoting the null-cone of non-zero null-vectors in V by N , the canonical pro-
jection N → G/P is surjective when restricted to the open subset N0 :=N \ (V+ ∪V−). In
other words, the interpretation in (e) can be described as the para-complex projectivization of
N0. Thus we realize M= G/P as a hyperquadric in the para-complex projective space, the
space of para-complex lines in V. In this framework, the double fibration (2.10) is completed
by the real projectivizations of V+ and V−.

For an affine para-complex hyperplane in Rn+2,n+2, its intersection with N0 provides
another, but not global, interpretation ofM as a hyperquadric in para-complex spaceRn+1,n+1.
It follows that deforming this view, i.e. considering general hypersurfaces inRn+1,n+1, yields a
(local) realization of any LC structure provided that it is integrable. See section 2.4 for details.

For later use, we add more details on the tangent bundle of the model LC manifold. On
the one hand, M is the homogeneous space G/P, hence the tangent space TLM is identified
with g/p, for any L ∈M, via the Maurer–Cartan form, cf (2.1). On the other hand, M is a
submanifold in the Grassmannian of vector subspaces (of real-dimension 2) in V. It is well-
known that the tangent space in L of the Grassmannian is identified with L∗ ⊗V/L, hence we
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have TLM⊂ L∗ ⊗V/L, for any L ∈N0. These two perspectives will be freely combined later,
so we should understand them better. To specify the latter one, we need the natural projection
q : V/L→ V/L⊥, induced by the inclusion L⊂ L⊥, and the natural isomorphismV/L⊥ ∼= L∗:

Lemma 2.6. For any L ∈M, the tangent space TLM⊂ L∗ ⊗V/L is identified with the space
of para-complex linear maps w : L→ V/L such that q ◦w : L→ L∗ is skew. Under this iden-
tification, the contact distribution DL ⊂ TLM corresponds to q ◦w= 0, i.e. it is isomorphic to
the space of para-complex elements in L∗ ⊗L⊥/L.
Any L ∈M and w ∈ TLM determines a K-invariant vector subspace W := im(w)+ L⊂ V,

where im(w) denotes the image of w, interpreted as an element of L∗ ⊗V/L. The type of a
non-zero vector w can be read from the dimension and the restricted inner product on the
corresponding subspace W as follows:

(a) w belongs to E or F if and only if W has real dimension 3 and is null,
(b) w is a null-vector from D \ (E∪F) if and only if W has real dimension 4 and is null,
(c) w is a non-null vector fromD if and only if W has real dimension 4 and is half-degenerate,
(d) w is a transverse vector toD if and only if if W has real dimension 4 and is non-degenerate.

Proof. To describe the typical fiber of TM, we restrict to the origin O= 〈e0,en+1〉, the
para-complex line in V that is fixed by the subgroup P⊂ G. To specify the inclusion
TOM∼= g/p⊂ O∗ ⊗V/O, let us consider the map

g/p 3

 · · ·
Xi · ·
z Yj ·

 7−→
[
e0 7→ Xi ei + zen+1

en+1 7→ Yjej− ze0

]
∈ O∗ ⊗V/O. (2.12)

This map is clearly injective, linear, para-complex and the composition q ◦w ∈ O∗ ⊗O∗ is
skew. Thus, it is an isomorphism onto the image, which is just the space described in the
statement. To conclude, one easily checks that the map is also P-equivariant, i.e. commutes
with the P-action on g/p and O∗ ⊗V/O, respectively. The description of the contact subspace
is clear: the contact subspace corresponds to g−1 ⊂ g, which is given by z= 0 in the description
above, and its image under the map (2.12) is O∗ ⊗O⊥/O.

The subspace W⊂ V associated to tangent vector as in (2.12) is 〈Xi ei + zen+1,Yjej−
ze0,e0,en+1〉. It is clearly K-invariant and its real dimension is at least 2. Generically, the
dimension is 4. In special cases, it is 3, respectively 2. The two special cases happens if and
only if z= X= 0 or z= Y= 0, respectively z= X= Y= 0, which corresponds to elements
from E or F, respectively to the zero vector. To distinguish the types, let us take the Gram
matrix of the inner product induced on W:

0 a 0 z
a 0 −z 0
0 −z 0 0
z 0 0 0

 ,

where a= XiYi. The cases (a–b) correspond to a= z= 0, the case (c) corresponds to a 6= 0
and z= 0, and the case (d) corresponds to a 6= 0 and z 6= 0. Hence the claim follows.

Notice that, in all cases except (a), the subspaceW⊂ V is a para-complex plane. In partic-
ular, in the non-degenerate case (d), the signature of the inner product on W is split.

10
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2.4. Local embeddability

The problem of local embeddability concerns whether a given structure can be locally realized
as the induced structure on a submanifold of an ambient space with a related structure. In the
context of CR geometry, this means a realization as a hypersurface in complex space, with the
contact distribution being themaximal complex distribution of the tangent bundle. The obvious
necessary condition is the integrability of the CR structure. Although the topic is extensively
studied for decades, it still contains open problems. The discussion depends both on dimension
of the CR manifold and its signature, see [1, 2, 30, 35].

Analogously, the embeddability of a LC structure means a realization as a hypersurface in
a para-complex space as follows. For LC structures of dimension 2n+ 1, the relevant para-
complex space is V ′ := Rn+1,n+1 with the para-complex structure K ′ whose eigenspaces V ′

+

and V ′
− are spanned by the first and the last n+ 1 vectors of the standard basis of Rn+1,n+1,

respectively. The corresponding standard coordinates on V ′
+ and V ′

− are denoted by (va) and
(wa), respectively, where a= 1, . . . ,n+ 1. Let M⊂ V ′ be a hypersurface such that the max-
imal K ′-invariant distribution in TM, i.e. D := TM∩K ′(TM), is a contact distribution. Then
the induced LC structure on M is given by E :=D∩V ′

+ and F :=D∩V ′
−, which form an

integrable Legendrian decomposition of D. In particular, the leaves of E and F are the level
sets of the coordinate functions (wa) and (va), respectively.

We say that a LC structure D = E⊕F⊂ TM is locally embeddable into V ′ if, for every
x ∈M, there exists a local embedding from a neighbourhood U of x into V ′ such that E=
TU∩V ′

+ and F= TU∩V ′
−. Compared to the subtleties in the CR case, the characterization

of local embeddability is quite simple:

Proposition 2.7. A LC structure is locally embeddable into a para-complex space if and only
if it is integrable.

Proof. Locally embedded LC structures are necessarily integrable, as explained above. For
the reverse direction, let a LC structure D = E⊕F on M be integrable and let (xi,u,pi), for
i = 1, . . . ,n, be a local coordinates onM such that E and F are described as in (2.5). This choice
is adapted to the integrability of the distribution F. Since E is also integrable, the Frobenius
theorem implies that, locally, there are functions (za), for a= 1, . . . ,n+ 1, such that the dif-
ferentials (dza) are linearly independent and the leaves of E are the level sets of (za). Let the
map from M to V ′ = Rn+1,n+1 be given by

vi = xi, vn+1 = u, wa = za, (2.13)

where i = 1, . . . ,n and a= 1, . . . ,n+ 1. This map has rank 2n+ 1, therefore it is an immersion.
Its local image is a hypersurface in V ′, denoted as M′. Accordingly, let us denote the image
of D = E⊕F as D ′ = E ′ ⊕F ′. The leaves of E′ and F′ are the level sets of (wa) and (va),
respectively, thus we have E ′ = TM ′ ∩V ′

+ and F ′ = TM ′ ∩V ′
−. It remains to show that D ′ is

the maximalK ′-invariant distribution in TM′. SinceD ′ = E ′ ⊕F ′, it is aK ′-invariant distribu-
tion. SinceD ′ ⊂ TM ′ is a contact distribution, there is no biggerK ′-invariant distribution.

The argument in the proof is implicit by nature. In terms of section 2.2, an explicit realiza-
tion leads to solving the system of 1st-order PDEs

∂z
∂xi

+ pi
∂z
∂u

+ fij
∂z
∂pj

= 0, (2.14)

for i = 1, . . . ,n. As usual, potential realizations are by no means unique.

11
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Specifically, let us consider all f ij vanishing, i.e. the corresponding LC structure being loc-
ally flat. A generating set of solutions to (2.14) can be given by zi = pi and zn+1 = u− xjpj.
The image of the corresponding embedding (2.13) is then a hyperquadric in V ′ = Rn+1,n+1

given by the equation vjwj− vn+1 +wn+1 = 0. This is a possible affine realization of the model
LC hyperquadric mentioned in remark 2.5.

3. Fefferman construction on LC structures

In this section, we describe the LC analogue of the classical Fefferman construction in terms
of the associated Cartan geometries, see [10, section 4.5]. The primary benefit of the Cartan
geometric perspective is that the construction provides a systematic framework in which we
can extend results on the model to the general curved setting. Our main contribution concerns
the explicit description of a representative metric from the Fefferman conformal class asso-
ciated to an integrable LC structure, see theorem 3.3. This is obtained by suitably calibrating
an adapted Cartan gauge. Comparisons with alternative approaches and known results in the
lowest dimensional case are in remark 3.4. An analogous procedure, in the case where a LC
structure is induced by projective structure, is treated separately in section 5.2.

3.1. Model situation

Here we adopt the notation and observations from section 2.3. They, in particular, yield the
interpretation of the model LC manifold M as the para-complex projectivization of the null-
cone N in the ambient para-Hermitian space V= Rn+2,n+2. In fact, this restricts to the open
subsetN0 =N \ (V+ ∪V−), since V± does not contain any para-complex lines. The projec-
tion map N0 →M factors through the real projectivization of N0, which we denote by M̃. To
be more specific, any v ∈ V is uniquely written as v= v+ + v−, where v± ∈ V±. If v ∈N0,
then the two projections N0 → M̃→M compose as

v+ + v− 7→ 〈v+ + v−〉 7→ 〈v+,v−〉, (3.1)

where the latter map is denoted by π. The intermediate manifold M̃ is just (an open subset of)
the standard Möbius space, the model conformal quadric. The conformal structure is induced
by the ambient data where we forget the para-complex structure on V. This is the model
Fefferman space for LC structures.

The ambient para-complex structureK is a skew endomorphism ofV. Thus, it is an element
of g̃= so(n+ 2,n+ 2) and its exponential exp(K) ∈ G̃= SO(n+ 2,n+ 2) acts non-trivially
on M̃. The typical fiber of the projection π : M̃→M is then identified with the group R×Z2,
whose two continuous components are parametrized as

s 7→ exp(sK) , s 7→Kexp(sK) , (3.2)

where s ∈ R. For the setting as in (3.1), the assignment v+ = 1√
2
(1+ k) and v− = 1√

2
(1− k)

provides an identification of the fiber with two continuous branches of para-complex numbers
of the norm ±1, i.e. numbers of the form

eks := coshs+ ksinhs, keks = sinhs+ kcoshs, (3.3)

where s ∈ R and k is the para-complex unit (k2 = 1). Notably, the common asymptotes of
these two curves correspond to the directions of V±. This way we introduce a natural (but not

12
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canonical) fiber coordinate on M̃. For later purposes, we need to make the following additional
observations.

Both the model LC quadric M and its Fefferman space M̃ are homogeneous spaces of the
principal groupG= SL(n+ 2,R). The groupG acts transitively on both para-complex and real
null-lines inN0. Hence,M∼= G/P and M̃∼= G/Q, where P⊂ G and Q⊂ P stabilize the para-
complex null-line 〈e0,en+1〉= O (as above) and the real null-line 〈e0 + en+1〉=: Õ, respect-
ively. The whole Möbius space, i.e. the real projectivization of the whole null-cone N , is the
homogeneous space G̃/P̃, where G̃= SO(n+ 2,n+ 2) and P̃⊂ G̃ is the (parabolic) subgroup
stabilizing Õ. The subgroup Q⊂ G is the preimage of P̃⊂ G̃ under the embedding G⊂ G̃
described in (2.11). From this description and the form of the generator of Õ, it follows that
the previous pair of nested subgroups of G has the following schematic realization

Q=

a ∗ ∗
0 B ∗
0 0 a−1

⊂

c ∗ ∗
0 D ∗
0 0 e

= P, (3.4)

where we again refer to the block decomposition as in (2.9), in particular, a,c,e ∈ R \ {0},
B,D ∈ GL(n,R) and detB= cedetD= 1. The subgroup Q is normal in P and so P/Q, the
typical fiber of the projection π : G/Q→ G/P, is a group which is isomorphic to R×Z2, as
above. The relation to the description in (3.2), or (3.3), is given by

s 7→ exp

s 0 0
0 − 2s

n In 0
0 0 s

 , s 7→

1 0 0
0 In−1,1 0
0 0 −1

exp

s 0 0
0 − 2s

n In 0
0 0 s

 , (3.5)

where s ∈ R, In is the identity matrix of rank n, and In−1,1 is the diagonal matrix of signature
(n− 1,1). Note that the union of the two curves in (3.5) gives a preferred (but not canonical)
global section of P→ P/Q. In this way, the fibers of the projection π are seen as the orbits of
these elements on M̃∼= G/Q.

Denoting by G̃ the preimage of G/Q⊂ G̃/P̃ under the principal P̃-projection G̃→ G̃/P̃,
the actual understanding of the model Fefferman construction can be sketched as follows:

3.2. General scheme

The Fefferman construction of a LC structure modifies the previous homogeneous picture (3.6)
to a general LC Cartan geometry of type (G,P). The general approach we follow is developed
in [9] and [10], details related to our present situation are adapted from [25].

Let (G →M,ω) be a Cartan geometry of type (G,P) with an underlying LC structure on
M. Let Q⊂ P be as above. The Fefferman space of M is the corresponding quotient space
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M̃ := G/Q. The Cartan connection ω on G defines the Cartan geometry of type (G,Q) over
M̃. The embedding G⊂ G̃ produces an equivariant extension of the previous Cartan geometry
to a Cartan geometry (G̃ → M̃, ω̃) of type (G̃, P̃) as follows: denoting the embedding by η
as in (2.11), the restriction η|Q : Q→ P̃ is behind the extension of the principal bundle G̃ :=

G ×Q P̃, and its derivative η ′ : g→ g̃ extends the values of the Cartan connection ω̃ := η ′ ◦ω.
The underlying structure of the latter Cartan geometry is the induced conformal structure on the
Fefferman space. Thus, the Fefferman construction with the groups specified above produces
a conformal Cartan geometry from a given LC Cartan geometry.

As an associated bundle, the Fefferman space can be described as

M̃∼= G ×P P/Q. (3.7)

Its tangent bundle can be seen in two ways

TM̃∼= G ×Q g/q∼= G̃ ×P̃ g̃/p̃, (3.8)

cf (2.1). The conformal structure on M̃ corresponds to the standard inner product on g̃/p̃,
i.e. the unique P̃-invariant inner product, up to a non-zero multiple. This corresponds to an
inner product on g/q that is Q-invariant up to a non-zero multiple. With these preparations,
we can interpret the Fefferman space and the induced conformal structure in terms of the
underlying LC data.

Proposition 3.1. Let (G →M,ω) be a parabolic geometry with the underlying LC structure
D = E⊕F⊂ TM, and let (G̃ → M̃, ω̃) be the conformal parabolic geometry obtained by the
Fefferman construction. Then the Fefferman space M̃ is identified as

M̃∼= P ((∧nE⊕∧nF) \ (∧nE∪∧nF)) , (3.9)

where P denotes the (real) projectivization and n= rankE= rankF. The conformal structure
on M̃ is represented by the metric corresponding to the quadratic form on g/q given by z ∗ ∗

X ∗ ∗
w Yt z

 7→ YtX+ 2zw. (3.10)

Proof. With the conventions beneath the formula (2.9), the Legendrian subbundles E,F⊂D
correspond to P-modules gE−1,g

F
−1 ⊂ g−1. The induced P-action on respective top exterior

powers, hence on P(∧ngE−1 ⊕∧ngF−1) is as follows. For any η ∈ ∧ngE−1 and ϕ ∈ ∧ngF−1, the
element of P taken from (3.4) acts as

〈η+ϕ〉 7→ 〈
(
c−n detD

)
η+

(
en detD−1

)
ϕ〉= 〈η+

(
detD−n−2

)
ϕ〉, (3.11)

where we have used cedetD= 1. Thus, in the case n is odd, P acts transitively on

P
((
∧ngE−1 ⊕∧ngF−1

)
\
(
∧ngE−1 ∪∧ngF−1

))
(3.12)

and the stabilizer of any element in (3.12) is given by detD= 1. This condition determines
exactly the subgroup Q⊂ P, cf (3.4). Hence the set in (3.12) is the homogeneous space P/Q.
This, together with (3.7), yields (3.9).
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In the case n is even, the action above is not transitive but it can be extended as follows. Let
us consider the transformation of (3.12) given by

〈η+ϕ〉 7→ 〈η−ϕ〉. (3.13)

This is amap of order 2 that commuteswith the action ofP. Let us consider the groupP ′ := P×
Z2, whose action on (3.12) is given by the component actions (3.11) and (3.13), respectively.
(Here we consider Z2 as the multiplicative group {1,−1} and (3.13) describing the action of
the element−1.) This action is transitive and the stabilizer of any element isQ ′ := Q± ×{1} ⊂
P ′, where Q± ⊂ P is given by detD=±1. Hence the set in (3.12) is the homogeneous space
P ′/Q ′ which, however, can be identified with P/Q as follows. Consider the map P→ P ′ given
by p 7→ (p,s(p)), where s(p) denotes the sign of the determinant ofD, themiddle block of p ∈ P
as above. This map is a group homomorphism which induces an isomorphism of the factors
P/Q∼= P ′/Q ′.

Altogether, the interpretation (3.9) holds independently of the parity of n.
For the second part of the proposition, one can verify that (3.10) is the only quadratic form

on g/q that is Q-invariant, up to a non-zero multiple. Thus, together with (3.8), the claim
follows. Alternatively, one can use the Q-module isomorphism g̃/p̃∼= g/q for rewriting the
standard inner product on q̃/p̃. The isomorphism is induced by the Lie algebra homomorph-
ism g→ g̃ corresponding to (2.11). Regarding the details, one needs explicit matrix realiz-
ations of the homomorphism (which is easy) and the respective subalgebras (which is a bit
cumbersome). Details for both potential approaches can be found in [25].

There is a distinguished generator of the vertical subbundle of the projection π : M̃→M,
namely, the fundamental vector field of the right action of the 1-parameter subgroup of P/Q∼=
R×Z2, given in the left part of display (3.5). It can also be described as the projection of
the vector field on the total space of the bundle p : G̃ → M̃, which corresponds to the para-
complex structureK on V as follows. SinceK is an element of g̃= so(n+ 2,n+ 2), it defines
a constant vector field on G̃, denoted by ω̃−1(K). Restricting to the image of the canonical
inclusion G ⊂ G̃, the vector field is Q-invariant, hence the projection

K := Tp
(
ω̃−1 (K) |G

)
(3.14)

is well defined. This is a nowhere vanishing null-vector field on M̃ whose orthogonal com-
plement K⊥ ⊂ TM̃ projects to the contact distribution D ⊂ TM. In fact, there are finer data on
M̃ which allow to characterize the conformal structure obtained via the Fefferman-type con-
struction, see [25, section 3.6]. In particular, there are null distributions Ẽ, F̃⊂ TM̃ such that
Ẽ+ F̃=K⊥, Ẽ∩ F̃= 〈K〉 and which project to the Legendrian decomposition E⊕F=D.

The key question for constructions of the current type is whether (or in which cases) they
preserve the normality condition. Analogously to the original CR situation, this happens if and
only if the initial Cartan geometry is torsion-free. For our purposes, we also emphasize that,
in the integrable case, the distinguished vector field K is a conformal Killing field. Both these
facts are first stated in [7] in the context of CR geometry and later adapted to the LC setting
in [25]. The normality issues are typically subtle, while the fact that K is an infinitesimal
conformal symmetry follows easily from the construction.

Proposition 3.2 ([7, theorems 2.5 and 3.1], [25, section 3.6]). Let (G →M,ω) be the normal
parabolic geometry with the underlying LC structure and let (G̃ → M̃, ω̃) be the conformal
parabolic geometry obtained by the Fefferman construction. Then ω̃ is normal if and only if
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ω is torsion-free, i.e. the LC structure is integrable. In such case, the vector field (3.14) is a
nowhere vanishing conformal Killing field.

Since K is nowhere vanishing, there exists a metric in the conformal class for which K is a
true Killing field. This fact is made explicit in section 3.3 and then applied in section 4.4.

3.3. Explicit Fefferman metric for integrable LC structures

Here we merge the previous rough observations with a finer analysis of the normal Cartan
connection associated to an integrable LC structure. This yields an explicit local description
of a representative metric from the Fefferman conformal class.

Throughout this section, let U⊂M be a sufficiently small open subset. With the notation
as above, for a section φ : U→G of the Cartan bundle projection, we denote the components
of the corresponding gauge φ∗ω : TU→ g by ω0

0 ω0
j ω0

n+1
ωi0 ωij ωin+1

ωn+1
0 ωn+1

j ωn+1
n+1

 , (3.15)

where we adopt the conventions from (2.9) again. Note that
∑n+1

r=0 ω
r
r = 0. Without any loss of

generality, one can always choose a local section φ so that the g−-part of (3.15) is formed by
an adapted coframe (2.6),

ωn+1
0 = σ, ωi0 = θi, ωn+1

j = πj, (3.16)

See [20, lemma 2.8]. The remaining components of (3.15) are, in principle, deducible from the
normality condition and expressible in terms of the defining functions f ij and their derivatives.
Passing from M to M̃, the Fefferman metric is schematically given by (3.10). This shows that
only part of the g0-block of the Cartan gauge is needed.

The previous setting refers to some coordinates (xi,u,pi) onU. An additional fiber coordin-
ate on the Fefferman space M̃ is introduced as follows. Composing the gauge sectionφ : U→G
with the bundle projection G → M̃, we get a local section of the Fefferman fibration M̃→M.
This is a preferred (but not canonical) section that is fully determined by the previous choices.
Any other element of M̃ over U can be related to the image of this section by the action of the
group P/Q∼= R×Z2, which is described in (3.5). This induces the coordinate s ∈ R on (each
of the two continuous components of) the fiber. With this setup, we derive the local formula
for a representative metric of the Fefferman conformal class:

Theorem 3.3. Let D = E⊕F be an integrable LC structure on a manifold M of dimension
2n+ 1 and let

σ = du− pi dx
i, θi = dxi, πi = dpi − fij dx

j

be an adapted coframe, in a local coordinate (xi,u,pi), such that E= ker〈σ,πi〉 and F=
ker〈σ,θi〉. Let [g̃] be the induced conformal structure on the Fefferman space M̃ and let s be
the induced fiber coordinate of the projection M̃→M. Then a representative metric from the
conformal class has the form

g̃= θi�πi +σ�$, (3.17)
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where

$ =
1

n+ 2

n∑
i,j=1

(
− 1
n+ 1

∂2fij
∂pi∂pj

σ− 2
∂fij
∂pi

θj
)
+ 2ds. (3.18)

Proof. Let ψ = q ◦φ : U→ M̃ be the preferred section of the Fefferman projection, where
q : G → M̃. Along the image of ψ, the form of the metric in (3.17) follows from (3.10) and the
indicated substitutions, where

$ = ω0
0 +ωn+1

n+1 =−
n∑

i=1

ωii

is the only term to be specified. For integrable LC structures, it follows that the curvature Ω of
the normal Cartan connection takes values in the P-submodule gss0 ⊕ g1 ⊕ g2 ⊂ g, where gss0 is
the semisimple part of g0, see [11, section 3.8]. Denoting the components of φ∗Ω as in (3.15),
we have

Ωr
s = dωrs +

n+1∑
t=0

ωrt ∧ωts. (3.19)

The previous restriction on the value of Ω implies

Ωn+1
0 =Ωi

0 =Ωn+1
j =Ω0

0 =Ωn+1
n+1 =

n∑
i=1

Ωi
i = 0, (3.20)

for 1⩽ i, j⩽ n. By expanding and inspecting the conditions (3.20) using (3.19), one gradually
gets specifications on the components ωrs . Typically, this is a tedious process. Since we are only
concerned with (some of) the diagonal terms, we end up relatively quickly with the formula

$ =
1

n+ 2

n∑
i,j=1

(
− 1
n+ 1

∂2fij
∂pi∂pj

σ− 2
∂fij
∂pi

θj
)
.

The same outcome can also be deduced from [20, section 2.5], where similar reasoning (with
different aims) is presented in detail. See, in particular, equations (2.6) and (2.12) in that
reference.

To obtain the general formula of g̃ outside the image of ψ, we examine how the gauge
components change along the fibration M̃→M. This is controlled by the action of elements
from (3.5), whose substitution into the transformation formula (2.4) gives, after a simple cal-
culation, the expressions (3.17) and (3.18).

Remark 3.4. (i) The conformal invariance of (3.17) follows by the very construction. It can
also be checked directly by passing to another adapted coframe, expanding the key con-
ditions (3.20) according to (3.19) and repeating the described procedure. With the choice
as in (2.7), the rescaled metric changes by the factor e2f.

(ii) The conformal Killing fieldK, introduced abstractly in (3.14), is described in current local
coordinates asK = ∂

∂s . It is easy to see that this is a true Killing field of the representative
metric (3.17).

17



Nonlinearity 37 (2024) 015007 T Ma et al

(iii) The formula (3.17) involves only the g−-part and the g0-part of the normal Cartan gauge
determined by a choice of adapted coframe. It can therefore be interpreted in terms of
exact Weyl connections, the distinguished affine connections preserving the LC structure
and the contact form. To compare with the classical Fefferman construction for CR struc-
tures, we refer primarily to [31] where the formulas are derived via another distinguished
class of connections, namely, the Webster connections. Both the Weyl and the Webster
connections are defined for any parabolic contact structure and they can be related in a
rather convenient way, see [10, sections 5.3.12–14]. This provides a hint to other potential
reformulations of (3.17). Still, we regard our present approach to be the most straightfor-
ward.

(iv) LC structures of dimension 3, i.e. for n= 1, are automatically integrable and their normal
Cartan curvature is much easier to analyze than for n> 1. However, the expression (3.17)
is unchanged, only simplified and it can already be found in [32] and [4]. More details
on this special case are in section 6.

4. Canonical curves

The aims of this section are as follows. Firstly, we give an elementary interpretation of chains
and null-chains in the homogeneous model based on section 2.3. Referring to this descrip-
tion and the notion of development of curves, we then specify the correspondence between
(null-)chains on a LC manifold and null-geodesics of the conformal Cartan bundle obtained
from the Fefferman construction. In the case the LC structure is integrable, the latter curves
are just the null-geodesics of the Fefferman metric. This, in particular, leads to the description
of chains as the extremal curves of the Kropina functional in theorem 4.7. Before we go into
the details, we first recall some general theory.

4.1. Preliminaries

There are several ways to define, and hence study, canonical curves in particular geomet-
ries. In the framework of Cartan geometries, general definitions reflect the model situation.
In the homogeneous model, G→ G/P, the canonical curves are the projections of shifted
1-parameter subgroups of the principal group G. I.e., they are the curves parametrized as
t 7→ gexp(tX)/P, where g ∈ G, X ∈ g and t ∈ R. According to the type of the generator X ∈ g,
various types of canonical curves can be categorized. For parabolic Cartan geometries, we
restrict to the negative part of the grading (2.3) of g. The types of curves are then distinguished
by subsets S⊆ g− which (in order for the concept to have an invariant geometric meaning) are
assumed to be G0-invariant, where G0 ⊂ P is the Lie group with the Lie algebra g0 ⊂ p.

A generalization of the notion of canonical curves to general Cartan geometries (G →M,ω)
of type (G,P) can be done as follows. Let us consider the associated bundle S := G ×PG/P
over M with its canonical section corresponding to the origin in G/P. Along this section,
the vertical subbundle is naturally identified with G ×P g/p, i.e. the tangent bundle TM. This
makes precise the intuitive idea of ‘osculating’ M at each point by the model space G/P, the
idea that may be spotted already in Cartan’s work. The Cartan connection on G induces (after
a G-extension) a connection on S, which allows one to define the development of curves onM
into the homogeneous space G/P. More specifically, for a curve c : I→M and its canonical
lift ĉ : I→S , one may parallel transport the points ĉ(t), for varying t ∈ I, into a chosen fiber
over x= c(t0). Locally, this draws a curve in Sx ∼= G/P passing through the origin. For fixed
choices, this construction provides a bijection between germs of curves through x in M and
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germs of curves through origin inG/P that preserves the order of contact. This is an important
tool for studying curves on M via their counterparts in G/P.

Definition 4.1. Let (G →M,ω) be a parabolic geometry of type (G,P) and S⊆ g− be a
G0-invariant subset. A curve in M is called a canonical curve of type S if it admits a develop-
ment into the curve in G/P of the form

t 7→ exp(tX)/P,

where X ∈ S and t ∈ I. Canonical curves (of certain type) of a parabolic geometric structure
are the canonical curves of the corresponding regular and normal parabolic geometry.

Equivalently, canonical curves are projections of flow lines of constant vector fields from
the principal Cartan bundle. More precisely, a curve c : I→M is a canonical curve of type S
if and only if it admits a lift c̄ : I→G such that the value of ω

(
d
dt c̄(t)

)
is constant, for all t ∈ I,

and belongs to S.
By definition, canonical curves are endowedwith families of admissible reparametrizations,

which turn out to be either projective or affine. Usually, we consider the curves as unparamet-
rized ones. Details on the the general theory of canonical curves, as well as particular applic-
ations, can be found in [8] or [10, section 5.3].

4.2. Model interpretations

Here we describe chains and null-chains in the LC homogeneous model, referring to the obser-
vations from section 2.3. For each type of canonical curves, tangent vectors in any point are of
the corresponding type, respectively. They are classified in lemma 2.6, which implicitly enters
the discussion that follows. Results of this section are used later in section 4.3, but they are
also of interest on their own. Primarily, we give an interpretation in terms of the model ‘para-
hyperquadric’, as commented in remark 2.5, and its intersections with appropriate subspaces.
This is the closest analogue of well-known descriptions of canonical curves in model CR and
conformal geometry, see e.g. [22] for a survey and references. We also offer an underlying
projective interpretation. This extends notably the only attempt in this direction we are aware
of, [4, proposition 4.1], where a description of model chains in the 3-dimensional case is given.

By definition, chains of a LC parabolic geometry are the canonical curves of type S= g−2,
cf the grading description in (2.9). As unparametrized curves, chains are uniquely given by a
tangent direction in one point, provided it is transverse to the contact distribution. Chains carry
a natural projective family of parametrizations.

Proposition 4.2. Let M be the homogeneous model of LC structures of dimension 2n+ 1.

(a) Interpreting M as the para-complex projectivization of the null-cone N ⊂ Rn+2,n+2, take
a para-complex plane U⊂ Rn+2,n+2 that is non-degenerate. Then the para-complex pro-
jectivization of N ∩U is a chain in M and all chains are of this form.

(b) Interpreting M as the set of incident pairs of points and hyperplanes in real projective
space RPn+1, take a disjoint pair of line ` and subspace L of codimension 2 in RPn+1.
Then the set of all incident pairs (p,H) ∈M such that p ∈ ` and H⊃ L is a chain in M and
all chains are of this form.

Proof. Dealing with the homogeneous model M= G/P, it suffices to analyze the situation
in a particular point and a particular direction transverse to the contact distribution. Let A=
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(
0 0 0
0 0 0
1 0 0

)
∈ g−2 and c(t) = exp(tA)/P be the chain passing through the origin in G/P in the

direction of A/p ∈ g/p, i.e.

c(t) =

1 0 0
0 I 0
t 0 1

/
P,

where I is the identity matrix of rank n.
Under the interpretation (a), the origin and the tangent vector correspond to

O= 〈e0,en+1〉 and A= e0 ⊗ (en+1/O)− en+1 ⊗ (e0/O) ∈ O∗ ⊗V/O, respectively, cf the
identification (2.12). The chain itself corresponds to

c(t) = 〈e0 + ten+1,−te0 + en+1〉. (4.1)

The chain (4.1) consists of para-complex null-lines contained in the subspace

U= O+ im(A) = 〈e0,en+1,e
0,en+1〉, (4.2)

which is evidently a non-degenerate para-complex plane. Conversely, there are two
1-parameter families of real null-planes inU (known as α- and β-planes, respectively). One of
them is the chain (4.1), the other can be parametrized as 〈e0 + sen+1,−se0 + en+1〉. However,
members of the latter family are not para-complex lines. Hence the intersection N ∩U is just
the chain (4.1).

Under the interpretation (b), the chain (4.1) corresponds to the curve of incident pairs

p(t) = 〈e0 + ten+1〉, H(t) = 〈ker
(
−te0 + en+1

)
〉 (4.3)

of points and hyperplanes inRPn+1. The points p(t) form a line ` and the hyperplanesH(t) have
a common intersection L, namely, the projectivization of the subspace 〈e1, . . . ,en〉 ∈ Rn+2.
Clearly, ` and L are disjoint and the dimension of L is n− 1. The converse statement follows
from the previous interpretation. Directly, given ` and L, any p ∈ ` determines an incident
hyperplane H= p+L. Such family allows a parametrization as in (4.3), which is a chain.

Any chain in M can always be parametrized analogously to (4.1). In particular, both com-
ponents of the intersections with ±1-eigenspaces are (standardly parametrized) affine lines.
This pair of lines, however, is not arbitrary. This detail is to be compared with an upcoming
discussion for null-chains.

By definition, null-chains of a LC parabolic geometry are the canonical curves of type
S⊂ g−1, where S is gE−1, g

F
−1 or the set of generic null-vectors in g−1, i.e. those null-vectors that

are not contained in gE−1 ∪ gF−1. Accordingly, we distinguish null-chains of type E, F and the
generic ones. As a parametrized curve, any null-chain is uniquely given by its 2-jet and carries a
natural projective family of parametrizations. As unparametrized curves, null-chains of type E
or F are uniquely given by a tangent direction in one point, whereas there is a 1-parameter fam-
ily of generic null-chains obeying an analogous initial condition, see [10, proposition 5.3.8].
We primarily focus on generic null-chains and treat the other types as degenerate cases:

Proposition 4.3. Let M be the homogeneous model of LC structures in dimension 2n+ 1.

(a) Interpreting M as the para-complex projectivization of the null-coneN ⊂ Rn+2,n+2, take a
null para-complex plane U⊂N and its intersections U± := U∩V± with the eigenspaces
of the para-complex structure on Rn+2,n+2. Then any pair of real affine lines in U+ and
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U− determines a generic null-chain in M and all generic null-chains are of this form. Null-
chains of type E, respectively F, are degenerate cases of generic ones, where dimRU= 3
and dimRU+ = 1, respectively dimRU− = 1.

(b) InterpretingMas the set of incident pairs of points and hyperplanes in real projective space
RPn+1, take a line ` incident with a subspace L of codimension 2 in RPn+1. Then a set of
incident pairs (p,H) ∈M such that p ∈ ` and H⊃ L is a generic null-chain in M and all
generic null-chains are of this form. Null-chains of type E, respectively F, are degenerate
cases of generic ones, where all hyperplanes H⊃ L, respectively all points p ∈ `, coincide.

Proof. The proof is analogous to the one of proposition 4.2. In particular, we ana-
lyze the situation in one point and one null-direction from the contact distribution. Let

A=
( 0 0 0
e1 0 0
0 en 0

)
∈ g−1 be a generic null-vector in g−1 and c(t) = exp(tA)/P be a null-chain

passing through the origin in G/P in the direction of A/p ∈ g/p, i.e.

c(t) =

 1 0 0
te1 I 0
0 ten 1

/
P.

Under the interpretation (a), the origin, the tangent vector and the null-chain itself corres-
ponds to O= 〈e0,en+1〉, A= e0 ⊗ (e1/O)− en+1 ⊗ (en/O) ∈ O∗ ⊗V/O and

c(t) = 〈e0 + te1,−ten+ en+1〉, (4.4)

respectively. By the action of the subgroup expp+ ⊂ P on the model null-chain (4.4), it fol-
lows that all null-chains passing through the origin with the same tangent vector as (4.4) are
given as

ĉ(t) = 〈(1+ at)e0 + te1,−ten+(1+ bt)en+1〉, (4.5)

where a,b ∈ R are free parameters. The null-chain (4.5) lies in the subspace

U= O+ im(A) = 〈e0,e1,en,en+1〉, (4.6)

which is evidently a null para-complex plane, and the intersections with±1-eigenspaces draw
affine lines in U± = U∩V±. The freedom controlled by a,b ∈ R (and potential projective
reparametrizations) shows that any pair of affine lines in U± can be achieved this way.

Under the interpretation (b), the null-chain (4.4) corresponds to the curve of incident pairs

p(t) = 〈e0 + te1〉, H(t) = 〈ker
(
−ten+ en+1

)
〉 (4.7)

of points and hyperplanes inRPn+1. The points p(t) form a line ` and the hyperplanesH(t) have
a common intersection L, namely, the projectivization of the subspace 〈e0, . . . ,en−1〉 ∈ Rn+2.
Clearly, ` and L are incident and dimL= n− 1. Passing to a general null-chain (4.5) and using
the previous justification, we see the argument is complete, i.e. any incidence configuration of
the present type can be achieved this way.

The specification of null-chains of type E, respectively F, follows immediately by substi-
tuting globally 0 instead of en, respectively e1.
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There are two free parameters a,b ∈ R in the expression (4.5). But, for a= b, this expression
is just a (projective) reparametrization of (4.4).Moreover, the pairs (a, b) and (a ′,b ′) determine
the same curve up to an (affine) reparametrization if and only if a ′ = ka and b ′ = kb, for some
k ∈ R. Hence, indeed, we are in concordance with the above stated counts, i.e. there is a 1-
parameter family of unparametrized generic null-chains passing through a given point in a
given direction.

With the preceding model interpretations, we may give a simple criterion for local con-
nectivity of points in the homogeneous model by chains and null-chains, respectively. Let
M be the model LC manifold interpreted as in claim (e) of proposition 2.4, i.e. as the para-
complex projectivization of the null-cone in Rn+2,n+2. From lemma 2.6, we know that, for
any L ∈M and any transverse vector w ∈ TLM \DL, the corresponding subspace im(w)+ L of
the ambient vector space Rn+2,n+2 is a non-degenerate para-complex plane. From claim (a)
of proposition 4.2, we know that such subspace determines a chain uniquely (as unparamet-
rized curves), hence play a role of initial condition. Similarly, for any L ∈M and a generic
null-vector from w ∈ DL, the corresponding subspace im(w)+ L is a null para-complex plane.
From claim (a) of proposition 4.3, we know that such a subspace determines a family of gen-
eric null-chains. In both cases, the curve is contained in the para-complex projectivization of
the initial subspace. Passing to the boundary condition instead, we get the following charac-
terization:

Corollary 4.4. Let M be the homogeneous model of LC structures interpreted as the para-
complex projectivization of the null-cone in Rn+2,n+2. Let L1 and L2 be two distinct para-
complex null-lines in Rn+2,n+2. Then L1 and L2 can be connected by a chain, respectively a
generic null-chain, if and only if the subspace L1 +L2 ⊂ Rn+2,n+2 is a para-complex plane
that is non-degenerate, respectively null.

In particular, given points cannot be connected by chain and null-chain simultaneously.
Generically, two points are connected by a chain, which is unique. Considering the connecting
chain as a segment, there are actually two solutions, since chains in the homogeneous model
are closed curves. If given points are connected by a generic null-chain, then there is a 1-
parameter family of such. Taking into account also null-chains of type E or F, one easily
formulates an analogous characterization using part (a) of lemma 2.6. As usual, this can be
seen as a degenerate case of the generic null-chain situation. This degeneracy implies that the
connecting family of curves, provided it exists, collapses to a single curve.

4.3. Canonical curves under Fefferman correspondence

Here we describe the correspondence between canonical curves under the Fefferman corres-
pondence. Primarily, we are interested in null-geodesics of the Fefferman space M̃ which, as
we show, project to chains, null-chains or points on the underlying LC manifold M. By the
very construction and the notion of development of curves, the full analysis can be done in
the model situation, cf sections 3.2 and 4.1. This comprises an analysis of the correspondence
between projections of 1-parameter subgroups (of particular types) of the principal groups,
which translates directly to the general curved setting. Instead of a formal description of 1-
parameter subgroups in G and G̃ and their projections, we use our LC model interpretations
from section 4.2 and the standard conformal ones, respectively.

We utilize the setting from section 3.1, where M̃ and M stays for the real and the para-
complex projectivization, respectively, of the (open subset of the) null-coneN0 =N \ (V+ ∪
V−). The model projection π : M̃→M is described as
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〈v+ + v−〉 7→ 〈v+,v−〉, (4.8)

where v= v+ + v− is the unique decomposition corresponding to V= V+ ⊕V− and v ∈N0,
i.e. v± 6= 0 and v+ · v− = 0. Note that this map is just 〈v〉 7→ 〈v,K(v)〉, where K is the para-
complex structure on V. I.e., for any real null-line not contained in V±, the map π returns
its para-complex hull. More generally, for a vector subspace W⊂ V, its para-complex hull is
denoted by K(W).

The tangent map of the projection π is described as follows. On the one hand, for any
L ∈ M̃, the tangent space of M̃ at L is identified as TLM̃∼= L∗ ⊗L⊥/L. On the other hand, for
L ′ = π(L) ∈M, the tangent space ofM at L′ is a subset T ′

LM⊂ L ′∗ ⊗V/L ′ specified in lemma
2.6. Now, let L= 〈v+ + v−〉 and let w ∈ TLM̃ be interpreted as a linear map L→ L⊥/L given
by

v+ + v− 7→ (w+ +w−)/〈v+ + v−〉, (4.9)

where w± ∈ L⊥ ∩V±. Then L ′ = 〈v+,v−〉 and the projection w ′ = Tπ(w) ∈ T ′
LM, interpreted

as a linear map L ′ → V/L ′, is given as

v+ 7→ w+/〈v+,v−〉, v− 7→ w−/〈v+,v−〉, (4.10)

Indeed, this is a para-complex map and the assumption w+ +w− ∈ 〈v+ + v−〉⊥ implies that
the composition with V/L ′ → V/L ′⊥ ∼= L ′∗ is skew. In these terms, the distinguished vec-
tor field (3.14) spanning the vertical subbundle of the projection π : M̃→M is as follows:
for L= 〈v+ + v−〉 as above, the vector KL ∈ TLM̃ corresponds to the linear map L→ L⊥/L
given by

v+ + v− 7→ (v+ − v−)/〈v+ + v−〉. (4.11)

From the rough description of the construction in section 3.2, we already know that the
subbundle K⊥ ⊂ TM̃ projects to D ⊂ TM. In the current terms, the discussion can be refined
as follows. For any L ∈ M̃ andw ∈ TLM̃, letW= im(w)+ L be the auxiliary vector subspace in
V. Let us denote the projected counterparts as L ′ = π(L) ∈M, w ′ = Tπ(w) ∈ TLM and W ′ =
im(w ′)+ L ′ ⊂ V. Then, clearly, W⊂W ′ and W ′ =K(W). Further, it follows that W⊥K if
and only if W ′ is degenerate. In addition, W⊥K and W is null if and only if W ′ is null. This,
together with lemma 2.6, provides an alternative control over the types of tangent vectors under
the present correspondence.

Passing to the curves, we recall that null-geodesics of a conformal parabolic geometry are
the canonical curves of type S⊂ g̃−1, where g̃−1 is the negative part of the conformal grading
of g̃= so(n+ 2,n+ 2) and S is the subset of null-vectors with respect to the standard inner
product. Null-geodesics of a conformal structure on M̃, i.e. null-geodesics of the correspond-
ing normal parabolic geometry, are the true geodesics of any metric from the conformal class.
In particular, as unparametrized curves, they are uniquely given by a tangent direction in one
point. In the homogeneous model they are simply the null straight lines, i.e. the real project-
ivizations of real null-planes W⊂ V= Rn+2,n+2. The projections of null-geodesics are thus
contained in the para-complex hulls W ′ =K(W). From the previous specification and pro-
positions 4.2 and 4.3, we know that these are the subspaces in which chains and null-chains
are contained, respectively. If W 6⊥ K then W ′ is non-degenerate and its intersection with N
determines a unique chain. IfW⊥K thenW ′ is null and there are many potentially matching
null-chains. A closer look leads to the following result.
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Proposition 4.5. Let (G̃ → M̃, ω̃) be the conformal parabolic geometry induced from a LC
structure on M by the Fefferman-type construction and let K be the null-vector field spanning
the vertical subbundle of M̃→M. Then:

(a) Flow lines of K are null-geodesics in M̃ that project to points in M.
(b) Null-geodesics in M̃ that are not perpendicular to K project to chains in M and all chains

are of this form.
(c) Null-geodesics in M̃ that are both perpendicular and transverse toK project to null-chains

in M and all null-chains are of this form.

For the sake of simpler presentation, we do not distinguish generic null-chains and null-
chains of type E, respectively F. In the spirit of proposition 4.3, the latter curves can always
be seen as degenerate cases of the former ones, where the generic null-directions from D are
substituted by those from E, respectively F. The corresponding preimages in TM̃ are obtained
by a substitution of generic null-directions from K⊥ by those from Ẽ, respectively F̃; cf the
description after (3.14).

Proof. The general approach is as follows. For a tangent direction at a point inM, we consider
all its null-lifts to M̃, all the corresponding null-geodesics and their projections back to M.
Then we show that the projected curves are chains, respectively null-chains, tangent to the
initial direction. The case (a) is, of course, exceptional.

It is enough to analyze this correspondence in the homogeneous model, which translates to
the general case via the notion of development of curves. We use the ambient vector descrip-
tions as above. Consistently with our previous notation, the origin in M is the para-complex
null-line O= 〈e0,en+1〉 in V. The corresponding fiber in M̃ consists of real null-lines in O that
are not contained in V±; it can be described as

π−1 (O) =
{
〈e0 + len+1〉,where l ∈ R \ {0}

}
.

(a) Clearly, the fiber π−1(O) is a null-geodesic in M̃ and the vector field K is everywhere
tangent to it, cf the description in (4.11).

(b) Let us take the tangent vector at O of the model chain (4.1) and let L= 〈e0 + len+1〉 be an
arbitrary element from π−1(O). This tangent vector lifts to a unique null-vector in TLM̃,
namely,

e0 + len+1 7→
(
en+1 − le0

)
/〈e0 + len+1〉, (4.12)

cf the description in (4.9). The null-geodesic through L in the direction of (4.12) can be
parametrized by t ∈ R as

〈e0 + len+1 + t
(
en+1 − le0

)
〉= 〈(e0 + ten+1)+ l

(
−te0 + en+1

)
〉. (4.13)

For any l ∈ R, i.e. for any initial point L ∈ π−1(O), the null-geodesic (4.13) projects to the
chain (4.1). Hence the statement follows.

(c) Let us take the tangent vector at O of the model null-chain (4.4) and let L= 〈e0 + len+1〉
be as above. Contrary to the previous case, the tangent vector does not lift uniquely to a
null-vector in TLM̃; all such lifts are controlled by the parameter k ∈ R so that

e0 + len+1 7→
(
(e1 − len)+ k

(
e0 − len+1

))
/〈e0 + len+1〉. (4.14)
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The null-geodesic through L in the direction of (4.14) can be parametrized by t ∈ R as

〈e0 + len+1 + t
(
(e1 − len)+ k

(
e0 − len+1

))
〉= 〈(1+ kt)e0 + te1

+ l
(
−ten+(1− kt)en+1

)
〉. (4.15)

These null-geodesics project to the family of curves

〈(1+ kt)e0 + te1,−ten+(1− kt)en+1〉, (4.16)

depending on k ∈ R, but independent of l ∈ R. Comparing with (4.5), curves (4.16) form
the 1-parameter family of null-chains passing through the origin in the same direction
as (4.4). Hence the statement follows.

Finally, for an integrable LC structure, our Fefferman-type construction preserves the nor-
mality condition, see proposition 3.2. In such case, the null-geodesics of the induced conformal
parabolic geometry are just null-geodesics of the underlying conformal structure. Putting
things together, we conclude with the following result.

Theorem 4.6. Let the conformal structure on M̃ be induced from an integrable LC structure on
M by the Fefferman-type construction, and let K be the null conformal Killing field spanning
the vertical subbundle of M̃→M. Then chains, respectively null-chains, in M are exactly the
projections of null-geodesics in M̃ that are not perpendicular, respectively, are perpendicular
to K.

4.4. Chains as Kropina geodesics

To have the correspondence from theorem 4.6, we assume the LC structure onM is integrable.
Associated to the Fefferman metric on M̃, we have Kropina metrics onM, which are metrics of
pseudo-Finsler type defined off the contact distributionD ⊂ TM. Hence we get the description
of chains as geodesics of a Kropina metric, which also yields further consequences for the
geometry of chains. This part is analogous to the CR case studied in [16].

Let g̃ be a representative Fefferman metric and K be the null conformal Killing field span-
ning the vertical subbundle of the projection π : M̃→M as above. Then, for any local section
ψ : U⊂M→ M̃ , the Kropina metric on U associated to g̃ and ψ is defined by

Fψ (ξ) :=
g̃(ψ∗ξ,ψ∗ξ)

g̃(K,ψ∗ξ)
, (4.17)

where ξ ∈ TM \D and ψ∗ denotes the tangent map of ψ. Indeed, this is well-defined only off
the contact distribution, since K⊥ ⊂ TM̃ corresponds to D ⊂ TM under the projection. The
definition is independent of the choice of a particular metric from the conformal class of g̃,
but depends on the choice of section ψ. However, a change of the local section only leads to
a change of the Kropina metric by an exact 1-form, see [16, section 2]. More precisely, let
(s,xi,u,pi) be a preferred local coordinate on M̃ as given in theorem 3.3, let ψ ′ : U→ M̃ be
another section and let the section change be measured by the function f defined on U by
f = s ◦ψ ′ − s ◦ψ. By remark 3.4(ii), the vector field K = ∂s is a null true Killing field for a
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representative metric g̃. The vectors ψ ′
∗ξ and ψ∗ξ+ df(ξ)∂s have the same norm with respect

to g̃, so putting it all together, the induced Kropina metrics are related by

Fψ ′ (ξ) = Fψ (ξ)+
2g̃(ψ∗ξ,df(ξ)∂s)

g̃(∂s,ψ∗ξ)
= Fψ (ξ)+ 2df(ξ) .

Similar to Riemannian geometry, the unparametrized geodesics of a Kropina metric F are
the stationary curves of the following F-length functional among all curves with the same
endpoints:

L(γ) :=
ˆ b

a
F(γ (t) , γ̇ (t)) dt, (4.18)

where γ : [a,b]→M. Since Kropina metrics have the correct homogeneity degree with respect
to γ̇, the functional (4.18) is invariant under orientation preserving reparametrizations. Unlike
Riemannian geodesics, the geodesics of a Kropina metric do not have arbitrary directions but
they are everywhere transverse to the distributionD ⊂ TM. Since Kropina metrics correspond-
ing to different sections of the projection π differ by an exact 1-form, their geodesics are the
same.

The Euler–Lagrange equations corresponding to (4.18) are given by

∂F
∂γα

− d
dt
∂F
∂γ̇α

= 0, (4.19)

where the superscript α= 1, . . . ,n+ 1 denotes coordinate components onM. Overall, Kropina
geodesics are solutions to the ODE system (4.19), which are everywhere transverse to the
contact distribution D.

There is a local correspondence between the geodesics of the Kropina metric F and the
null-geodesics of the Fefferman metric g̃ that are not perpendicular to K. This is presented a
generalization of the so-called Fermat’s principle in [16, theorem 2.1], cf also [5, theorem 7.8].
In this part, the fact that K is a null Killing field of g̃ plays an important role. Combining the
current correspondence with theorem 4.6, we obtain the following result.

Theorem 4.7. Let the conformal structure on M̃ be induced from an integrable LC structure
on M by the Fefferman-type construction, and let F be a locally defined Kropina metric as
in (4.17). Then the chains in M are precisely the geodesics of the Kropina metric F.

This result provides a tool for deriving the system of ODEs for chains, which appears to
be very efficient compared to other strategies. An instance, for 3-dimensional LC structures,
is presented in section 6.2. Other applications of the current approach to chains follow. They
concern known results on the determinacy of a LC structure by its chains or on the character of
chains themselves, but with weakened assumptions: instead of considering the whole family
chains, we are allowed to restrict only to a ‘sufficiently big’ subset.

A family of (unparametrized) curves on M is sufficiently big if, for any x ∈M, the set of
tangent vectors at x for these curves contains a nonempty open subset of TxM. Two Kropina
metrics are said to be projectively equivalent if their geodesics coincide on a sufficiently big
family of curves. By [16, theorem 1.2], projectively equivalent Kropina metrics of the form
F1 =

g1
σ1

and F2 =
g2
σ2

satisfy

kerσ1 = kerσ2 and F2 = cF1 +β, (4.20)
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where c is a constant and β is a closed 1-form, provided that kerσi are non-integrable distribu-
tions and gi are non-degenerate on kerσi. In particular, this holds for Kropina metrics (4.17)
induced by integrable LC structures. This is one of the key inputs for the following statement.

Proposition 4.8. Two integrable LC structures share a sufficiently big family of chains if and
only if the LC structures coincide.

Proof. For the only non-trivial implication in the equivalence, let D1 = E1 ⊕F1 and D2 =
E2 ⊕F2 be two integrable LC structures on M with a same sufficiently big family of chains.
By this assumption and theorem 4.7, there are locally defined Kropina metrics F1 and F2 that
are projectively equivalent. Thus, by (4.20), the contact distributions D1 and D2 agree and
Kropina geodesics of F1 and F2 coincide in general, not only on a sufficiently big set. Then,
by [11, corollary 4.4], it follows that the two LC structures coincide.

Focusing on the chains themselves, they form a far more complicated system than geodesics
of an affine connection, though they are both given by initial conditions of the same order.More
precisely, there is no affine connection which has all chains as its geodesics, see [11, theorem
4.1]. Again, with our current description in theorem 4.7, we generalize this result as follows.

Proposition 4.9. There is no affine connection which has any sufficiently big family of chains
among its geodesics.

Proof. On the one hand, geodesics of a pseudo-Finsler metric are given by the equation

ẍk =−Γkij (x, ẋ) ẋ
iẋj, (4.21)

where the coefficients Γkij(x, ẋ) are formal Christoffel symbols given by algebraic formulas of
the first-order derivatives of the fundamental tensor of that metric, see [3, section 5.3]. (The
local coordinates here have nothing to do with the adapted coordinates we use elsewhere.)
Chains are geodesics of a Kropina metric whose special form (4.17) implies that, for each
fixed x, the right hand side of (4.21) is a rational function of ẋi with constant coefficients.

On the other hand, geodesics of an affine connection are given by an analogous equation as
in (4.21), but with the coefficients depending only on x. Allowing reparametrizations, we deal
with the equation

ẍk =−Γ̂kij (x) ẋ
iẋj+ f(x) ẋk, (4.22)

for some function f, where Γ̂kij are the standard Christoffel symbols of the affine connection.
Putting (4.21) and (4.22) together, we obtain, for each fixed x, a system of purely algeb-
raic equations on ẋ with constant coefficients. Thus, if a sufficiently big family of Kropina
geodesics is among geodesics of an affine connection, then all Kropina geodesics are affine
geodesics. But, by [16, corollary 3.6], this is impossible, hence the statement follows.

5. LC structures induced by projective structures

There is a distinguished class of LC structures that are induced by the projective ones. This
relation is clearly visible in the model description in section 2.3. It is studied in full general-
ity firstly in [34]. Also, this correspondence allows a Cartan-geometric interpretation that fits
nicely to our present approach. Although LC structures arising this way are integrable only in
the flat case, it is still possible to treat some of topics discussed above in an adequate detail.
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In particular, we present an explicit description of the Fefferman metric and the correspond-
ence of canonical curves. As an interesting side result, we obtain a characterization of such
LC structures in terms of its defining functions.

5.1. The correspondence

For a smooth manifoldM, there is a canonical contact structure on the projectivized cotangent
bundle M := PT∗M of M. From now on, we assume dimM= n+ 1 and so dimM= 2n+ 1.
A projective structure on M, which is given by a family of torsion-free affine connections
with the same unparametrized geodesics, gives rise to a LC structure on M as follows. First
note that the kernel of the tautological 1-form on T∗M descends to a contact distribution D
onM. Each connection from the projective class determines a horizontal distribution in TT∗M
complementary to the vertical distribution of the projection T∗M→M. This decomposition
depends on the connection, however, the vertical distribution and the common intersection
of horizontal distributions of connections within the projective class descend to a Legendrian
decomposition of the contact distribution D ⊂ TM, i.e. a half-integrable LC structure onM. It
follows that the LC structure is flat if and only if the initial projective structure is flat, see [34].

Both projective and LC structures are parabolic geometric structures, whose model corres-
pondence is described in section 2.3. In particular, let G= SL(n+ 2,R) be the principal Lie
group and P⊂ P be the nested parabolic subgroups of G as described in section 2.3. Denoting
the grading of the Lie algebra g= sl(n+ 2,R) corresponding to P⊂ G as g= g−1

⊕ g
0
⊕ g

1
,

it is related to the one in (2.9) so that

g−1
= g−2 ⊕ gE−1, g

0
= gF−1 ⊕ g0 ⊕ gF1 , g

1
= gE1 ⊕ g2.

Again, the model fibration

translates directly to general curved settings, where the groupGwith itsMaurer–Cartan form is
substituted by a bundle G with a Cartan connection ω. Let (G →M,ω) be the normal parabolic
geometry of type (G,P) associated to a projective structure on M. The correspondence space
M := G/P is identified with PT∗M and (G →M,ω) is the normal parabolic geometry of type
(G,P) associated to the induced LC structure. The vertical subbundle of the projectionM→M
is the Legendrian subdistribution F of the contact distribution D ⊂ TM. From the concrete
description of the LC harmonic curvature (and its horizontality), it follows that there is just
one potentially nontrivial component which is fully determined by its projective counterpart.
This refines significantly the above mentioned characterization of the flatness of the induced
LC structure. Note that, for n> 1, the flatness is a necessary (not only sufficient) condition
of the integrability of the induced LC structure. Moreover, vanishing of the other harmonic
curvature components locally characterizes the LC structures arising this way, see [6] or [10,
section 4.4.2].
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Composing the current setup with the Fefferman-type construction from section 3.2 yields a
construction relating the projective structure onM and a conformal structure on M̃. Proposition
3.2 then readily extends as follows:

Proposition 5.1 ([25, proposition 3.8]). Let (G →M,ω) be the normal parabolic geometry
for an underlying projective structure on M. Let (G →M,ω) be the intermediate LC parabolic
geometry and let (G̃ → M̃, ω̃) be the conformal parabolic geometry obtained by the Fefferman
construction. Then ω̃ is normal if and only if dimM= 2 or ω is flat.

5.2. Explicit Fefferman metric

Also for LC structures induced by general projective structures, there is an explicit coordinate
description of the induced conformal Fefferman metric, expressed in terms of Christoffel sym-
bols of a representative affine connection from the projective class. In this context, we highlight
that the Fefferman space M̃ is identified with an appropriately weighted cotangent bundle of
M and the so-called Patterson–Walker metrics are directly detected in the conformal class, see
[25, section 6.1]. Assuming that a representative affine connection from the projective class
is special, i.e. preserves a volume form on M, we identify M̃ with T∗M. Then the correspond-
ing Patterson–Walker metric on M̃ is given by a natural pairing between the vertical and the
horizontal distribution. For an explicit description, let (xa) be a local coordinate onM and (yb)
be the canonical fiber coordinates on T∗M, i.e. so that the tautological 1-form has the form
ya dxa. Here and below, the indices a,b etc run from 1 to n+ 1 and repeated indices indicate
the sum. For Γcab being the Christoffel symbols of a special torsion-free affine connection, the
corresponding Patterson–Walker metric has the form

g= dxa� dya− ycΓ
c
ab dx

a� dxb. (5.1)

Indeed, for a particular value of the weight (which isw= 2 according to standard conventions),
it follows that the projective change of connection,

Γ̂cab = Γcab+ δcaΥb+ δcbΥa, (5.2)

whereΥ= df and f is a nowhere vanishing function onM, induces a conformal change of the
metric, ĝ= ewfg, see [26, section 3.3].

Besides the previous expression, we also examine the two-step process indicated in pro-
position 5.1. Let (G →M,ω) be the normal parabolic geometry associated to the projective
structure onM and let φ :M→G be a local section of the bundle projection. The components
of the corresponding gauge φ∗ω : TM→ g are denoted by(

ω0
0 ω0

b
ωa0 ωab

)
, (5.3)

which reflects the block decomposition of g= sl(n+ 2,R) corresponding to projective geo-
metries discussed in section 5.1. One may always choose a local section so that

ωa0 = dxa, ωab = Γabc dx
c, ω0

0 = 0, (5.4)

where (xa) are local coordinates onM and Γabc are Christoffel symbols of a special torsion-free

affine connection from the projective class as above. This, in particular, means that
n+1∑
a=1

Γaac = 0.
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In fact, the normality of ω forces this setup to be completed by ω0
b =− 1

n−1Rbc dx
c, where Rab

is the Ricci tensor of the representative connection, see e.g. [18].
The typical fiber of the projectionM→M, which is P/P by construction, is identified with

the nilpotent subgroup expgF−1 ⊂ P. We use the parametrization

exp

0 0 0
0 0 0
0 pj 0

 , (5.5)

where we refer to the block decomposition (2.9) and gF−1
∼= Rn. Composing the gauge section

φ :M→G with the bundle projection G →M gives a preferred section of the fibrationM→M.
Any element ofM is related to the image of this section by the action of (5.5), which induces the
fiber coordinates (pj). It follows that, under the substitution xn+1 = u, this setting is compatible
with the one from section 2.2, which yields the following.

Proposition 5.2. Let D = E⊕F be a half-integrable LC structure with integrable F-leaves
on a manifold M and let

σ = du− pi dx
i, θi = dxi, πi = dpi − fij dx

j (5.6)

be an adapted coframe, in local coordinates (xi,u,pi), such that E= ker〈σ,πi〉 and F=
ker〈σ,θi〉. Let M be the local leaf space of the integrable distribution F, with coordinates (xi,u).
The LC structure on M is induced by a projective structure on M if and only if the functions fij
are cubic polynomials in pi of the form

fij =−Γn+1
i j + pkΓ

k
i j− pjΓ

n+1
n+1 i− piΓ

n+1
n+1 j+ pi pkΓ

k
n+1 j+ pjpkΓ

k
n+1 i

− pi pjΓ
n+1
n+1n+1 + pi pjpkΓ

k
n+1n+1, (5.7)

where the functions Γcab, being the Christoffel symbols of a representative connection from the
projective class, depend on (xi,u) and satisfy Γcab = Γcba and

∑n+1
a=1Γ

a
ac = 0.

Proof. For a projective structure represented by Γcab, let us consider the gauge (5.3) onMwith
components as in (5.4). The components changes along the fibrationM→M according to the
transformation formula (2.4) where we substitute (5.5). Focusing on the g−-part yields the
adapted coframe (3.16) with f ij as in (5.7). Indeed, this expression is symmetric in i and j and
invariant under the projective change of connection (5.2).

Conversely, let a half-integrable LC structure be given by the functions f ij of the form (5.7)
with Γcab depending only on (xi,u) and satisfying Γcab = Γcba and

∑n+1
a=1Γ

a
ac = 0. The coeffi-

cients of the polynomial form a linear system of equations on Γcab which is solvable and fixes
all Γcab. Interpreting Γ

c
ab as Christoffel symbols of an affine connection onM, we have a repres-

entative connection of the projective class, whose associated LC structure is the one we started
with.

Remark 5.3. In the case when n= 1, i.e. dimM= 3, the right-hand side of (5.7) becomes a
cubic polynomial in one variable, so the associated PDE system (2.8) becomes a single ODE
of second order. In this case, proposition 5.2 becomes the famous characterization of geodesic
equations by Cartan. More details on this special situation are in section 6.

Now, we extend the current LC structure by the Fefferman-type construction and introduce
the fiber coordinate on the Fefferman space as in section 3.3. It leads us to the following
coordinate description of the Fefferman metric.
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Proposition 5.4. Let a half-integrable LC structure on M be induced by a projective structure
on M. Let (xa) be a local coordinate on M, Γcab be the Christoffel symbols of an affine connec-
tion from the projective class and (xi,u,pi) be a local coordinates on M as in proposition 5.2,
where u= xn+1. Let [g̃] be the induced conformal structure on the Fefferman space M̃ and let
s be the induced fiber coordinate of the projection M̃→M. Then a representative metric from
the conformal class has the form

g̃=
(
Γn+1
bc − pkΓ

k
bc

)
dxb� dxc+ dxi � dpi + 2

(
dxn+1 − pi dx

i
)
� ds. (5.8)

Moreover, the formula above is related to the description in (5.1) by the coordinate transform-
ation

pi =− yi
yn+1

, s=−1
2
log |yn+1|. (5.9)

Proof. The rough form of the Fefferman metric is the same as in (3.17). Indeed, this is derived
from (3.10) where the integrability does not enter. From the same expansion as in the proof of
proposition 5.2, one reads the remaining term we need as

$ = ω0
0 +ωn+1

n+1 =−
(
Γn+1
n+1c− piΓ

i
n+1c

)
dxc. (5.10)

As at the end of proof of theorem 3.3, it easily follows that the previous expression trans-
forms along the fibration M̃→M as $ 7→$+ 2ds. Including the substitutions (5.6), the for-
mula (5.8) follows after an easy manipulation. The relation to (5.1) via the coordinate trans-
formation (5.9) is a direct computation.

5.3. Correspondence of curves

Concerning the correspondence of canonical curves, we give comments on both steps of the
previous construction. Firstly, we recall that the geodesics of a projective parabolic geometry
are canonical curves of type S= g−1

, which is the negative part of the corresponding grading
of g= sl(n+ 2,R) as in section 5.1. Geodesics of a projective structure onM are, of course, the
true geodesics of any affine connection from the projective class. In the homogeneous model,
projective geodesics are just straight lines, the 1-dimensional subspaces of the real projective
space.

For the correspondence between the geodesics on M and chains, respectively null-chains,
of the induced LC structure onM= PT∗M, we refer to the generalities in sections 4.1 and 5.1
and the model observations in propositions 4.2, respectively 4.3. Part (b) of these propositions
provides a link to the underlying projective geometry. In the notation used there, the projection
M→M is given by (p,H) 7→ p. Altogether, we easily conclude with

Proposition 5.5. Let the LC structure on M be induced by a projective structure on M and let
F⊂ TMbe the vertical distribution of the projectionM→M. Then both chains and null-chains
in M project to geodesics in M and all geodesics on M are of this form.

Note that null-chains of type F project to points.
Passing to the Fefferman space, we are concerned about the correspondence between con-

formal null-geodesics in M̃ and LC chains, respectively null-chains, inM as in section 4.3. We
still have the general description from proposition 4.5. Spotting the correspondence of curves
for underlying geometric structures, a quick answer is bounded by the normality issues sum-
marized in proposition 5.1. Hence, for LC structures induced by projective, the correspondence
described in theorems 4.6 and 4.7 holds in the lowest dimensional or in the flat case.
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However, even in general case, we have some control over the correspondence of curves
due to the specificity of the induced conformal Cartan connection. Although it is generally not
normal, its origin guarantees it is ‘half-normal’ which allows a satisfactory control over the
normalization process, see [25].

Proposition 5.6. Let the LC structure on M be induced by a projective structure. Let M̃ be the
induced Fefferman conformal manifold, let K be the null conformal Killing field spanning the
vertical distribution of M̃→M and let W̃ be the conformal Weyl curvature. Then a conformal
null-geodesic c : I→ M̃ projects to a chain or a null-chain in M if and only if

W̃(K,c ′ (t))(c ′ (t)) = 0, for all t ∈ I,

where c ′(t) = d
dtc(t) and W̃ is seen as a 2-form on M̃ with values in End(TM̃).

Proof. Let ω̃ind and ω̃nor be the induced and the normalized conformal Cartan connection,
respectively, for the Fefferman-type construction. Their difference is interpreted as a 1-form
on M̃ with values in the Lie algebra g̃. In our present situation, this 1-form is given by the
contraction of K and the normal Cartan curvature, see [25, theorem 5.7]. Let ∇̃ind and ∇̃nor

be the related Weyl connections, i.e. compatible affine connections corresponding to the same
scale. Their difference then corresponds to a 1-form on M̃ with values in End(TM̃) which is
given by the contraction of K and the Weyl curvature W̃. I.e., for any ξ ∈ TM̃, the difference
∇̃ind
ξ −∇̃nor

ξ equals to W̃(K, ξ) up to a nonzero multiple.

Null-geodesics of the induced and the normalized Cartan geometry on M̃ are the geodesics
of the affine connection ∇̃ind and ∇̃nor, respectively. According to the previous comparison,
an unparametrized geodesic c of ∇̃ind is a geodesic of ∇̃nor if and only if W̃(K,c ′)(c ′) is
proportional to c′. By the symmetries of the Weyl tensor, the latter condition means that
W̃(K,c ′)(c ′) = 0. Projections of null-geodesics of the induced connection are understood in
proposition 4.5, hence the statement follows.

Let us recall that the tested condition is automatically satisfied in the lowest dimensional or
in the flat case. The types of target curves are controlled by relations of source curves to the
vector field K as in proposition 4.5.

6. LC structures in dimension three

LC structures on 3-dimensional manifolds, which correspond to n= 1 in our previous notation,
are indeed special. The contact distribution D ⊂ TM has rank 2 and the components of the
Legendrian decomposition E⊕F=D have rank 1. In particular, 3-dimensional LC structures
are automatically integrable. We use the adapted local coordinates as in section 2.2, although

we write y instead of u. The decomposition (2.5) then takes the form E=
〈
∂
∂x + p ∂∂y + f ∂∂p

〉
and F=

〈
∂
∂p

〉
, the adapted coframe (2.6) is σ = dy− pdx, θ = dx, π = dp− fdx, where f =

f(x,y,p) is the defining function.

6.1. Subordinate path geometry

Forming a local leaf space M of the distribution F (or, dually, of E), M is identified with
PT∗M so thatD ⊂ TM corresponds to the standard contact distribution onPT∗M. Also, in this
dimension, PT∗M is canonically isomorphic to PTM and the LC structure on M determines
the so-called path structure onM. This is a system of paths, i.e. unparametrized curves, onM
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with the property that through each point in each direction there passes exactly one path from
the system. The relation is so that the paths onM are just the projections of integral curves of
the distribution E (or, dually, of F). In adapted local coordinates as above, the paths correspond
to solutions of the 2nd-order ODE

ÿ= f(x,y, ẏ) , (6.1)

where y= y(x) and ẏ= dy
dx , cf equation (2.8).

The geometry of 2nd-order ODEs is a classical subject studied by Lie, Tresse, and oth-
ers. There are two fundamental invariants, expressed in terms of the function f and its partial
derivatives, whose joint vanishing is equivalent to the triviality of the equation under point
transformations. It is well known that these two invariants correspond to the two harmonic
curvature components of the associated LC structure. The simpler one is just f pppp, where the
subscripts denote the partial derivatives with respect to the third variable of f. The vanishing
of this invariant means that the equation (6.1) has the form

ÿ= A0 +A1ẏ+A2ẏ
2 +A3ẏ

3, (6.2)

i.e. the right-hand side is a cubic polynomial in ẏ, whose coefficients Ai are functions of x
and y. The previous restriction is equivalent to the fact that the equation is geodesic, i.e. its
solutions are geodesics of an affine connection on M. In terms of section 5, this just means
that the LC structure on M is induced by a projective structure on M. In such case, the path
structure on M is called projective. A relation to the Christoffel symbols of a representative
affine connection is as follows

A0 =−Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 −Γ2
22, A3 = Γ1

22. (6.3)

Most of these observations appear in Cartan’s projective papers, see [13, 14]. The relation (6.3)
is to be read as a special case of our general characterization in proposition 5.2.

6.2. Canonical curves

For a general 3-dimensional LC structure on M, the harmonic curvature components have
rather high homogeneity degree. This allows us to express all components of the normal Cartan
connection with much less effort than in general dimension; a full derivation can be found in
[19]. With this equipment, many problems can be readily treated. The typical instance related
to our article concerns deducing systems of ODEs whose solutions are canonical curves in
M of given type. We do not develop this approach here, see [21] for a general strategy and
examples.

Specializing to chains and null-chains, there is an alternative way which employs the
Fefferman metric on the associated 4-dimensional Fefferman space M̃. This is due to the cor-
respondence with null-geodesics in M̃ as described in theorem 4.6. With the notation as above,
the coordinate expression of the metric from theorem 3.3 is

g̃= dx� (dp− fdx)+ (dy− pdx)� 1
3

(
−1
2
fpp (dy− pdx)− 2fp dx+ 2ds

)
. (6.4)

This expression coincides with [32, formula (31)] and [4, formula (25)], where it is derived by
different means. The system of ODEs for chains derived this way can be found in [4, propos-
ition 3.6].
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Specializing only to chains, we have yet another strategy employing the Kropina metric.
More concretely, let c : I→M be a curve that is everywhere transverse to the contact distribu-
tionD ⊂ TM. Let the curve be parametrized by the first coordinate x, i.e. c(x) = (x,y(x),p(x))
where ẏ(x)− p(x) 6= 0, for all x ∈ I. Let us consider the Kropina metric F defined as in (4.17)
corresponding to the local section of the Fefferman projection M̃→M given by s= 0. This
evaluated on the tangent vector field of c gives

F(ċ) = (ẏ− p)−1
(
ṗ− f − 2

3
fp (ẏ− p)− 1

6
fpp (ẏ− p)2

)
. (6.5)

The Euler–Lagrange equations of this functional are

∂F
∂p

− d
dx
∂F
∂ṗ

= (ẏ− p)−2
(
ÿ− f − fp (ẏ− p)− 1

2
fpp (ẏ− p)2 − 1

6
fppp (ẏ− p)3

)
= 0, (6.6)

∂F
∂y

− d
dx
∂F
∂ẏ

= (ẏ− p)−3
(
−2(ÿ− ṗ)(ṗ− f)+

(
p̈− ḟ

)
(ẏ− p)− fy (ẏ− p)2

+
1
6
fppx (ẏ− p)3 − 2

3
fpy (ẏ− p)3 − 1

6
fppy (ẏ− p)4

)
= 0. (6.7)

By theorem 4.7, this is the system of ODEswhose solutions are precisely the chains. Compared
with other approaches, we consider the present one the most straightforward.

An interesting side issue of these observations is the following characterization of LC struc-
tures induced by projective, i.e. characterization of projective path structures. Rewriting (6.6)
as

ÿ= f + fp (ẏ− p)+
1
2
fpp (ẏ− p)2 +

1
6
fppp (ẏ− p)3 , (6.8)

the right-hand side can be interpreted as the third-order Taylor expansion of f = f(x,y,p) at p=
ẏ, for x and y fixed. Thus, the right-hand side equals to f if and only if f is a cubic polynomial in
p, i.e. the projected equation has the form (6.2). This leads to the following criterion, originally
proved in [4]:

Proposition 6.1 ([4, theorem 1]). Let the LC structure on M= PTM correspond to a 2-
dimensional path structure on M. Then the path structure is projective if and only if all chains
in M project to the paths in M.

On the one hand, for a fixed initial condition (x0,y0, ẏ0) onM, there is a unique path, say c,
obeying this condition. On the other hand, this initial condition lifts to a 2-parameter family of
initial conditions (x0,y0,p0, ẏ0, ṗ0) on M, each of which determines a unique chain provided
that ẏ0 − p0 6= 0, i.e. the initial tangent vector is transverse to D ⊂ TM. This family of chains
projects to a family of curves inM obeying the initial condition for c. Generally, the behavior
is such that the curves in the family are distinct and only converge to the path c as p0 → ẏ0,
cf (6.8). It is the special feature of projective path structures that all these curves coincide.

Note that the limit curve in M corresponding to p0 = ẏ0 is just an integral curve of the
distribution E. In our previous terminology, this is just a null-chain of type E.
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[7] Čap A andGover AR 2008 CR-tractors and the Fefferman space IndianaUniv. Math. J. 57 2519–70
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