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The combination of strongly coupled Cooper pairs and weak superconducting f luctuations is an important
prerequisite for achieving high-temperature superconductivity. The review is devoted to the implementation
of this condition in multiband superconductors, in which strongly coupled pairs in the shallow conduction
band (the Fermi level is close to the band edge) coexist with ordinary, weakly f luctuating Cooper pairs formed
in the deep band. As a result of the Josephson coupling between condensates in different bands, such a system
is characterized by a high critical coherence temperature due to the presence of strongly coupled pairs and the
suppression of superconducting f luctuations. This suppression does not require any special preconditions,
and is almost total even if the Josephson coupling between the bands is weak.
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1. INTRODUCTION
1.1. Multiband Superconductors

Explaining the phenomenon of superconductivity
and exploring the possibilities for its use are among the
main goals of modern condensed matter physics.
Despite the fact that at the moment there is no com-
plete universal theory of superconductivity applicable
to any materials, solid state physics has made signifi-
cant progress in understanding the properties and
technological applications of traditional supercon-
ductors, which include metals and alloys that become
superconducting at very low temperatures (below
30 K).

Superconductors that do not fall into this category
are often called unconventional. They tend to have a
more complex crystal structure and may have pairing
mechanisms that differ from the standard Bardeen–
Cooper–Schrieffer (BCS) [1] theory of superconduc-
tivity. Compared to superconductors described by the
BCS theory, such materials often have higher critical
temperature, which makes it possible practical appli-

cations under more accessible cooling conditions. One
of the common materials of this type are cuprate
superconductors [2], based on copper oxide com-
pounds. Cuprate superconductors have critical tem-
peratures reaching up to 133 K at normal pressure.
However, the mechanisms of superconductivity in
these materials are not fully understood, which makes
their study an area of active research [3–7].

The band structure of many of these compounds
has a similar configuration [8], shown schematically in
Fig. 1. Their distinctive feature is the presence of a
shallow band for which the Fermi level is close to the
band edge. Such a band structure is characteristic of
the vicinity of the Lifshitz phase transition, in which
the topology of the Fermi surface changes [9, 10].
Here we show that this configuration of the band
structure can lead to a significant increase in the criti-
cal temperature of the superconducting transition.
This possibility is achieved due to the interaction of
strongly coupled charge carrier pairs formed in the
shallow band with ordinary Cooper pairs existing in
other, deep bands of the superconductor.
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This mechanism is applicable to many compounds
where the multiband or multigap superconductivity
takes place, and the amplitudes of the superconduct-
ing gaps corresponding to different sheets of the Fermi
surface vary considerably. This may occur, for exam-
ple, due to different band dimensions, as in the case of
MgB2, due to the presence of repulsive interband pair
interactions, as in the case of most iron-based super-
conductors, or due to the appearance of multiple
pockets on the Fermi surface due to crystal symmetry,
as in  [11]. In such compounds, interband
pairing is usually suppressed due to the large differ-
ence in wave functions of charge carriers in different
bands. Therefore, with good accuracy, band conden-
sates are formed by Cooper pairing of carriers in each
of the bands separately.

In multiband systems, a larger number of degrees of
freedom of the condensate wave function gives rise to
quantum effects that cannot occur in single-band
superconductors. The key characteristic is the possi-
bility of interference between the band condensates.
The interference results in screening f luctuations of
the superconducting order parameter. This opens a
direct path to an increase in the critical temperature.

1.2. Mean Field Theory and Fluctuations
For many decades, the BCS theory has been a

powerful tool for studying superconductivity. Being
essentially a mean field theory, the BCS approach is
particularly successful in describing the superconduct-
ing transition in traditional superconductors. In these
materials, f luctuations of the superconducting order
parameter do not play a significant role in almost the

−1FeSe Tex x

entire temperature range; the critical region, where
they are significant, is very narrow [12, 13] and practi-
cally unattainable for experiment. On the contrary, in
many superconducting materials with a high critical
temperature (high-temperature superconductors or
HTSC), this region can expand greatly.

Superconducting f luctuations are random changes
in the wave function of the condensate (superconduct-
ing order parameter), which determines the macro-
scopic properties of the superconducting state. In tra-
ditional materials that can be described by the BCS
theory, such fluctuations are insignificant, so that ran-
dom deviations of the order parameter below the
critical temperature are practically negligible, which
corresponds to ideal superconductivity. However, in
high-temperature superconductors, f luctuations
remain pronounced well below the critical tempera-
ture, leading to a significant deviation from supercon-
ducting behavior, resulting in the appearance of non-
zero resistivity. For such compounds, the question of
the influence of f luctuations on the critical transition
temperature becomes relevant, as the latter may be
substantially decreased due to strong f luctuations.

Indeed, f luctuations of the superconducting order
parameter are one of the main factors suppressing
superconductivity at temperatures below the critical
mean field temperature . Although Cooper pairs
are formed at temperatures , the transition to
the superconducting state occurs at a lower critical
temperature . In the interval  the
system is in the so-called pseudogap state [3, 5, 7]
characterized by the absence of coherence of pre-
formed Cooper pairs. The role of f luctuations
increases with the decreasing dimensionality of the
system, so that for quasi-one-dimensional materials
one has  (see, e.g., [14–16]).

The shift in the critical temperature due to f luctu-
ations, however, is not a universal property of all
superconducting materials. Thus, studying the mech-
anisms of the influence of f luctuations on the super-
conducting state and developing strategies to control
them, is of utmost importance when one wants to
achieve the higher critical temperature.

The mechanism for increasing the critical tem-
perature discussed in this review is based on the inter-
action of two bands in a multiband superconductor.
The system is assumed to be close to the Lifshitz tran-
sition because one of the bands is shallow. The super-
conducting condensate in this band finds itself
between the regimes of weakly coupled Cooper pairs
(BSC) and of strongly coupled molecules (Bose–Ein-
stein condensate or BEC), referred to as BCS–BEC
crossover [17–24]. It is characterized by a high mean-
field critical temperature and large f luctuations. The
second band in this system is assumed deep, being in
the usual BCS regime of weakly coupled Cooper pairs;
it is characterized by a low critical temperature and
weak superconducting f luctuations. It turns out that

0cT
0< cT T

0<c cT T 0< <c cT T T

� 0c cT T

Fig. 1. (Color online) Schematic representation of the
band structure of some superconducting compounds in
comparison with the band structure of metals.Key: 1. Met-
als
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the interaction between the bands suppresses strong
fluctuations in the shallow band, but the critical tem-
perature of the entire system remains close to the mean
field critical temperature  of the shallow band.

The multiband mechanism for the f luctuation sup-
pression is considered in this review in relation to
superconductors with ordinary s-wave pairing, as in
the standard BCS theory. However, a similar effect is
expected in systems with d-type pairing. In addition,
we limit ourselves to the study of a two-band system,
which is considered as a prototype of a multi-band
superconductor. The entire formalism is easily gener-
alized to the case of a larger number of conduction
bands, and the qualitative conclusions remain the
same.

2. FLUCTUATIONS IN A TWO-BAND 
SUPERCONDUCTOR

2.1. Microscopic Description of the System

The analysis of a two-band (in general, multi-
band) superconductor with conventional s-symmetry
pairing in each band employs a standard generaliza-
tion of the BCS model to the situation with several
types of charge carriers. We recall that, within the
framework of this generalization, Cooper pairing is
described by the interaction

(1)

where  and  are charge
carrier operators in the band  ( ); g is the scat-
tering matrix, , and the expression (1) is
obtained under the standard assumption that the ele-
ments of the matrix g depend weakly on momentum
and this dependence can be neglected.

In the mean field approximation and in the
absence of impurities (in the so-called “pure limit”)
and interband pairing, the Hamiltonian of the super-
conducting system may be written in the form [25, 26]

(2)

where  is the single-particle energy operator, and
the gap functions for a two-band system are written as
a vector  with the scalar product

, so that the last term in the equation
(2) is written explicitly in the form

(3)
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where . In Equations ((2)) and ((3)),
the gap functions satisfy the mean field self-consis-
tency equation

(4)

where  denotes anomalous averages related to the
corresponding Green’s functions. The absence of
interband Cooper pairing is reflected in the fact that
this expression contains only operators with the same
band indices .

In this review, we consider special configurations of
the band structure of a two-band superconductor, a
schematic representation of which is shown in Fig. 2.
One of the bands, say ν = 1, is three-dimensional (3D)
or quasi-two-dimensional (Q2D) and “deep”, i.e., its
minimum (band bottom or edge) is located far from
the Fermi level, . The second band (ν = 2) is
quasi-one-dimensional (Q1D) or quasi-two-dimen-
sional (Q2D) and “shallow”, i.e., the Fermi level is
located relatively close to its edge. In such a system,
the superconducting condensate is a coherent mixture
of a BCS condensate in the deep band and a conden-
sate in the BCS–BEC crossover regime in the shallow
band. In the BCS–BEC crossover, the size of the
Cooper pair is comparable to the average distance
between particles, , where  is the Fermi
momentum. Equivalently, the characteristic pairing
energy is of the order of the Fermi energy, .
The BCS and BEC states correspond to inequalities

 and , respectively. The BCS–BEC
crossover was first observed experimentally in a system
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Fig. 2. Schematic representation of the band structure.
The deep band ν = 1 is three-dimensional or quasi-two-
dimensional, the band ν = 2 is shallow and low-dimen-
sional. The corresponding dispersion relations reads as

, ; .α
α+ − μ
�

2 2

1 0
1

=
2

k
mke e

β
β − μ
�

2 2

2
2

=
2

k

mke μ � 0| | | |e



236

JETP LETTERS  Vol. 119  No. 3  2024

KRASAVIN et al.

of ultracold Fermi gases (see, for example, [27]), for
which the interparticle interaction is controlled using
the Feshbach resonance [28]. In solid-state systems,
tuning the crossover is a much more complex task that
involves changing the ratio  by using chemical
engineering, doping, changing the substrate material,
or varying other system attributes.

2.2. Free Energy Functional
To calculate f luctuation corrections, it is necessary

to obtain the free energy of the system in the form of a
functional of the gap functions . The contribution
of f luctuations is then taken into account by averaging
the relevant physical quantities over random variations
of the gap functions  with the statistical Gibbs
weight for the free energy. Within the microscopic
BCS theory, these calculations are too complex for
practical use. In the case of one band, the analysis is
usually limited to the most important contribution in
the free energy expansion, described by the Ginz-
burg–Landau (GL) functional [29]. This approach is
thoroughly justified, especially near the critical transi-
tion temperature .

For a two-band superconductor, the same expan-
sion can be made, while keeping in each band only
those contributions that correspond to the standard
GL theory. Near the critical temperature , the cor-
responding energy functional is obtained by expand-
ing the thermodynamic potential with respect to small
gap functions , derived using the microscopic Ham-
iltonian (2). Obtaining this decomposition for each
band of the two-band model is completely equivalent
to the one-band case [29]. The calculation gives the
following expression for free energy (see, for example,
[30–32]):

(5)

Coefficients , , , and  in this expression
depend on the dimensionality of the corresponding
band and its microscopic parameters, the index i
marks spatial coordinate axis of the band, and the
magnetic field is set assumed zero. The field-related
corrections for the temperature f luctuations is dis-
cussed at the end of the section.

2.3. Efficient One-component Free Energy Functional
To use functional F in Eq. (5) in the calculations we

first separate out the largest contribution to the f luc-
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tuations near the critical temperature . To do this,
we recall that within the mean field approximation 
is determined from the solution of the linearized gap
(self-consistency) Eq. (4), which reads

(6)
This equation has a nontrivial solution under the con-
dition

(7)

from which the mean field critical temperature  is
found. In the case of two bands, this equation has two
solutions from which one has to take the largest , as
this solution corresponds to the minimal free energy.
The gap function corresponding to this solution satis-
fies the relation

(8)

where  is an arbitrary function of coordinates and
S is defined as

(9)

Clearly, Eq. (8) is not the only choice of the eigenvec-
tor  corresponding to the zero eigenvalue of matrix

 since the normalization does not matter.
If we now choose a vector orthogonal to  in the

form

(10)

then an arbitrary order parameter vector function can
be represented as a sum [33, 34]

(11)

where  and  describe two different f luctuation
modes corresponding to these vectors.

In terms of  and , the free energy F in Eq. (5) is
split into the following three contributions,

(12)

where the first two give independent contributions of
each of the two modes, and the third is the energy of
their interaction.

The first contribution  has the form of a standard
GL functional [29, 35]
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where the coefficients are given by averaging over the
band contributions [33, 34, 36, 37]
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(14)

Contribution  in Eq. (12) also has the form of
Eq. (13), where  changes to , and the corre-
sponding coefficients are given by [33, 34, 36, 37]

(15)

where  takes the form

(16)

The functional  in (12) describes the interaction of
two modes.

The contributions of  and  can be neglected
since the mode  is not critical. This follows from that

 in Equation (15). From Eq. (9) it follows that

S is a real quantity, and, therefore, the constant  is
generally non-zero at . This implies that the

characteristic length  of the mode  is
not critical (divergent) near . Consequently, the
only mode responsible for the critical behavior of the
system is  with a divergent characteristic length  =

, since the coefficient  at .
The  mode introduces insignificant corrections that
can be neglected near .

The f luctuation part of F can thus be approximated
using a single mode , with the energy functional
given by Eq. (13). The fact that there are two interact-
ing bands in the system is reflected in their contribu-
tions to the coefficients  and  in Eq. (14).
Therefore, Eq. (13) defines the effective GL theory for
a two-band system. Note that it has a single order
parameter  in full accordance with the Landau the-
ory of phase transitions in the equilibrium system
under consideration (see discussion in [38–41]). Fluc-
tuations of this order parameter are critical and domi-
nate in the system when it is near the phase transition.
Non-critical f luctuations in the mode  induce some
changes in the coefficients of the functional , but
these are insignificant due to the non-critical nature of
the mode and can, therefore, be neglected.

3. FLUCTUATION SHIFT OF CRITICAL 
TEMPERATURE

3.1. General Remarks

The value of  obtained by solving the linearized
gap Eq. (6) gives the critical temperature within the

ψ + ν ν
ν

η( ) 2 ( )
,= .i i

_ _

φf
ψ( )r φ( )r

φ φ − ν ν φ − ν ν
ν ν

+ η η (0) 2 4
, ,= , = ,a a a b b

φ − ν ν
ν

η( ) 2 ( )
,= ,i i

_ _

φ
(0)a

( )φ − −
+ 2 2

(0) 12(1 )= , = .g Sa
GS

η η+

ψφf

φf ψφf
φ

φ ≠(0) 0a

φ
(0)a

→ 0cT T

φ φ φξ( ) ( )= /i i a_ φ
0cT

ψ ψξ( )i

ψ
( ) /i
psi a_ ψ → 0a → 0cT T
φ

0cT

ψ

ψ ψ,a b ψ
( )i

_

ψ

φ
ψf

0cT

mean field approximation. The real superconducting
transition temperature Tc will always be lower than 
due to thermal f luctuations, i.e. the system exhibits a
fluctuation-induced shift in the critical temperature.
This can be estimated by taking advantage of the fact
that the effective free energy functional (13) of the sys-
tem has a one-component order parameter, which
makes it possible to use the results for f luctuation cor-
rections for the conventional one-component GL the-
ory. However, it should be remembered that the same
component  describes f luctuations of the order
parameter in both bands, , , and,
therefore,  and  are not independent. Due to
this, some qualitative conclusions can be easily drawn
from the very form of the functional and its coeffi-
cients in Eq. (14).

For example, if the weight factor is very small,
, then the gap of the second band 

makes virtually no contribution to the free energy F,
and the superconducting properties are completely
determined by the first band, ν = 1. In the case, where
the weight factor , the opposite limit is realized,
and the contribution of the band ν = 2 is decisive.
Crossover between these two limiting cases occurs
over a range of values of , where the contribution
of one band is gradually replaced by that of the other.
However, it is important that the coefficients of the
energy functional given in Eq. (14), depend on S in
different ways leading to different dependencies of the
physical characteristics of the system on S. As a
consequence, the crossover interval between two lim-
iting regimes depends on what physical quantity we
consider.

In particular, f luctuations and critical temperature
have different dependencies on system parameters.
This is the main reason why it is possible to simultane-
ously obtain a strong increase in the critical tempera-
ture, which is determined by the influence of one
(shallow) band, and a suppression of f luctuations,
which occurs due to the predominant influence of
another (deep) band. The main question is whether it
is possible to find an interval of the system parameters
in which the decrease in the critical temperature Tc
due to f luctuations compared to the mean field value

 is not too significant, while the mean field tem-
perature has not yet decreased because the deep band
becomes dominant. It can be shown that this situation
is indeed observed in a wide range of parameters and
for many configurations where one band is shallow.

The influence of thermal f luctuations on the criti-
cal temperature of the superconducting transition can
be roughly estimated from the Ginzburg–Levanyuk
parameter (also known as the Ginzburg number)

(17)
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where  is the temperature at which the f luctuations
contribution to the heat capacity becomes equal to the
heat capacity calculated using the mean field approxi-
mation. Physically, this means that in the temperature
range  the influence of f luctuations is
significant.

The Ginzburg number is found by calculating the
heat capacity using the energy functional (13). A qual-
itative estimate [42] gives the following result

(18)

where  is the Fermi energy, and D is the system
dimensionality. More accurate calculations for the
isotropic case for D = 3 and D = 2 give [12, 13]

(19)

where , and the fact the system is isotro-
pic implies equality of the coefficients of the gradient
terms . In the case of D = 2, one has degen-
eracy along the z direction, and we introduce a factor
nz that takes into account the density of states along
this direction. The transition to the anisotropic case in
the expressions ((19)) is carried out by replacing

 for D = 3 and  to  for
D = 2.

The assumption  gives a rough estimate of
the f luctuation-induced shift of the transition tem-
perature . More accurate calculations of
the relationship between  and the Ginzburg num-
ber can be made, for example, using renormalization
group approach for a one-component energy func-
tional (13) [13]. In the case of D = 2, the Nelson–
Kosterlitz criterion can be applied, which connects the
temperature of the Berezinsky–Kosterlitz–Thouless
phase transition [43] with the Ginzburg number.
Below we will examine in detail the important exam-
ples when the two-band system under consideration
has (1) quasi-one-dimensional (Q1D) and three-
dimensional bands (3D), (2) quasi-one-dimensional
and quasi-two-dimensional bands (Q1D + Q2D) and
(3) two quasi-two-dimensional bands (Q2D + Q2D).

3.2. Q1D + 3D
The general mechanism for suppressing f luctua-

tions and increasing the critical temperature is mani-
fested especially clearly when the system has a quasi-
one-dimensional (Q1D) band. Quasi-one-dimen-
sional bands are characterized by diverging van Hove
singularities of the single particle density of states
(DOS) at the band edges. If the chemical potential is
found near the singularity, which takes place, for
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example, when the system is near the Lifshitz transi-
tion, then this leads to a high DOS at the Fermi surface
and, accordingly, to high values of the mean-field crit-
ical temperature . The size of Cooper pairs in this
band decreases sharply and, thus, the BCS–BEC
crossover regime is reached. However, large f luctua-
tions in the Q1D system suppress superconductivity
completely.

It turns out that coupling with the 3D band can
suppress f luctuations and restore superconductivity.
Indeed, with such interaction between the bands, the
contribution of f luctuations is determined by the
effective 3D functional (13), where the coefficients are
given by Eqs. (14). In these expressions, the band coef-
ficients for a three-dimensional BCS-type band with a
spherically symmetric Fermi surface are given by stan-
dard expressions [44]

(20)

where the isotropy of the system, as indicated above,
means the equality of the coefficients  for all direc-
tions i, N1 denotes the density of states of the band

,  is the energy cutoff (we will further take it
as the energy scale for all energy quantities),  is the
Euler’s constant,  is the Riemann zeta function,
and the characteristic velocity of electrons is equal to
the Fermi velocity , where  is
the effective mass.

For the Q1D band, we assume that the chemical
potential is found near its edge, and therefore the coef-
ficients are expressed as integrals to be calculated
numerically,
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 and . Note that the effective
velocity  and the density of states  in the expres-
sions for the Q1D band are determined by the energy
cutoff value,  and .
Here we assume that the contribution of the y and
z directions to the single-particle DOS of the Q1D
band is described by constants  and  that are spec-
ified by the dimensions of the Brillouin zone. Since
the band ν = 2 is quasi-one-dimensional, then

 and, therefore, the functional (13) is
anisotropic.

In the following, we will use the well-known result
obtained by means of the renormalization group cal-
culations [13], according to which the f luctuation shift
of the critical temperature for the three-dimensional
GL functional (13) is equal to

(22)

where the Ginzburg number for a three-dimensional
anisotropic superconductor is given by (see explana-
tion after Eq. (19))

(23)

It is convenient to represent this expression in the form

(24)

where Gi1 is the Ginzburg number for the 3D band
ν = 1 given by Eq. (19), in which the coefficients

 are replaced by , so that

(25)

We can quantify the value of this expression as
, which roughly corresponds to the middle

of the interval typical for three-dimensional supercon-
ductors  [12]. The ratio  is
assumed unity, which is close to experimental esti-
mates for many multiband superconducting materials
(see, e.g., references in [45]). We have to set values of
the intra- and interband interactions , , and ,
which determine the critical temperature. Note that for
the calculations it is convenient to introduce dimen-
sionless interaction constants .

Figure 3a shows a typical dependence of critical
temperatures  and  on the chemical potential near
the bottom of a quasi-one-dimensional band, calcu-
lated in [33, 34, 37]. The calculations were performed
at  and , however, obtained
dependencies remains qualitatively similar for other

ω� �0 0= /c c cT T μ μ ω� �= / c

v2 2N

ω�v2 2= 2 /c m π�v2 2= /4y zN n n

yn zn

ψ ψ≠( , ) ( )y z x
_ _

−
π

0 8= Gi,c c

c

T T
T

ψ

ψ ψ ψ ψπ

2
0

2 ( ) ( ) ( )

1Gi = .
32 '

c

x y z

T b

a _ _ _

+
+ +

4 2
2 1

1 2 2 ( ) ( )
2 1 2 1

(1 / )Gi = Gi ,
(1 / )(1 / )x x

S b b
S a a S _ _

ψ ψ ψ' , ,a b _ 1 1 1', ,a b _

 π
 ζ μ +π  

42 4
0 1 0

1 2 3
01 1

1 27Gi = = .
14 (3) | |32 '

c cT b T

a e_

−10
1Gi = 10

− −−16 6
3Gi 10 10D � 2 1/N N

11g 22g 12g

νν νν ν νλ =' ' 'g N N

0cT cT

λ11 = 0.18 λ22 = 0.2

values of the intraband coupling constants typically
found in conventional superconductors [44]. The val-
ues of the interband coupling constant  are chosen
to be , taking into account that the relation

 is usually found for many two-band
superconductors (see, for example, the table of inter-
action constants in [45]). The chemical potential var-
ies near the edge of the Q1D band, crossing it at

.

Figure 3a shows that at sufficiently low values of
the chemical potential ( ) there is no contri-
bution from the Q1D band. In this case,  is deter-
mined by the three-dimensional band and is suffi-
ciently low, as in traditional superconducting materi-
als. As the chemical potential approaches the bottom
of the Q1D band ( ),  increases sharply due to
the van Hove singularity in the DOS, see Fig. 3b.

Note that the increase in  takes place before the
chemical potential touches the edge of the Q1D band,
at . This is due, firstly, to the influence of the
binding energy of Cooper pairs, which in the region of
increasing critical temperature can be estimated as

λ12

λ12 < 0.05
λ λ λ�12 11 22,

μ = 0

μ −� 0.2
0cT

μ � 0 0cT

0cT

μ −� 0.2

Fig. 3. (Color online) (a) Critical temperature taking into
account f luctuations as a function of chemical potential
for interband couplings ; 0.005; 0.01; 0.05 at

; . The red dashed line shows the crit-
ical temperature . (b) Schematic representation of the
dependence of the density of states in a two-band 3D +
Q1D system. The red dashed lines show the density of
states of non-interacting bands. Adapted from [33]. By
courtesy of American Physical Society.Key: 1. Energy

λ12 = 0.0025
λ11 = 0.18 λ22 = 0.2
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, and which blurs the Fermi surface.
Moreover, at finite temperatures there is also a tem-
perature-induced blurring of the Fermi surface, which
is also controlled by the value . For
large values of the chemical potential ( ), the
influence of the singularity in the DOS is less signifi-
cant, and  decreases when  rises as  (which is
typical for Q1D band) until it reaches the value deter-
mined by the 3D band. In the Figure 3a, the depen-
dence of  on  is shown for . However,
this dependence remains practically unchanged
throughout the entire considered interval of the cou-
pling constants . Consequently, for
those values of the interband interaction, the proper-
ties of a two-band superconductor calculated within
the framework of the mean field theory are fully deter-
mined by the Q1D band.

In contrast, the dependence of the critical tem-
perature , which takes into account the f luctuation-
induced shift, depends on  strongly. Indeed, when
the interband coupling is “turned off” ( ) the
fluctuations suppress superconductivity. The situation
changes as  increases. In is clear from Fig. 3a that
even an extremely small interband coupling 
allows  to be brought almost to its field-average value
of .

This calculation shows that the inter-band cou-
pling to a stable three-dimensional condensate makes
it possible to suppress strong f luctuations inherent in
quasi-one-dimensional systems. Despite the fact that
in real systems the band structure may be somewhat
different from the ones shown in Fig. 2, weakening the
fluctuations suppression effect, the considered mech-
anism is physically general and can lead to a signifi-
cant increase in the critical temperature of the super-
conducting transition, if the system chemical potential
is located near the edge of the quasi-one-dimensional
band.

3.3. Q1D + Q2D

It is known that f luctuations increase in low-
dimensional systems [13]. Therefore, one expects the
mechanism for suppressing the f luctuations, dis-
cussed in the previous section for a two-band system
with 3D and Q1D bands, will be much less effective if
a superconductor has a quasi-two-dimensional band
(Q2D). In this section, we consider a system with deep
Q2D and shallow Q1D bands and show that the f luc-
tuations suppression mechanism remains almost as
effective as in the previous case with a 3D band.

For the Q1D band (ν = 2), the expansion coeffi-
cients of the free energy functional (5) are given in the
equation (21), and for the deep Q2D band (ν = 1) the
following expressions can be obtained [46],
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μ ω�> c
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(26)

where N1 is the DOS of the 2D band, which includes
the factor nz due to degeneracy along the z axis (for the
Q1D band we have the same factor  and  to take
into account the direction y), ,

and .
The corresponding Ginzburg number for an aniso-

tropic two-band system can be written as (see explana-
tion after Eq. (19))

(27)

As in the previous case, we take into account that the
coefficients of the functional (14) contain the contri-
bution of both bands, and we rewrite the Ginzburg
number for a two-band system (27) in the form

(28)

where  is the Ginzburg number of the deep Q2D
band ν = 1, which is obtained from Eq. (27) by replac-
ing the coefficients  with . After this
replacement one obtains

(29)

Since  and , the value of the
Ginzburg number does not depend on the factor .

To calculate Tc of our effective Q2D system, we can
use the Nelson–Kosterlitz criterion [43] according to
which the f luctuation-induced shift of the critical
temperature is calculated as

(30)

where Tc is the temperature of the Berezinsky–Koster-
litz–Thouless [47] phase transition. Alternatively, one
can use the renormalization group approach, which
gives for D = 2 [13]

(31)

It is important to emphasize that the difference
between the results in Eqs. (31) and (30) becomes sig-
nificant only when , so that when Tc

and  are practically indistinguishable. In addition,
the expression (31) is valid only for (Tc0 –
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. Both approaches for calculating Tc are
used below, which lead to very similar results. In par-
ticular, Figs. 4 and 5 are obtained using the Eq. (30),
while the results presented in the next section in Fig. 6
are based on Eq. (31).

Figure 4a shows the dependence of  and Tc cal-
culated using Eq. (30) as functions of the chemical
potential for the intraband coupling ,  =
0.2, and the interband coupling constants 
and 0.005. The depth of the quasi-two-dimensional
band ν = 1 is chosen as , which sets the
Fermi energy of this band , since .
This Fermi energy value corresponds to realistic
microscopic parameters for traditional single-element
superconductors [48]. For example, for aluminum

, and for lead .
Despite the general trend of increasing f luctuations

when the system dimensionality decreases, a compar-
ison of Figs. 3 and 4 shows that for the mechanism of
suppression of superconducting f luctuations consid-
ered in this work, a decrease in the dimensionality of

)/ 0.1c cT T �

0cT

λ11 = 0.24 λ22

λ12 = 0.002

0| | = 300e

≈ 300FE μ � 0| |e

≈ 350FE ≈ 1000FE

the deep band from D = 3 to D = 2 does not play a sig-
nificant role. The difference between Tc for the Q1D +
3D and Q1D + Q2D systems reaches a value of only
30%, when the chemical potential changes in the
interval of . This relatively weak depen-
dence of Tc on the dimensionality of the band ν = 1
takes place due a similar DOS (cf. Figs. 3b and 4b),
and also due to the dependence of  on the
Ginzburg number. Despite that the Ginzburg number
for a 2D band  is orders of magnitude larger than
that for the 3D band , the shift of the critical tem-
perature according to Eq. ((30)) depends linearly on

 in the Q2D system, and depends as the square
root of  for the 3D system in Eq. (22). This makes
the shift  comparable for the two systems.

The above results were obtained under the assump-
tion of , which is typical in conventional
single-component superconductors. In multiband
superconducting compounds, the Fermi energy can be
one or two orders of magnitude lower than this value,

 [17, 18, 21].
Figure 5 shows the dependence of the critical tem-

perature , with the account for f luctuations, on the
depth of the ν = 1 band, calculated for the value of the
chemical potential corresponding to the maximum of

 (Eq. (30) is used). For small values of  the critical
temperature is quite different from the mean field
value . However,  quickly approaches 
when  increases. The reason for the strong differ-
ence between  and  at small  is a decrease in the
coherence length in deep band ν = 1, which leads to an
increase in  and, accordingly, an increase in the
fluctuations in this band.
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Fig. 4. (Color online) (a) Critical temperature taking into
account f luctuations as a function of chemical potential,
calculated for interband couplings 0.005 at

; . The red dashed line shows the
mean field critical temperature . The ratio of effective
masses in two bands is . (b) Schematic represen-
tation of the dependence of the density of states in a two-
band Q2D + Q1D system. The red dashed lines show the
densities of states of non-interacting bands. Adapted from
[34]. By courtesy of American Physical Society.

λ12 = 0.002;
λ11 = 0.24 λ22 = 0.2
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Fig. 5. (Color online) Critical temperature taking into
account f luctuations depending on the depth of the 
high-dimensional band. The results for the Q1D + 3D sys-
tem are shown in blue, and the results for the Q1D + Q2D
system in red. Solid lines correspond to equal effective
masses of carriers in the bands, dashed lines correspond to
the mass ratio , . Adapted from [34]. By
courtesy of American Physical Society.
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The dashed lines in Fig. 5 show the same depen-
dence , but calculated for different effective
masses of carriers in the bands, . It can be
seen that varying the effective mass ratio changes the
dependencies only quantitatively, slightly shifting the
domain of strong f luctuations towards the lower values
of .

3.4. Q2D + Q2D

The case of interaction of two quasi-two-dimen-
sional bands is also very interesting, since the Fermi
surfaces of many multiband materials have a quasi-
two-dimensional character [18]. As before, we assume
that one of these bands (ν = 1) is deep, and the other
(ν = 2) is shallow. In this situation, there is not a sig-
nificant increase in the DOS near the edge of the shal-
low band. However, the shallow band condensate can
also be in the BCS–BEC crossover regime, and the
mechanism for suppressing f luctuations and stabiliz-
ing the crossover will be effective under the condition
of weak coupling with the deep band.

0(| |)cT e

1 2/ = 4m m

0| |e

For the deep Q2D band ν = 1, the expansion coef-
ficients in the energy functional (5) are given in the
Eq. (26). For a shallow Q2D band ν = 2 they have the
same form for all the coefficients of the functional,
with the exception of the gradient term, which in this
case reads as [46]

(32)

where, as before, N2 denotes the DOS of this band,
and the characteristic velocity  is deter-
mined by the critical temperature.

Note that in this case we can explicitly find a solu-
tion to the Eq. (7) for the mean-field critical tempera-
ture [49]:

(33)

where , , and the value
S found from Eq. (7) and (9) can be conveniently
rewritten in the form of

(34)

The fluctuation-induced shift of the critical tempera-
ture is found using Eq. (31). The Ginzburg number for
the effective Q2D system is given by Eq. (27), which
can be written, similarly to Eq. (28), as

(35)

where, as before, Gi1 is the Ginzburg number for the
deep Q2D band.

Numerical results for the obtained expressions,
performed in the limit of  for parameters

,  and , are shown in
Fig. 6. The Fig. 6 shows a color phase diagram of the
state of the system on the  plane (the tempera-
ture is given relative to the deep band transition tem-
perature  calculated in the absence of the inter-
band coupling). In the diagram in Fig. 6, the lines
show  and  as functions of . The latter are cal-
culated for several values of Gi1 for the deep band. The
red color denotes the superconducting state SC
( ), the blue color marks the normal state N
( ), and the pink is the region of strong f luctua-
tions or pseudogap (PG) ( ).

The results show that in this case too, f luctuations
are almost completely suppressed even at extremely
small values of the interband coupling constant .
Just as before, this effect is more pronounced the
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Fig. 6. (Color online) Phase diagram on the  plane
and the critical temperature of the superconducting transi-
tion, calculated in the mean field approximation ( ) and
taking into account f luctuations ( ), as a function of the
interband interaction amplitude  for a superconductor
with two quasi-two-dimensional bands. Red color denotes
the superconducting state SC ( ), blue color corre-
sponds to the normal state N ( ), and pink color
shows the region of pair f luctuations PG ( ).
The dependence  is shown for various values of the
Ginzburg number of the deep band ν = 1. The horizontal
dashed line shows the mean field critical temperature in
the shallow band ν = 2 in the absence of pairing. Adapted
from [36]. By courtesy of American Physical Society.
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weaker the amplitude of f luctuations in the deep band.
For example, for a deep band with the Ginzburg num-
ber , the PG region becomes negligible at

, and the critical temperature  is almost
equal to mean field critical temperature of the shallow
band . Note that the estimate of the interband
coupling interval for multiband superconducting
materials gives  [45].

3.5. Fluctuations of the Magnetic Field

To conclude this section, we mention that in addi-
tion to f luctuations of the order parameter, it is also
necessary to take into account f luctuations of the
magnetic field. The calculation of the corresponding
contributions to the f luctuation-induced shift of the
critical temperature was reported in [50]. The results
show that the shift of the critical temperature (22) for
the 3D band acquires an additional contribution

(36)

Consequently, taking into account the field-induced
fluctuations does not lead to a change in the square
root dependence of the shift on Gi, changing only its
pre-factor.

For a 2D system, taking into account the field f luc-
tuations by the renormalization group approach yields
the following expression for the shift of the critical
temperature

(37)

where Gi is the Ginzburg parameter for the 2D band,
y is calculated as

(38)

and  is the Ginzburg–Landau parameter. This is a
more complex expression than Eq. (31). Nevertheless,
taking into account the fact that for small values of Gi

, we find that in this case the main contribution
to the shift of the critical temperature has the same
functional dependence on Gi as the expression (31),
only with a different numerical coefficient.

Therefore, taking into account field f luctuations
increases the shift in the critical temperature only
slightly. This, however, does not change the main con-
clusion that interaction of band condensates gives rise
to an effective suppression of f luctuations. Note that
from Eqs. (36) and (37) it is clear that the field f luctu-
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ations are negligible for type II superconductors with
.

4. MATERIALS
In the previous sections it was shown that when a

superconductor has two interacting single-particle
bands, “shallow” and “deep”, one expects a strong
suppression of superconductive f luctuations and,
thus, stabilizing the BCS–BEC crossover mode in the
shallow band. This could possibly give rise to a signif-
icant enhance in the critical temperature of the super-
conducting transition. The enhancement takes place if
the shallow band has an increased DOS, for example,
due to the van Hove singularity in a quasi-one-dimen-
sional band. The singularity of the DOS leads to a
sharp increase in the mean-field critical temperature
corresponding to creating Cooper pairs in this band,
while its interaction with the deep band suppresses the
fluctuations. An essential ingredient of this mecha-
nism is that it becomes effective even if the interband
coupling is very weak. Note that an increase in the
DOS is also possible if there is a f lat band in the
system.

The mechanism is not very sensitive to the details
of the band structure and can take place in various
materials, as long as their band structure satisfies the
conditions described above. Currently, there are quite
a few compounds in which these requirements can be
satisfied.

4.1. Quasi-one-dimensional Materials
Obvious candidates for the implementation of the

above mechanism are materials with a pronounced
quasi-one-dimensional structure, and, accordingly,
with a singularity in the density of states. It is well
known that in purely one-dimensional systems with
short-range interactions, thermal and quantum fluc-
tuations prevent the formation of the long-range order
at finite temperatures, which is an obstacle to the
emergence of superconductivity. The situation
changes if there is a transverse interaction between
individual one-dimensional systems, i.e., the entire
system as a whole is quasi-one-dimensional. Exam-
ples of such quasi-one-dimensional superconducting
systems are Bechgaard salts  [16], struc-
tures based on molybdenum selenide 

 [53], lithium-molybdenum bronze
 [54].

In the light of the suppressing f luctuations mecha-
nism, discussed above, it is the transverse interaction
between one-dimensional structures that leads to the
formation of higher-dimensional electronic bands.
The interaction suppresses the f luctuations in quasi-
one-dimensional bands and ensures the appearance of
superconductivity in the system. It seems this mecha-
nism is fully realized in chromium pnictides

κ � 1

2(TMTSF) X
2 6 6M Mo Se

( = Tl,In)M
0.9 6 17Li Mo O
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, , a family of materials
in which superconductivity was discovered in 2015
[55–57].

At room temperature  has a hexagonal
crystal lattice with constants  and c = 
(see Figs. 7a and 7b). The featured structural units of
this crystal are one-dimensional negatively charged
“chains” , which are subnanotubes with
double walls that have an outer diameter of 0.58 nm.
These subnanotubes are well separated from each
other by chains of potassium counter-ions. As a result,
the interaction between individual subnanotubes is
significantly weaker compared to the interactions
within the subnanotube. In this respect, this material
is truly quasi-one-dimensional.

2 3 3M Cr As ( = K,Rb,Cs)M

2 3 3K Cr As
= 9.98a A 4.23A

−
∞

2
3 3[(Cr As ) ]

First-principles calculations (Figs. 7c–7e) show
that single-particle states near the Fermi energy are
occupied mainly by chromium -electrons, and the
Fermi surface comprises two Q1D and one 3D sheets.
The same type of the band structure is characteristic of
other members of the family of such compounds; in
addition,  has one more Q1D sheet on the
Fermi surface [58].

The temperature of the superconducting transition
decreases when replacing potassium in the compound
with heavier elements. If for   K,
then for  it is 4.8 K [56], and only 2.2 K for

 [57]. The change in the critical temperature
is explained by different distances between subnano-
tubes in these compounds. In the compounds based
on rubidium and chromium, this distance is, respec-
tively, 3 and 6% larger compared to the compound
based on potassium. This leads to a weakening of the
interaction between subnanotubes and, as a conse-
quence, to a decrease in the critical temperature.

Further experiments with the above-mentioned
quasi-one-dimensional multiband superconductors
aiming to tune the chemical potential to achieve con-
ditions for a significant increase in the critical tem-
perature appear very promising. This tuning can be
achieved in a variety of ways, such as chemical engi-
neering, high pressure, or doping. In this regard, it is
worth mentioning the recent very interesting results of
the ab initio calculations that demonstrated the possi-
bility of observing the Lifshitz transition in KCr3As3Hx
when one changes the hydrogen intercalation [60].

4.2. Iron-Based Superconductors
At present, iron-based superconductors appear to

be the most promising systems for implementing the
multi-band fluctuations suppression mechanism. A
few investigations have also attempted to explain atyp-
ical properties of cuprate HTSCs by the presence of
BCS–BEC crossover manifested by the large band
gaps and low charge carrier concentrations in these
compounds (see, for example, [61]). However, appar-
ently, superconductivity in cuprate HTSCs has a dif-
ferent nature [62].

4.2.1. FeSe Monolayers. As already mentioned in
the Section 2 in the BEC regime (or strong coupling
regime), the mean field temperature  of the pair
formation and the real superconducting transition
temperature  are clearly different. In the range
between  and , Cooper pairs also exist, creating
large superconducting f luctuations and depleting the
low-energy density of states, which results in the for-
mation of a pseudogap.

FeSe monolayers have very small hole and electron
pockets on the Fermi surface, and their ratio of the
superconducting energy gap to the Fermi energy
reaches values of  [20, 63]. These val-

3d

2 3 3Cs Cr As

2 3 3K Cr As = 6.1cT
2 3 3Rb Cr As

2 3 3Cs Cr As

0cT

cT
0cT cT

Δ ≈ −/ 0.3 1.0FE

Fig. 7. (Color online) Crystal and band structure of the
quasi-one-dimensional superconductor K2Cr3As3. (a)

Double-walled subnanotube [(Cr3As ; (b) Top view
of four unit cells. Adapted from [51]. (c) First Brillouin
zone. (d) Band structure. The inset shows a comparison of
relativistic (purple lines) and non-relativistic (gray lines)
results. The size of the red, blue and green circles is pro-
portional to the contributions of the  and 
orbitals, respectively. Orbitals having states near the Fermi
surface are designated by the letters ; (e) Fermi sur-
face consisting of two quasi-one-dimensional ( ) and
one three-dimensional ( ) sheets. Adapted from [52].

−
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ues correspond to the BCS–BEC crossover regime.
On the other hand, scanning tunneling spectroscopy
measurements did not detect the formation of a
pseudogap above Tc [21].

These results imply that superconductivity in FeSe
is not described as a conventional BCS–BEC transi-
tion. An important aspect is the influence of the mul-
tiband electronic structure, which, in addition to the

 ratio, may have other factors affecting the prop-
erties of the crossover.

In the work [24], measurements of the heat capac-
ity and magnetic torque, as well as high-resolution
scanning tunneling spectroscopy revealed the phase
diagram of a sulfur-doped FeSe monolayer as a func-
tion of the doping level (Fig. 8). The form of the phase
diagram indicates that the superconducting transition
is not described by the mean field theory. One of the
main results of the experiment is the absence of a
pseudogap in the STS spectra at temperatures above
Tc. It is assumed that the key factors determining the
properties of the crossover in  are the multi-
band nature of the Fermi surface, as well as the prox-
imity to the Lifshitz transition, which takes place at
the critical doping .

FeSe monolayers appear a very promising system
for implementing BCS–BEC crossover because the
Fermi energy in this compound is only a few meV and

Δ/ FE

−1FeSe Sx x

≈ 0.17cx

can be accurately and relatively easily tuned by the
changing the number of layers of the graphene sub-
strate [22], as well as by varying the geometry of their
ordering. In [23], the crossover was achieved in a FeSe
monolayer placed on a three-layer graphene substrate,
where the layers ordering was different in different
places of the substrate (ABA and ABC). This led to
spatial changes in the work function in graphene,
which caused a shift in the peak of the hole dispersion
curve in FeSe (Fig. 9a). The single particle DOS,
measured along the dashed line in the diagram using
scanning tunneling spectroscopy, has a gap in region I
of the sample. The gap reveals the electron-hole sym-
metry characteristic of the BCS superconductor.
When moving from region I to region II, the electron-
hole symmetry is broken, and the DOS takes the form
of a step function characteristic of the crossover [64].
It is reported that the value of  was
achieved.

4.2.2. Bulk samples. In [17], using angle-resolved
photoelectron spectroscopy, it was first discovered
that compounds based on FeSe, namely, 
reveal the presence of a BCS–BEC crossover.

Figure 10 shows the dispersion dependence of one
of the bands near the Fermi level  meV,
measured at temperatures corresponding to the nor-
mal and superconducting states of the sample. The
dispersion curve far from the Fermi level was obtained
from the momentum distribution (marked with red
dots in Fig. 10). It is identical at temperatures T =
8 K  and T = 15 K  and is well approximated
by a quadratic dependence (shown by the red line). In
the region of low energies and low temperatures, the
dispersion was obtained from the energy distribution
(black dots in Fig. 10). The minimum gap was discov-

Δ �/ 0.3FE

−1FeSe Tex x

±= 4 2.5FE

< cT > cT

Fig. 8. (Color online) Experimentally obtained phase dia-
gram for the compound  in the coordinates
“doping level–temperature”. Red squares and blue dia-
monds correspond to the temperatures  of supercon-
ducting and  of nematic phase transitions, respectively.
At a critical doping level , a sharp jump in 
occurs, indicating a restructuring of the ground state of the
superconducting phase. Adapted from [24]. Creative
Commons Attribution 4.0 International License.

−1FeSe Sx x

cT
sT

≈ 0.17cx cT

Fig. 9. (Color online) Realization of BCS–BEC crossover
in real space in a FeSe monolayer on a graphene substrate.
(a) Shift of the band structure relative to the Fermi level
(dashed line) caused by different ordering of the graphene
layers in the substrate. Region I corresponds to BCS, and
region II to BEC. (b) Spatially resolved  spectrum
measured along the dashed line in panel (a). Adapted from
[59].
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ered at the  point, its value  meV gives
, which indicates a strong interaction in

 and the implementation of the BCS–
BEC crossover (if the band were in the BEC state, the
gap minimum would be located at ).

In [18], the superconductor  was inves-
tigated using laser spectroscopy with ultrahigh laser
resolution. From the description of the experimental
results it follows that this system also implements the
mechanism discussed in Section 2. It was shown that
superconductivity in this material occurs in the form
of a coherent mixture of Cooper pairs forming in the
hole band and a BCS–BEC crossover taking place in
the electron band.

Figure 11 shows the spectrum of quasiparticles for
temperatures below and above the critical one. Quan-
titative analysis of the spectra allows one to conclude
that the electronic band is characterized by a small
gap, but is in the strong coupling regime (BCS–BEC
crossover). The hole band, on the contrary, has a
larger gap and is in the relatively weak coupling regime
(BCS). Panel (c) in Fig. 11 shows the combined band
structure at temperatures above and below the critical
one. It is noteworthy that the hole and electron bands
merge in this band pattern, which is the evidence of

Γ Δ ±= 2.3 0.3
Δ ∼/ 0.5FE

−1FeSe Tex x

Fk

0.6 0.4FeTe Se

the band interaction and electron-hole mixing regard-
less of the interaction strength.

Figure 11d shows the dependence of the supercon-
ducting gap for each of the bands as a function of tem-
perature. The experiment clearly points to a
pseudogap in the hole band, which quickly decreases
when the gap appears in the electron band. However,
in strong contradiction with the theory of the BCS–
BEC crossover for single-band superconductors, a
pseudogap could not be detected in the electronic
band. This behavior of the pseudogap agrees with the
fluctuation suppression mechanism discussed above.

4.3. Other Materials

In conclusion, we mention some other compounds
in which the observation of BEC–BCS crossover, in
our opinion, is promising for the implementation of
the f luctuations suppression mechanism.

In [67], by changing the carrier density, a BCS–
BEC crossover occurs in zirconium nitride chloride,
an electron-doped two-dimensional superconductor.
The phase diagram obtained by simultaneously mea-
suring resistivity and ion-gated tunneling spectra
demonstrates a pseudogap phase in the low-doping
regime. The relationship between the superconducting
transition temperature and the Fermi temperature in
the low carrier density limit corresponds to the theo-
retical upper limit expected in the crossover regime.
This system thus implements the two-dimensional
BCS–BEC transition in a simple way.

In [68] the BCS–BEC crossover was implemented
in an organic conductor with a triangular lattice

. The parameter that
controls the crossover in this case is external pressure
which changes the Coulomb interaction between
carriers.

In July 2023, the discovery of a new superconduct-
ing compound (LK-99) was reported with an
extremely high transition temperature, apparently
exceeding the room temperature [69, 70]. LK-99 is a
copper-doped apatite, with the chemical formula

, . The unit cell of this
crystal structure is shown in Fig. 12. Attempts to
reproduce the results reported in [69, 70] have pro-
duced mixed results but have generally been unsuc-
cessful. Some experimental groups have confirmed
the observation of the levitation [72], while others
have reported its absence [73]. Some experiments con-
firm the conductivity jump, albeit at a different tem-
peratures [74], while others find that the material is an
insulator and exhibits paramagnetic behavior [75]. At
the moment, the scientific community takes the
room-temperature superconductivity in LK-99 with
strong skepticism [76].

κ − 4 2.89 8(BEDT-TTF) Hg Br

−10 4 6Pb Cu (PO ) Ox x 0.9 < < 1.1x

Fig. 10. (Color online) Dispersion of quasiparticles in the
BCS–BEC crossover at temperatures above and below the
critical temperature for . Adapted from [65].−1FeSe Tex x
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Nevertheless, in view of the f luctuation suppres-
sion mechanism discussed above, LK-99, in our opin-
ion, deserves close attention. Indeed, according to
first-principle calculations of its band structure, two
bands are active (close to the Fermi surface) in this
material. One of these (see Fig. 13) is f lat near its edge,
and this results in a strong increase in the correspond-
ing DOS. As a result, the mean-field critical tempera-
ture can be significantly enhanced, but only if the
chemical potential is near the edge of the f lat band. In
this case, the inevitable temperature f luctuations in
this shallow band are suppressed due to the interaction
with another band. Note that the position of the
chemical potential significantly depends on the pres-
ence of impurities and disorder, and in the case of a
flat band with its almost singular nature of the DOS, a
relatively small change in these factors can radically
change the parameters of superconducting pairing
and, accordingly, the temperature of the supercon-
ducting transition, possibly leading to a complete sup-
pression of superconductivity.

5. CONCLUSIONS

In this review, we show that the coexistence of two
interacting single-particle bands in a superconducting
material, one of which is shallow and the other is not,
can lead to the suppression of temperature f luctua-
tions and stabilization of the BCS–BEC crossover
regime in the shallow band. In the case that such a
shallow band has a high density of single-particle
states, for example, due to a van Hove singularity in a
quasi-one-dimensional band, or due to a f lat edge, the

Fig. 11. (Color online) ARPES spectra for  above (a) and below (b) the critical temperature. The solid red curve in
panel (a) is the result of fitting the dispersion curve marked with circles. The solid curves in panel (b) correspond to the dispersion
of quasiparticles in the normal state, as well as for the superconducting gap  meV for the hole band and  meV for
the electron band. (c) Dispersion curves from panels (a) and (b) on the same graph. (d) Temperature dependence of the super-
conducting gap for the electron and hole bands. The pseudogap region is shown in red. Adapted from [66].

0.6 0.4FeTe Se

Δ( ) = 2k Δ( ) = 1k

Fig. 12. (Color online) Crystal structure of LK-99. Copper
atoms replacing lead form a triangular sublattice. Adapted
from [71].

Fig. 13. (Color online) Band structure of LK-99 near the
Fermi level. Adapted from [71].
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f luctuation suppression mechanism can be expected
to lead to a significant increase in the superconducting
critical temperature. Due to the suppressed f luctua-
tions, the latter will approach its value obtained in the
mean field theory. An essential ingredient of this
mechanism for suppressing f luctuations is that it
becomes effective even at very low interband interac-
tions, when the critical temperature is still determined
by the shallow band.

The mechanism is not sensitive to the details of the
band structure and can be found in a wide class of
multiband materials. It is expected to occur in situa-
tions where more than two bands coexist in a material,
as long as at least one of them is shallow and the inter-
action between them is not very strong.

Currently, there exist many materials in which this
mechanism for stabilizing the BCS–BEC crossover
and increasing the critical temperature can work.
These include, in particular, materials with a quasi-
one-dimensional structure and iron-based materials.
An essential component of such materials is the pres-
ence of bands with a f lat edge and the position of the
Fermi level near it. It leads to a significant increase in
the single particle DOS and, accordingly, the Cooper
pairing. It is possible to achieve the desired position of
the chemical potential in a material in various ways,
for example, using chemical engineering, a change in
the structure by applying external pressure or doping
[60].

It should be noted that within the framework of the
BCS theory, there is another mechanism for increas-
ing the critical temperature that takes place due to
broadening the energy window for the Cooper pairing,
or the cutoff frequency . In this review, we do not
consider this mechanism; we only note that it will act
in parallel with the suppression of f luctuations due to
the inter-band interactions in a multi-band structure.
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