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We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over
dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where
the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human
cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests
that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and
maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows
above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the
system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic
transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.

Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in
developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem
by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region
includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic
differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal
dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and
activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting
case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an
open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity
grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.
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В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует че-
ловеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет суще-
ственную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную
в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявля-
ется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда
интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управле-
ние и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее
управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной чело-
веческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чере-
дующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между
ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.

В общем случае пассивный и активный режимы базируются на различных механизмах, что является пробле-
мой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту
проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область
динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Мо-
дель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные
переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках
единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, веро-
ятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель
оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализа-
цию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда,
когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.

Ключевые слова: человеческий контроль, прерывистость, неопределенность, гистерезис,
случайные процессы, стохастические дифференциальные уравнения
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Introduction: concept of dynamical trap

The notion of a “dynamical trap” related to the mathematical description of human actions was
initially introduced in [Lubashevsky, Gafiychuk, Demchuk, 1998]1. It generalizes the stationary point —
one of the key notions in the theory of dynamical systems — to a certain volumetric region with blurred
boundaries, where each of its internal points can be treated as a stationary point of a given dynamical
system. In other words, the dynamical trap region represents a multitude of neutral equilibrium states.
In describing human perception from the first-person perspective, the dynamical trap becomes a basic
element of its formalism due to the bounded capacity of human cognition [Lubashevsky, 2017]. The
latter, in particular, manifests in the inability of humans to distinguish unambiguously between similar
states of an observed object, which are characterized by different values of a certain quantitative
parameter in reality.

The formalism of dynamical traps has demonstrated its efficiency in describing hu-
man intermittent control observed during experiments involving the balance of virtual pendu-
lums [Zgonnikov et al., 2014] and driving virtual cars within the car-following scenario [Lubashevsky,
Morimura, 2019]. Additionally, dynamical traps can give rise to a new type of nonequilibrium phase
transitions, where the emergence of new phases does not stem from the appearance of new stationary
points of the corresponding governing equations [Lubashevsky, 2016, for a review].

The purpose of this paper is to introduce and explore a special kind of dynamical trap that
describes the subject’s response to some stimulus S through varying a certain system parameter η to be
referred to as the “control variable”. In general, the concept of dynamical traps implies that when the
stimulus intensity S becomes comparable to or falls below a certain value S c quantifying the perception
uncertainty, the subject probabilistically suspends control over the variable η. This probability increases
as the ratio S

S c
decreases [Lubashevsky, 2012]. As a result, the system dynamics can be conceived of

as a sequence of two distinct alternating modes — active and passive — with probabilistic transitions
between them. In this scenario, the mathematical description of the system dynamics governed by the
subject’s behavior near perception threshold becomes “heterogeneous”, hindering the development of
efficient numerical algorithms for its simulation. In the present paper we propose a novel model that
can be categorized as the dynamical trap of stimulus – response type. This model, on the one hand,
allows for the probabilistic transitions between the active and passive modes, on the other hand, it
remains “homogeneous” in mathematical structure.

Dynamical trap of stimulus – response type

The following premises characterizing the subject’s perception and behavior underlie our
constructions.

• The subject is able to change the control parameter η arbitrarily, including formal step-wise
variations. The expected continuous dynamics of η reflects the subject’s perception of the
stimulus S and their intentions in selecting action strategies.

• The perception of the stimulus S as well as the control over the variable η are characterized by
uncertainty, which is quantified by the values S c and ηc, respectively. The relationship between
the uncertainties S c and ηc is not arbitrary but stems from skill acquisition and reflects some
optimal balance of attention allocation between perceiving the stimulus S and controlling the
variable η.

1 Another type of dynamical traps arises in the theory of Hamiltonian systems with complex dynamics [Zaslavsky, 1995;
Zaslavsky, 2002]. In this context, a dynamical trap represents a region in the corresponding phase space with an unusually
long residence time. However, such a trap fundamentally differs from the analyzed one in nature; its emergence is due to
a delicate balance between several nonlinear properties of a Hamiltonian system. The dynamical trap we address in the
present paper pertains to the general features of human perception.
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• When recognizing the stimulus S becomes difficult, i. e., when S ∈ QS = {S : S � S c}, the
subject may suspend the control over the variable η and keep the control variable η near the
value η = 0. In other words, the value η = 0 is associated with the passive mode of system
dynamics — the no-control phase of the subject’s actions. In this case, possible time variations of
the variable η ∈ Qη = {η : |η| � ηc} are caused by uncontrollable random factors only.

• When the stimulus S is clearly recognized, namely, for its intensity S � S c, the subject’s
response gives rise to the dependence of the control variable on the stimulus intensity that is
approximated by the proportionality η ∝ S . Additionally, the subject’s control is assumed to be
effective. Therefore, at the boundary of stimulus perception, i. e., for S ∼ S c, the corresponding
value of the control variable η∗ = η|S∼S c

is expected to meet the inequality η∗ � ηc.

• Such features of human behavior as delay in human reaction, decision-making inertia caused
by uncertainty [Sautua, 2017], and the well-known hysteresis of judgments on sensory stimulus
intensity [Stevens, 1957] suggest that the control variable η should exhibit different dependen-
cies η↑(S ) and η↓(S ) on the stimulus intensity S when it increases or decreases gradually.

Summarizing the aforementioned items, Figure 1 illustrates the gist of the proposed dynamical trap
model and exhibits the expected dependence of the control variable η on the stimulus intensity S .

Figure 1. The proposed model for the dynamical trap of the stimulus-response type schematically shown on
the S η-plane. The dynamical trap region with blurred boundaries is the Cartesian product of its two constituent
components, the region QS and the region Qη, representing the uncertainties S c and ηc in the subject’s perception
of the stimulus intensity S and the control over the variable η. The shaded region illustrates how the control
variable η varies with the stimulus intensity S gradually decreasing, η↓(S ), and increasing, η↑(S ). The symbol η∗
denotes the mean value η|S∼S c

of the control variable, where the dynamical trap effect becomes pronounced in
the dependence η↓(S )

As is clear from Fig. 1, the dynamical trap of the stimulus-response type is characterized
by a complex structure. By definition, the dynamical trap region is the domain on the S η-plane,
where uncertainty in the subject’s perception and control affects the system dynamics substantially. Its
complexity manifests in that there can be singled out two subregions with distinct properties from this
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dynamical trap region. One of them is the stagnation region, QS ×Qη, where the subject active behavior
is completely suspended. The other is the hysteresis region QS × {0 < η � η∗}, where uncertainty in
the stimulus perception becomes substantial and the subject’s response gives rise to the hysteresis in
the dependence of the control variable η on the stimulus intensity S . This hysteresis enables us to
differentiate between the suspension of the subject’s control over the variable η and the initiation of
control, treating them as distinct phenomena.

Model and results of numerical simulation

The proposed model for the analyzed type of dynamical trap may be treated as a certain
generalization of the models employed in studying nonequilibrium phase transition in chains of
oscillators with dynamical traps [Lubashevsky, 2016] as well as in simulating the balancing of
overdamped pendulums [Zgonnikov et al., 2014] and the car driving within the car-following sce-
nario [Lubashevsky, Morimura, 2019].

The gist of the proposed model is the following stochastic differential equation governing the
subject’s response to the stimulus intensity S :

dη =

[

Ω(η, S )

(
η∗
S c

)

S − η
]

dt
τ
+

1√
τ
ηc dW, (1a)

where the time scale τ quantifies the subject’s reaction delay, dW is the infinitesimal increment of
Wiener process meeting the condition

〈

dW2
〉

= dt, the dynamical trap function Ω(η, S ) is specified as

Ω(η, S ) =
ϑ2

1 + ϑ2
for ϑ = g

η

η∗

(
S
S c

)β

(1b)

and the constants g ∼ 1 and β > 0 are its parameters.
To justify that model (1) does describe the expected subject’s response to the stimulus S

represented in Fig. 1, Eq. (1a) has been solved numerically using the order 1.0 strong stochastic
Runge –Kutta algorithm SRI2 elaborated in [Rößler, 2010] and implemented in the Python library
“sdeint” 0.3.0. In the numerical simulation, smooth variations in the stimulus intensity were modeled
as

S (t) = 4S c

[

cos
( t
T

)]2
for T = 100τ, (2)

the integration time step dt, the parameter g, and the ratio ηc
η∗
were set equal to dt = 0.001τ, g = 2,

and ηc
η∗ = 0.1. The total integration time was 104τ.
The results obtained are shown in Fig. 2 for several values of the exponent β = 0, 0.5, 1, 2.

As can be seen, for β = 1, 2 the η(S )-dependence is similar to the expected one (Fig. 1) and admits
the interpretation suggesting the subject either to suspend or activate the control over the variable η
depending on decrease or increase in stimulus intensity within a certain neighborhood of the Qs-boun-
dary. As it should be, the control suspension and activation form the hysteresis. By comparing these
results with those for β = 0, 0.5, we can draw a conclusion that the localization of the control suspension
and activation near the Qs-boundary is due to the essential dependence (Eq. 1b) of the dynamical trap
function Ω(η, S ) on the stimulus intensity S . Indeed, when the deviation of the stimulus intensity S
from the critical value S c becomes remarkable, |S − S c| � S c, the induced decrease or increase in the
cumulative argument ϑ of the trap function Ω(ϑ) enhances either the system’s capture by the dynamical
trap or the system’s escape from it, respectively.

For β = 0 and 0.5, especially for β = 0, a distinct interpretation is necessary for the
found η(S )-dependence because the region of the η-control activation essentially exceeds in size the
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region QS which represents uncertainty in the subject’s perception of the stimulus S. Broadly speaking,
the findings for β = 0 suggest that the subject suspends the η-control only when the variable η
approaches the region Qη due to S → 0. This is demonstrated by a weakly pronounced kink in
the dependence η↓(S ); for β = 2 this kink is much more pronounced. The given behavior of the
η↓(S )-dependence meets the concept of the active phase as the implementation of open-loop control
when locally planned actions come close to their completion and the desired state S = 0 is actually
achieved. In turn, the η-control is activated only when the stimulus intensity S becomes comparable
with a value S l � S c, which indicates that the risk of the subject losing the control over the system
dynamics is essential. A more detailed discussion of this issue can be found in [Zgonnikov et al., 2014;
Lubashevskiy, Lubashevsky, 2023].

Figure 2. The η-dynamics governed by the proposed model for the dynamical trap of the stimulus – response type
which has been obtained by numerical integration of model (1) for several values of the exponent β. Smooth
variations of the stimulus intensity S were imitated using Exp. (2). Data points related to the decreasing and
increasing fragments of S (t) are shown in red and blue, respectively. The other model parameters were set g = 2,
ηc
η∗
= 0.1. The details of numerical integration are presented in the text

To clarify the identified characteristics of the η-dynamics, let us refer to Figs. 3 and 4. Figure 3
illustrates the structure of the dynamical trap region specified by model (1) where the contribution of
random sources is mimicked by the condition that variations in the control variable η are constrained
from below by the uncertainty ηc in the η-control, such that η � ηc. In the left plot of Fig. 3, the solid
curves represent the corresponding nullclines, which are the points where the right-hand side of Eq. (1a)
(excluding random sources) equals zero. In this case, as illustrated in Fig. 4, the dependence η↓(S ) has
to undergo a sharp jump from about η∗ to ηc. In turn, the dependence η↑(S ) has to show a step-wise
increase when Line 2 intersects with the lower branch of the nullclines.

Figure 3 (right plot) exhibits the rate, dη
dt , of the control variable variations along Line 1

(
η
η∗ =

S
S c

)

for the stimulus intensity 0 < S < S c and along Line 2 (η = ηc) for the stimulus intensity S > S c. The
system motion along Line 2 mimics random dynamics of the variable η when the subject’s response to
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Figure 3. Characteristic structure of the dynamical trap region specified by model (1). On the left plot, the solid
curves are nullclines of Eq. (1a) with the random sources ignored, shown for two values of the parameter β:
0 (blue) and 2 (red). On the right plot, these curves exhibit the corresponding regular rate of the η-variations
along Line 1 for 0 � S � 1 and along Line 2 for 1 � S � 3. The values of the stimulus intensity S and the
control variable η are given in units of S c (uncertainty in the S-stimulus perception) and η∗ (the value of the
variable η|S=S c

when the dynamical trap effect is ignored), respectively. In plotting the η-variation rate, time t is
measured in the units of τ (the subject’s reaction time). The other system parameters were g = 2 and ηc = 0.1η∗
(uncertainty in the η-variable control)

Figure 4. The dependence of the control variable η on the stimulus intensity S for its gradual decrease, η↓(S ), and
increase, η↑(S ), meeting the structure of the dynamical trap region shown in Fig. 3. The cumulative dependence
of the control variable η on the up-and-down variations in the stimulus intensity S forms the hysteresis in the
suspension-activation of the subject’s control. The explanations for the other notions can be found in the caption
for Fig. 3

the stimulus S has been suspended, and the variable η is kept near zero within the uncertainty ηc of the
subject’s control. As can be seen, for β = 2, model (1) effectively captures the pronounced response
of the subject to the stimulus S near the perception threshold. Specifically, the region of expected
hysteresis, resulting from the up-and-down variations in stimulus intensity, turns out to be relatively
narrow (refer also to Fig. 2). For β = 0, first, the hysteresis region, within the accepted regular-type
approximation, is notably wide. Second, along Line 2, the rate dη

dt of the control variable η is very low.
Consequently, we can anticipate that mainly random fluctuations in the variable η govern the activation
of the subject’s control, which is justified by numerical simulations (see Fig. 2).

2024, Т. 16, № 1, С. 79–87
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Conclusion

In the present paper, we have introduced a new model for the dynamical trap of the stimulus –
response type that imitates human control over dynamic systems when the bounded capacity of human
cognition plays a crucial role. To elucidate the gist of the model, we have focused on scenarios where
the subject modulates a control variable η in response to a certain stimulus S with intensity S . In this
case, the bounded capacity of human cognition manifests in the uncertainty of the stimulus perception
quantified by a scale S c as well as the uncertainty of the η-control quantified by a scale ηc.

When the stimulus intensity falls below the blurred threshold of S-perception, i. e., S � S c, the
subject is expected to suspend control and maintain the variable η near zero within the accuracy ηc
accessible to their cognition. The subject’s actions under suppressed control are commonly referred to
as the passive mode of human control. As the stimulus intensity increases above the critical value S c
and becomes accessible to human cognition, the subject activates η-control, and the corresponding
actions are typically termed the active mode of human control. As a result, the dynamics of such
a system can be conceptualized as an alternating sequence of passive and active modes of human
control with probabilistic transitions between them. Moreover, these transitions are expected to display
hysteresis in response to up-and-down variations in stimulus intensity due to decision-making inertia —
an inherent feature of human behavior.

The stimulus intensity, modeled as a predetermined function of time S (t) with smooth up-and-
down variations, enables us to analyze the suspension and activation of the subject’s η-control on their
own. Generally, the passive and active modes of human control are governed by different mechanisms,
posing challenges in developing efficient algorithms for their description and numerical simulation.

The proposed model (1) has overcome this problem by introducing the dynamical trap of the
stimulus-response type, which has a complex structure. The dynamical trap region on the S η-plane
consists of two subregions: the stagnation region of the subject’s control suspension

{S � S c} × {|η| � ηc},

and the hysteresis region
{S � S c} × {ηc � η � η∗},

where the processes of “catching” the system by the trap and the system ‘escaping’ from the trap
occur. The subject is assumed to have acquired proficiency in η-control, and thus, the uncertainty ηc
in this control is significantly lower than the value η∗ characterizing the boundary of the active mode
when the stimulus intensity approaches its perception threshold, S ∼ S c. The proposed model deals
with nonlinear stochastic dynamics of the control variable η, covering both the probabilistic transitions
between passive and active modes as well as the internal dynamics of these modes within a unified
framework. The model reproduces the control suspension and activation, probabilistic transitions
between them with their hysteresis near the perception threshold.

Additionally, in the limiting case of β = 0, model (1) demonstrates the capability of mimicking
similar behavior of the subject when the active mode represents an open-loop implementation of
locally planned actions in controlling the system dynamics. This implementation is terminated when
the variable η approaches the boundary ηc of its control. The subject’s control is activated only when
the stimulus intensity grows enough, S � S c, and the risk of the subject losing the control over the
system dynamics becomes essential.

The proposed concept of the dynamical trap of the stimulus-response type opens a gate towards
developing sophisticated models of human control, wherein both the uncertainty of human perception
and the conscious evaluation of active behavior necessity determine human actions.
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