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Abstract—For a given graph, the edge-coloring problem is to minimize the number of colors
sufficient to color all the graph edges so that any adjacent edges receive different colors. For all
classes defined by sets of forbidden subgraphs, each with 7 edges, the complexity status of this
problem is known. In this paper, we obtain a similar result for all sets of 8-edge prohibitions.
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INTRODUCTION

The present paper considers ordinary graphs, i.e., undirected graphs without loops and multiple
edges. A hereditary class of graphs is a set of graphs closed under isomorphism and removal of
vertices. Each hereditary class X (and only hereditary class) can be specified by the set of its
forbidden generated subgraphs Y and is denoted as X = Free(Y). A monotone class of graphs is
a hereditary class that is also closed with respect to the removal of edges. Each monotone class
(and only monotone class) X can be defined by the set of its forbidden subgraphs Y and is denoted
by X = Frees(Y).

Let G = (V,E) be a graph. Any mapping c : E → {1, 2, . . . , k} such that c(e1) ̸= c(e2) for all
adjacent edges e1 and e2 is called an edge k-coloring of the graph G. The chromatic index of G is
the smallest number k for which there exists an edge k-coloring of G. It is denoted by χ′(G).

The edge k-coloring problem (k-pp problem) for a given graph G is to recognize whether the
inequality χ′(G) ≤ k holds. The edge coloring problem (pp problem) for a given graph G and
a number k is to recognize whether the inequality χ′(G) ≤ k holds. It is well known that 3-pp
problem (and therefore pp problem) is NP-complete [1].

According to the well-known result of V. G. Vizing [2], the following inequality holds: ∆(G) ≤
χ′(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of the vertices of G. Thus, pp problem for
a graph G is equivalent to recognizing whether the equality χ′(G) = ∆(G) is true or not.

The paper [3] presents a complete classification of the complexity of k-pp problem for any k for
all hereditary classes defined by one forbidden generated subgraph. A complete dichotomy of the
complexity of 3-pp problem for pairs of 6-vertex forbidden generated fragments is obtained in [4],
and a similar result for pp problem and families of monotone classes defined by the prohibition of
subgraphs with at most 7 vertices or 7 edges each, in [5, 6].

Some results for vertex analogues of k-pp and pp problems are presented in [8–36].
By G1 +G2 we denote the disjoint union of the graphs G1 and G2 with disjoint sets of vertices,

and by Pn and On, a simple path and an empty graph with n vertices. The paper [7] considered
trees B∗

1 , B∗
1+, +B∗

1 , and B+∗
1 (Fig. 1) and proved the following assertion.
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Fig. 1. Graphs B∗
1 , B∗

1+, +B∗
1 , and B+∗

1 .

Theorem 1. Let F be an arbitrary 8-edge forest not belonging to the set{
B∗

1 + P2 +On,
+B∗

1 +On, B
+∗
1 +On, B

∗
1+ +On | n ≥ 0

}
.

Then pp problem is polynomially solvable in the class Frees({F}). If F belongs to this set, then pp
problem is polynomially solvable in the class {G ∈ Frees({F}) | ∆(G) ≥ 4}.

The present paper improves the results in [6, 7]. Namely, a complete classification of the com-
plexity of pp problem is produced for all sets of 8-edge prohibitions.

1. SOME DEFINITIONS, NOTATION, AND FACTS

The girth of a graph is the length of the shortest cycle contained in the given graph. If the graph
is acyclic, then its girth is assumed to be equal to infinity. For a graph G = (V,E), the operation
of contracting its (connected) subgraph H = (V ′, E′) to a vertex consists of removing all vertices of
the subgraph H from G and adding a new vertex v and all edges of the form vu such that u ∈ V \V ′

and there exists an edge wu ∈ E, where w ∈ V ′.
Let G be some graph, and let x be a vertex of G. The neighborhood of x is denoted by N(x).

deg(x) denotes the degree of x, and ∆(G) is the maximum degree of the vertices of G. If ∆(G) ≤ 3,
then G is called subcubic. If the degrees of all vertices of the graph are equal to 3, then it is called
cubic.

The following assertion was proved in Sec. 28.1 in the monograph [37] (see the proof of Theo-
rem 28.1).

Lemma 1. For any graph G containing a vertex x such that |{y ∈ N(x) | deg(y) = ∆(G)}| ≤ 1,
one has the relation

χ′(G) = ∆(G) ⇔ χ′(G \ {x}
)
≤ ∆(G).

A cutpoint is a vertex of a graph the removal of which increases the number of its connected
components. A connected graph G without cutpoint is said to be incompressible if any vertex G
has at least two neighbors of degree ∆(G). In [7, Sec. 2] it is noted that the following assertion
holds.

Lemma 2. pp problem for graphs from an arbitrary monotone class reduces polynomially to the
same problem for incompressible graphs from this monotone class.

Let G be a graph, and let V ′ ⊆ V (G). Then G[V ′] is a subgraph of the graph G generated by V ′,
and G \ V ′ is the result of removing all elements of V ′ from G.

Let G1 and G2 be graphs. The notation G1
∼= G2 means that the graphs G1 and G2 are

isomorphic. If V (G1) ∩ V (G2) = ∅, then we denote the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2))
by G1 +G2. For the graph G and number k we set kG = G+G+ · · ·+G︸ ︷︷ ︸

k times

.

Let G, H1, H2, . . . ,Hk be graphs. Then the notation ⟨G;H1, H2, . . . ,Hk⟩ means that G contains
each of the graphs H1, H2, . . . ,Hk as a subgraph.

As usual, On, Kn, Pn, and Cn denote the empty graph, a complete graph, a simple path, and
a simple cycle on n vertices. A complete bipartite graph with p vertices in one part and q vertices
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Fig. 2. Graph Ti,j,k.

in the other is denoted by Kp,q. By K4 − e and K3,3 − e we denote the results of removing an edge
from K4 and K3,3, respectively.

By Ti,j,k, i, j, k ≥ 0, we denote a tree, called a triode, obtained by identifying the ends of three
simple paths (v = x0, x1, . . . , xi), (v = y0, y1, . . . , yj), and (v = z0, z1, . . . , zk) by a vertex v (Fig. 2).

Further in the proofs, for the vertices of the graph Ti,j,k we will use the notation introduced when
defining it. The class of all forests, each connected component of which is a triode, is denoted by T .
The following assertion is connected with this class.

Lemma 3 [7, Lemma 3]. Let H ′ ∈ T and let X be a class of graphs, and assume that for some
graph H we have X ⊆ Frees({H + H ′}). Then pp problem in the class X can be polynomially
reduced to the same problem in the class X ∩ Frees({H}).

A monotone closure of a class of graphs X is the set of all graphs that are subgraphs of graphs
from X . It is denoted by [X ]s. The set of pairwise nonadjacent vertices of a graph is called
independent .

2. NP-COMPLETENESS OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS

The transformations called vertex replacement by a triangle and vertex replacement by a (2,3)-
biclique are well known. They are applied to a vertex x of a graph whose neighborhood consists
exactly of the vertices x1, x2, x3 and are defined as follows. In the first one, we remove x and add
vertices x′

1, x′
2, x′

3 and edges x′
1x1, x′

2x2, x′
3x3, x′

1x
′
2, x′

2x
′
3, x′

1x
′
3. In the second, we remove x and

add vertices y1, y2, z1, z2, z3 and edges y1z1, y1z2, y1z3, y2z1, y2z2, y2z3, x1z1, x2z2, x3z3. It is easy to
see that a 3-edge coloring of the original graph exists if and only if it exists for the resulting graph.

Let Zk denote the set of cubic graphs of girth at least k+1, i.e., not containing cycles of length up
to k inclusive. It is clear that Z1 and Z2 coincide with the set of all cubic graphs. Let us denote by Z∗

k

the set of graphs that are obtained from graphs of class Zk by sequentially replacing all their vertices
with triangles, with repeated replacement of vertices in newly added triangles not allowed. Let Z∗∗

k

denote the set of graphs that are obtained from graphs of class Zk by sequentially replacing all their
vertices with (2,3)-bicliques, with repeated replacement of vertices in newly added (2,3)-bicliques
not allowed.

The following statement in part of the class Z∗
k is Lemma 9 in the paper [6], and in the class Z∗∗

k

it can be proven by analogy with it.

Lemma 4. For each k pp problem is NP-complete for graphs from the classes Z∗
k and Z∗∗

k .
The proof is based on the NP-completeness of 3-pp problem for any k in the set of subcubic

graphs of girth at least k (see [38]), and also the equivalence of 3-pp problems for a graph before
and after replacing a vertex with a (2,3)-biclique.

Note that every 8-edge graph in [Z∗
4 ]s does not contain cycles of length other than from 3. Note

also that every 8-edge graph in [Z∗∗
4 ]s does not contain cycles of length other than 4. It is clear

that [Z∗
4 ]s ⊆ Frees({B∗

1}) and [Z∗∗
4 ]s ⊆ Frees({B∗

1+}).
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3. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC
GRAPHS WITHOUT SUBGRAPH B∗

1+

By Beltk, k ≥ 2, we denote a graph such that

V (Beltk) = {v1, v2, . . . , vk, u1, u2, . . . , uk},
E(Beltk) =

{
viui | 1 ≤ i ≤ k

}
∪
{
vivi+1, uiui+1 | 1 ≤ i ≤ k − 1

}
.

In other words, Beltk is obtained from C2k by adding k − 2 parallel chords.

Lemma 5. Let G = (V,E) ∈ Frees({B∗
1+}) be an incompressible subcubic graph, and let Beltk

be an inclusion-maximal subgraph contained in G as a (not necessarily generated) subgraph but not
contained in each of the graphs K4 − e, K2,3 , and K3,3 − e, with each of the edges v1u1 and vkuk

not included in any triangle of the graph G. Then

χ′(G) ≤ 3 ⇔ χ′(G \ V (Beltk)
)
≤ 3

if none of the following conditions is satisfied:

1. k ∈ {3, 4}, v1vk ∈ E ∨ u1uk ∈ E , there exists an w ∈ V such that

wu1, wuk ∈ E ∨ wv1, wvk ∈ E.

2. k = 3, there exist vertices w1, w2, w3 ∈ V such that

w1v1, w1v3, w2u1, w2u3, w1w3, w2w3 ∈ E.

In these cases one has χ′(G) = 4.
Proof. Since the graph G is incompressible, it does not contain dangling vertices. Since the

subgraph Beltk under consideration is not contained in any of the graphs K4 − e,K3,3 − e, then
v1u2, v2u1, v1u3 , v3u1 ̸∈ E.

Assume that v1uk ∈ E. Then k ≥ 4. If u1 or vk has a neighbor outside V (Beltk), then ⟨G;B∗
1+⟩.

If neither u1 nor vk has a neighbor outside V (Beltk), then χ′(G) = 3. Throughout what follows we
will assume that v1uk, u1vk ̸∈ E.

Assume that v1vk ∈ E for k ≥ 3. If deg(u1) = deg(uk) = 2 or u1uk ∈ E, then χ′(G) = 3.
Since G is incompressible (consequently, does not contain bridges), we have

N(u1) = {z′, v1, u2},
N(uk) = {z′′, vk, uk−1}.

Since ¬⟨G;B∗
1+⟩, we have k ≤ 4. If z′ = z′′, then χ′(G) = 4. If z′ ̸= z′′, then deg(z′) = deg(z′′) = 2

because ¬⟨G;B∗
1+⟩. It can readily be seen that

χ′(G) = 3 ⇔ χ′(G \ V (Beltk)
)
≤ 3;

this can be verified by taking the 3-coloring of the edges of the graph G\V (Beltk) and coloring z′u1,
z′′uk, v1vk, v2u2, . . ., vk−1uk−1 in one color with further coloring of the remaining edges Beltk in
two colors. Throughout, we will assume that v1vk, u1uk ̸∈ E for k ≥ 3.

Set
N ′ =

(
N(v1) ∪N(u1) ∪N(vk) ∪N(uk)

)
\ V (Beltk).

Due to the incompressibility of G, the set N ′ contains a vertex adjacent to some vertex of {v1, u1},
as well as a vertex adjacent to some vertex of {vk, uk}.

Suppose that for each pair of vertices {v1, u1} and {vk, uk} either at least one of these vertices
has degree 2 or at least one of them is adjacent to a vertex of degree 2 from N ′. Then

χ′(G) = 3 ⇔ χ′(G \ V (Beltk)
)
≤ 3.
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Indeed, it suffices to consider the 3-coloring of edges G \ V (Beltk) and in G, to color the edges be-
tween (N(v1) ∪N(u1)) \ V (Beltk) and {v1, u1} in one color, and to color the edges be-
tween (N(vk) ∪N(uk)) \ V (Beltk) and {vk, uk} also in one color. Thus, throughout what follows
we assume that deg(u1) = deg(v1) = 3 and both of these vertices are adjacent to different vertices
of degree 3 from N ′.

Assume that

N(v1) = {z1, v2, u1},
N(u1) = {z2, v1, u2}.

Then each of the following statements is true:
– deg(z1) = deg(z2) = 3.
– z2 ̸∈ N(z1) in view of maximality of the subgraph Beltk.
– For k = 2 one has z2 ̸∈ N(v2), since otherwise the subgraph Belt2 under consideration is

embedded in the subgraph K3,3 − e.
– For k ≥ 3 one has z1vk, z2uk ̸∈ E, since otherwise ⟨G;B∗

1+⟩.
If k = 3, then z2 ̸= v3 and z1 ̸= u3 due to the absence of bridges in G. Let us consider the

situation when z2u3 ̸∈ E. Since G ∈ Frees({B∗
1+}), we have deg(z2) = 2, and this case was analyzed

earlier. The situation when z1v3 ̸∈ E is considered similarly.
Consider the case where N(z1) = {v1, v3, z3}, N(z2) = {u1, u3, z4}. Since G ∈ Frees({B∗

1+}), we
have deg(z3) = deg(z4) = 2. If z3 ̸= z4, then

χ′(G) = 3 ⇔ χ′
(
G \

(
V (Belt3) ∪ {z1, z2}

))
≤ 3,

since it suffices to consider the 3-coloring of edges in G \ (V (Belt3) ∪ {z1, z2}) and to color z1z3,
z2z4, v1u1, v2u2, and v3u3 in G in one color. If z3 = z4, then χ(G) = 4.

If k = 2, then, due to the incompressibility of G and the conditions in the lemma, we have

max
(
deg(v2),deg(u2)

)
= 3, z1 ̸∈ N(u2), N(z1) ∩N(v2) = {v1}.

The graph G contains the subgraph B∗
1+ if deg(v2) = 3. If deg(v2) = 2, then N(u2) = {v2, u1, z5},

and z2z5 ̸∈ E in view of the maximality of Belt2. It can readily be seen that deg(z2) = 2,
since G ∈ Frees({B∗

1+}). This case was treated earlier. The proof of Lemma 5 is complete. □

Lemma 6. Let H∗ and H∗∗ be 8-edge graphs belonging to [Z∗
4 ]s and [Z∗∗

4 ]s , respectively.
Then pp problem is polynomially solvable for subcubic graphs of the class Frees({B∗

1+, H
∗, H∗∗}).

Proof. By Lemma 3, we will assume that each connected component of the graphs H∗ and H∗∗

does not belong to T . By Theorem 1, we assume that either H∗ = B+∗
1 or H∗ is not a forest,

and also that either H∗∗ ∈ {+B∗
1 , B

+∗
1 } or H∗∗ is not a forest. By Lemma 2, we will consider only

incompressible graphs of the class Frees({B∗
1+, H

∗, H∗∗}). Let G = (V,E) be an arbitrary such
graph.

If N(x) = {x1, x2, x3} for some vertex x ∈ V , then x belongs either to a triangle or to a gener-
ated C4-cycle of the graph G. Indeed, suppose that {x1, x2, x3} is an independent set. Among its
elements, at least two (say, x1 and x2) have degree 3 in G, and the vertex x3 has degree at least 2.
We can assume that

N(x1) ∩N(x2) = N(x2) ∩N(x3) = N(x1) ∩N(x3) = {x},

otherwise x belongs to the generated C4-cycle of the graph G, but then G contains the subgraph B∗
1+.

In the graph G, the set B of all its maximal subgraphs of the form Beltk that are simultaneously
not contained in the subgraphs K4−e,K2,3 and K3,3−e can be found in polynomial time. If this set
is not empty, then consider an arbitrary subgraph Beltk. Based on the proof of Lemma 5, we can
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assume that v1vk, u1uk ̸∈ E and case (2) is not realized. By Lemma 5, we can assume that there
exists a vertex w ∈ V that forms a triangle with vk and uk. Let wv1, wu1 ̸∈ E, otherwise χ′(G) = 4.
If k = 2, then

N(w) ∩
(
N(v1) ∪N(u1)

)
= {v2, u2}

in view of the maximality of the subgraph Belt2. Since ¬⟨G;B∗
1+⟩ and G incompressible, either v1u1

is included in a triangle or v1 is adjacent with a vertex of degree 3 and deg(u1) = 2 or each of
the vertices v1 and u1 is adjacent with its vertex of degree two, with these two vertices not being
adjacent. In the last case, we contract G[V (Beltk) ∪ {w}] into the vertex w′ to obtain a graph G′

that will be ordinary (since G is incompressible) with

χ′(G) = 3 ⇔ χ′(G′) ≤ 3.

By Lemma 1,
χ′(G′) ≤ 3 ⇔ χ′(G′ \ {w′}

)
≤ 3,

with G′ \ {w′} ∼= G \ (V (Beltk) ∪ {w}). Therewith we assume that either v1u1 is included in the
triangle (v1, u1, w

′′) or v1 is adjacent with a vertex of degree 3 and deg(u1) = 2.
Note that

χ′(G) = 3 ⇔ χ′(G \ V (Beltk)
)
≤ 3,

if deg(w) = 2, there exists a vertex w1 ̸∈ {vk, uk}, deg(w1) = 2 such that ww1 ∈ E and v1u1 does
not lie in the triangle (v1, u1, w

′′), where w′′ has a neighbor of degree 3 outside V (Beltk); therefore
in what follows, we assume that deg(w1) = 3.

In addition, suppose that (w1, w2, w3) is a triangle in the graph G. Obviously,

{v1, u1} ∩ {w2, w3} = ∅ ∨ {v1, u1} = {w2, w3},

and in the last case we have χ′(G) = 3. In view of the incompressibility of the graph G, one of the
vertices w2 and w3 has degree 3. Note that if v1w2 ∈ E, then N(u1) ⊆ {v1, u2, w3}, since ⟨G;B∗

1+⟩;
therefore |V (G)| = 2k + 4, as otherwise G contains a cutpoint. It follows from our reasoning
that ⟨G;H∗⟩, since G contains all 8-edge graphs in [Z∗

4 ]s that are not forests such that each connected
component does not belong to T . If w1 is a vertex of degree 2 of the subgraph K2,3, then one of the
other two vertices of degree 2 of this subgraph has degree 3 in G. It is easy to verify that ⟨G;H∗∗⟩.

Thus w1 is a vertex of degree 2 of some element Beltk′ ∈ B. By Lemma 5, we can assume that
there exists a vertex that forms a triangle with two vertices Beltk′ , but then

χ′(G) = 3 ⇔ χ′(G \ V (Beltk)
)
≤ 3.

Hence, according to our reasoning, we can assume that each generated C4-cycle of the graph G is
included in a certain subgraph K2,3, which can be considered generated by the incompressibility
of G. By Lemma 3, let G contain 2T5,5,5 as a subgraph. Let us consider an arbitrary component of
the connected components of this 2T5,5,5.

Since G is incompressible and ¬⟨G;B∗
1+⟩, from symmetry considerations we can assume that

either x1y1 ∈ E or x1y2 ∈ E and y1x2 ∈ E or there exists a vertex t ̸∈ V (T5,5,5) such
that x1t, y1t, z1t ∈ E. In each of these cases, we contract either G[{v, x1, y1}] or G[{v, x1, y1, x2, y2}]
or G[{v, x1, y1, z1, t}] to the vertex v∗ to obtain a graph G∗ for which

χ′(G) = 3 ⇔ χ′(G∗) ≤ 3.

At the same time, if the vertex v∗ has at most one neighbor of degree 3 in G∗, then by Lemma 1
we have

χ′(G∗) = 3 ⇔ χ′(G∗ \ {v∗}
)
≤ 3.

Since G∗ \ {v∗} is a generated subgraph of the graph G, we assume that this case is not realized.
If x1y1 ∈ E, then we can assume that the vertices x2 and y2 have degree 3 in G. Since

¬⟨G;B∗
1+, H

∗⟩, we conclude that x2 and y2 are contained in generated subgraphs each of which
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is isomorphic to K2,3. Then ⟨G;H∗∗⟩, so we can assume that the first case is not realized for any of
the components of 2T5,5,5. In the second case, we can assume that deg(x3) = 3. If x3 is contained
in the generated copy of K2,3, then ⟨G;H∗∗⟩. If x3 is contained in a triangle, then also ⟨G;H∗∗⟩
(note that the subgraph 2C4 is obtained from two different components of 2T5,5,5 ). The third case
is similar to the second one.

Lemma 3 implies the assertion in the present lemma. The proof of Lemma 6 is complete. □

4. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC
GRAPHS WITHOUT SUBGRAPHS B∗

1 + P2, +B∗
1 , B

+∗
1

Lemma 7. Let H ∈ {B∗
1 + P2,

+B∗
1 , B

+∗
1 }, and let H∗ be an 8-edge graph belonging to [Z∗

4 ]s.
Then pp problem is polynomially solvable for subcubic graphs in Frees({H,H∗}).

Proof. Let us show that in the class Frees({H,H∗}), pp problem is polynomially reducible
to the same problem for graphs in Frees({B∗

1 , H, H∗, T5,5,5}). Taking this into account, the va-
lidity of Lemma 7 will follow from Lemma 3. By Theorem 1 and Lemma 3, we will assume
that H ∈ {+B∗

1 , B
+∗
1 }, H∗ is not a forest for H∗ ̸= B+∗

1 , and each connected component of H∗

does not belong to T .
By Lemma 2, it suffices to consider the incompressible graph G = (V,E) ∈ Frees({H,H∗}).

Suppose that G contains a subgraph B∗
1 with the set of vertices {a1, a2, a3, b1, b2, b3, c1, c2} and the

set of edges {a1a2, a2a3, b1b2, b2b3, a2c1, b2c1, c1c2}. For H = +B∗
1 , none of the vertices a1, a3, b1, b3

has a neighbor outside V (B∗
1), so either |V (G)| = 8 or c2 is a cutpoint in the graph G.

Consider the case of H = B+∗
1 . It is easy to see that either |V (G)| ≤ 16 or c2 is a cutpoint in

the graph G or there exists a path (u, u1, u2) in which u ∈ {a1, a3, b1, b3} and u1, u2 ̸∈ V (B∗
1). We

can assume that u = b1. Since ¬⟨G;B+∗
1 ⟩ and G is incompressible, we conclude that u1c2, u1a1,

u1a3 ̸∈ E, and if deg(b1) = 2, then deg(u1) = 3, u1b3 ∈ E, deg(b3) = 2, which is impossible due to
the incompressibility of G. For the same reasons, if deg(b1) = 3, then

b1a1 ∈ E ∨ b1a3 ∈ E, deg(u1) = 2, deg(u2) = 3;

this implies that ⟨G;B+∗
1 ⟩.

Thus, we can assume that G lies in Frees({B∗
1}) and contains the subgraph T5,5,5 by Lemma 3.

Let us consider two options: (1) the set {x1, y1, z1} is independent, (2) the set {x1, y1, z1} is not
independent.

1. In view of the incompressibility of the graph G we can assume that deg(x1) = deg(y1) = 3.
Let N(x1) = {x′

1, v, x2} and N(y1) = {y′
1, v, y2}. It is obvious that either x′

1 = y′
1 or x′

1 = y2
or y′

1 = x2, otherwise ⟨G;B∗
1⟩.

Assume that x′
1 = y′

1. Then since ¬⟨G;B∗
1⟩, for each vertex u ∈ {x2, y2, z1} either deg(u) = 2

or ux′
1 ∈ E, and if x′

1z1 ∈ E, then deg(z2) = 2, while if x′
1x2, x′

1y2, x′
1z1 ̸∈ E, then either

deg(x′
1) = 2 or x′

1 is adjacent to the vertex x′′
1 of degree 2. It can readily be seen that if x′

1x2,
x′
1y2 ̸∈ E, then

χ′(G) = 3 ⇔ χ′(G \ {v, x1, y1, x
′
1}
)
≤ 3,

since it is sufficient to color y1y2 and z1v in one color and x1x2 and x′
1x

′′
1 (if such a vertex x′′

1

exists) also in one color.
Suppose that x′

1x2 ∈ E, x′
1y2 ̸∈ E (the case of x′

1x2 ̸∈ E and x′
1y2 ∈ E is treated similarly).

Then deg(y2) = deg(z1) = 2. Let us contract the subgraph G[{v, x1, y1, x2, x
′
1}] into the

vertex u1 to obtain a graph G1 for which the following holds by Lemma 1:

χ′(G) = 3 ⇔ χ′(G1) ⇔ χ′(G1 \ {u1}
)
≤ 3,

G1 \ {u1} ∼= G \ {v, x1, y1, x2, x
′
1}.

Suppose that x′
1z1 ∈ E. Then deg(x2) = deg(y2) = deg(z2) = 2. Let us contract

G[{v, x1, y1, z1, x
′
1}] into the vertex u2 to obtain a graph G2 for which the following holds

by Lemma 1:

χ′(G) = 3 ⇔ χ′(G2) ≤ 3 ⇔ χ′(G2 \ {u2}
)
≤ 3,
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G2 \ {u2} ∼= G \ {v, x1, y1, z1, x
′
1}.

The cases where x′
1 = y2 or y′

1 = x2 are treated similarly. To do this, it is sufficient to consider
a triode centered at the vertex x1 or at the vertex y1 and repeat the presented proof for this
triode.

2. From symmetry considerations we can assume that x1y1 ∈ E. Let us contract the triangle
(v, x1, y1) to the vertex u3 to obtain the graph G3. It is clear that χ′(G) = 3 ⇔ χ′(G3) ≤ 3.
If at most one vertex has degree 3 among x2, y2, z1, then, by Lemma 1 we have

χ′(G3) ≤ 3 ⇔ χ′(G3 \ {u3}
)
≤ 3,

G3 \ {u3} ∼= G \ {v, x1, y1}.

Taking this into account, due to symmetry, we can assume that N(x2) = {x′
2, x1, x3}

and N(y2) = {y′
2, y1, y3}.

Let us assume that x′
2 = y2. Let us contract the subgraph G[{v, x1, y1, x2, y2}] into the

vertex u4 to obtain a graph G4 such that χ′(G) = 3 ⇔ χ′(G4) ≤ 3. We can assume
that deg(x3) = 3 or deg(y3) = 3, otherwise by Lemma 1,

χ′(G4) ≤ 3 ⇔ χ′(G4 \ {u4}
)
≤ 3,

G4 \ {u4} ∼= G \ {v, x1, y1, x2, y2};

therefore ⟨G;B∗
1⟩, and further we assume that x′

2 ̸= y2.
If x′

2x3 ̸∈ E, then, due to the incompressibility of G, either deg(x3) = 3 or deg(x′
2) = 3,

so ⟨G;B∗
1⟩. If x′

2x3 and x′
2y2 ∈ E, then ⟨G;B∗

1⟩. If x′
2x3 ∈ E and x′

2y2 ̸∈ E, then G contains
all 8-edge graphs in [Z∗

4 ]s that are not forests each connected component of which does not
belong to T , so ⟨G;H∗⟩.

Lemma 3 implies the assertion in the present lemma. The proof of Lemma 7 is complete. □

5. MAIN RESULT

The main result of the present paper is the following assertion.

Theorem 2. Let Y be a set of graphs each of which has at most 8 edges. Then pp problem is
polynomially solvable for graphs in X = Frees(Y) if

1. Either Y contains a subcubic forest not belonging to the set[{
B∗

1 + P2 +On,
+B∗

1 +On, B
∗
1+ +On | n ≥ 0

}]
s
.

2. Either Y simultaneously contains a graph in [Z∗
4 ]s and a graph in[{

B∗
1 + P2 +On,

+B∗
1 +On | n ≥ 0

}]
s
.

3. Or Y simultaneously contains a graph in [{B∗
1++On | n ≥ 0}]s and graphs in [Z∗

4 ]s and [Z∗∗
4 ]s.

In all other cases it is NP-complete for graphs in X .

Proof. Recall that pp problem is NP-complete in the class Zk for any k (see [38]). Therefore,
we can assume that Zk ⊈ X for any k. Note that Y is finite (up to the addition of isolated vertices)
and for any graph G∗ that is not a subcubic forest, there exists a k∗ (which can be set equal to the
girth of the graph G∗) such that Zk∗+1 ⊆ Frees({G∗}). Therefore, Y contains a subcubic forest.

By Lemma 3, we can assume that each connected component of each graph in Y does not belong
to T . Let F ∈ Y be a subcubic forest. Note that [{B+∗

1 + On | n ≥ 0}]s ⊆ [Z∗
4 ]s. By Theorem 1
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and Lemma 7, pp problem is polynomially solvable in the class Frees({F}) if F does not belong to
the set [{

B∗
1 + P2 +On,

+B∗
1 +On, B

∗
1+ +On | n ≥ 0

}]
s
.

If F is a graph in [{
B∗

1 + P2 +On,
+B∗

1 +On | n ≥ 0
}]

s

and Y ∩ [Z∗
4 ]s = ∅, then Z∗

4 ⊆ X . pp problem is NP-complete for graphs in X by Lemma 4. If
however Y ∩ [Z∗

4 ]s ̸= ∅, then pp problem is polynomially solvable for graphs in X by Lemma 7.
Assume that F ∈ [{B∗

1+ +On | n ≥ 0}]s. If

Y ∩ [Z∗
4 ]s = ∅ ∨ Y ∩ [Z∗∗

4 ]s = ∅,

then Z∗
4 ⊆ X ∨ Z∗∗

4 ⊆ X and pp problem is NP-complete for graphs in X by Lemma 4. If
however Y ∩ [Z∗

4 ]s ̸= ∅ and Y∩ [Z∗∗
4 ]s ̸= ∅, then pp problem is polynomially solvable for graphs in X

by Lemma 6. The proof of Theorem 2 is complete. □

CONCLUSIONS

The present paper gives a complete classification of the computational complexity of the edge
coloring problem for all classes of graphs defined by sets of forbidden subgraphs each of which has
no more than 8 edges. Namely, for each such set of prohibitions it is established that for the class
of graphs it defines, the edge coloring problem is either polynomially solvable or NP-complete. This
classification completes the development of the results in the paper [7].

The next natural step is to consider 9-edge prohibitions. Obtaining a complete complexity
dichotomy for them and the edge coloring problem is an interesting goal for future research. Ap-
parently, this problem is much more difficult than for the 8-edge case.
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38. M. Kamiński and V. V. Lozin, “Coloring edges and vertices of graphs without short or long cycles,”
Contrib. Discrete Math. 2 (1), 61–66 (2007).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 17 No. 4 2023


	INTRODUCTION
	1. SOME DEFINITIONS, NOTATION, AND FACTS
	2. NP-COMPLETENESS OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS
	3. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS WITHOUT SUBGRAPH B*1+
	4. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS WITHOUT SUBGRAPHS B*1+P2, +B*1, B+*1
	5. MAIN RESULT
	CONCLUSIONS
	FUNDING
	CONFLICT OF INTEREST
	REFERENCES

