A Complete Complexity Dichotomy of the Edge-Coloring Problem for All Sets of 8-Edge Forbidden Subgraphs

D. S. Malyshev ${ }^{1,2 *}$ and O. I. Duginov ${ }^{3 * *}$
${ }^{1}$ National Research University Higher School of Economics, Nizhny Novgorod Branch, Nizhny Novgorod, 603155 Russia
${ }^{2}$ Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
${ }^{3}$ Belarusian State University, Minsk, 220030 Belarus
e-mail: * dsmalyshev@rambler.ru, ** oduginov@gmail.com

Received November 24, 2022; revised June 10, 2023; accepted June 22, 2023

Abstract

For a given graph, the edge-coloring problem is to minimize the number of colors sufficient to color all the graph edges so that any adjacent edges receive different colors. For all classes defined by sets of forbidden subgraphs, each with 7 edges, the complexity status of this problem is known. In this paper, we obtain a similar result for all sets of 8 -edge prohibitions.

Keywords: edge-coloring problem, computational complexity, monotone class
DOI: 10.1134/S1990478923040099

INTRODUCTION

The present paper considers ordinary graphs, i.e., undirected graphs without loops and multiple edges. A hereditary class of graphs is a set of graphs closed under isomorphism and removal of vertices. Each hereditary class \mathcal{X} (and only hereditary class) can be specified by the set of its forbidden generated subgraphs \mathcal{Y} and is denoted as $\mathcal{X}=\operatorname{Free}(\mathcal{Y})$. A monotone class of graphs is a hereditary class that is also closed with respect to the removal of edges. Each monotone class (and only monotone class) \mathcal{X} can be defined by the set of its forbidden subgraphs \mathcal{Y} and is denoted by $\mathcal{X}=\operatorname{Free}_{s}(\mathcal{Y})$.

Let $G=(V, E)$ be a graph. Any mapping $c: E \rightarrow\{1,2, \ldots, k\}$ such that $c\left(e_{1}\right) \neq c\left(e_{2}\right)$ for all adjacent edges e_{1} and e_{2} is called an edge k-coloring of the graph G. The chromatic index of G is the smallest number k for which there exists an edge k-coloring of G. It is denoted by $\chi^{\prime}(G)$.

The edge k-coloring problem (k-PP problem) for a given graph G is to recognize whether the inequality $\chi^{\prime}(G) \leq k$ holds. The edge coloring problem (PP problem) for a given graph G and a number k is to recognize whether the inequality $\chi^{\prime}(G) \leq k$ holds. It is well known that 3-PP problem (and therefore PP problem) is NP-complete [1].

According to the well-known result of V. G. Vizing [2], the following inequality holds: $\Delta(G) \leq$ $\chi^{\prime}(G) \leq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of the vertices of G. Thus, PP problem for a graph G is equivalent to recognizing whether the equality $\chi^{\prime}(G)=\Delta(G)$ is true or not.

The paper [3] presents a complete classification of the complexity of k-PP problem for any k for all hereditary classes defined by one forbidden generated subgraph. A complete dichotomy of the complexity of 3 -PP problem for pairs of 6 -vertex forbidden generated fragments is obtained in [4], and a similar result for PP problem and families of monotone classes defined by the prohibition of subgraphs with at most 7 vertices or 7 edges each, in [5, 6].

Some results for vertex analogues of k-PP and PP problems are presented in [8-36].
By $G_{1}+G_{2}$ we denote the disjoint union of the graphs G_{1} and G_{2} with disjoint sets of vertices, and by P_{n} and O_{n}, a simple path and an empty graph with n vertices. The paper [7] considered trees $B_{1}^{*}, B_{1+}^{*},{ }^{+} B_{1}^{*}$, and B_{1}^{+*} (Fig. 1) and proved the following assertion.

Fig. 1. Graphs $B_{1}^{*}, B_{1+}^{*},{ }^{+} B_{1}^{*}$, and B_{1}^{+*}.

Theorem 1. Let F be an arbitrary 8-edge forest not belonging to the set

$$
\left\{B_{1}^{*}+P_{2}+O_{n},{ }^{+} B_{1}^{*}+O_{n}, B_{1}^{+*}+O_{n}, B_{1+}^{*}+O_{n} \mid n \geq 0\right\}
$$

Then PP problem is polynomially solvable in the class Free $_{s}(\{F\})$. If F belongs to this set, then PP problem is polynomially solvable in the class $\left\{G \in \operatorname{Free}_{s}(\{F\}) \mid \Delta(G) \geq 4\right\}$.

The present paper improves the results in [6, 7]. Namely, a complete classification of the complexity of PP problem is produced for all sets of 8-edge prohibitions.

1. SOME DEFINITIONS, NOTATION, AND FACTS

The girth of a graph is the length of the shortest cycle contained in the given graph. If the graph is acyclic, then its girth is assumed to be equal to infinity. For a graph $G=(V, E)$, the operation of contracting its (connected) subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ to a vertex consists of removing all vertices of the subgraph H from G and adding a new vertex v and all edges of the form $v u$ such that $u \in V \backslash V^{\prime}$ and there exists an edge $w u \in E$, where $w \in V^{\prime}$.

Let G be some graph, and let x be a vertex of G. The neighborhood of x is denoted by $N(x)$. $\operatorname{deg}(x)$ denotes the degree of x, and $\Delta(G)$ is the maximum degree of the vertices of G. If $\Delta(G) \leq 3$, then G is called subcubic. If the degrees of all vertices of the graph are equal to 3 , then it is called cubic.

The following assertion was proved in Sec. 28.1 in the monograph [37] (see the proof of Theorem 28.1).

Lemma 1. For any graph G containing a vertex x such that $|\{y \in N(x) \mid \operatorname{deg}(y)=\Delta(G)\}| \leq 1$, one has the relation

$$
\chi^{\prime}(G)=\Delta(G) \Leftrightarrow \chi^{\prime}(G \backslash\{x\}) \leq \Delta(G)
$$

A cutpoint is a vertex of a graph the removal of which increases the number of its connected components. A connected graph G without cutpoint is said to be incompressible if any vertex G has at least two neighbors of degree $\Delta(G)$. In [7, Sec. 2] it is noted that the following assertion holds.

Lemma 2. PP problem for graphs from an arbitrary monotone class reduces polynomially to the same problem for incompressible graphs from this monotone class.

Let G be a graph, and let $V^{\prime} \subseteq V(G)$. Then $G\left[V^{\prime}\right]$ is a subgraph of the graph G generated by V^{\prime}, and $G \backslash V^{\prime}$ is the result of removing all elements of V^{\prime} from G.

Let G_{1} and G_{2} be graphs. The notation $G_{1} \cong G_{2}$ means that the graphs G_{1} and G_{2} are isomorphic. If $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, then we denote the graph $\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$ by $G_{1}+G_{2}$. For the graph G and number k we set $k G=\underbrace{G+G+\cdots+G}_{k \text { times }}$.

Let $G, H_{1}, H_{2}, \ldots, H_{k}$ be graphs. Then the notation $\left\langle G ; H_{1}, H_{2}, \ldots, H_{k}\right\rangle$ means that G contains each of the graphs $H_{1}, H_{2}, \ldots, H_{k}$ as a subgraph.

As usual, O_{n}, K_{n}, P_{n}, and C_{n} denote the empty graph, a complete graph, a simple path, and a simple cycle on n vertices. A complete bipartite graph with p vertices in one part and q vertices

Fig. 2. Graph $T_{i, j, k}$.
in the other is denoted by $K_{p, q}$. By $K_{4}-e$ and $K_{3,3}-e$ we denote the results of removing an edge from K_{4} and $K_{3,3}$, respectively.

By $T_{i, j, k}, i, j, k \geq 0$, we denote a tree, called a triode, obtained by identifying the ends of three simple paths $\left(v=x_{0}, x_{1}, \ldots, x_{i}\right),\left(v=y_{0}, y_{1}, \ldots, y_{j}\right)$, and $\left(v=z_{0}, z_{1}, \ldots, z_{k}\right)$ by a vertex v (Fig. 2).

Further in the proofs, for the vertices of the graph $T_{i, j, k}$ we will use the notation introduced when defining it. The class of all forests, each connected component of which is a triode, is denoted by \mathcal{T}. The following assertion is connected with this class.

Lemma 3 [7, Lemma 3]. Let $H^{\prime} \in \mathcal{T}$ and let \mathcal{X} be a class of graphs, and assume that for some graph H we have $\mathcal{X} \subseteq \operatorname{Free}_{s}\left(\left\{H+H^{\prime}\right\}\right)$. Then PP problem in the class \mathcal{X} can be polynomially reduced to the same problem in the class $\mathcal{X} \cap \operatorname{Free}_{s}(\{H\})$.

A monotone closure of a class of graphs \mathcal{X} is the set of all graphs that are subgraphs of graphs from \mathcal{X}. It is denoted by $[\mathcal{X}]_{s}$. The set of pairwise nonadjacent vertices of a graph is called independent.

2. NP-COMPLETENESS OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS

The transformations called vertex replacement by a triangle and vertex replacement by a (2,3)biclique are well known. They are applied to a vertex x of a graph whose neighborhood consists exactly of the vertices x_{1}, x_{2}, x_{3} and are defined as follows. In the first one, we remove x and add vertices $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ and edges $x_{1}^{\prime} x_{1}, x_{2}^{\prime} x_{2}, x_{3}^{\prime} x_{3}, x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime} x_{3}^{\prime}, x_{1}^{\prime} x_{3}^{\prime}$. In the second, we remove x and add vertices $y_{1}, y_{2}, z_{1}, z_{2}, z_{3}$ and edges $y_{1} z_{1}, y_{1} z_{2}, y_{1} z_{3}, y_{2} z_{1}, y_{2} z_{2}, y_{2} z_{3}, x_{1} z_{1}, x_{2} z_{2}, x_{3} z_{3}$. It is easy to see that a 3 -edge coloring of the original graph exists if and only if it exists for the resulting graph.

Let \mathcal{Z}_{k} denote the set of cubic graphs of girth at least $k+1$, i.e., not containing cycles of length up to k inclusive. It is clear that \mathcal{Z}_{1} and \mathcal{Z}_{2} coincide with the set of all cubic graphs. Let us denote by \mathcal{Z}_{k}^{*} the set of graphs that are obtained from graphs of class \mathcal{Z}_{k} by sequentially replacing all their vertices with triangles, with repeated replacement of vertices in newly added triangles not allowed. Let $\mathcal{Z}_{k}^{* *}$ denote the set of graphs that are obtained from graphs of class \mathcal{Z}_{k} by sequentially replacing all their vertices with (2,3)-bicliques, with repeated replacement of vertices in newly added (2,3)-bicliques not allowed.

The following statement in part of the class \mathcal{Z}_{k}^{*} is Lemma 9 in the paper [6], and in the class $\mathcal{Z}_{k}^{* *}$ it can be proven by analogy with it.

Lemma 4. For each k PP problem is NP-complete for graphs from the classes \mathcal{Z}_{k}^{*} and $\mathcal{Z}_{k}^{* *}$.
The proof is based on the NP-completeness of 3-PP problem for any k in the set of subcubic graphs of girth at least k (see [38]), and also the equivalence of 3 -PP problems for a graph before and after replacing a vertex with a (2,3)-biclique.

Note that every 8-edge graph in $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ does not contain cycles of length other than from 3. Note also that every 8 -edge graph in $\left[\mathcal{Z}_{4}^{* *}\right]_{s}$ does not contain cycles of length other than 4 . It is clear that $\left[\mathcal{Z}_{4}^{*}\right]_{s} \subseteq \operatorname{Free}_{s}\left(\left\{B_{1}^{*}\right\}\right)$ and $\left[\mathcal{Z}_{4}^{* *}\right]_{s} \subseteq \operatorname{Free}_{s}\left(\left\{B_{1+}^{*}\right\}\right)$.

3. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS WITHOUT SUBGRAPH B_{1+}^{*}

By Belt $_{k}, k \geq 2$, we denote a graph such that

$$
\begin{aligned}
V\left(\operatorname{Belt}_{k}\right) & =\left\{v_{1}, v_{2}, \ldots, v_{k}, u_{1}, u_{2}, \ldots, u_{k}\right\}, \\
E\left(\operatorname{Belt}_{k}\right) & =\left\{v_{i} u_{i} \mid 1 \leq i \leq k\right\} \cup\left\{v_{i} v_{i+1}, u_{i} u_{i+1} \mid 1 \leq i \leq k-1\right\} .
\end{aligned}
$$

In other words, Belt ${ }_{k}$ is obtained from $C_{2 k}$ by adding $k-2$ parallel chords.
Lemma 5. Let $G=(V, E) \in \operatorname{Free}_{s}\left(\left\{B_{1+}^{*}\right\}\right)$ be an incompressible subcubic graph, and let Belt_{k} be an inclusion-maximal subgraph contained in G as a (not necessarily generated) subgraph but not contained in each of the graphs $K_{4}-e, K_{2,3}$, and $K_{3,3}-e$, with each of the edges $v_{1} u_{1}$ and $v_{k} u_{k}$ not included in any triangle of the graph G. Then

$$
\chi^{\prime}(G) \leq 3 \Leftrightarrow \chi^{\prime}\left(G \backslash V\left(\operatorname{Belt}_{k}\right)\right) \leq 3
$$

if none of the following conditions is satisfied:

1. $k \in\{3,4\}, v_{1} v_{k} \in E \vee u_{1} u_{k} \in E$, there exists an $w \in V$ such that

$$
w u_{1}, w u_{k} \in E \vee w v_{1}, w v_{k} \in E
$$

2. $k=3$, there exist vertices $w_{1}, w_{2}, w_{3} \in V$ such that

$$
w_{1} v_{1}, w_{1} v_{3}, w_{2} u_{1}, w_{2} u_{3}, w_{1} w_{3}, w_{2} w_{3} \in E .
$$

In these cases one has $\chi^{\prime}(G)=4$.
Proof. Since the graph G is incompressible, it does not contain dangling vertices. Since the subgraph Belt ${ }_{k}$ under consideration is not contained in any of the graphs $K_{4}-e, K_{3,3}-e$, then $v_{1} u_{2}, v_{2} u_{1}, v_{1} u_{3}, v_{3} u_{1} \notin E$.

Assume that $v_{1} u_{k} \in E$. Then $k \geq 4$. If u_{1} or v_{k} has a neighbor outside $V\left(\operatorname{Belt}_{k}\right)$, then $\left\langle G ; B_{1+}^{*}\right\rangle$. If neither u_{1} nor v_{k} has a neighbor outside $V\left(\operatorname{Belt}_{k}\right)$, then $\chi^{\prime}(G)=3$. Throughout what follows we will assume that $v_{1} u_{k}, u_{1} v_{k} \notin E$.

Assume that $v_{1} v_{k} \in E$ for $k \geq 3$. If $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{k}\right)=2$ or $u_{1} u_{k} \in E$, then $\chi^{\prime}(G)=3$. Since G is incompressible (consequently, does not contain bridges), we have

$$
\begin{aligned}
& N\left(u_{1}\right)=\left\{z^{\prime}, v_{1}, u_{2}\right\}, \\
& N\left(u_{k}\right)=\left\{z^{\prime \prime}, v_{k}, u_{k-1}\right\} .
\end{aligned}
$$

Since $\neg\left\langle G ; B_{1+}^{*}\right\rangle$, we have $k \leq 4$. If $z^{\prime}=z^{\prime \prime}$, then $\chi^{\prime}(G)=4$. If $z^{\prime} \neq z^{\prime \prime}$, then $\operatorname{deg}\left(z^{\prime}\right)=\operatorname{deg}\left(z^{\prime \prime}\right)=2$ because $\neg\left\langle G ; B_{1+}^{*}\right\rangle$. It can readily be seen that

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash V\left(\operatorname{Belt}_{k}\right)\right) \leq 3 ;
$$

this can be verified by taking the 3-coloring of the edges of the graph $G \backslash V\left(\right.$ Belt $\left._{k}\right)$ and coloring $z^{\prime} u_{1}$, $z^{\prime \prime} u_{k}, v_{1} v_{k}, v_{2} u_{2}, \ldots, v_{k-1} u_{k-1}$ in one color with further coloring of the remaining edges Belt ${ }_{k}$ in two colors. Throughout, we will assume that $v_{1} v_{k}, u_{1} u_{k} \notin E$ for $k \geq 3$.

Set

$$
N^{\prime}=\left(N\left(v_{1}\right) \cup N\left(u_{1}\right) \cup N\left(v_{k}\right) \cup N\left(u_{k}\right)\right) \backslash V\left(\operatorname{Belt}_{k}\right) .
$$

Due to the incompressibility of G, the set N^{\prime} contains a vertex adjacent to some vertex of $\left\{v_{1}, u_{1}\right\}$, as well as a vertex adjacent to some vertex of $\left\{v_{k}, u_{k}\right\}$.

Suppose that for each pair of vertices $\left\{v_{1}, u_{1}\right\}$ and $\left\{v_{k}, u_{k}\right\}$ either at least one of these vertices has degree 2 or at least one of them is adjacent to a vertex of degree 2 from N^{\prime}. Then

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash V\left(\operatorname{Belt}_{k}\right)\right) \leq 3 .
$$

Indeed, it suffices to consider the 3-coloring of edges $G \backslash V\left(\operatorname{Belt}_{k}\right)$ and in G, to color the edges between $\left(N\left(v_{1}\right) \cup N\left(u_{1}\right)\right) \backslash V\left(\operatorname{Belt}_{k}\right)$ and $\left\{v_{1}, u_{1}\right\}$ in one color, and to color the edges between $\left(N\left(v_{k}\right) \cup N\left(u_{k}\right)\right) \backslash V\left(\operatorname{Belt}_{k}\right)$ and $\left\{v_{k}, u_{k}\right\}$ also in one color. Thus, throughout what follows we assume that $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(v_{1}\right)=3$ and both of these vertices are adjacent to different vertices of degree 3 from N^{\prime}.

Assume that

$$
\begin{aligned}
& N\left(v_{1}\right)=\left\{z_{1}, v_{2}, u_{1}\right\}, \\
& N\left(u_{1}\right)=\left\{z_{2}, v_{1}, u_{2}\right\} .
\end{aligned}
$$

Then each of the following statements is true:
$-\operatorname{deg}\left(z_{1}\right)=\operatorname{deg}\left(z_{2}\right)=3$.

- $z_{2} \notin N\left(z_{1}\right)$ in view of maximality of the subgraph Belt $_{k}$.
- For $k=2$ one has $z_{2} \notin N\left(v_{2}\right)$, since otherwise the subgraph Belt ${ }_{2}$ under consideration is embedded in the subgraph $K_{3,3}-e$.
- For $k \geq 3$ one has $z_{1} v_{k}, z_{2} u_{k} \notin E$, since otherwise $\left\langle G ; B_{1+}^{*}\right\rangle$.

If $k=3$, then $z_{2} \neq v_{3}$ and $z_{1} \neq u_{3}$ due to the absence of bridges in G. Let us consider the situation when $z_{2} u_{3} \notin E$. Since $G \in \operatorname{Free}_{s}\left(\left\{B_{1+}^{*}\right\}\right)$, we have $\operatorname{deg}\left(z_{2}\right)=2$, and this case was analyzed earlier. The situation when $z_{1} v_{3} \notin E$ is considered similarly.

Consider the case where $N\left(z_{1}\right)=\left\{v_{1}, v_{3}, z_{3}\right\}, N\left(z_{2}\right)=\left\{u_{1}, u_{3}, z_{4}\right\}$. Since $G \in \operatorname{Free}_{s}\left(\left\{B_{1+}^{*}\right\}\right)$, we have $\operatorname{deg}\left(z_{3}\right)=\operatorname{deg}\left(z_{4}\right)=2$. If $z_{3} \neq z_{4}$, then

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash\left(V\left(\operatorname{Belt}_{3}\right) \cup\left\{z_{1}, z_{2}\right\}\right)\right) \leq 3,
$$

since it suffices to consider the 3-coloring of edges in $G \backslash\left(V\left(\operatorname{Belt}_{3}\right) \cup\left\{z_{1}, z_{2}\right\}\right)$ and to color $z_{1} z_{3}$, $z_{2} z_{4}, v_{1} u_{1}, v_{2} u_{2}$, and $v_{3} u_{3}$ in G in one color. If $z_{3}=z_{4}$, then $\chi(G)=4$.

If $k=2$, then, due to the incompressibility of G and the conditions in the lemma, we have

$$
\max \left(\operatorname{deg}\left(v_{2}\right), \operatorname{deg}\left(u_{2}\right)\right)=3, \quad z_{1} \notin N\left(u_{2}\right), \quad N\left(z_{1}\right) \cap N\left(v_{2}\right)=\left\{v_{1}\right\} .
$$

The graph G contains the subgraph B_{1+}^{*} if $\operatorname{deg}\left(v_{2}\right)=3$. If $\operatorname{deg}\left(v_{2}\right)=2$, then $N\left(u_{2}\right)=\left\{v_{2}, u_{1}, z_{5}\right\}$, and $z_{2} z_{5} \notin E$ in view of the maximality of Belt_{2}. It can readily be seen that $\operatorname{deg}\left(z_{2}\right)=2$, since $G \in \operatorname{Free}_{s}\left(\left\{B_{1+}^{*}\right\}\right)$. This case was treated earlier. The proof of Lemma 5 is complete.

Lemma 6. Let H^{*} and $H^{* *}$ be 8 -edge graphs belonging to $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ and $\left[\mathcal{Z}_{4}^{* *}\right]_{s}$, respectively. Then PP problem is polynomially solvable for subcubic graphs of the class Free ${ }_{s}\left(\left\{B_{1+}^{*}, H^{*}, H^{* *}\right\}\right)$.

Proof. By Lemma 3, we will assume that each connected component of the graphs H^{*} and $H^{* *}$ does not belong to \mathcal{T}. By Theorem 1, we assume that either $H^{*}=B_{1}^{+*}$ or H^{*} is not a forest, and also that either $H^{* *} \in\left\{{ }^{+} B_{1}^{*}, B_{1}^{+*}\right\}$ or $H^{* *}$ is not a forest. By Lemma 2, we will consider only incompressible graphs of the class $\operatorname{Free}_{s}\left(\left\{B_{1+}^{*}, H^{*}, H^{* *}\right\}\right)$. Let $G=(V, E)$ be an arbitrary such graph.

If $N(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$ for some vertex $x \in V$, then x belongs either to a triangle or to a generated C_{4}-cycle of the graph G. Indeed, suppose that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an independent set. Among its elements, at least two (say, x_{1} and x_{2}) have degree 3 in G, and the vertex x_{3} has degree at least 2 . We can assume that

$$
N\left(x_{1}\right) \cap N\left(x_{2}\right)=N\left(x_{2}\right) \cap N\left(x_{3}\right)=N\left(x_{1}\right) \cap N\left(x_{3}\right)=\{x\},
$$

otherwise x belongs to the generated C_{4}-cycle of the graph G, but then G contains the subgraph B_{1+}^{*}.
In the graph G, the set \mathfrak{B} of all its maximal subgraphs of the form Belt ${ }_{k}$ that are simultaneously not contained in the subgraphs $K_{4}-e, K_{2,3}$ and $K_{3,3}-e$ can be found in polynomial time. If this set is not empty, then consider an arbitrary subgraph Belt ${ }_{k}$. Based on the proof of Lemma 5, we can
assume that $v_{1} v_{k}, u_{1} u_{k} \notin E$ and case (2) is not realized. By Lemma 5 , we can assume that there exists a vertex $w \in V$ that forms a triangle with v_{k} and u_{k}. Let $w v_{1}, w u_{1} \notin E$, otherwise $\chi^{\prime}(G)=4$. If $k=2$, then

$$
N(w) \cap\left(N\left(v_{1}\right) \cup N\left(u_{1}\right)\right)=\left\{v_{2}, u_{2}\right\}
$$

in view of the maximality of the subgraph Belt ${ }_{2}$. Since $\neg\left\langle G ; B_{1+}^{*}\right\rangle$ and G incompressible, either $v_{1} u_{1}$ is included in a triangle or v_{1} is adjacent with a vertex of degree 3 and $\operatorname{deg}\left(u_{1}\right)=2$ or each of the vertices v_{1} and u_{1} is adjacent with its vertex of degree two, with these two vertices not being adjacent. In the last case, we contract $G\left[V\left(\right.\right.$ Belt $\left.\left._{k}\right) \cup\{w\}\right]$ into the vertex w^{\prime} to obtain a graph G^{\prime} that will be ordinary (since G is incompressible) with

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G^{\prime}\right) \leq 3
$$

By Lemma 1,

$$
\chi^{\prime}\left(G^{\prime}\right) \leq 3 \Leftrightarrow \chi^{\prime}\left(G^{\prime} \backslash\left\{w^{\prime}\right\}\right) \leq 3
$$

with $G^{\prime} \backslash\left\{w^{\prime}\right\} \cong G \backslash\left(V\left(\operatorname{Belt}_{k}\right) \cup\{w\}\right)$. Therewith we assume that either $v_{1} u_{1}$ is included in the triangle $\left(v_{1}, u_{1}, w^{\prime \prime}\right)$ or v_{1} is adjacent with a vertex of degree 3 and $\operatorname{deg}\left(u_{1}\right)=2$.

Note that

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash V\left(\text { Belt }_{k}\right)\right) \leq 3
$$

if $\operatorname{deg}(w)=2$, there exists a vertex $w_{1} \notin\left\{v_{k}, u_{k}\right\}, \operatorname{deg}\left(w_{1}\right)=2$ such that $w w_{1} \in E$ and $v_{1} u_{1}$ does not lie in the triangle $\left(v_{1}, u_{1}, w^{\prime \prime}\right)$, where $w^{\prime \prime}$ has a neighbor of degree 3 outside $V\left(\operatorname{Belt}_{k}\right)$; therefore in what follows, we assume that $\operatorname{deg}\left(w_{1}\right)=3$.

In addition, suppose that $\left(w_{1}, w_{2}, w_{3}\right)$ is a triangle in the graph G. Obviously,

$$
\left\{v_{1}, u_{1}\right\} \cap\left\{w_{2}, w_{3}\right\}=\emptyset \vee\left\{v_{1}, u_{1}\right\}=\left\{w_{2}, w_{3}\right\}
$$

and in the last case we have $\chi^{\prime}(G)=3$. In view of the incompressibility of the graph G, one of the vertices w_{2} and w_{3} has degree 3. Note that if $v_{1} w_{2} \in E$, then $N\left(u_{1}\right) \subseteq\left\{v_{1}, u_{2}, w_{3}\right\}$, since $\left\langle G ; B_{1+}^{*}\right\rangle$; therefore $|V(G)|=2 k+4$, as otherwise G contains a cutpoint. It follows from our reasoning that $\left\langle G ; H^{*}\right\rangle$, since G contains all 8-edge graphs in $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ that are not forests such that each connected component does not belong to \mathcal{T}. If w_{1} is a vertex of degree 2 of the subgraph $K_{2,3}$, then one of the other two vertices of degree 2 of this subgraph has degree 3 in G. It is easy to verify that $\left\langle G ; H^{* *}\right\rangle$.

Thus w_{1} is a vertex of degree 2 of some element Belt $_{k^{\prime}} \in \mathfrak{B}$. By Lemma 5 , we can assume that there exists a vertex that forms a triangle with two vertices Belt ${ }_{k^{\prime}}$, but then

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash V\left(\text { Belt }_{k}\right)\right) \leq 3
$$

Hence, according to our reasoning, we can assume that each generated C_{4}-cycle of the graph G is included in a certain subgraph $K_{2,3}$, which can be considered generated by the incompressibility of G. By Lemma 3, let G contain $2 T_{5,5,5}$ as a subgraph. Let us consider an arbitrary component of the connected components of this $2 T_{5,5,5}$.

Since G is incompressible and $\neg\left\langle G ; B_{1+}^{*}\right\rangle$, from symmetry considerations we can assume that either $x_{1} y_{1} \in E$ or $x_{1} y_{2} \in E$ and $y_{1} x_{2} \in E$ or there exists a vertex $t \notin V\left(T_{5,5,5}\right)$ such that $x_{1} t, y_{1} t, z_{1} t \in E$. In each of these cases, we contract either $G\left[\left\{v, x_{1}, y_{1}\right\}\right]$ or $G\left[\left\{v, x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ or $G\left[\left\{v, x_{1}, y_{1}, z_{1}, t\right\}\right]$ to the vertex v^{*} to obtain a graph G^{*} for which

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G^{*}\right) \leq 3
$$

At the same time, if the vertex v^{*} has at most one neighbor of degree 3 in G^{*}, then by Lemma 1 we have

$$
\chi^{\prime}\left(G^{*}\right)=3 \Leftrightarrow \chi^{\prime}\left(G^{*} \backslash\left\{v^{*}\right\}\right) \leq 3
$$

Since $G^{*} \backslash\left\{v^{*}\right\}$ is a generated subgraph of the graph G, we assume that this case is not realized.
If $x_{1} y_{1} \in E$, then we can assume that the vertices x_{2} and y_{2} have degree 3 in G. Since $\neg\left\langle G ; B_{1+}^{*}, H^{*}\right\rangle$, we conclude that x_{2} and y_{2} are contained in generated subgraphs each of which
is isomorphic to $K_{2,3}$. Then $\left\langle G ; H^{* *}\right\rangle$, so we can assume that the first case is not realized for any of the components of $2 T_{5,5,5}$. In the second case, we can assume that $\operatorname{deg}\left(x_{3}\right)=3$. If x_{3} is contained in the generated copy of $K_{2,3}$, then $\left\langle G ; H^{* *}\right\rangle$. If x_{3} is contained in a triangle, then also $\left\langle G ; H^{* *}\right\rangle$ (note that the subgraph $2 C_{4}$ is obtained from two different components of $2 T_{5,5,5}$). The third case is similar to the second one.

Lemma 3 implies the assertion in the present lemma. The proof of Lemma 6 is complete.

4. POLYNOMIAL SOLVABILITY OF pp PROBLEM FOR SOME CLASSES OF SUBCUBIC GRAPHS WITHOUT SUBGRAPHS $B_{1}^{*}+P_{2},{ }^{+} B_{1}^{*}, B_{1}^{+*}$

Lemma 7. Let $H \in\left\{B_{1}^{*}+P_{2},{ }^{+} B_{1}^{*}, B_{1}^{+*}\right\}$, and let H^{*} be an 8-edge graph belonging to $\left[\mathcal{Z}_{4}^{*}\right]_{s}$. Then PP problem is polynomially solvable for subcubic graphs in $\operatorname{Free}_{s}\left(\left\{H, H^{*}\right\}\right)$.

Proof. Let us show that in the class $\operatorname{Free}_{s}\left(\left\{H, H^{*}\right\}\right)$, PP problem is polynomially reducible to the same problem for graphs in $\operatorname{Free}_{s}\left(\left\{B_{1}^{*}, H, H^{*}, T_{5,5,5}\right\}\right)$. Taking this into account, the validity of Lemma 7 will follow from Lemma 3. By Theorem 1 and Lemma 3, we will assume that $H \in\left\{{ }^{+} B_{1}^{*}, B_{1}^{+*}\right\}, H^{*}$ is not a forest for $H^{*} \neq B_{1}^{+*}$, and each connected component of H^{*} does not belong to \mathcal{T}.

By Lemma 2, it suffices to consider the incompressible graph $G=(V, E) \in \operatorname{Free}_{s}\left(\left\{H, H^{*}\right\}\right)$. Suppose that G contains a subgraph B_{1}^{*} with the set of vertices $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}\right\}$ and the set of edges $\left\{a_{1} a_{2}, a_{2} a_{3}, b_{1} b_{2}, b_{2} b_{3}, a_{2} c_{1}, b_{2} c_{1}, c_{1} c_{2}\right\}$. For $H={ }^{+} B_{1}^{*}$, none of the vertices $a_{1}, a_{3}, b_{1}, b_{3}$ has a neighbor outside $V\left(B_{1}^{*}\right)$, so either $|V(G)|=8$ or c_{2} is a cutpoint in the graph G.

Consider the case of $H=B_{1}^{+*}$. It is easy to see that either $|V(G)| \leq 16$ or c_{2} is a cutpoint in the graph G or there exists a path $\left(u, u_{1}, u_{2}\right)$ in which $u \in\left\{a_{1}, a_{3}, b_{1}, b_{3}\right\}$ and $u_{1}, u_{2} \notin V\left(B_{1}^{*}\right)$. We can assume that $u=b_{1}$. Since $\neg\left\langle G ; B_{1}^{+*}\right\rangle$ and G is incompressible, we conclude that $u_{1} c_{2}, u_{1} a_{1}$, $u_{1} a_{3} \notin E$, and if $\operatorname{deg}\left(b_{1}\right)=2$, then $\operatorname{deg}\left(u_{1}\right)=3, u_{1} b_{3} \in E, \operatorname{deg}\left(b_{3}\right)=2$, which is impossible due to the incompressibility of G. For the same reasons, if $\operatorname{deg}\left(b_{1}\right)=3$, then

$$
b_{1} a_{1} \in E \vee b_{1} a_{3} \in E, \quad \operatorname{deg}\left(u_{1}\right)=2, \quad \operatorname{deg}\left(u_{2}\right)=3 ;
$$

this implies that $\left\langle G ; B_{1}^{+*}\right\rangle$.
Thus, we can assume that G lies in $\operatorname{Free}_{s}\left(\left\{B_{1}^{*}\right\}\right)$ and contains the subgraph $T_{5,5,5}$ by Lemma 3. Let us consider two options: (1) the set $\left\{x_{1}, y_{1}, z_{1}\right\}$ is independent, (2) the set $\left\{x_{1}, y_{1}, z_{1}\right\}$ is not independent.

1. In view of the incompressibility of the graph G we can assume that $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(y_{1}\right)=3$. Let $N\left(x_{1}\right)=\left\{x_{1}^{\prime}, v, x_{2}\right\}$ and $N\left(y_{1}\right)=\left\{y_{1}^{\prime}, v, y_{2}\right\}$. It is obvious that either $x_{1}^{\prime}=y_{1}^{\prime}$ or $x_{1}^{\prime}=y_{2}$ or $y_{1}^{\prime}=x_{2}$, otherwise $\left\langle G ; B_{1}^{*}\right\rangle$.
Assume that $x_{1}^{\prime}=y_{1}^{\prime}$. Then since $\neg\left\langle G ; B_{1}^{*}\right\rangle$, for each vertex $u \in\left\{x_{2}, y_{2}, z_{1}\right\}$ either $\operatorname{deg}(u)=2$ or $u x_{1}^{\prime} \in E$, and if $x_{1}^{\prime} z_{1} \in E$, then $\operatorname{deg}\left(z_{2}\right)=2$, while if $x_{1}^{\prime} x_{2}, x_{1}^{\prime} y_{2}, x_{1}^{\prime} z_{1} \notin E$, then either $\operatorname{deg}\left(x_{1}^{\prime}\right)=2$ or x_{1}^{\prime} is adjacent to the vertex $x_{1}^{\prime \prime}$ of degree 2 . It can readily be seen that if $x_{1}^{\prime} x_{2}$, $x_{1}^{\prime} y_{2} \notin E$, then

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G \backslash\left\{v, x_{1}, y_{1}, x_{1}^{\prime}\right\}\right) \leq 3,
$$

since it is sufficient to color $y_{1} y_{2}$ and $z_{1} v$ in one color and $x_{1} x_{2}$ and $x_{1}^{\prime} x_{1}^{\prime \prime}$ (if such a vertex $x_{1}^{\prime \prime}$ exists) also in one color.
Suppose that $x_{1}^{\prime} x_{2} \in E, x_{1}^{\prime} y_{2} \notin E$ (the case of $x_{1}^{\prime} x_{2} \notin E$ and $x_{1}^{\prime} y_{2} \in E$ is treated similarly). Then $\operatorname{deg}\left(y_{2}\right)=\operatorname{deg}\left(z_{1}\right)=2$. Let us contract the subgraph $G\left[\left\{v, x_{1}, y_{1}, x_{2}, x_{1}^{\prime}\right\}\right]$ into the vertex u_{1} to obtain a graph G_{1} for which the following holds by Lemma 1:

$$
\begin{gathered}
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G_{1}\right) \Leftrightarrow \chi^{\prime}\left(G_{1} \backslash\left\{u_{1}\right\}\right) \leq 3, \\
G_{1} \backslash\left\{u_{1}\right\} \cong G \backslash\left\{v, x_{1}, y_{1}, x_{2}, x_{1}^{\prime}\right\} .
\end{gathered}
$$

Suppose that $x_{1}^{\prime} z_{1} \in E$. Then $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(y_{2}\right)=\operatorname{deg}\left(z_{2}\right)=2$. Let us contract $G\left[\left\{v, x_{1}, y_{1}, z_{1}, x_{1}^{\prime}\right\}\right]$ into the vertex u_{2} to obtain a graph G_{2} for which the following holds by Lemma 1 :

$$
\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G_{2}\right) \leq 3 \Leftrightarrow \chi^{\prime}\left(G_{2} \backslash\left\{u_{2}\right\}\right) \leq 3,
$$

$$
G_{2} \backslash\left\{u_{2}\right\} \cong G \backslash\left\{v, x_{1}, y_{1}, z_{1}, x_{1}^{\prime}\right\} .
$$

The cases where $x_{1}^{\prime}=y_{2}$ or $y_{1}^{\prime}=x_{2}$ are treated similarly. To do this, it is sufficient to consider a triode centered at the vertex x_{1} or at the vertex y_{1} and repeat the presented proof for this triode.
2. From symmetry considerations we can assume that $x_{1} y_{1} \in E$. Let us contract the triangle $\left(v, x_{1}, y_{1}\right)$ to the vertex u_{3} to obtain the graph G_{3}. It is clear that $\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G_{3}\right) \leq 3$. If at most one vertex has degree 3 among x_{2}, y_{2}, z_{1}, then, by Lemma 1 we have

$$
\begin{gathered}
\chi^{\prime}\left(G_{3}\right) \leq 3 \Leftrightarrow \chi^{\prime}\left(G_{3} \backslash\left\{u_{3}\right\}\right) \leq 3, \\
G_{3} \backslash\left\{u_{3}\right\} \cong G \backslash\left\{v, x_{1}, y_{1}\right\} .
\end{gathered}
$$

Taking this into account, due to symmetry, we can assume that $N\left(x_{2}\right)=\left\{x_{2}^{\prime}, x_{1}, x_{3}\right\}$ and $N\left(y_{2}\right)=\left\{y_{2}^{\prime}, y_{1}, y_{3}\right\}$.
Let us assume that $x_{2}^{\prime}=y_{2}$. Let us contract the subgraph $G\left[\left\{v, x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ into the vertex u_{4} to obtain a graph G_{4} such that $\chi^{\prime}(G)=3 \Leftrightarrow \chi^{\prime}\left(G_{4}\right) \leq 3$. We can assume that $\operatorname{deg}\left(x_{3}\right)=3$ or $\operatorname{deg}\left(y_{3}\right)=3$, otherwise by Lemma 1 ,

$$
\begin{aligned}
& \chi^{\prime}\left(G_{4}\right) \leq 3 \Leftrightarrow \chi^{\prime}\left(G_{4} \backslash\left\{u_{4}\right\}\right) \leq 3, \\
& G_{4} \backslash\left\{u_{4}\right\} \cong G \backslash\left\{v, x_{1}, y_{1}, x_{2}, y_{2}\right\} ;
\end{aligned}
$$

therefore $\left\langle G ; B_{1}^{*}\right\rangle$, and further we assume that $x_{2}^{\prime} \neq y_{2}$.
If $x_{2}^{\prime} x_{3} \notin E$, then, due to the incompressibility of G, either $\operatorname{deg}\left(x_{3}\right)=3$ or $\operatorname{deg}\left(x_{2}^{\prime}\right)=3$, so $\left\langle G ; B_{1}^{*}\right\rangle$. If $x_{2}^{\prime} x_{3}$ and $x_{2}^{\prime} y_{2} \in E$, then $\left\langle G ; B_{1}^{*}\right\rangle$. If $x_{2}^{\prime} x_{3} \in E$ and $x_{2}^{\prime} y_{2} \notin E$, then G contains all 8-edge graphs in $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ that are not forests each connected component of which does not belong to \mathcal{T}, so $\left\langle G ; H^{*}\right\rangle$.
Lemma 3 implies the assertion in the present lemma. The proof of Lemma 7 is complete.

5. MAIN RESULT

The main result of the present paper is the following assertion.
Theorem 2. Let \mathcal{Y} be a set of graphs each of which has at most 8 edges. Then PP problem is polynomially solvable for graphs in $\mathcal{X}=\operatorname{Free}_{s}(\mathcal{Y})$ if

1. Either \mathcal{Y} contains a subcubic forest not belonging to the set

$$
\left[\left\{B_{1}^{*}+P_{2}+O_{n},{ }^{+} B_{1}^{*}+O_{n}, B_{1+}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s} .
$$

2. Either \mathcal{Y} simultaneously contains a graph in $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ and a graph in

$$
\left[\left\{B_{1}^{*}+P_{2}+O_{n},{ }^{+} B_{1}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s} .
$$

3. Or \mathcal{Y} simultaneously contains a graph in $\left[\left\{B_{1+}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s}$ and graphs in $\left[\mathcal{Z}_{4}^{*}\right]_{s}$ and $\left[\mathcal{Z}_{4}^{* *}\right]_{s}$. In all other cases it is NP-complete for graphs in \mathcal{X}.

Proof. Recall that PP problem is NP-complete in the class \mathcal{Z}_{k} for any k (see [38]). Therefore, we can assume that $\mathcal{Z}_{k} \nsubseteq \mathcal{X}$ for any k. Note that \mathcal{Y} is finite (up to the addition of isolated vertices) and for any graph G^{*} that is not a subcubic forest, there exists a k^{*} (which can be set equal to the girth of the graph $\left.G^{*}\right)$ such that $\mathcal{Z}_{k^{*}+1} \subseteq \operatorname{Free}_{s}\left(\left\{G^{*}\right\}\right)$. Therefore, \mathcal{Y} contains a subcubic forest.

By Lemma 3, we can assume that each connected component of each graph in \mathcal{Y} does not belong to \mathcal{T}. Let $F \in \mathcal{Y}$ be a subcubic forest. Note that $\left[\left\{B_{1}^{+*}+O_{n} \mid n \geq 0\right\}\right]_{s} \subseteq\left[\mathcal{Z}_{4}^{*}\right]_{s}$. By Theorem 1
and Lemma 7, PP problem is polynomially solvable in the class Free $_{s}(\{F\})$ if F does not belong to the set

$$
\left[\left\{B_{1}^{*}+P_{2}+O_{n},{ }^{+} B_{1}^{*}+O_{n}, B_{1+}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s} .
$$

If F is a graph in

$$
\left[\left\{B_{1}^{*}+P_{2}+O_{n},{ }^{+} B_{1}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s}
$$

and $\mathcal{Y} \cap\left[\mathcal{Z}_{4}^{*}\right]_{s}=\emptyset$, then $\mathcal{Z}_{4}^{*} \subseteq \mathcal{X}$. PP problem is NP-complete for graphs in \mathcal{X} by Lemma 4. If however $\mathcal{Y} \cap\left[\mathcal{Z}_{4}^{*}\right]_{s} \neq \emptyset$, then PP problem is polynomially solvable for graphs in \mathcal{X} by Lemma 7 .

Assume that $F \in\left[\left\{B_{1+}^{*}+O_{n} \mid n \geq 0\right\}\right]_{s}$. If

$$
\mathcal{Y} \cap\left[\mathcal{Z}_{4}^{*}\right]_{s}=\emptyset \vee \mathcal{Y} \cap\left[\mathcal{Z}_{4}^{* *}\right]_{s}=\emptyset
$$

then $\mathcal{Z}_{4}^{*} \subseteq \mathcal{X} \vee \mathcal{Z}_{4}^{* *} \subseteq \mathcal{X}$ and PP problem is NP-complete for graphs in \mathcal{X} by Lemma 4. If however $\mathcal{Y} \cap\left[\mathcal{Z}_{4}^{*}\right]_{s} \neq \emptyset$ and $\mathcal{Y} \cap\left[\mathcal{Z}_{4}^{* *}\right]_{s} \neq \emptyset$, then PP problem is polynomially solvable for graphs in \mathcal{X} by Lemma 6 . The proof of Theorem 2 is complete.

CONCLUSIONS

The present paper gives a complete classification of the computational complexity of the edge coloring problem for all classes of graphs defined by sets of forbidden subgraphs each of which has no more than 8 edges. Namely, for each such set of prohibitions it is established that for the class of graphs it defines, the edge coloring problem is either polynomially solvable or NP-complete. This classification completes the development of the results in the paper [7].

The next natural step is to consider 9 -edge prohibitions. Obtaining a complete complexity dichotomy for them and the edge coloring problem is an interesting goal for future research. Apparently, this problem is much more difficult than for the 8 -edge case.

FUNDING

Sections 2 and 3 have been obtained with the support of the Russian Foundation for Basic Research and the Belarusian Republic Foundation for Basic Research, project no. 20-51-04001 (F21RM001). Sections 4 and 5 were supported by the Russian Science Foundation, project no. 21-11-00194, https://rscf.ru/en/project/21-11-00194/.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

1. I. Holyer, "The NP-completeness of edge-coloring," SIAM J. Comput. 10 (4), 718-720 (1981).
2. V. G. Vizing, "On an estimate of the chromatic index of a p-graph," in Discrete Analysis (Inst. Mat. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1964), Vol. 3, pp. 25-30.
3. E. Galby, P. T. Lima, D. Paulusma, and B. Ries, "Classifying k-edge colouring for H-free graphs," Inf. Process. Lett. 146, 39-43 (2019).
4. D. S. Malyshev, "The complexity of the edge 3 -colorability problem for graphs without two induced fragments each on at most six vertices," Sib. Elektron. Mat. Izv. 11, 811-822 (2014).
5. D. S. Malyshev, "Complexity classification of the edge coloring problem for a family of graph classes," Discrete Math. Appl. 27 (2), 97-101 (2017).
6. D. S. Malyshev, "Complete complexity dichotomy for 7 -edge forbidden subgraphs in the edge coloring problem," J. Appl. Ind. Math. 14 (4), 706-721 (2020).
7. D. S. Malyshev and O. I. Duginov, "Some cases of polynomial solvability for the edge colorability problem generated by forbidden 8-edge subcubic forests," J. Appl. Ind. Math. 16 (2), 276-291 (2022).
8. M. Barnaby, D. Paulusma, and S. Siani, "Colouring graphs of bounded diameter in the absence of small cycles," Discrete Appl. Math. 314 (15), 150-161 (2022).
9. F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong, "Three-coloring and list three-coloring of graphs without induced paths on seven vertices," Combinatorica 38 (4), 779-801 (2018).
10. H. J. Broersma, P. A. Golovach, D. Paulusma, and J. Song, "Updating the complexity status of coloring graphs without a fixed induced linear forest," Theor. Comput. Sci. 414 (1), 9-19 (2012).
11. K. Cameron, S. Huang, I. Penev, and V. Sivaraman, "The class of (P_{7}, C_{4}, C_{5})-free graphs: Decomposition, algorithms, and χ-boundedness," J. Graph Theory 93 (4), 503-552 (2019).
12. K. Cameron, M. da Silva, S. Huang, and K. Vuskovic, "Structure and algorithms for (cap, even hole)-free graphs," Discrete Math. 341, 463-473 (2018).
13. Y. Dai, A. Foley, and C. Hoàng, "On coloring a class of claw-free graphs: To the memory of Frédéric Maffray," Electron. Notes Theor. Comput. Sci. 346, 369-377 (2019).
14. D. Fraser, A. Hamela, C. Hoàng, K. Holmes, and T. LaMantia, "Characterizations of $\left(4 K_{1}, C_{4}, C_{5}\right)$-free graphs," Discrete Appl. Math. 231, 166-174 (2017).
15. P. Golovach, M. Johnson, D. Paulusma, and J. Song, "A survey on the computational complexity of coloring graphs with forbidden subgraphs," J. Graph Theory 84, 331-363 (2017).
16. P. A. Golovach, D. Paulusma, and J. Song, " 4 -Coloring H-free graphs when H is small," Discrete Appl. Math. 161 (1-2), 140-150 (2013).
17. C. Hoàng, M. Kamiński, V. V. Lozin, J. Sawada, and X. Shu, "Deciding k-colorability of P_{5}-free graphs in polynomial time," Algorithmica 57 (1), 74-81 (2010).
18. C. Hoàng and D. Lazzarato, "Polynomial-time algorithms for minimum weighted colorings of $\left(P_{5}, \overline{P_{5}}\right)$ free graphs and similar graph classes," Discrete Appl. Math. 186, 105-111 (2015).
19. S. Huang, "Improved complexity results on k-coloring P_{t}-free graphs," Eur. J. Comb. 51, 336-346 (2016).
20. T. Karthick, F. Maffray, and L. Pastor, "Polynomial cases for the vertex coloring problem," Algorithmica 81 (3), 1053-1074 (2017).
21. T. Klimošová, J. Malík, T. Masařík, J. Novotná, D. Paulusma, and V. Slívová, "Colouring $\left(P_{r}+P_{s}\right)$-free graphs," Algorithmica 82 (7), 1833-1858 (2020).
22. D. Král', J. Kratochvíl, Z. Tuza, and G. Woeginger, "Complexity of coloring graphs without forbidden induced subgraphs," Proc. 27th Int. Workshop Graph-Theor. Concepts Comput. Sci. (Boltenhagen, Germany, June 14-16, 2001) (Heidelberg, Springer, 2001), Lect. Notes Comput. Sci., Vol. 2204, pp. 254-262.
23. V. V. Lozin and D. S. Malyshev, "Vertex coloring of graphs with few obstructions," Discrete Appl. Math. 216, 273-280 (2017).
24. D. S. Malyshev, "The coloring problem for classes with two small obstructions," Optim. Lett. 8 (8), 2261-2270 (2014).
25. D. S. Malyshev, "The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs," Discrete Math. 338 (11), 1860-1865 (2015).
26. D. S. Malyshev, "Two cases of polynomial-time solvability for the coloring problem," J. Comb. Optim. 31 (2), 833-845 (2016).
27. D. S. Malyshev, "The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5 -vertex forbidden induced subgraphs," Graphs Comb. 33 (4), 1009-1022 (2017).
28. D. S. Malyshev, "Polynomial-time approximation algorithms for the coloring problem in some cases," J. Comb. Optim. 33, 809-813 (2017).
29. D. S. Malyshev, "The weighted coloring problem for two graph classes characterized by small forbidden induced structures," Discrete Appl. Math. 47, 423-432 (2018).
30. D. S. Malyshev, "The vertex colourability problem for \{claw, butterfly\}-free graphs is polynomial-time solvable," Optim. Lett. 15 (2), 311-326 (2021).
31. D. S. Malyshev and O. O. Lobanova, "Two complexity results for the vertex coloring problem," Discrete Appl. Math. 219, 158-166 (2017).
32. D. S. Malyshev and O. V. Pristavchenko, "An intractability result for the vertex 3-colourability problem," Optim. Lett. 16, 1403-1409 (2022).
33. D. S. Malyshev, O. O. Razvenskaya, and P. M. Pardalos, "The computational complexity of weighted vertex coloring for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs," Optim. Lett. 15 (1), 137-152 (2021).
34. O. O. Razvenskaya and D. S. Malyshev, "Efficient solvability of the weighted vertex coloring problem for some two hereditary graph classes," J. Appl. Ind. Math. 15 (1), 97-117 (2021).
35. D. V. Sirotkin and D. S. Malyshev, "On the complexity of the vertex 3-coloring problem for the hereditary graph classes with forbidden subgraphs of small size," J. Appl. Ind. Math. 12 (4), 759-769 (2018).
36. S. Spirkl, M. Chudnovsky, and M. Zhong, "Four-coloring P_{6}-free graphs," Proc. 30th Annu. ACM-SIAM Symp. Discrete Algorithms (San Diego, CA, USA, January 6-9, 2019) (SIAM, Philadelphia, PA, 2019), pp. 1239-1256.
37. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Vol. 24 of Algorithms Comb. (Springer, Berlin, 2003).
38. M. Kamiński and V. V. Lozin, "Coloring edges and vertices of graphs without short or long cycles," Contrib. Discrete Math. 2 (1), 61-66 (2007).

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

