Силаев А.М., Силаева М.В. Нижний Новгород, НИУ ВШЭ – Нижний Новгород

## ОЦЕНИВАНИЕ ПАРАМЕТРОВ МОДЕЛЕЙ БИНАРНОГО ВЫБОРА С УЧЕТОМ ИЗМЕНЕНИЙ В СЛУЧАЙНЫЙ МОМЕНТ ВРЕМЕНИ

Задача оценки параметров последовательности независимых бинарных наблюдаемых случайных величин с учетом изменений в случайный момент времени решалась во многих работах. Например, в [1-3] рассматривались модели, в которых наблюдается последовательность независимых случайных величин  $y_1^T \equiv \{y_1, y_2, ..., y_T\}$ , в которой  $y_i$  распределены по Бернулли, то есть принимают значения 0 и 1 с вероятностями

$$P(y_k = 1) = \begin{cases} \theta_0, & k < \tau \\ \theta_1, & k \ge \tau \end{cases}, \quad (k = 1, 2, \dots, T),$$
(1)

где  $\theta_0$ ,  $\theta_1$  и  $\tau$  – оцениваемые параметры,  $P(y_t = 0) = 1 - P(y_t = 1)$ . В [1] для получения оценок параметров использовался метод максимального правдоподобия, в [2] оценки вычислялись с помощью байесовского анализа, в [3] была предложена статистика типа кумулятивных сумм, которая использовалась для оценивания вероятности гипотезы отсутствия изменений и оценивалось значение момента  $\tau$ .

В настоящей работе рассматриваются модели бинарных регрессий с учетом изменений параметров в случайный момент времени, которые обобщают модель (1), поскольку предполагают, что вероятности состояний бинарного наблюдаемого процесса  $y_1^T \equiv \{y_1, y_2, ..., y_T\}$  могут зависеть от регрессоров. Пусть наблюдаемая переменная  $y_k$  принимает бинарные значения 0 или 1 в зависимости от того, больше или меньше нуля ненаблюдаемая (латентная) переменная  $y_k^*$ :

$$y_k = \begin{cases} 1, & y_k^* \ge 0\\ 0, & y_k^* < 0 \end{cases}, \quad (k = 1, 2, \dots, T).$$
(2)

Скрытая переменная  $y_k^*$  описывается моделью линейной регрессии со скачкообразным изменением параметров в случайный момент времени  $\tau$ :

$$y_k^* = \begin{cases} \beta_0 x_k + u_k, & k < \tau; \\ \beta_1 x_k + u_k, & k \ge \tau; \end{cases} \quad (k = 1, 2, \dots, T). \tag{3}$$

Здесь  $x_k$  – вектор регрессоров,  $\beta_0$  и  $\beta_1$  – параметры модели,  $u_k$  – случайная ошибка. Предполагается, что  $u_k$  – независимые случайные величины с нулевым средним значением и единичной дисперсией с распределением F(u). Из (2), (3) следует, что

$$P(y_k = 1) = P(y_k^* \ge 0) = \begin{cases} 1 - F(-\beta_0 x_k), & k < \tau \\ 1 - F(-\beta_1 x_k), & k \ge \tau \end{cases}, \quad (k = 1, 2, \dots, T).$$
(4)

Если случайные ошибки  $u_k$  имеют симметричное относительно нуля распределение, то F(u) = 1 - F(-u), поэтому в этом случае из (4) получим

$$P(y_k = 1) = \begin{cases} F(\beta_0 x_k), & k < \tau \\ F(\beta_1 x_k), & k \ge \tau \end{cases}, \quad (k = 1, 2, \dots, T).$$
(5)

В частном случае, если  $x_k = 1$  и параметры модели  $\beta_0$  и  $\beta_1$  также скалярные величины, то выражение (5) принимает вид (1), считая, что  $\theta_0 = F(\beta_0)$  и  $\theta_1 = F(\beta_1)$ .

К настоящему времени по проблеме обнаружения скачкообразных изменений свойств случайных процессов и оценке их параметров опубликовано большое число работ (см., например, монографии [4-6], обзоры и библиографии [7-9]), но вопросы оценки параметров и апостериорных вероятностей момента появления скачка в моделях бинарного выбора исследованы недостаточно. При этом модели бинарного выбора широко используются в экономике, медицине, биологии, физике и других науках.

В настоящей работе для оценивания параметров моделей бинарного выбора со скачкообразными изменениями в случайный момент времени предлагается алгоритм, основанный на использовании моделей марковских случайных последовательностей и априорной вероятности момента появления скачка на интервале наблюдения. В отличие от известных методов исследуемый алгоритм позволяет находить не только оценку момента скачкообразного изменения параметров, а целиком апостериорное распределение вероятности момента появления скачка, которое содержит более полную информацию и может быть полезным при анализе качества оценивания.

Будем считать, что  $\beta_0$ ,  $\beta_1$  и  $\tau$  взаимонезависимы и заданы априорные вероятности  $P_{\tau}(\tau)$  дискретных целочисленных значений случайного момента скачка  $\tau \ge 1$ . Задача состоит в том, чтобы по реализациям наблюдений  $y_1^T$  и регрессоров  $x_1^T$  найти оценки параметров  $\beta_0$ ,  $\beta_1$  и момента скачка  $\tau$ . Для решения поставленной задачи применим вариант ЕМ алгоритма [10]. Если параметр  $\tau$  заранее известен, то весь интервал наблюдения можно разбить на участки, соответствующие значениям  $k < \tau$  (отсутствия скачка к моменту k) и  $k \ge \tau$  (появления скачка к моменту k).

Для интервала времени  $1 \le k < \tau$ , применяя формулу Байеса, можно записать выражения для рекуррентного вычисления функции правдоподобия  $l_0(\beta_0; \tau - 1) \equiv P(y_1^{\tau-1}, x_1^{\tau-1} | \beta_0)$  вектора параметров  $\beta_0$  при всех значениях параметра  $\tau$  из интервала  $1 \le \tau \le T$ . Аналогично для интервала времени  $\tau \le k \le T$ , применяя формулу Байеса, можно записать выражения для рекуррентного вычисления апостериорной плотности вероятности  $l_1(\beta_1; \tau, T) \equiv P(y_{\tau}^T, x_{\tau}^T | \beta_1)$  вектора параметров  $\beta_1$  при  $1 \le \tau \le T$ . С другой стороны, если векторы параметров  $\beta_0$  и  $\beta_1$  заранее известны, то можно записать выражения для рекуррентного вычисления апостериорной вероятности  $W_{\tau}(\tau; \beta_0, \beta_1, T) \equiv P(\tau | y_1^T, x_1^T, \beta_0, \beta_1)$  момента скачка  $\tau$ , используя свойство марковости процесса  $x_k$ и формулу Байеса. В соответствии с ЕМ алгоритмом вместо точных значений параметров модели  $\theta_0$ ,  $\theta_1$  и  $\tau$ , которые в реальности не известны, в формулы для  $l_0(\beta_0; \tau - 1)$  и  $l_1(\beta_1; \tau, T)$  подставляем оценки  $\hat{\tau}$ , а в уравнения для  $W_{\tau}(\tau; \beta_0, \beta_1, T)$  оценки  $\hat{\beta}_0$ ,  $\hat{\beta}_1$ . Можно организовать чередование вычислений оценок параметров в рассматриваемой задаче следующим образом. На первом шаге при некотором начальном значении оценки момента появления  $\hat{\tau}^{(0)}$  из  $l_0(\beta_0; \hat{\tau}^{(0)} - 1)$  и  $l_1(\beta_1; \hat{\tau}^{(0)}, T) W_1(\theta_1; \hat{\tau}^{(0)}, T)$  находим оценки для параметров  $\hat{\beta}_0^{(0)}$  и  $\hat{\beta}_1^{(0)}$  в соответствии с критерием максимального правдопости от функции распределения шумов  $u_k$  в уравнении (3)). Далее при фиксированных значениях параметров  $\hat{\beta}_0^{(0)}$  и  $\hat{\beta}_1^{(0)}$ ,  $\hat{\beta}_1^{(0)}, \hat{\Gamma}_1$ ). Используя  $\hat{\tau}^{(1)}$ , с помощью  $l_0(\beta_0; \hat{\tau}^{(1)} - 1)$  и  $l_1(\beta_1; \hat{\tau}^{(1)}, T)$  находим оценки для параметров  $\hat{\beta}_0^{(1)}$  и  $\hat{\beta}_1^{(1)}, T$ ). Используя  $\hat{\tau}^{(1)}$ , с помощью  $l_0(\beta_0; \hat{\tau}^{(1)} - 1)$  и  $l_1(\beta_1; \hat{\tau}^{(1)}, T)$  находим оценки для параметров  $\hat{\beta}_0^{(1)}$  и  $\hat{\beta}_1^{(1)}$ , T). В итоге вычисления производятся в количестве M итераций в соответствии с схемой:

$$\hat{\tau}^{(i-1)} \Rightarrow \hat{\beta}_0^{(i-1)}, \ \hat{\beta}_1^{(i-1)} \ \Rightarrow \ \hat{\tau}^{(i)} \ \Rightarrow \ \hat{\beta}_0^{(i)}, \ \hat{\beta}_1^{(i)}, \ (i = 1, 2, ..., M).$$

Можно ожидать, что в результате достаточно большого количества итераций *М* оценки параметров будут сходится к значениям близким к истинным.

Проверка работоспособности полученного алгоритма проводилась с помощью компьютерного моделирования ряда тестовых примеров. Генерировались реализации скрытой переменной  $y_k^*$  в виде регрессии со скачкообразными изменениями параметров:

$$y_k^* = \begin{cases} \alpha_0 + \gamma_0 z_k + u_k, & k < \tau; \\ \alpha_1 + \gamma_1 z_k + u_k, & k \ge \tau; \end{cases} \quad (k = 1, 2, \dots, T).$$
(6)

и реализации бинарной переменной  $y_1^T \equiv \{y_1, y_2, ..., y_T\}$  с помощью уравнения (2). Здесь  $\alpha_0, \gamma_0, \alpha_1, \gamma_1$  и  $\tau$  – оцениваемые параметры модели;  $u_k$  – независимые гауссовские случайные величины с нулевым средним значением и единичной дисперсией:  $u_k \sim iidN(0,1)$ . Процесс  $z_k$  задавался в виде белого гауссовского шума с нулевым средним значением и единичной дисперсией:  $z_k \sim iidN(0,1)$ . Отметим, что модель (6) принимает вид регрессии (3), если ввести обозначения для вектор-строк параметров  $\beta_0 = (\alpha_0, \gamma_0), \beta_1 = (\alpha_1, \gamma_1)$  и вектор-столбца регрессоров  $x_k = (1, z_k)'$ , где '– знак транспонирования. По реализации наблюдений с помощью полученного алгоритма вырабатывались оценки параметров  $\hat{\beta}_0 = (\hat{\alpha}_0, \hat{\gamma}_0), \hat{\beta}_1 = (\hat{\alpha}_1, \hat{\gamma}_1)$  и  $\hat{\tau}$ . Априорная

вероятность момента появления скачка  $\tau$  задавалась равномерной на интервале времени [1, *T*]:

$$P_{\tau}(\tau) = \begin{cases} 0, & \tau < 0, & \tau > T ; \\ \frac{1}{T}, & \tau = 1, 2, ..., T. \end{cases}$$

Начальное значение оценки момента появления скачка  $\hat{\tau}^{(0)}$  подбиралось для каждой наблюдаемой реализации, исходя из критерия минимизации доли неправильной классификации для модели бинарного выбора. Проводилось M = 10 итераций в схеме ЕМ алгоритма для сходимости оценок параметров.

Моделирование позволило сделать выводы, что точность оценивания параметров модели с помощью исследуемого алгоритма зависит от того, как сильно различаются значения параметров в разных режимах работы, от уровня шумов в рассматриваемой модели, от числа наблюдений и других факторов. Приведем результаты моделирования для конкретных значений параметров в модели (6):  $\alpha_0 = 0$ ,  $\gamma_0 = d$ ,  $\alpha_1 = d$ ,  $\gamma_1 = 2d$ ; T = 1000. Для вычисления оценок момента скачка  $\hat{\tau}$  использовался критерий максимума апостериорной вероятности:

$$\hat{\tau} = \underset{\tau}{\operatorname{argmax}} W_{\tau}(\tau; \hat{\beta}_0, \hat{\beta}_1, T).$$

Кроме того, с помощью  $W_{\tau}(\tau; \hat{\beta}_0, \hat{\beta}_1, T)$  вычислялась также апостериорная дисперсия момента появления скачка  $D_{\tau}(T; \hat{\beta}_0, \hat{\beta}_1)$ . На рис. 1, 2 представлены графики соответственно средних значений смещений вырабатываемой оценки  $\Delta = \overline{\hat{\tau} - \tau_0}$  и апостериорных среднеквадратичных отклоне-

ний  $\delta = \sqrt{D_{\tau}(T; \hat{\beta}_0, \hat{\beta}_1)}$  в зависимости от истинного момента появления скачка  $\tau_0$  при различных величинах параметра *d*, изменяющихся от 0,1 до 100. Для иллюстрации на рис. 3 представлен график апостериорных вероятностей  $W(\tau) = W_{\tau}(\tau; \hat{\beta}_0, \hat{\beta}_1, T)$ , вырабатываемых алгоритмом для исследуемой модели при  $\alpha_0 = 0, d = 1, \quad \gamma_0 = 1, \alpha_1 = 1, \gamma_1 = 2, \tau_0 = 400$ . Верхняя черта при вычислении  $\Delta$ ,  $\delta$  и апостериорных вероятностей  $W(\tau)$  означает усреднение, которое проводилось с помощью генерации и обработки 100 независимых реализаций в модели (2), (6).



Рис.1. Зависимость смещения оценки  $\Delta$  от истинного момента появления скачка  $\tau_0$ . 1: d = 0,1; 2: d = 0,2; 3: d = 1; 4: d = 10; 5: d = 100



Рис.2. Зависимость среднеквадратичного отклонения  $\delta$  от момента появления скачка  $\tau_0$ . 1: d = 0,1; 2: d = 0,2; 3: d = 1; 4: d = 10; 5: d = 100



Рис.3. График зависимости апостериорной вероятности  $W(\tau)$  от  $\tau$  при  $\alpha_0 = 0$ ,  $\gamma_0 = 1$ ,  $\alpha_1 = 1$ ,  $\gamma_1 = 2$ ,  $\tau_0 = 400$ 

Как видно из рис. 1, 2 при увеличении параметра d, то есть при увеличении соотношения сигнал/шум в рассматриваемой модели смещение оценки  $\Delta$  и среднеквадратичное отклонение  $\delta$  стремятся к нулю, что свидетельствует об асимптотической несмещенности и состоятельности вырабатываемых оценок момента появления скачка  $\tau$ . Но, если истинный момент появления скачка  $\tau_0$  расположен слишком близко к началу или к концу интервала наблюдения [1, *T*], то точность оценивания снижается, так как становится недостаточно данных для оценивания параметров модели.

Проведенное компьютерное моделирование ряда тестовых примеров подтверждает работоспособность предлагаемого алгоритма оценки параметров моделей бинарных регрессий с учетом изменений параметров в случайный момент времени. Точность оценивания зависит от отношения сигнал/шум в конкретных рассматриваемых задачах. При этом исследуемый алгоритм позволяет находить не только оценки, а целиком апостериорные распределения вероятности моментов появления скачков  $\tau$ , которые содержат более полную информацию о случайных величинах  $\tau$  и могут быть полезными при анализе качества оценивания.

## Список использованной литературы:

1. Hinkley D. V., Hinkley E. A. Inference about the change-point in a sequence of binomial variables / D. V. Hinkley, E. A. Hinkley // Biometrika. – 1970. – Vol. 57. – No. 3. – P. 477-488.

2. Smith A. F. M. A Bayesian approach to inference about a change-point in a sequence

of random variables // Biometrika. - 1975. - Vol. 62. - No. 2. - P. 407-416.

3. Pettitt, A. N. A Simple Cumulative Sum Type Statistic for the Change-Point Problem with Zero-One Observations // Biometrika. – 1980. – Vol. 67. – No. 1. – P. 79-84.

4. Обнаружение изменения свойств сигналов и динамических систем / Ред. М. Бассвиль, А. Банвениста. – М. : Мир, 1989. - 278 с.

5. Chen J., Gupta A. L. Parametric Statistical Change Point Analysis. With Applications to Genetics, Medicine, and Finance. Second Edition. 2012. Springer Science+Business Media.

6. Brodsky B. Change-Point Analysis in Nonstationary Stochastic Models. 2017. Taylor & Francis Group.

7. Khodadadi A. Change-point Problem and Regression: An Annotated Bibliography / Khodadadi A., Asgharian M. // COBRA Preprint Series. Nov. 2008. Working Paper 44.

8. Tze-San Lee. Change-Point Problems: Bibliography and Review // Journal of Statistical Theory and Practice. – 2010. – V. 4. – No. 4. – P. 643-662.

9. Aminikhanghahi S. A Survey of Methods for Time Series Change Point Detection / Aminikhanghahi S., Cook D. J. // Knowledge and Information Systems. – 2017. – V. 51. – Iss. 2. – P. 339-367.

10. Dempster A.P. Maximum Likelihood from Incomplete Data via the EM Algorithm / A.P. Dempster, N.M. Laird, D.B. Rubin // Journal of the Royal Statistical Society. – 1977. – Series B (Methodological). – Vol. 39. – No. 1. – P. 1-38.