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On a Classification of Chaotic Laminations which are
Nontrivial Basic Sets of Axiom A Flows

V.S. Medvedev, E.V. Zhuzhoma

We prove that, given any n � 3 and 2 � q � n−1, there is a closed n-manifold Mn admitting
a chaotic lamination of codimension q whose support has the topological dimension n− q + 1.
For n = 3 and q = 2, such chaotic laminations can be represented as nontrivial 2-dimensional
basic sets of axiom A flows on 3-manifolds. We show that there are two types of compactification
(called casings) for a basin of a nonmixing 2-dimensional basic set by a finite family of isolated
periodic trajectories. It is proved that an axiom A flow on every casing has repeller-attractor
dynamics. For the first type of casing, the isolated periodic trajectories form a fibered link.
The second type of casing is a locally trivial fiber bundle over a circle. In the latter case,
we classify (up to neighborhood equivalence) such nonmixing basic sets on their casings with
solvable fundamental groups. To be precise, we reduce the classification of basic sets to the
classification (up to neighborhood conjugacy) of surface diffeomorphisms with one-dimensional
basic sets obtained previously by V.Grines, R. Plykin and Yu. Zhirov [16, 28, 31].

Keywords: chaotic lamination, basic set, axiom A flow

Introduction

Roughly speaking, a lamination is a foliation with no singularities on a closed subset of
manifold (for exact definitions, see Section 1). Following the definition of Devaney’s chaos [10],
Churchill [9] introduced the notation of chaotic foliation. A good example of chaotic foliation
is a transitive Anosov flow [1]. A natural generalization of chaotic foliation is the notation
of chaotic lamination introduced in [33]. By definition, a chaotic lamination is a transitive
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lamination containing a dense subset of compact leaves. Due to Proposition 2 [33], there are no
transversally oriented chaotic laminations of codimension one on closed 3-manifolds. However,
many examples of chaotic laminations of codimension q � 2 can be constructed starting with
hyperbolic dynamical systems with nontrivial basic sets (see Corollary 1 [33]). The reason for
the existence of such examples is the Spectral Decomposition Theorem by Smale [30] saying that
each basic set is a transitive set containing a dense subset of periodic orbits.

Our first result is the following generalization of Theorem 2 [33]. Below, Rk is a k-dimen-
sional Euclidean space, Sl is an l-dimensional sphere, and T

s is an s-dimensional torus.

Theorem 1. Given any n � 3 and 2 � q � n−1, there is a closed orientable n-manifold Mn

admitting a chaotic lamination Λ of codimension q such that the support of Λ has the topological
dimension n − q + 1. Moreover, the compact leaves of Λ are homeomorphic to T

n−q, while the
noncompact leaves are homeomorphic to R

1 × T
n−q−1.

For the particular case n = 3 and q = 2, Theorem 1 was proved in [33]. Nontrivial 2-dimen-
sional basic sets of axiom A flows on 3-manifolds are a good example of chaotic laminations (for
basic definitions and notation of the theory of dynamical systems, see the books [3, 19, 29] and
surveys [17, 30]). Such basic sets give codimension two chaotic laminations whose supports have
the topological dimension 2.

Later on, we consider carefully chaotic laminations that are nontrivial 2-dimensional basic
sets of axiom A flows (in short, A-flows) on closed orientable 3-manifolds. It was proved in [24]
that a nontrivial 2-dimensional basic set of A-flow on a closed orientable 3-manifold is either an
expanding attractor or a contracting repeller. For definiteness, we will consider two-dimensional
basic sets that are attractors.

Let f t be an A-flow on a closed 3-manifold M3 such that f t has a 2-dimensional attrac-
tor Λa. Since Λa is a codimension one attractor, the stable manifold W s(Λa) called a basin of Λa

is an open 3-dimensional submanifold of M3. We know that Λa has a local fractal structure [28].
Therefore, the complement M3 \W s(Λa) of W s(Λa) can have a complicated topological struc-
ture (in the example by Franks and Williams [12], such a complement is locally homeomorphic
to the product of a Cantor set and a 2-dimensional plane). It is natural to try to embed the
basin W s(Λa) into a topological or smooth manifold L with the simplest complement L\W s(Λa)
and the simplest dynamics. By (topological or smooth) compactification of W s(Λa) we mean
a (topological or smooth) closed manifold L containing an embedding of W s(Λa) such that
the complement L \W s(Λa) consists of finitely many compact components with a topological
structure which is simple in a sense (we will call such a compactification a casing). To get
such compactifications (and corresponding casings), we consider for simplicity nonmixing at-
tractors Λa. The next result says that there are two kinds of smooth compactification of the
basin W s(Λa), and both compactifications lead to simple dynamics of attractor-repeller type on
the corresponding casings.

Theorem 2. Let f t be an A-flow on an orientable closed 3-manifold M3 such that the
nonwandering set NW (f t) contains a 2-dimensional nonmixing attractor Λa. Then there are
two compactifications M(Λa) and N(Λa) of the basin W s(Λa) by the family of circles l1, . . . , lk
such that

• both M(Λa) and N(Λa) are closed smooth orientable 3-manifolds;
• the restriction f t

∣∣
W s(Λa)

is extended continuously to the structurally stable nonsingular

flows f̃ tM and f̃ tN on M(Λa) and N(Λa), respectively, with the nonwandering set consisting
of the attractor Λa and the repelling isolated periodic trajectories l1, . . . , lk;

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2023, 19(2), 227–237



On a Classification of Chaotic Laminations 229

• the family {l1, . . . , lk} ⊂M(Λa) is a fibered link in M(Λa);
• the manifold N(Λa) is the total space of a locally trivial fiber bundle over a circle;
• the flow f̃ tN is topologically equivalent to the dynamical suspension sus(ϑ) over some structu-

rally stable diffeomorphism ϑ : M2 → M2 of a closed surface M2 ⊂ N(Λa) with the non-
wandering set NW (ϑ) consisting of the expanding one-dimensional attractor λa = Λa ∩M2

and the isolated repelling periodic orbits {l1, . . . , lk} ∩M2.

After Theorem 2, it is natural to consider the problem of classification for structurally stable
flows with two-dimensional basic sets which are dynamical suspensions over structurally stable
surface diffeomorphisms with one-dimensional basic sets.

Let fi : Mi →Mi be a diffeomorphism and Ωi an invariant set of fi, i = 1, 2. Recall that the
restrictions f1|Ω1

, f1|Ω1
are neighborhood conjugate if there is a homeomorphism h : M1 → M2

such that h(Ω1) = Ω2 and f2 ◦ h|Ω1
= h ◦ f1|Ω1

[15, 19, 34]. Let f ti be a flow on a manifold Ni

and Λi an invariant set of f ti , i = 1, 2. We say that the restrictions f t1
∣∣
Λ1

, f t2
∣∣
Λ1

of f t1, f
t
2

on the invariant sets Λ1, Λ2, respectively, are neighborhood equivalent if there is a homeomor-
phism ϕ : N1 → N2 taking any trajectory from Λ1 onto a trajectory from Λ2 preserving a time
direction. The first step to solve the problem of classification for structurally stable flows with
two-dimensional basic sets which are dynamical suspensions over structurally stable surface dif-
feomorphisms with one-dimensional basic sets is to find necessary and sufficient conditions for
neighborhood equivalence. The following result says that the neighborhood equivalence of such
flows reduces to the neighborhood conjugacy of corresponding structurally stable surface dif-
feomorphisms provided that support manifolds have a solvable fundamental group. We restrict
ourselves to orientation-preserving diffeomorphisms and orientable basic sets.

Theorem 3. Let f ti be a structurally stable flow that is a dynamical suspension sus(ϑi) over
an orientation-preserving structurally stable diffeomorphism ϑi : M

2 →M2 of a closed orientable
surface M2 such that ϑi has a one-dimensional orientable basic set λi (thus, f ti has a two-

dimensional orientable basic set Λi), i = 1, 2. Suppose that the fundamental groups π1
(
M3

ϑ1

)
,

π1

(
M3

ϑ2

)
of the supporting manifolds M3

ϑ1
, M3

ϑ2
for f t1 and f t2, respectively, are solvable. Then

the flows f t1
∣∣
Λ1

, f t2
∣∣
Λ1

are neighborhood equivalent if and only if the diffeomorphisms ϑ1|λ1
, ϑ2|λ2

are neighborhood conjugate.

Let f t be a flow satisfying the conditions of Theorem 3. To be precise, f t is a structurally
stable flow that is a dynamical suspension sus(ϑ) over an orientation-preserving structurally
stable diffeomorphism ϑ : M2 → M2 of a closed orientable surface M2 such that ϑ has a one-
dimensional orientable basic set λ. This implies that f t has a two-dimensional orientable basic
set Λ. Grines and Plykin [15, 16, 28] introduced the complete invariant of neighborhood conjugacy
for the diffeomorphism ϑ|λ. This invariant has in a sense an algebraic nature concerning an action
in the fundamental group of casing for λ. Zhirov [31, 32] introduced a more convenient complete
invariant of neighborhood conjugacy for the diffeomorphism ϑ|λ1. This invariant is combinatorial,
and there is a finite algorithm deciding either two invariants coincide or not. It is natural to
assign Zhirov’s invariant denoted by Z

(
f t
∣∣
λ

)
to the flow f t (it would be interesting to construct

Zhirov’s invariant Z
(
f t
∣∣
λ

)
directly for the flow f t). The following statement follows immediately

from Theorem 3.
1Actually, Grines, Plykin and Zhirov constructed complete invariants for the more wide classes of

diffeomorphisms and homeomorphisms.
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Corollary 1. Let f ti be a structurally stable flow that is a dynamical suspension sus(ϑi) over
an orientation-preserving structurally stable diffeomorphism ϑi : M

2 →M2 of a closed orientable
surface M2 such that ϑi has a one-dimensional orientable basic set λi (thus, f ti has a two-

dimensional orientable basic set Λi), i = 1, 2. Suppose that the fundamental groups π1
(
M3

ϑ1

)
,

π1

(
M3

ϑ2

)
of the supporting manifolds M3

ϑ1
, M3

ϑ2
for f t1 and f t2, respectively, are solvable. Then

the flows f t1
∣∣
Λ1

, f t2
∣∣
Λ1

are neighborhood equivalent if and only if Zhirov’s invariants Z
(
f t1
∣∣
Λ1

)
,

Z
(
f t2
∣∣
Λ2

)
coincide.

We mention some results concerning the subject. Chaotic foliations were considered in [6].
High-dimensional flows with nonmixing codimension one basic sets were classified in [4]. Lami-
nations and its applications in dynamical systems were considered in the book [19].

The structure of the article is as follows. Section 1 provides preliminary information and
results. The main theorems are proved in Section 2.

1. Preliminaries

Here, we introduce the main definitions and notions. In addition, we prove Lemma 1, which
we need in the proof of Theorem 3.

Chaotic laminations. Following [2], we introduce the definition of local lamination, see
also [19]. For simplicity, we actually give the definition of local lamination without singulari-
ties. Let Mn be an n-manifold, n � 2, and M ⊂ Mn a subset which can coincide with Mn.
Suppose M is a union

⋃
α
Lα of pairwise disjoint connected injectively embedded d-manifolds,

1 � d � n− 1, where α runs some set of indexes. The family {Lα} denoted by D is called a local
lamination if, given any point x ∈ M, there is a neighborhood U(x) ⊂ Mn of x and a Cr-dif-
feomorphism ψ : U(x) → R

n, r � 0, such that any component of the intersection U(x) ∩ Lα (if
nonempty) is mapped under ψ onto a hyperplane xd+1 = c1, . . . , xn = cn−d. The set M is
called a support of the local lamination D. Each Lα is called a leaf. A component of the intersec-
tion Lα∩U(x) is called a local leaf. This local leaf induces an interior topology on every leaf Lα.
Keeping such a topology in mind, we will say that a leaf is closed, compact or homeomorphic to
some manifold.

The notation of local lamination is a generalization of notation of foliation and lamination.
If the support M coincides with the manifold Mn, then a local lamination D is a foliation
(sometimes, it is said to be a foliation without singularities). A good example of foliation is
provided by trajectories of nonsingular flow. For other examples of foliations, see [8, 26]. If the
support M is a closed subset of Mn, then a local lamination is called a lamination. A good
example of lamination is a geodesic lamination. Many examples of laminations have dynamical
origins [19].

Let L be a lamination and |L| the support of L. The lamination L is called transitive if L
has a leaf that is dense in the support |L|. A lamination L is called chaotic if L is transitive and
the set of closed leaves of L is dense in |L|.

The notation of chaotic foliation was induced by the notation of a chaotic dynamical system
introduced by Devaney [10]. Recall that a dynamical system is chaotic in the Devaney sense
provided that the following conditions hold:

1) the dynamical system is transitive (there is a dense orbit) and the set of periodic orbits
is dense in the phase space of the dynamical system;

2) there is a sensitive dependence on initial conditions.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2023, 19(2), 227–237



On a Classification of Chaotic Laminations 231

In the paper [5], it was proved that condition (1) implies condition (2). This allowed
Churchill [9] to introduce the notation of chaotic foliation as follows. A foliation F on a man-
ifold M is called chaotic if F is transitive (there is a leaf that is dense in M) and the set of
closed leaves of F is dense in M . We see that the notation of chaotic lamination generalizes the
notation of chaotic foliation (a chaotic lamination becomes a chaotic foliation when a support of
the lamination becomes a supporting manifold).

Hyperbolic invariant sets. Let f t be a smooth flow on a closed n-manifold Mn, n � 3.
A subset Λ ⊂ Mn = M is invariant provided that Λ consists of trajectories of f t. An invariant
nonsingular set Λ ⊂M is called hyperbolic if the subbundle TΛM of the tangent bundle TM can
be represented as a Df t-invariant continuous splitting Ess

Λ ⊕ Et
Λ ⊕ Euu

Λ such that
1) dimEss

Λ + dimEt
Λ + dimEuu

Λ = n;
2) Et

Λ is the line bundle tangent to the trajectories of the flow f t;
3) there are Cs > 0, Cu > 0, 0 < λ < 1 such that
∥∥df t(v)∥∥ � Csλ

t‖v‖, v ∈ Ess
Λ ;
∥∥df−t(v)

∥∥ � Cuλ
t‖v‖, v ∈ Euu

Λ , t > 0.

A singular point x is hyperbolic if x is an isolated hyperbolic equilibrium state. The topo-
logical structure of flow near x is described by the Grobman –Hartman theorem, see, for exam-
ple, [29]. In this case Et

x = 0 and dimEss
Λ + dimEuu

Λ = n.
If Λ does not contain fixed points, then the bundles Euu

Λ ⊕Et
Λ = Eu

Λ, Ess
Λ ⊕Et

Λ = Es
Λ, Euu

Λ ,
Ess

Λ are uniquely integrable [22, 30]. The corresponding leaves W u(x), W s(x), W uu(x), W ss(x)
through a point x ∈ Λ are called unstable, stable, strongly unstable, and strongly stable manifolds,
respectively.

A-flows. Given a set U ⊂ Mn, denote by ft0(U) the shift of U along the trajectories
of f t at time t0. Recall that a point x is nonwandering if, given any neighborhood U of x and
a number T0 > 0, there is t0 � T0 such that U ∩ ft0(U) �= ∅. The nonwandering set NW (f t)

of f t is the union of all nonwandering points.
Denote by Fix

(
f t
)

the set of fixed points of f t. Following Smale [30], we shall call f t an
A-flow provided that its nonwandering set NW

(
f t
)

is hyperbolic and the periodic trajectories
are dense in NW

(
f t
) \ Fix

(
f t
)
. A-flows are a wide class of dynamical systems containing

structurally stable flows including Anosov flows and Morse – Smale flows [1, 20].
According to Smale’s Spectral Decomposition Theorem [21, 30], the nonwandering set of

A-flow is a disjoint union of closed, and invariant, and transitive sets called basic sets. A basic set
is called trivial if it is either an isolated singularity or an isolated periodic trajectory. Otherwise,
a basic set is nontrivial. Any nontrivial basic set of A-flow has the topological dimension no less
than one, and a supporting manifold admitting a nontrivial basic set has the dimension no less
than three.

Fibered links. Recall that a link in a 3-manifold M3 is a collection of disjoint embedded

circles L = {l1, . . . , lk} ⊂ M3. The link L = {l1, . . . , lk} is fibered if M3
∖( k⋃

i=1
li

)
is the total

space of fiber bundle p :
(
M3 \ L)→ S1 and the boundary of the fibers p−1(·) is L. In addition,

the fibers p−1(·) meet L nicely. To be precise, consider the solid torus P0 = S
1 × D

2 called
a canonical solid torus. Here, S1 is a circle endowed with the cyclic coordinate ϑ, and D

2 a unit
disk D

2 = {z ∈ C | |z| � 1}. Set S1 = ∂D2. The mapping p0(ϑ, z) =
z
|z| , ϑ ∈ S

1, z ∈ D
2 \ {0}, is

the fiber bundle
p0 : S

1 × (D2 \ {0}) → S1

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2023, 19(2), 227–237



232 V.S.Medvedev, E.V. Zhuzhoma

over S1 with the fiber an annulus denoted by A0. There is a tubular neighborhood T (li) of li
homeomorphic to P0 (so, we can assume T (li) = P0) such that T (li) \ {li} = P0 \

(
S
1 × {0}). By

definition, p|T (li)\{li} is isomorphic to p0, i = 1, . . . , k.
Next, we need the following statement.

Lemma 1. Let M3
ϕ be a mapping torus that is the total space of the fiber bundle over a circle

and a fiber a closed orientable surface M2. Suppose that M3
ϕ is an orientable closed 3-manifold

with a solvable fundamental group. Then M2 is either S
2 or T

2.

Proof. The combinatorial description of the fundamental group π1
(
M3

ϕ

)
is as follows:

〈
the generators of π1(M

2), c | the relations in π1(M
2), c · γ · c−1 = ϕ∗(γ), γ ∈ π1

(
M2
)〉
.

Clearly, π1
(
M2
)

is a subgroup of π1
(
M3

ϕ

)
. Since each subgroup of the solvable group is a solvable

group, π1
(
M2
)

is a solvable group. Hence, M2 is either S2 or T2 because the fundamental groups
of closed surfaces of Euler characteristic less than zero are not solvable. �

2. Proofs of main results

In this section we prove the main results.

Proof of Theorem 1. Choose and fix n � 3 and 2 � q � n − 1. Since a basic set of
A-flow is transitive and periodic trajectories are dense in the basic set, any nontrivial basic
set is a one-dimensional chaotic lamination. By Theorem 3 and Corollary 1 [24], any closed
orientable (q+1)-manifold M q+1 admits an A-flow f t such that the nonwandering set NW

(
f t
)

contains a two-dimensional attractor. As a consequence, M q+1 admits a one-dimensional chaotic
lamination, say Λ, of the topological dimension 2. Then the n-manifold Mn = M q+1 × T

n−q−1

admits an (n− q)-dimensional (i. e., codimension q) lamination Λ×T
n−q−1 with the topological

dimension n − q + 1. A product of periodic trajectory and T
n−q−1 gives a compact leaf which

is homeomorphic to T
n−q. A product of nonperiodic trajectory and T

n−q−1 gives a noncompact
leaf homeomorphic R

1 × T
n−q−1. Since periodic trajectories are dense in Λ, the compact leaves

are dense in Λ × T
n−q−1. It follows from a transitivity of Λ that Λ × T

n−q−1 contains a leaf
which is dense in Λ× T

n−q−1. Hence, Λ× T
n−q−1 is also a chaotic lamination. This completes

the proof. �

Proof of Theorem 2. According to [7], the restriction f t
∣∣
Λa

of f t on Λa is a dynamical
τ -time suspension over some homeomorphism ϕ∗ : Π0 → Π0 where Π0 is the topological closure
of W uu(x0), x0 ∈ Λa. Taking a circle S1 as [0; τ ]/0 � τ , one gets the fiber bundle pa : Λa → S1 =
= [0; τ ]/0 � τ with the fiber Π0, where pa(x) = t provided that x ∈ ft(Π0). Due to Lemma 3 [24],
this fiber bundle structure can be extended to some attracting neighborhood U(Λa) of Λa such
that

• the boundary ∂U(Λa) is transversal to f t and consists of finitely many components T 2
i ,

i = 1, . . . , k, where each T 2
i is homeomorphic to the 2-torus T

2;

• the flow f t in W s(Λa) has a global section S that is a locally flat surface transversal
to ∂U(Λa), and the intersection S ∩ ∂U(Λa) consists of pairwise disjoint closed simple
curves;
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• there is the fiber bundle PW : W s(Λa) → S1 = [0; τ ]/0 � τ with the fiber S where PW (x) =
= t provided that x ∈ ft(S); moreover, the fibers form a foliation denoted by FW .

The idea of the next speculations is to glue solid tori to the boundary ∂U(Λa) extending the
fiber bundle PW .

The transversality of each T 2
i to the trajectories of f t and the inclusion U(Λa) ⊂ W s(Λa)

imply that every positive semitrajectory starting at a point of T 2
i belongs to U(Λa) and never

intersects again
⋃
j=1

T 2
j . It follows that the union Ta =

⋃
j=1

T 2
j divides W s(Λa) into two do-

mains U(Λa) and Uout = W s(Λa) \ U(Λa). Clearly, every negative semitrajectory starting at
a point of Ta belongs to Uout and never intersects Ta again. Keeping in mind the continuous
dependence of trajectories on initial conditions, one finds that Uout is homeomorphic (in the

interior topology) to
(

k⋃
i=1

T 2
i

)
× (−∞; 0) that is the disjoint union

k⋃
i=1

(
T 2
i × (−∞; 0)

)
= Uout.

To construct compactifications of W s(Λa), it is enough to construct compactifications for ev-
ery T 2

i × (−∞; 0) by a circle.
Let P0 = S

1×D
2 be the canonical solid torus. Denote by �v a vector field on P0 such that �v is

transversal to the boundary ∂P0 directed outside of P0, and suppose that �v has a unique periodic
trajectory l0 = S

1 × {0} that is a repeller of �v. Using a homeomorphism ϑi : ∂P0 → T 2
i , one

can construct a homeomorphism ϑ̃i : P0 \ {l0} → T 2
i × (−∞; 0] = T 3

i for every i = 1, . . . , k
as follows. Take a point z ∈ P0 \ {l0}, and let F t

0 be a flow induced by the vector field �v.
Denote by Ft a shift (the so-called t-shift) along the trajectories of F t at time t. It is well known
that F t is a diffeomorphism for any fixed t. By the definition of �v, there is a unique t0 � 0 such
that Ft0

(z) ∈ ∂P0. Denote by ft the t-shift along the trajectories of tt. Put by definition ϑ̃i(z) =
= f−t0

◦ ϑi ◦ Ft0
(z).

The sets T 3
1 , . . . , k are pairwise disjoint because each T 3

i is generated by negative semitrajec-
tories starting on T 2

i , an T 2
i ∩ T 2

j = ∅ for i �= j. We see that

W s(Λa) = U(Λa)
k⋃

i=1

T 3
i = U(Λa)

k⋃
i=1

ϑ̃−1
i (P0 \ {l0}).

To finish some compactification, we take copies l1, . . . , lk of l0 and introduce a topological struc-
ture on every set T 3

i ∪li = ϑ̃−1
i (P0\{l0})∪li separately as follows. Take the set T 3

i ∪li where li = l0.
Remark that T 3

i is endowed with the initial topology induced by M3. Given a point x ∈ li =
= l0, let U(x) be a neighborhood of x ∈ l0 ⊂ P0 in the solid torus P0. Clearly, U(x) \ {l0} is
an open set in P0. Therefore, ϑ̃i(U(x) \ {l0}) = Ũ(x) is an open set in T 3

i . We consider the
union Ũ(x) ∪ (U(x) ∩ l0) as a neighborhood of x in T 3

i ∪ li. It is easy to see that the set of such
neighborhoods introduces the topological structure on T 3

i ∪ li. This gives the compactification
of T 3

i by the closed curve li for every i = 1, . . . , k. As a consequence, one gets the compactifica-

tion W s(Λa)
k⋃

i=1
li denoted by M(Λa)ϑ1,...,ϑk

. One can easily check that M(Λa)ϑ1,...,ϑk
is a closed

topological manifold. Due to [25], every topological 3-dimensional manifold admits a unique
structure of smooth manifold which is an extension of previous topological structure. Hence,
M(Λa, ϑ1, . . . , ϑk) is endowed with the structure of a smooth manifold which is the extension of
the smooth structure on W s(Λa). Below, we describe the homeomorphisms ϑ1, . . . , ϑk in detail
to get the compactification N(Λa).
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234 V.S.Medvedev, E.V. Zhuzhoma

Let P 3
i be a copy of P0, and �vi = �v the vector field with closed curve li = l0 in P 3

i ,
i = 1, . . . , k. By construction, N(Λa, ϑ1, . . . , ϑk) = U(Λa) ∪

ϑ1

P 3
1 ∪ · · · ∪

ϑk

P 3
k . Slightly de-

forming the vector fields �vi, i = 1, . . . , k, one can assume that these fields and the restric-
tion f t

∣∣
U(Λa)

form the smooth flow f̃ t that is the extension of f t to N(Λa, ϑ1, . . . , ϑk). Clearly,

NW
(
f̃ t
)
= Λa

k⋃
i=1

li. Since li are repelling periodic trajectories of �vi, i = 1, . . . , k, the trajecto-

ries l1, . . . , lk are repelling isolated periodic trajectories of f̃ t.
Take the foliation FW generated by the fibers of the bundle PW . By construction, given

any T 2
i , the intersections of the leaves with T 2

i form a rational foliation F
(
T 2
i

)
such that each leaf

of F
(
T 2
i

)
belongs to a leaf of FW . Therefore, PW induces the fiber bundle PW |U(Λa)

: U(Λa) →
→ S1 = [0; τ ]/0 � τ such that the restriction FW |U(Λa)

of FW on U(Λa) is a foliation whose leaves
are the fibers of the bundle PW |U(Λa)

. This gives the continuation of the fiber bundle PW |U(Λa)

to T 3
i , i = 1, . . . , k.
The intersections of these leaves with T

2 produce the rational foliation F0 generated by par-
allels on the torus T2 = ∂P0. We know that rational foliations are topologically equivalent [3, 27].
Hence, there are the mappings ϑi : ∂P0 → T 2

i taking the leaves of the foliation F0 to the leaves
of F
(
T 2
i

)
. This gives the continuation of the fiber bundle PW |U(Λa)

to T 3
i , i = 1, . . . , k.

Let μα, α ∈ S
1 be the family of meridians on the solid torus P0 = S

1 × D
2, and these

meridians form a rational foliation. Each meridian bounds a disk {·} ×D
2 that is transversal to

the vector field �v. Recall that S is the global section of the flow f t in U(Λa), S is transversal to f t,
and the intersection S ∩ T 2

i , i = 1, . . . , k, consists of closed simple curves s1, . . . , sji . It follows
that s1, . . . , sji belong to the same nonzero homotopy class. Therefore, there is ϑi taking some

meridians μα,1, . . . , μα,ji to the curves s1, . . . , sji . The final flow f̃ t becomes f̃ tN . The locally
flat surface S and the disks bounded by the meridians μα,1, . . . , μα,ji form the closed locally
flat embedded surface which can be approximated by a smooth surface M2 such that M2 is
a global section for the flow f̃ tN . Thus, by construction, f̃ tN is a dynamical suspension sus(ϑ)

over some A-diffeomorphism ϑ : M2 → M2 with the nonwandering set NW (ϑ) consisting of
the expanding one-dimensional attractor λa = Λa ∩ M2 and the isolated repelling periodic
orbits {l1, . . . , lk} ∩M2.

Obviously, the unstable manifolds of the repelling periodic trajectories l1, . . . , lk are three-
dimensional open submanifolds of M3. Hence, they intersect transversally the two-dimensional

stable manifolds of the points of Λa. Since the nonwandering set NW (f̃ t) = Λa

k⋃
i=1

li has a hyper-

bolic structure, f̃ tN is an A-flow satisfying a strong transversality condition. It follows from [20]
that f̃ tN is a structurally stable nonsingular flow.

The compactification M(Λa) and the flow f̃ tM were constructed in [24]. For the reader’s
convenience, we give a sketch of the proof. By construction above,

M(Λa, ϑ1, . . . , ϑk) = U(Λa) ∪
ϑ1

P 3
1 ∪ · · · ∪

ϑk

P 3
k ,

where P 3
i is a copy of P0, i = 1, . . . , k. Recall (see Section 1) that p0 : S1 ×

(
D
2 \ {0})→ S1

is the fiber bundle where p0(ϑ, z) =
z
|z| , ϑ ∈ S

1 = ∂D2, z ∈ D
2 \ {0}, D2 = {z ∈ C | |z| � 1}.

The fibers p−1
0 (·) form a foliation denoted by F . The leaves of F are annuli transversal to the
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boundary T
2 = ∂P0. The intersections of these leaves with T

2 produce the rational foliation F0

generated by parallels on the torus T
2 = ∂P0. We know that rational foliations are topologi-

cally equivalent [3, 27]. Hence, there are the mappings ϑi : ∂P0 → T 2
i taking the leaves of the

foliation F0 to the leaves of F
(
T 2
i

)
. It follows that the collection {l1, . . . , lk} is a fibered link

in M(Λa). Again, due to [20], f̃ t is a structurally stable flow. �

Proof of Theorem 3. Obviously, if the diffeomorphisms ϑ1|λ1
, ϑ2|λ2

are neighborhood con-
jugate, the flows f t1

∣∣
Λ1

, f t2
∣∣
Λ2

are neighborhood equivalent. So, we have to prove the converse
statement.

Suppose that the flows f t1
∣∣
Λ1

, f t2
∣∣
Λ2

are neighborhood equivalent. Hence, there is a homeo-

morphism h : M3
ϑ1

→M3
ϑ2

taking each trajectory of the flow f t1 onto a trajectory of f t2 preserving
the direction of time. According to Lemma 1, M2

1 is either a sphere or a torus because the

fundamental groups π1
(
M3

ϑ1

)
, π1
(
M3

ϑ2

)
are solvable.

Since the fundamental groups π1
(
M3

ϑ1

)
, π1
(
M3

ϑ2

)
are isomorphic, both M2

1 and M2
2 are

either spheres or both M2
1 and M2

2 are tori. If each M2
1 and M2

2 is a sphere, then the result
follows from [23], Theorem 4.1 (see also Corollary 4.3) where it was proved that dynamical
suspensions over homeomorphisms over a sphere are orbitally topologically equivalent if and
only if the corresponding homeomorphisms are conjugate.

Assume that M2
i is a torus denoted by T 2

i , i = 1, 2. Recall that the fundamental

group π1

(
M3

ϑi

)
is generated by π1

(
T 2
i

)
and the element li represented by the embedding of

a circle S1 in M3
ϑi

, see Section 1. Clearly, the fundamental group π1
(
T 2
i

)
is a normal subgroup

of π1
(
M3

ϑi

)
, i = 1, 2. According to Grines [15], the isomorphism (ϑi)∗ : π1

(
T 2
i

) → π1
(
T 2
i

)
in-

duced by ϑi : T
2
i → T 2

i is hyperbolic. Since π1
(
T 2
i

)
isomorphic to the homology group H1

(
T 2
i

)
,

the isomorphism (ϑi)∗ is represented by unimodular integer matrices which define the linear
mapping of T 2

i denoted by the same symbol (ϑi)∗ : T
2
i → T 2

i . It follows from [11] that there is
a continuous map hi : T

2
i → T 2

i such that (ϑi)∗ ◦ hi = hi ◦ ϑi. Since (ϑi)∗ is hyperbolic, (ϑi)∗ is
an Anosov diffeomorphism. We see that hi is a semiconjugacy from ϑi to the Anosov diffeo-
morphism (ϑi)∗. Clearly, the dynamical suspension sus(ϑi)∗ is an Anosov flow on the mapping
torus M3

(ϑi)∗
. The semiconjugacy hi can be extended to the semiconjugacy hi : M

3
ϑi

→ M3
(ϑi)∗

from f ti = sus(ϑi) to sus(ϑi)∗. Following [4] (see also [18]), put by definition

Bi =
{
z ∈M3

(ϑi)∗
| h−1

i (z) consists of more than one point
}
.

It follows from [14] that h∗
(
π1
(
T 2
1

))
= π1
(
T 2
2

)
and h∗(l1) = l2. Applying [13], Aranson and

Zhuzhoma [4], Theorem 1, proved that there is a mapping ψ : M3
(ϑ1)∗

→M3
(ϑ2)∗

taking B1 to B2

such that the restriction ψ|
T 2
1 ×{0} : T

2
1 × {0} → T 2

2 × {0} is a linear map. It follows from [15]
that ϑ1|λ1

, ϑ2|λ2
are neighborhood conjugate. This completes the proof. �
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