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Abstract. Inherently explainable Machine Learning (ML) models are
able to provide explanations for their predictions by virtue of their con-
struction. The explanations of a ML model are more comprehensible if
they are expressed in terms of its input features. Our paper proposes
an inherently explainable pipeline for document classification using pat-
tern structures and Abstract Meaning Representation (AMR) graphs.
The pipeline generates two kinds of explanations: intermediate and final
ones, that justify its classifications. Intermediate explanations are rep-
resented as significant subgraphs found in the document graphs of test
documents. Final explanations are the sentences of the test documents,
that correspond to the significant subgraphs.
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1 Introduction

The field of Explainable Artificial Intelligence (XAI) aims to explain the pre-
dictions of ML models so that their users can trust its predictions. While there
exist a wide variety of XAI methods, an important distinction [1,6] is the one
between post-hoc explainability methods and inherently explainable models. Post-
hoc explainability methods explain a model’s predictions after it has already
been trained, whereas inherently explainable models incorporate explainability
into their actual design.

Inherently explainable models have some distinct advantages over post-hoc
explainability methods. It was demonstrated in [3] that the discriminative (pre-
dictive) power of a ML model is not correlated with its explainability, thus it
cannot be guaranteed that a post-hoc explainability method can generate coher-
ent explanations for a model with high discriminative power.

The author of [23] argued that inherently explainable models provide reliable
explanations that reflect what the models actually learn, unlike the explanations
provided by post-hoc explainability methods. [14] proved that simple models can
have predictive performance that is nearly the same as more complex models,
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thereby showing that the simplicity of inherently explainable models is not a
detriment toward their predictive performance.

XAI methods often frame their explanations in terms of the input features of
the models that they are explaining. [15] is an example of this idea that discusses
different ways of perturbing various input features of Deep Neural Networks
(DNNs) and observing the change in their output, in order to determine the
importance of the input feature. The seminal paper of [17] also embodies this
idea, by generating explanations that are comprised of the input features of the
model represented as abstract, high-level, significant concepts.

Intuitively, perceptually similar examples of the input data having some
semantic meaning, are termed as concepts. A concept is termed as being sig-
nificant, if its presence is influential for the predictions of a ML model. The use
of such concepts for explaining models belongs to a subfield of XAI methods
called concept-based explanations.

In this paper, we propose an inherently explainable pipeline that classi-
fies documents and generates explanations justifying the classifications, using
pattern structures [12,16], see also a recent survey [10] and AMR graphs [2].
The vague, abstract notion of concepts is mathematically formalized via pattern
structures, an applied lattice theory method; by describing concepts as groups
of objects whose descriptions (called patterns) facilitate semilattice operations
on the objects. AMR graphs are able to convert texts to graphs using a seman-
tic representation language, so that the obtained graphs are able to ignore the
syntactic idiosyncrasies of their respective texts.

Each document is converted into a document graph by using AMR graphs
obtained from its sentences. Pattern structures use the training document graphs
of each document class to build their respective conceptual hierarchies. The
pipeline uses an aggregate rule that utilizes the conceptual hierarchy of each
document class, to classify test document graphs as well as generate intermediate
and final explanations.

The inherently explainable pipeline aims to have both good predictive per-
formance as well as explainability, thereby disproving the stereotype about XAI
which states that the predictive performance of a ML model must be sacrificed
for its explainability and vice versa [9].

2 Related Work

While [17] introduced the idea of concept-based explanations, the original paper
is an example of a post-hoc explainability method and consequently has some
related flaws. The predominant one is that like all post-hoc explainability meth-
ods, it cannot guarantee a coherent explanation. This is because the method
described in [17] cannot automatically identify any significant concepts, instead
the user must supply the concepts themselves, in order to query their signifi-
cance.

Papers such as [7] and [18] do not have this problem, as they present examples
of inherently explainable concept-based models. The paper of [7] introduced the
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process of concept whitening, wherein the latent space of a DNN is constrained
so that its axes are aligned with some known interesting concepts. [18] proposed
that an intermediate layer of a DNN is first trained to predict concepts, which
are then trained to make the final classifications.

Applied lattice theory has been scarcely applied to the field of XAI. One of
the earliest examples is the paper of [21], where Formal Concept Analysis (FCA)
was used to construct explainable DNNs. The architecture of these DNNs was
based on either antitone or monotone Galois connections, where every neuron is
a formal concept.

In our paper [22] we proposed a similar inherently explainable document
classification method, which we further elaborate here. Instead of using docu-
ment graphs and pattern structures to build the conceptual hierarchies of each
document class, we used binary attributes and standard FCA. The binary vec-
tors representing the documents indicate the presence or absence of keywords,
with the final explanations expressed as keyword clusters. Pattern structures
are advantageous because they allow us to formalize many types of patterns,
such as itemsets, interval tuples, graphs and sequence sets. However, since pat-
tern structures are defined on meet-semilattices, pattern spaces that are only
partially ordered cannot be modeled using pattern structures.

The paper of [4] explored this problem in detail and discussed the idea of
pattern setups as a potential solution. Additionally, a new structure relying on
multilattices, lying between pattern setups and pattern structures called pat-
tern multistructures was proposed. The authors of [8] proposed the NextPri-
orityConcept algorithm, which facilitates the efficient mining of complex and
heterogeneous data. The lattices obtained by the algorithm are smaller as the
patterns of each concept are locally discovered. The algorithm can also merge
patterns obtained from distinct space descriptions, which allows it to manage
heterogeneous data in a generic and agnostic manner.

3 Basic Definitions

Here, we give basic definitions that are related to pattern structures from [12].
Definition 3.1: Let G be some set of objects, then let (D,�) be a meet-

semilattice of potential object descriptions and let δ : G → D be a mapping.
Then (G,D, δ), where D = (D,�); is called a pattern structure, provided that
the set

δ(G) := {δ(g) | g ∈ G}
generates a complete subsemilattice (Dδ,�) of (D,�), i.e., every subset X of

δ(G) has an infimum �X in (D,�) and Dδ is the set of these infima.
Instead of binary attributes, objects in a pattern structure have complex

descriptions (patterns) with a similarity operation � defined on them, so that
δ(X)� δ(Y ) is a description of the similarity between the descriptions of X and
Y .
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In this paper we use graph pattern structures, where descriptions of objects
are graphs with labeled vertices and edges, and the similarity operation gives
the set of maximal common subgraphs of the initial graphs.

Definition 3.2: If (G,D, δ) is a pattern structure, the derivation operator
is defined as

A� := �
g∈A

δ(g) for all A ⊆ G

This is the set of maximal common subgraphs of graph descriptions, of objects
in A. Correspondingly, for a pattern d, the derivation operator is defined as

d� := {g ∈ G | d � δ(g)} for all d ∈ D

The elements of D are called patterns and are ordered as

c � d : ⇐⇒ c � d = c

which is called the subsumption order, where d subsumes c.
Definition 3.3: A pattern concept of (G,D, δ) is a pair (A, d) satisfying

A ⊆ G, d ∈ D, A� = d and A = d�,

where A is called the pattern concept extent, d is called the pattern concept intent
and the size of A which is denoted by |A|, is called the pattern concept support.

The set of all pattern concepts forms the pattern concept lattice. In this work
we refer to graph patterns as sets of graphs interchangeably, depending on the
situation where the terms are used.

4 Methodology

The methodology of the inherently explainable pipeline consists of the following
processes:

– Document to graph conversion: The DocToGraph algorithm converts a
document into a document graph by first generating the AMR graphs of its
individual sentences. The resulting AMR graphs are processed, refined and
finally merged to obtain the document graph.

– gSOFIA algorithm [5] computes most stable (i.e., robust to noise in data)
concepts for each document class, then supports of these concepts in all doc-
ument classes are computed.

– Classification with an aggregate rule and intermediate explanation genera-
tion: A test document is classified by first determining its aggregate score
for the graph pattern concept lattice, of each document class. The test docu-
ment is classified as belonging to the class with the highest aggregate score.
The intermediate explanations justifying the classification, are the significant
subgraphs from the predicted class’s graph pattern concept lattice, that are
subsumed by the test document graph.
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– Final explanation generation: The SubgraphToSent algorithm generates
the final explanations from the intermediate ones, by mapping the significant
subgraphs to their corresponding sentences in the test document. The map-
ping is done by finding those sentences of the test document, whose refined
graphs can be minimally merged to obtain a graph, that is either equivalent
to or subsumes the significant subgraphs.

Fig. 1. Architecture of the inherently explainable pipeline.

We refer to Fig. 1 for the architecture of the inherently explainable pipeline,
as well as a toy example that illustrates its functioning. Training documents
belonging to three classes (red, yellow and blue) and a test document of an
unknown class (silver) are shown. First, the DocToGraph algorithm converts
each document to its respective graph. Second, the gSOFIA algorithm constructs
the graph pattern concept lattice for each class. Third, the aggregate rule clas-
sifies the test document graph (as belonging to class red) using the constructed
graph pattern concept lattices and also reveals its significant subgraph(s) (a class
red one, belonging to the red graph pattern concept lattice), i.e., the intermedi-
ate explanations. Finally, the SubgraphToSent algorithm maps the significant
subgraph(s) to the sentences in the test document, thereby obtaining the final
explanations.

4.1 Document to Graph Conversion

The document to graph conversion process of the DocToGraph algorithm is
partly inspired by the Communicative Discourse Tree (CDT) graph-based struc-
ture, proposed in [11].
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Given a document t, the DocToGraph algorithm first generates the set of
AMR graphs {ai} from the sentences of t. Each ai is generated independent of
any other ai, using the amrlib library1 trained on the parse_xfm_bart_base2
sentence to graph model. As stated in [2], AMR is heavily biased toward the
English language and is not an Interlingua. Also, since each ai is generated
independently, it is often the case that internal nodes with the same name are
instances of different entities.

This problem can adversely affect the document classification performance
of the aggregate rule. This is because the aggregate rule uses the subsumption
relation that relies upon the commonality of node and edge labels, between the
graph patterns of the graph pattern concepts and the test document graph.

Fig. 2. A toy example of a document graph g1 that is obtained after refining and
merging the AMR graphs a1 and a2, of two sentences.

Figure 2 shows a toy example of a document having the following two sen-
tences: “A bat is a flying mammal. A bee is a flying insect.” that is converted
into a document graph g1. We see that the AMR graph a1 of the first sentence
has an internal node b that is an instance of the entity bat. However, in the
AMR graph of the second sentence a2, the internal node b is an instance of the
entity bee. This discrepancy is solved by replacing all of the internal nodes of
an AMR graph, with their respective entities. Furthermore, the node labels of
all AMR graphs are also converted to lowercase and lemmatized before merging
the graphs (now called the set of refined graphs {ri}), to obtain the document
graph. This last step is done in order to maximize the document classification
performance of the aggregate rule.

4.2 Classification with an Aggregate Rule and Intermediate
Explanation Generation

The main idea of classification with an aggregate rule is as follows: for each class
of documents, the K-most stable (w.r.t. to noise in composing data sample)
pattern concepts are generated by means of gSOFIA. Every pattern intent of such

1 https://github.com/bjascob/amrlib.
2 https://github.com/bjascob/amrlib-models.

https://github.com/bjascob/amrlib
https://github.com/bjascob/amrlib-models
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a concept, i.e., a graph or a set of graphs, is considered as a “weak” classification
rule w.r.t. the corresponding class. All such rules are aggregated in an aggregate
rule, taking into account its support in its respective class and its supports in
other classes (which is penalized).

The use of aggregate rules for classification with pattern structures was pro-
posed for “lazy” (or query-based) classification in [19,20]. The aggregate rule
classifies a test document graph gtest as belonging to the document class c that
has the highest aggregate score ALc

. An aggregate score is computed for every
graph pattern concept lattice Lc of each class.

ALc
=

1
|Lc|

∑

i∈Lc

support(i) × |δ(i)|
penalty(i)

[
δ(i) � δ(gtest)

]
(1)

A graph pattern concept i is penalized by the number of times its pattern
intent, i.e., its graph pattern δ(i), is subsumed by training graphs gtrainjk

belong-
ing to all classes, other than its own class c. The penalty of a concept is formally
defined as penalty(i) =

∑C
k �=c

∑
j{1 | δ(i) � δ(gtrainjk

)}, where C is the set of
all classes.

The aggregate rule is designed to give higher value to intents that are larger in
size (shown by the weight |δ(i)|) and are “contrast”, i.e., they are well represented
in their own class (shown by the weight support(i)), and are not well represented
in other classes (shown by the penalty(i)). This allows the aggregate rule to
suggest expressive intermediate explanations. Furthermore, the aggregate scores
of each graph pattern concept lattice are normalized by the total number of
concepts in that lattice, so as not to favor lattices with a larger number of
concepts.

The contribution of a graph pattern concept i toward classifying a test doc-
ument as belonging to class c, is quantified by its share of the aggregate score
ALc

. The intermediate explanations for the classification of a test document are
obtained from the graph patterns of the graph pattern concepts that belong
to its highest scoring graph pattern concept Lc. The contribution of any graph
pattern concept i (from class c) for a test document graph gtestjk , belonging to
class k, is defined below.

contribution(i) =
1

|Lc|
support(i) × |δ(i)|

penalty(i)
[
δ(i) � δ(gtestjk)

]
(2)

A graph pattern (pattern intent) gsubjc is called a significant subgraph, if
its corresponding graph pattern concept has a high contribution to the highest
aggregate score ALc

, for a given test document.

4.3 Final Explanation Generation

The SubgraphToSent algorithm finds the minimally merged graph M , from
a set of refined graphs {ri} of the sentences of a given test document ttestjk ,
belonging to the document class k; that subsumes a given significant subgraph
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gsubjc ; from class c. This allows a mapping from gsubjc to its relevant sentences
in the test document ttestjk , thereby acting as a set of final explanations.

Referring to Fig. 2, we can see that if any subgraph of g1 is a significant
subgraph, the minimal set of refined AMR graphs that can be merged to obtain
the merged graph M that will subsume the significant subgraph, will consist of
the AMR graphs a1 and a2. Thus, the final explanations are the two sentences
that correspond to the AMR graphs a1 and a2.

4.4 Complexity Analysis

The complexity analysis of the inherently explainable pipeline is performed by
analyzing each of the individual sub-processes involved in its classification and
explanation generation.

We begin with the conversion process from a document to an AMR graph.
The complexity of generating the AMR graph of a sentence depends on the
total number of words w in that sentence, thus we get O(w). For an AMR graph
ai, in order to replace all its internal nodes with their respective entities and
further refine them, we have to traverse at most the total number of nodes in
ai. The total number of nodes in ai is denoted by |ai|. Hence, the complexity of
processing and refining an AMR graph is O(|ai|).

Since we use the gSOFIA algorithm [5] for generating the K-most stable
pattern concepts for each document class c, and since gSOFIA has polynomial
delay for checking subsumption �, the complexity of computing these concepts
can be given by O(K · p(�)), where p(�) denotes the complexity of computing
�.

The penalty and aggregate score functions defined in Sect. 4.2 both use the
subsumption relation �, in their computation. The penalty for a graph pattern
concept i belonging to class c, depends on the number of training documents
Gtrainjk

that belong to all classes other than c. Thus the complexity of the
penalty function for any given i, is O(p(�) · |Gtrainjk

|) where c 	= k. Similarly,
the complexity of calculating the aggregate score ALc

depends on the number
of graph pattern concepts in the graph pattern concept lattice Lc, so we have
O(p(�) · |Lc|).

5 Experiments and Results

The dataset [13] that we have analyzed (henceforth referred to as the BBC sports
dataset) contains 737 documents (belonging to 5 classes) from the BBC Sport
website that are related to sports news articles.

Due the small size of the datasets, a 90:10 training to test split ratio is used.
As seen in Table 1 the aggregate rule provides excellent document classification
performance for the BBC sports dataset. For the purpose of comparison, a base-
line model; SVM is applied to the dataset after its texts have undergone TF-IDF
vectorization (used here because of its simplicity). The result is also shown in
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Table 1. Table describing the document classification performances.

Model Dataset Macro-averaged F1 score

Aggregate rule BBC sports 0.93
SVM BBC sports 0.98

Table 1. Despite the fact that SVM outperforms the aggregate rule, it does not
provide any explanations justifying its classifications.

We present the graph pattern concepts having the absolute highest contribu-
tion (as defined by Eq. 2) among all of the test documents for each class. Addi-
tionally, their contribution, their class prediction and the test document where
they were found are shown in Table 2. These graph pattern concepts can then
be said to be the most decisive in making the classification for their respective
classes.

In the majority of the classes, the most decisive intermediate explanation
is found in a test document of the class that it originally belongs to. However,
even when this is not the case, the most decisive intermediate explanation is
the reason for the misclassification. Thus, it acts as an explanation regardless of
the correctness of the classification. The most decisive intermediate explanation
having the highest contribution among all classes, is shown in Fig. 3.

Table 2. Table describing the most decisive intermediate explanation for each class of
the BBC sports dataset.

Class Concept Contribution Prediction Test document

Athletics athletics_1401 0.01760 Athletics Athletics 8
Cricket football_101 0.03030 Football Cricket 11
Football football_296 0.14841 Football Football 2
Rugby football_260 0.05746 Football Rugby 10
Tennis tennis_1703 0.03781 Tennis Tennis 1

For the sake of conciseness, only the final explanation that is mapped from
the most decisive intermediate explanation, shown in Fig. 3; belonging to the
football document class, is written here. For the concept football_296, the rel-
evant sentence from the football 2 test document is: “Everton manager David
Moyes will discipline striker James Beattie after all for his headbutt on Chelsea
defender William Gallas.” We can see that this sentence intuitively corresponds
to the intermediate explanation, i.e., the significant subgraph from which it was
derived.
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Fig. 3. A decisive intermediate explanation from the BBC sports dataset, belonging
to the football document class.

6 Conclusion and Future Work

In this paper we have proposed an inherently explainable pipeline that can clas-
sify documents with excellent performance and provide reasonable explanations
of performed classifications. The pipeline is able to achieve this using a novel
combination of pattern structures and AMR graphs. Pattern structures are used
for the classification and generating explanations, while AMR graphs are able to
generate document graphs that can properly take advantage of the conceptual
hierarchies obtained via pattern structures.

The results obtained in this paper can be extended to a recommender system
that values transparency regarding its recommendations to its users. Future
directions of research can deal with minimizing the complexity of the pipeline,
as well as improving its classification performance. A promising path is to use
the embeddings of the graph pattern concepts and their proximity to each other,
for classification and generating the explanations. This will be computationally
more efficient than using the aggregate rule and may provide better document
classification performance, as well more meaningful explanations.
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