ON CUBIC POLYNOMIALS WITH THE CYCLIC GALOIS GROUP

YURY KOCHETKOV

ABSTRACT. A cubic Galois polynomial is a cubic polynomial with rational coefficients that defines a cubic Galois field. Its discriminant is a full square and its roots x_1, x_2, x_3 (enumerated in some order) are real. There exists (and only one) quadratic polynomial q with rational coefficients such that $q(x_1) = x_2, q(x_2) = x_3, q(x_3) = x_1$. The polynomial $r = q(q) \mod p$ cyclically permutes roots of p in the opposite order: $r(x_1) = x_3, r(x_3) = x_2, r(x_2) = x_1$. We prove that there exist a unique Galois polynomial p_1 and a unique Galois polynomial p_2 such that the polynomial q cyclically permutes roots of p_1 and the polynomial r do the same with roots of p_2 . Polynomials p and p_1 (and also p and p_2) will be called *coupled*. Two polynomials are *linear equivalent*, if one of them is obtained from another by a linear change of variable. By C(p) we denote the class of polynomials, linear equivalent to p. The coupling realizes a bijection between classes C(p) and $C(p_1)$ (and between classes C(p) and $C(p_2)$). Classes C(p) and $C(p_1)$ (and classes C(p) and $C(p_2)$) will be called *adjacent*. We consider a graph: its vertices — are classes of the linear equivalency and two vertices are connected by an edge, if the corresponded classes are adjacent. Connected components of this graph will be called *superclasses*. In this work we give a description of superclasses.

1. COUPLED POLYNOMIALS AND CLASSES OF THE LINEAR EQUIVALENCY

Let $p \in \mathbb{Q}[x]$ be an irreducible cubic polynomial (a Galois polynomial) that defines a cubic Galois field. Roots x_1, x_2, x_3 of such polynomial are real and its discriminant D is a full square: $D = d^2, d \in \mathbb{Q}$. The Galois group of p is the cyclic group A_3 [1].

Proposition 1. Let x_1, x_2, x_3 be roots of a Galois polynomial $p = x^3 + ax^2 + bx + x$, enumerated in some order. There exists a unique polynomial $q = \alpha x^2 + \beta x + \gamma \in \mathbb{Q}[x]$ that cyclically permutes roots of $p: q(x_1) = x_2, q(x_2) = x_3, q(x_3) = x_1$.

Remark. Let K be the cubic Galois field, generated by roots of p. The map $x \mapsto q(x)$ of K into itself is not an automorphism of K.

Remark. The polynomial $q(q) \mod p$ permutes roots of p in the reverse order.

Proof. Let us consider the linear system

$$\begin{cases} \alpha x_1^2 + \beta x_1 + \gamma = x_2 \\ \alpha x_2^2 + \beta x_2 + \gamma = x_3 \\ \alpha x_3^2 + \beta x_3 + \gamma = x_3 \end{cases}$$

The Cramer formula gives us the solution of this system:

$$\alpha = \frac{\begin{vmatrix} x_2 & x_1 & 1 \\ x_3 & x_2 & 1 \\ x_1 & x_3 & 1 \end{vmatrix}}{\begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix}} = \frac{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_1 x_3 - x_2 x_3}{d} = \frac{a^2 - 3b}{d}$$

Analogously, we can find that

$$\beta = \frac{a^3 + 9c - 7ab - d}{2d}, \ \gamma = \frac{a^2b + 3ac - 4b^2 - ad}{2d}$$

Thus,

$$q = \frac{a^2 - 3b}{d} \cdot x^2 + \frac{a^3 + 9c - 7ab - d}{2d} \cdot x + \frac{a^2b + 3ac - 4b^2 - ad}{2d}.$$
 (1)

Here the sign of d is the sign of the number $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$. If we choose another sign for d, then we will have another solution of the above system.

Example 1. Let $p = x^3 - 3x + 1$. The discriminant of p is 81. The choice d = 9 gives us the solution $q_1 = -x^2 - x + 2$ and the choice d = -9 — the solution $q_2 = x^2 - 2$. Obviously, $q_1(q_1) \mod p = q_2$ and $q_2(q_2) \mod p = q_1$.

Corollary. The degree of q is exactly 2.

Proof. Let $\alpha = 0$, i.e. $3b = a^2$. Then $p = x^3 + ax^3 + \frac{a^2}{3} \cdot x + c$ and $p' = 3x^2 + 2ax + \frac{a^2}{3} = 3 \cdot (x + \frac{a}{3})^2$. Thus, the function p(x) is nondecreasing, i.e. it has only one real root and p cannot be a Galois polynomial.

YURY KOCHETKOV

Proposition 2. Let p be a cubic Galois polynomial and polynomial q cyclically permutes roots of p. Then q cyclically permutes roots of another cubic Galois polynomial.

Proof. Let us consider the polynomial s = (q(q(q))) - x of degree 8. Each root of p is a root of s, hence, p is a divisor of s. Each root of the polynomial q - x is a root of s, hence, q - x is a divisor of s. Thus, there is the third divisor of s - a polynomial p_1 of degree 3 with rational coefficients. Let x_1 be a real root of p_1 . Then it is a root of s, i.e. $q(q(q(x_1))) = x_1$. Let $q(x_1) = x_2$ and $q(x_2) = x_3$. As $q(q(q(x_2))) = x_2$ and $q(q(q(x_3))) = x_3$, then x_2 and x_3 are roots of p_1 . Thus, q cyclically permutes roots of p_1 . But from (1) it follows that the discriminant of p_1 is a full square. Thus, p_1 is a Galois polynomial.

A continuation of Example 1. Here $p = x^3 - 3x + 1$, $q_1 = -x^2 - x + 2$, $q_2 = x^2 - 2$.

$$(q_1(q_1(q_1(x)))) - x = (x^3 - 3x + 1)(-x^2 - 2x + 2)(x^3 + 2x^2 - 3x - 5)$$

and

$$(q_2(q_2(x)))) - x = (x^3 - 3x + 1)(x^2 - x - 2)(x^3 + x^2 - 2x - 1).$$

The discriminant of the polynomial $p_1 = x^3 + 2x^2 - 3x - 5$ is $169 = 13^2$ and the discriminant of the polynomial $p_2 = x^3 + x^2 - 2x - 1$ is $49 = 7^2$. Polynomials p_1 and p_2 define different Galois fields.

Definition 1. Two cubic Galois polynomials p and r are called *coupled*, if there exists a quadratic polynomial q that cyclically permutes roots of p and roots of r.

Remark. As there are two polynomials that cyclically permutes roots of a Galois polynomial p, then p is coupled with two Galois polynomials p_1 and p_2 .

Definition 2. Two polynomials are called linear equivalent, if one of them is obtained from another by a linear change of variable. The linear equivalency is an equivalency relation. The set of polynomials, linear equivalent to a given polynomial p, will be called the class of linear equivalency, generated by p, and will be denoted C(p).

Proposition 3. Let p and r be coupled cubic Galois polynomial, $g(x) = p(\alpha x + \beta)$ and $h(x) = r(\alpha x + \beta)$. Then g and h are coupled cubic Galois polynomials.

Proof. If the polynomial q cyclically permutes roots of p and r, then the polynomial $\frac{q(\alpha x+\beta)-\beta}{\alpha}$ cyclically permutes roots of g and h.

Corollary. The coupling is a bijection between C(p) and C(r).

2. Representatives of classes and characteristic numbers

Definition 3. Each class C of linear equivalency contains the unique polynomial of the form $x^3 - ax - a$. This polynomial will be called the representative of the class C. As the discriminant $D = a^2(4a - 27)$ of this polynomial is a full square, then $4a - 27 = k^2$. A rational number k > 0 will be called the characteristic number of the class C.

Example 2. Polynomial $x^3 - 27x - 27$ is the representative of the class $C(x^3 - 3x + 1)$ and 9 is the characteristic number of this class.

Remark. Each cubic Galois field contains a countable number of equivalency classes. For example, the field generated by polynomial $x^3 - 3x + 1$, contains equivalency classes with representatives $x^3 - tx - t$, where t is any rational number of the form

$$t = 27 \cdot \frac{(y^2 + 2187y + 1594323)^3}{(y^3 - 4782969y - 3486784401)^2}, y \in \mathbb{Q}.$$

Proposition 4. Let $p = x^3 - ax - a$, a > 0, -a cubic Galois polynomial with discriminant $D = a^2k^2$ and let $d = \sqrt{D} = ak$. Polynomials

$$q_1 = \frac{3}{k} \cdot x^2 - \frac{k+9}{2k} \cdot x - \frac{2a}{k} \text{ and } q_2 = -\frac{3}{k} \cdot x^2 + \frac{9-k}{2k} + \frac{2a}{k}$$
(2)

induce cyclic permutations of roots of the polynomial p. Let p_1 and p_2 be coupled polynomials. Polynomials

$$r_1 = x^3 - bx - b, \ b = \frac{27}{4} \cdot \frac{31k^2 + 108k + 729}{(2k+27)^2}, \ and \ r_2 = x^3 - cx - c, \ c = \frac{27}{4} \cdot \frac{31k^2 - 108k + 729}{(2k-27)^2}$$
(3)

are representatives of classes $C(p_1)$ and $C(p_2)$. The corresponding characteristic numbers are

$$k_1 = \frac{27k}{2k+27}$$
 and $k_2 = \frac{27k}{|2k-27|}$. (4)

Proof. Computation.

Thus, we have two maps in the set of positive rational numbers \mathbb{Q}_+ :

$$\varphi: k \mapsto \frac{27k}{2k+27} \text{ and } \psi: k \mapsto \frac{27k}{|2k-27|}.$$
(5)

Proposition 5. Maps φ and ψ have the following properties:

- (1) $\varphi(k) < k, \, \varphi(k) \in (0, \frac{27}{2});$
- (2) iterations of $\varphi(k)$ converge to zero;
- (3) $\psi(\varphi(k)) = k; \varphi(\psi(k)) = k, \text{ if } k < \frac{27}{2};$ (4) $\psi(k) > k, \text{ if } k < 27; \psi(k) \in (\frac{27}{2}, 27), \text{ if } k > 27; \psi(\psi(k)) = k, \text{ if } k > \frac{27}{2};$ (5) $\psi(27) = 27.$

Proof. Only (2) needs a proof. We have,

$$\varphi(k) = \frac{27k}{2k+27}, \ \varphi(\varphi(k)) = \frac{27k}{4k+27}, \ \varphi(\varphi(\varphi(k))) = \frac{27k}{6k+27}, \dots$$

Remark. Let p be a cubic Galois polynomial and p_1 and p_2 be its coupled polynomials. Then $C(p_1)$ and $C(p_2)$ are different classes because their characteristic numbers are different.

3. Superclasses

Definition 4. Two classes C_1 and C_2 will be called *adjacent* if there are coupled polynomials $p \in C_1$ and $r \in C_2$.

Remark. From Proposition 3 it follows that if C_1 and C_2 are adjacent classes, then for each element $g \in C_1$ there is a unique element $h \in C_2$, coupled to g.

Definition 5. Let G be a graph whose vertices are classes of linear equivalency and two vertices are connected by an edge, if corresponding classes are adjacent. Connected components of G will be called *superclasses*.

Proposition 6. Except two cases, each superclass is generated by a positive rational number k > 27 and contains classes with characteristic numbers $\{k, \psi(k), \varphi(k), \varphi(\psi(k)), \varphi(\varphi(k)), \varphi(\varphi(\psi(k))), \varphi(\varphi(\varphi(k))), \ldots\}$. Two exceptions are: a) the superclass generated by k = 27 (it contains classes with characteristic numbers $\{27, 9, \frac{27}{5}, \frac{27}{7}, \ldots\}$); b) the superclass generated by $k = \frac{27}{2}$ (it contains classes with characteristic numbers $\{\frac{27}{2}, \frac{27}{4}, \frac{27}{6}, \ldots\}$).

Remark. Proposition 6 needs some clarification: a superclass in our description is a set of characteristic numbers. But it is possible, that some characteristic number in such set corresponds to a class of reducible polynomials. For example, number k = 270 generates the superclass $\{270, \frac{90}{7}, \frac{270}{41}, \frac{270}{61}, \frac{10}{3}, \ldots\}$. Here the number $\frac{10}{3}$ corresponds to the class with representative

$$x^{3} - \frac{343}{36} \cdot x - \frac{343}{36} = \left(x + \frac{7}{3}\right)\left(x + \frac{7}{6}\right)\left(x - \frac{7}{2}\right)$$

It must be noted that the coupled polynomial $1458x^3 - 7301x^2 - 6930x + 49763$ is irreducible.

References

[1] Ian Stewart. Galois Theory, Chapman and Hall (1989).

Email address: yukochetkov@hse.ru,yuyukochetkov@gmail.com