ON CUBIC POLYNOMIALS WITH THE CYCLIC GALOIS GROUP

YURY KOCHETKOV

Abstract

A cubic Galois polynomial is a cubic polynomial with rational coefficients that defines a cubic Galois field. Its discriminant is a full square and its roots x_{1}, x_{2}, x_{3} (enumerated in some order) are real. There exists (and only one) quadratic polynomial q with rational coefficients such that $q\left(x_{1}\right)=x_{2}, q\left(x_{2}\right)=x_{3}, q\left(x_{3}\right)=x_{1}$. The polynomial $r=q(q) \bmod p$ cyclically permutes roots of p in the opposite order: $r\left(x_{1}\right)=x_{3}, r\left(x_{3}\right)=x_{2}, r\left(x_{2}\right)=x_{1}$. We prove that there exist a unique Galois polynomial p_{1} and a unique Galois polynomial p_{2} such that the polynomial q cyclically permutes roots of p_{1} and the polynomial r do the same with roots of p_{2}. Polynomials p and p_{1} (and also p and p_{2}) will be called coupled. Two polynomials are linear equivalent, if one of them is obtained from another by a linear change of variable. By $C(p)$ we denote the class of polynomials, linear equivalent to p. The coupling realizes a bijection between classes $C(p)$ and $C\left(p_{1}\right)$ (and between classes $C(p)$ and $C\left(p_{2}\right)$). Classes $C(p)$ and $C\left(p_{1}\right)$ (and classes $C(p)$ and $C\left(p_{2}\right)$) will be called adjacent. We consider a graph: its vertices - are classes of the linear equivalency and two vertices are connected by an edge, if the corresponded classes are adjacent. Connected components of this graph will be called superclasses. In this work we give a description of superclasses.

1. Coupled polynomials and classes of the linear equivalency

Let $p \in \mathbb{Q}[x]$ be an irreducible cubic polynomial (a Galois polynomial) that defines a cubic Galois field. Roots x_{1}, x_{2}, x_{3} of such polynomial are real and its discriminant D is a full square: $D=d^{2}, d \in \mathbb{Q}$. The Galois group of p is the cyclic group A_{3} [1].
Proposition 1. Let x_{1}, x_{2}, x_{3} be roots of a Galois polynomial $p=x^{3}+a x^{2}+b x+x$, enumerated in some order. There exists a unique polynomial $q=\alpha x^{2}+\beta x+\gamma \in \mathbb{Q}[x]$ that cyclically permutes roots of $p: q\left(x_{1}\right)=x_{2}, q\left(x_{2}\right)=x_{3}$, $q\left(x_{3}\right)=x_{1}$.
Remark. Let K be the cubic Galois field, generated by roots of p. The map $x \mapsto q(x)$ of K into itself is not an automorphism of K.

Remark. The polynomial $q(q) \bmod p$ permutes roots of p in the reverse order.
Proof. Let us consider the linear system

$$
\left\{\begin{array}{l}
\alpha x_{1}^{2}+\beta x_{1}+\gamma=x_{2} \\
\alpha x_{2}^{2}+\beta x_{2}+\gamma=x_{3} \\
\alpha x_{3}^{2}+\beta x_{3}+\gamma=x_{1}
\end{array}\right.
$$

The Cramer formula gives us the solution of this system:

$$
\alpha=\frac{\left|\begin{array}{lll}
x_{2} & x_{1} & 1 \\
x_{3} & x_{2} & 1 \\
x_{1} & x_{3} & 1
\end{array}\right|}{\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|}=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3}}{d}=\frac{a^{2}-3 b}{d}
$$

Analogously, we can find that

$$
\beta=\frac{a^{3}+9 c-7 a b-d}{2 d}, \gamma=\frac{a^{2} b+3 a c-4 b^{2}-a d}{2 d} .
$$

Thus,

$$
\begin{equation*}
q=\frac{a^{2}-3 b}{d} \cdot x^{2}+\frac{a^{3}+9 c-7 a b-d}{2 d} \cdot x+\frac{a^{2} b+3 a c-4 b^{2}-a d}{2 d} . \tag{1}
\end{equation*}
$$

Here the sign of d is the sign of the number $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$. If we choose another sign for d, then we will have another solution of the above system.
Example 1. Let $p=x^{3}-3 x+1$. The discriminant of p is 81 . The choice $d=9$ gives us the solution $q_{1}=-x^{2}-x+2$ and the choice $d=-9$ - the solution $q_{2}=x^{2}-2$. Obviously, $q_{1}\left(q_{1}\right) \bmod \mathrm{p}=q_{2}$ and $q_{2}\left(q_{2}\right) \bmod p=q_{1}$.

Corollary. The degree of q is exactly 2.
Proof. Let $\alpha=0$, i.e. $3 b=a^{2}$. Then $p=x^{3}+a x^{3}+\frac{a^{2}}{3} \cdot x+c$ and $p^{\prime}=3 x^{2}+2 a x+\frac{a^{2}}{3}=3 \cdot\left(x+\frac{a}{3}\right)^{2}$. Thus, the function $p(x)$ is nondecreasing, i.e. it has only one real root and p cannot be a Galois polynomial.

Proposition 2. Let p be a cubic Galois polynomial and polynomial q cyclically permutes roots of p. Then q cyclically permutes roots of another cubic Galois polynomial.
Proof. Let us consider the polynomial $s=(q(q(q)))-x$ of degree 8. Each root of p is a root of s, hence, p is a divisor of s. Each root of the polynomial $q-x$ is a root of s, hence, $q-x$ is a divisor of s. Thus, there is the third divisor of s - a polynomial p_{1} of degree 3 with rational coefficients. Let x_{1} be a real root of p_{1}. Then it is a root of s, i.e. $q\left(q\left(q\left(x_{1}\right)\right)\right)=x_{1}$. Let $q\left(x_{1}\right)=x_{2}$ and $q\left(x_{2}\right)=x_{3}$. As $q\left(q\left(q\left(x_{2}\right)\right)\right)=x_{2}$ and $q\left(q\left(q\left(x_{3}\right)\right)\right)=x_{3}$, then x_{2} and x_{3} are roots of p_{1}. Thus, q cyclically permutes roots of p_{1}. But from (1) it follows that the discriminant of p_{1} is a full square. Thus, p_{1} is a Galois polynomial.

A continuation of Example 1. Here $p=x^{3}-3 x+1, q_{1}=-x^{2}-x+2, q_{2}=x^{2}-2$.

$$
\left(q_{1}\left(q_{1}\left(q_{1}(x)\right)\right)\right)-x=\left(x^{3}-3 x+1\right)\left(-x^{2}-2 x+2\right)\left(x^{3}+2 x^{2}-3 x-5\right)
$$

and

$$
\left(q_{2}\left(q_{2}\left(q_{2}(x)\right)\right)\right)-x=\left(x^{3}-3 x+1\right)\left(x^{2}-x-2\right)\left(x^{3}+x^{2}-2 x-1\right)
$$

The discriminant of the polynomial $p_{1}=x^{3}+2 x^{2}-3 x-5$ is $169=13^{2}$ and the discriminant of the polynomial $p_{2}=x^{3}+x^{2}-2 x-1$ is $49=7^{2}$. Polynomials p_{1} and p_{2} define different Galois fields.

Definition 1. Two cubic Galois polynomials p and r are called coupled, if there exists a quadratic polynomial q that cyclically permutes roots of p and roots of r.

Remark. As there are two polynomials that cyclically permutes roots of a Galois polynomial p, then p is coupled with two Galois polynomials p_{1} and p_{2}.
Definition 2. Two polynomials are called linear equivalent, if one of them is obtained from another by a linear change of variable. The linear equivalency is an equivalency relation. The set of polynomials, linear equivalent to a given polynomial p, will be called the class of linear equivalency, generated by p, and will be denoted $C(p)$.

Proposition 3. Let p and r be coupled cubic Galois polynomial, $g(x)=p(\alpha x+\beta)$ and $h(x)=r(\alpha x+\beta)$. Then g and h are coupled cubic Galois polynomials.
Proof. If the polynomial q cyclically permutes roots of p and r, then the polynomial $\frac{q(\alpha x+\beta)-\beta}{\alpha}$ cyclically permutes roots of g and h.

Corollary. The coupling is a bijection between $C(p)$ and $C(r)$.

2. REPRESENTATIVES OF CLASSES AND CHARACTERISTIC NUMBERS

Definition 3. Each class C of linear equivalency contains the unique polynomial of the form $x^{3}-a x-a$. This polynomial will be called the representative of the class C. As the discriminant $D=a^{2}(4 a-27)$ of this polynomial is a full square, then $4 a-27=k^{2}$. A rational number $k>0$ will be called the characteristic number of the class C.
Example 2. Polynomial $x^{3}-27 x-27$ is the representative of the class $C\left(x^{3}-3 x+1\right)$ and 9 is the characteristic number of this class.

Remark. Each cubic Galois field contains a countable number of equivalency classes. For example, the field generated by polynomial $x^{3}-3 x+1$, contains equivalency classes with representatives $x^{3}-t x-t$, where t is any rational number of the form

$$
t=27 \cdot \frac{\left(y^{2}+2187 y+1594323\right)^{3}}{\left(y^{3}-4782969 y-3486784401\right)^{2}}, y \in \mathbb{Q}
$$

Proposition 4. Let $p=x^{3}-a x-a, a>0$, - a cubic Galois polynomial with discriminant $D=a^{2} k^{2}$ and let $d=\sqrt{D}=a k$. Polynomials

$$
\begin{equation*}
q_{1}=\frac{3}{k} \cdot x^{2}-\frac{k+9}{2 k} \cdot x-\frac{2 a}{k} \text { and } q_{2}=-\frac{3}{k} \cdot x^{2}+\frac{9-k}{2 k}+\frac{2 a}{k} \tag{2}
\end{equation*}
$$

induce cyclic permutations of roots of the polynomial p. Let p_{1} and p_{2} be coupled polynomials. Polynomials

$$
\begin{equation*}
r_{1}=x^{3}-b x-b, b=\frac{27}{4} \cdot \frac{31 k^{2}+108 k+729}{(2 k+27)^{2}}, \text { and } r_{2}=x^{3}-c x-c, c=\frac{27}{4} \cdot \frac{31 k^{2}-108 k+729}{(2 k-27)^{2}} \tag{3}
\end{equation*}
$$

are representatives of classes $C\left(p_{1}\right)$ and $C\left(p_{2}\right)$. The corresponding characteristic numbers are

$$
\begin{equation*}
k_{1}=\frac{27 k}{2 k+27} \text { and } k_{2}=\frac{27 k}{|2 k-27|} . \tag{4}
\end{equation*}
$$

Proof. Computation.

Thus, we have two maps in the set of positive rational numbers \mathbb{Q}_{+}:

$$
\begin{equation*}
\varphi: k \mapsto \frac{27 k}{2 k+27} \text { and } \psi: k \mapsto \frac{27 k}{|2 k-27|} \tag{5}
\end{equation*}
$$

Proposition 5. Maps φ and ψ have the following properties:
(1) $\varphi(k)<k, \varphi(k) \in\left(0, \frac{27}{2}\right)$;
(2) iterations of $\varphi(k)$ converge to zero;
(3) $\psi(\varphi(k))=k ; \varphi(\psi(k))=k$, if $k<\frac{27}{2}$;
(4) $\psi(k)>k$, if $k<27 ; \psi(k) \in\left(\frac{27}{2}, 27\right)$, if $k>27 ; \psi(\psi(k))=k$, if $k>\frac{27}{2}$;
(5) $\psi(27)=27$.

Proof. Only (2) needs a proof. We have,

$$
\varphi(k)=\frac{27 k}{2 k+27}, \varphi(\varphi(k))=\frac{27 k}{4 k+27}, \varphi(\varphi(\varphi(k)))=\frac{27 k}{6 k+27}, \ldots
$$

Remark. Let p be a cubic Galois polynomial and p_{1} and p_{2} be its coupled polynomials. Then $C\left(p_{1}\right)$ and $C\left(p_{2}\right)$ are different classes because their characteristic numbers are different.

3. Superclasses

Definition 4. Two classes C_{1} and C_{2} will be called adjacent if there are coupled polynomials $p \in C_{1}$ and $r \in C_{2}$.
Remark. From Proposition 3 it follows that if C_{1} and C_{2} are adjacent classes, then for each element $g \in C_{1}$ there is a unique element $h \in C_{2}$, coupled to g.
Definition 5. Let G be a graph whose vertices are classes of linear equivalency and two vertices are connected by an edge, if corresponding classes are adjacent. Connected components of G will be called superclasses.
Proposition 6. Except two cases, each superclass is generated by a positive rational number $k>27$ and contains classes with characteristic numbers $\{k, \psi(k), \varphi(k), \varphi(\psi(k)), \varphi(\varphi(k)), \varphi(\varphi(\psi(k))), \varphi(\varphi(\varphi(k))), \ldots\}$. Two exceptions are: a) the superclass generated by $k=27$ (it contains classes with characteristic numbers $\left\{27,9, \frac{27}{5}, \frac{27}{7}, \ldots\right\}$); b) the superclass generated by $k=\frac{27}{2}$ (it contains classes with characteristic numbers $\left\{\frac{27}{2}, \frac{27}{4}, \frac{27}{6}, \ldots\right\}$).
Remark. Proposition 6 needs some clarification: a superclass in our description is a set of characteristic numbers. But it is possible, that some characteristic number in such set corresponds to a class of reducible polynomials. For example, number $k=270$ generates the superclass $\left\{270, \frac{90}{7}, \frac{270}{41}, \frac{270}{61}, \frac{10}{3}, \ldots\right\}$. Here the number $\frac{10}{3}$ corresponds to the class with representative

$$
x^{3}-\frac{343}{36} \cdot x-\frac{343}{36}=\left(x+\frac{7}{3}\right)\left(x+\frac{7}{6}\right)\left(x-\frac{7}{2}\right) .
$$

It must be noted that the coupled polynomial $1458 x^{3}-7301 x^{2}-6930 x+49763$ is irreducible.

References

[1] Ian Stewart. Galois Theory, Chapman and Hall (1989).

Email address: yukochetkov@hse.ru,yuyukochetkov@gmail.com

