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ON CUBIC POLYNOMIALS WITH THE CYCLIC GALOIS GROUP

YURY KOCHETKOV

Abstract. A cubic Galois polynomial is a cubic polynomial with rational coefficients that defines a cubic Galois field.
Its discriminant is a full square and its roots x1, x2, x3 (enumerated in some order) are real. There exists (and only
one) quadratic polynomial q with rational coefficients such that q(x1) = x2, q(x2) = x3, q(x3) = x1. The polynomial
r = q(q) mod p cyclically permutes roots of p in the opposite order: r(x1) = x3, r(x3) = x2, r(x2) = x1. We prove
that there exist a unique Galois polynomial p1 and a unique Galois polynomial p2 such that the polynomial q cyclically
permutes roots of p1 and the polynomial r do the same with roots of p2. Polynomials p and p1 (and also p and p2) will

be called coupled. Two polynomials are linear equivalent, if one of them is obtained from another by a linear change of
variable. By C(p) we denote the class of polynomials, linear equivalent to p. The coupling realizes a bijection between
classes C(p) and C(p1) (and between classes C(p) and C(p2)). Classes C(p) and C(p1) (and classes C(p) and C(p2))
will be called adjacent. We consider a graph: its vertices — are classes of the linear equivalency and two vertices are
connected by an edge, if the corresponded classes are adjacent. Connected components of this graph will be called
superclasses. In this work we give a description of superclasses.

1. Coupled polynomials and classes of the linear equivalency

Let p ∈ Q[x] be an irreducible cubic polynomial (a Galois polynomial) that defines a cubic Galois field. Roots x1, x2, x3
of such polynomial are real and its discriminant D is a full square: D = d2, d ∈ Q. The Galois group of p is the cyclic
group A3 [1].

Proposition 1. Let x1, x2, x3 be roots of a Galois polynomial p = x3 + ax2 + bx + x, enumerated in some order.
There exists a unique polynomial q = αx2 + βx+ γ ∈ Q[x] that cyclically permutes roots of p: q(x1) = x2, q(x2) = x3,
q(x3) = x1.

Remark. Let K be the cubic Galois field, generated by roots of p. The map x 7→ q(x) of K into itself is not an
automorphism of K.

Remark. The polynomial q(q) mod p permutes roots of p in the reverse order.

Proof. Let us consider the linear system






αx21 + βx1 + γ = x2
αx22 + βx2 + γ = x3
αx23 + βx3 + γ = x1

The Cramer formula gives us the solution of this system:

α =

∣

∣

∣

∣

∣

∣

x2 x1 1
x3 x2 1
x1 x3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x21 x1 1
x22 x2 1
x23 x3 1

∣

∣

∣

∣

∣

∣

=
x21 + x22 + x23 − x1x2 − x1x3 − x2x3

d
=
a2 − 3b

d
.

Analogously, we can find that

β =
a3 + 9c− 7ab− d

2d
, γ =

a2b + 3ac− 4b2 − ad

2d
.

Thus,

q =
a2 − 3b

d
· x2 + a3 + 9c− 7ab− d

2d
· x+

a2b+ 3ac− 4b2 − ad

2d
. (1)

Here the sign of d is the sign of the number (x1 − x2)(x1 − x3)(x2 − x3). If we choose another sign for d, then we will
have another solution of the above system. �

Example 1. Let p = x3− 3x+1. The discriminant of p is 81. The choice d = 9 gives us the solution q1 = −x2−x+2
and the choice d = −9 — the solution q2 = x2 − 2. Obviously, q1(q1) mod p = q2 and q2(q2) mod p = q1.

Corollary. The degree of q is exactly 2.

Proof. Let α = 0, i.e. 3b = a2. Then p = x3 + ax3 + a2

3 · x + c and p′ = 3x2 + 2ax + a2

3 = 3 · (x + a
3 )

2. Thus, the
function p(x) is nondecreasing, i.e. it has only one real root and p cannot be a Galois polynomial. �
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Proposition 2. Let p be a cubic Galois polynomial and polynomial q cyclically permutes roots of p. Then q cyclically
permutes roots of another cubic Galois polynomial.

Proof. Let us consider the polynomial s = (q(q(q)))− x of degree 8. Each root of p is a root of s, hence, p is a divisor
of s. Each root of the polynomial q − x is a root of s, hence, q − x is a divisor of s. Thus, there is the third divisor
of s — a polynomial p1 of degree 3 with rational coefficients. Let x1 be a real root of p1. Then it is a root of s, i.e.
q(q(q(x1))) = x1. Let q(x1) = x2 and q(x2) = x3. As q(q(q(x2))) = x2 and q(q(q(x3))) = x3, then x2 and x3 are roots
of p1. Thus, q cyclically permutes roots of p1. But from (1) it follows that the discriminant of p1 is a full square.
Thus, p1 is a Galois polynomial. �

A continuation of Example 1. Here p = x3 − 3x+ 1, q1 = −x2 − x+ 2, q2 = x2 − 2.

(q1(q1(q1(x)))) − x = (x3 − 3x+ 1)(−x2 − 2x+ 2)(x3 + 2x2 − 3x− 5)

and

(q2(q2(q2(x)))) − x = (x3 − 3x+ 1)(x2 − x− 2)(x3 + x2 − 2x− 1).

The discriminant of the polynomial p1 = x3 + 2x2 − 3x − 5 is 169 = 132 and the discriminant of the polynomial
p2 = x3 + x2 − 2x− 1 is 49 = 72. Polynomials p1 and p2 define different Galois fields.

Definition 1. Two cubic Galois polynomials p and r are called coupled, if there exists a quadratic polynomial q that
cyclically permutes roots of p and roots of r.

Remark. As there are two polynomials that cyclically permutes roots of a Galois polynomial p, then p is coupled with
two Galois polynomials p1 and p2.

Definition 2. Two polynomials are called linear equivalent, if one of them is obtained from another by a linear change
of variable. The linear equivalency is an equivalency relation. The set of polynomials, linear equivalent to a given
polynomial p, will be called the class of linear equivalency, generated by p, and will be denoted C(p).

Proposition 3. Let p and r be coupled cubic Galois polynomial, g(x) = p(αx + β) and h(x) = r(αx + β). Then g

and h are coupled cubic Galois polynomials.

Proof. If the polynomial q cyclically permutes roots of p and r, then the polynomial q(αx+β)−β

α
cyclically permutes

roots of g and h. �

Corollary. The coupling is a bijection between C(p) and C(r).

2. Representatives of classes and characteristic numbers

Definition 3. Each class C of linear equivalency contains the unique polynomial of the form x3 − ax − a. This
polynomial will be called the representative of the class C. As the discriminant D = a2(4a− 27) of this polynomial is
a full square, then 4a− 27 = k2. A rational number k > 0 will be called the characteristic number of the class C.

Example 2. Polynomial x3 − 27x − 27 is the representative of the class C(x3 − 3x + 1) and 9 is the characteristic
number of this class.

Remark. Each cubic Galois field contains a countable number of equivalency classes. For example, the field generated
by polynomial x3−3x+1, contains equivalency classes with representatives x3− tx− t, where t is any rational number
of the form

t = 27 · (y2 + 2187y+ 1594323)3

(y3 − 4782969y− 3486784401)2
, y ∈ Q.

Proposition 4. Let p = x3 − ax − a, a > 0, — a cubic Galois polynomial with discriminant D = a2k2 and let
d =

√
D = ak. Polynomials

q1 =
3

k
· x2 − k + 9

2k
· x− 2a

k
and q2 = − 3

k
· x2 + 9− k

2k
+

2a

k
(2)

induce cyclic permutations of roots of the polynomial p. Let p1 and p2 be coupled polynomials. Polynomials

r1 = x3 − bx− b, b =
27

4
· 31k

2 + 108k + 729

(2k + 27)2
, and r2 = x3 − cx− c, c =

27

4
· 31k

2 − 108k + 729

(2k − 27)2
(3)

are representatives of classes C(p1) and C(p2). The corresponding characteristic numbers are

k1 =
27k

2k + 27
and k2 =

27k

|2k − 27| . (4)

Proof. Computation. �
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Thus, we have two maps in the set of positive rational numbers Q+:

ϕ : k 7→ 27k

2k + 27
and ψ : k 7→ 27k

|2k − 27| . (5)

Proposition 5. Maps ϕ and ψ have the following properties:

(1) ϕ(k) < k, ϕ(k) ∈ (0, 272 );
(2) iterations of ϕ(k) converge to zero;
(3) ψ(ϕ(k)) = k; ϕ(ψ(k)) = k, if k < 27

2 ;

(4) ψ(k) > k, if k < 27; ψ(k) ∈ (272 , 27), if k > 27; ψ(ψ(k)) = k, if k > 27
2 ;

(5) ψ(27) = 27.

Proof. Only (2) needs a proof. We have,

ϕ(k) =
27k

2k + 27
, ϕ(ϕ(k)) =

27k

4k + 27
, ϕ(ϕ(ϕ(k))) =

27k

6k + 27
, . . .

�

Remark. Let p be a cubic Galois polynomial and p1 and p2 be its coupled polynomials. Then C(p1) and C(p2) are
different classes because their characteristic numbers are different.

3. Superclasses

Definition 4. Two classes C1 and C2 will be called adjacent if there are coupled polynomials p ∈ C1 and r ∈ C2.

Remark. From Proposition 3 it follows that if C1 and C2 are adjacent classes, then for each element g ∈ C1 there is a
unique element h ∈ C2, coupled to g.

Definition 5. Let G be a graph whose vertices are classes of linear equivalency and two vertices are connected by an
edge, if corresponding classes are adjacent. Connected components of G will be called superclasses.

Proposition 6. Except two cases, each superclass is generated by a positive rational number k > 27 and contains
classes with characteristic numbers {k, ψ(k), ϕ(k), ϕ(ψ(k)), ϕ(ϕ(k)), ϕ(ϕ(ψ(k))), ϕ(ϕ(ϕ(k))), . . .}. Two exceptions are:
a) the superclass generated by k = 27 (it contains classes with characteristic numbers {27, 9, 275 , 277 , . . .}); b) the

superclass generated by k = 27
2 (it contains classes with characteristic numbers { 27

2 ,
27
4 ,

27
6 , . . .}).

Remark. Proposition 6 needs some clarification: a superclass in our description is a set of characteristic numbers.
But it is possible, that some characteristic number in such set corresponds to a class of reducible polynomials. For
example, number k = 270 generates the superclass {270, 907 , 27041 ,

270
61 ,

10
3 , . . .}. Here the number 10

3 corresponds to the
class with representative

x3 − 343

36
· x− 343

36
=

(

x+
7

3

)(

x+
7

6

)(

x− 7

2

)

.

It must be noted that the coupled polynomial 1458x3 − 7301x2 − 6930x+ 49763 is irreducible.
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