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ABSTRACT This paper gives an experimentally supported review and comparison of several indices based
on the conventional K-means inertia criterion for determining the number of clusters, K , in datasets, using
the popular Silhouette width index as a benchmark. Our experiments involve a novel version of the Elbow
index, defined using values of K two or three steps apart. We also discuss alternative ways of computing the
inertia and summarizing its values. Even though there are no overall winners in our experiments, some of
our results are very conclusive and can be used as a guide for indices determining the number of clusters in
K-means.

INDEX TERMS K-means, number of clusters, inertia, elbow method, Calinski-Harabasz index,
Hartigan rule.

I. INTRODUCTION
This paper computationally explores a popular approach for
choosing the right number of clusters, K , in K-means cluster-
ing. We computationally review the use of cluster validation
indices based on the inertia, i.e. a square-error criterion of
the conventional K-means method in Equation (1). Also,
we bring forth a set of novel uses of these indices. They
are as follows: (a) use of the Euclidean distance rather than
the squared Euclidean distance in criterion (1) of K-means;
(b) summarization of a set of inertia values resulting from
multiple runs of K-means using the mean, rather than the
minimum (or maximum) value. Another novelty is an explicit
use of a set of three Elbow indices defined by the step size.

The interested reader is referred to numerous reviews on
the problem of determining the right number of clusters
according to the structure of the dataset under investigation
(see, for example, [1], [2], [3], [4]). No comprehensive
solution to the problem has been found so far. The stream of
work on the subject does not run dry though; just the opposite:
see, for example, some recent papers such as [5], [6], [7], [8],
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[9], [10], and [11], which may be considered as a support for
this opinion.

Among the best performers, one frequently encounters
cluster validity indices based on the inertia. Especially
frequent are mentions of the Calinski-Harabasz index, the
Elbow index (including a very successful Curvature index
by Zhang et al. [12], see further on for more details), and
the Hartigan rule. However, to the best of our knowledge,
no research specifically focused on comparison of inertia-
based indices has been conducted so far.

Our major interest is testing the data consisting of intermix
among clusters at which the use of a particular index may
be more advantageous. Therefore, we consider three types of
datasets at which cluster intermix can be analyzed. Two of
them involve an explicit and controllable intermix parameter:
the first is a generator of ‘‘synthetic’’ cluster structures at
which the intermix is represented by a so-called squeezing
parameter, and the second is based on the within-cluster
dispersion. The third data type, a set of relevant real-world
datasets from the UCI repository, has no explicit intermix
parameters; moreover, the extent of association between the
features and the ground-truth partition is not very clear and
may be too weak to get discovered within our approach.
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II. K-MEANS CLUSTERING
A. K-MEANS CRITERION AND RELATED QUANTITIES
K-means clustering is the most popular method in multivari-
ate data sciences, especially inmachine learning, datamining,
and quantitative psychology. Given an entity-to-feature data
matrix Y = (yiv) (i ∈ I , v = 1, . . . ,V ), a run of the
algorithm produces a partition S of I , in K nonintersecting
groups (clusters) Sk , S = {Sk}, with V -dimensional centers
ck = (ckv) with k = 1, 2, . . . ,K . Given an initial set of
centers c = {ck}, the K-means algorithm, in a batch version,
works in iterations to alternatingly minimize the square error
criterion, also referred to as inertia,D(K ), defined as follows:

D(K ) =

K∑
k=1

∑
i∈Sk

d(yi, ck )2, (1)

where S = {Sk} is the K -cluster partition, ck is the center
of cluster Sk , yi is the i-th row of matrix Y , and d(yi, ck )2 =∑V

v=1(yiv − ckv)2 is the squared Euclidean distance.
Due to its quadratic format, the inertia can be considered

within a Pythagorean decomposition of the data scatter
T =

∑
i,v y

2
iv:

T = D(K ) + F(K ), (2)

where F(K ) =
∑K

k=1 Nk ⟨ck , ck ⟩ and Nk is the cardinality of
Sk .

Let us develop an explicit expression used in criterion (1):

D(K ) =

K∑
k=1

∑
i∈Sk

V∑
v=1

(yiv − ckv)2

=

K∑
k=1

∑
i∈Sk

V∑
v=1

(y2iv − 2yivckv + c2kv)

=

N∑
i=1

V∑
v=1

y2iv −

K∑
k=1

Nk ⟨ck , ck ⟩ = T − F(K ),

which proves Equation (2).
In the case of a data matrix Y being centered, so that the

grand mean vector g = (gv) has been subtracted from each
row of Y , Equation (2) is well-known in the theory of analysis
of variance, ANOVA (see, for example, [13] Eq. 36.2.1).
In that case, T is obviously equal to the inertia of the dataset as
is, T = D(1). The value D(K ) does not depend on the grand
mean location. It is usually referred to as the within-group
sum of squares and denoted as SSW = D(K ), whereas the
right-hand part of Equation (2) is referred to as the between-
group sum of squares SSB. The SSB obviously depends on the
position of the grand mean g. However, this dependence has
nothing to do with the partition S. Let us put the subtracted
grand mean in SSB explicitly:

SSB =

K∑
k=1

Nk ⟨ck − g, ck − g⟩ = F(K ) − N ⟨g, g⟩. (3)

One can see from Equation (3) that F(K ) and SSB differ
by a constant, N ⟨g, g⟩, which is equal to F(1) and does not

depend on the partition. Therefore,

SSB = F(K ) − F(1) = D(1) − D(K ). (4)

The right part of Equation (4) shows that the between-
group of squares is a drop in value of the inertia when moving
from k = 1 to K clusters.

B. K-MEANS ALGORITHM AND ITS RANDOM SWAP
VERSION
Given a set of centers c, the K-means algorithm searches for
an optimal S by assigning to cluster Sk the entities that are
nearest to ck . Then, given S = {Sk}, the algorithm finds
each cluster centroid ck as the center of gravity of Sk (within-
cluster means) with k = 1, 2, . . . ,K . If the new centers differ
from those in the previous iteration, a new iteration of K-
means is carried out using the updated centers. The K-means
algorithm is intuitive and converges fast; centers can be used
as interpretation vehicles – these are its main advantages.

In this study, we also use a version of K-means with
random ‘‘mutations’’, allegedly helping to reach a deeper
minimum of the criterion in (1). This version, referred to
as Random Swap by [14], sometimes randomly changes one
of the centers for one of the entities. In our computations,
random center swaps occurred every 60 iterations (or after
convergence), so that the number of swaps was reaching 30
(per execution).

One of the main disadvantages of K-means is the need in
pre-specifying the number of clusters K , and initial centers
c = (ck ), with k = 1, 2, . . . ,K .

C. INITIALIZATION OF CLUSTER CENTERS
The problem of determining the ‘‘right’’ number of clusters
K will be treated at length further on. Here, we describe
two options for initialization of cluster centers. One option
consists of the use of the very popular K-means++

algorithm [15]. According to this approach, the first center
is a randomly chosen entity. The general step: having a
subset of centers c already selected, define the distance to
c, for every entity out of c, as the minimum distance to
all entities in c. Assign to each of the entities a probability
proportional to its distance to c. Choose the next center
randomly according to the specified rule. Another algorithm,
referred to as a version of MaxMin algorithm from [16], can
be considered as a deterministic version of the K-means++.
According to this approach, the very first center is defined as a
randomly selected entity. Every next center is chosen so that
it is maximally distant from already selected centers c. The
distance between an entity and c is defined as the minimum
distance to all centers in c.

D. CHOOSING THE RIGHT NUMBER OF CLUSTERS: A
REVIEW
Unfortunately, the minimal inertia can give no lead to the
problem of selecting the ‘‘right’’ number of clusters K in K-
means because it decreases monotonically as a function of K

11762 VOLUME 12, 2024



A. Rykov et al.: Inertia-Based Indices to Determine the Number of Clusters in K-Means

FIGURE 1. Minimum values of inertia D(K ) for different numbers of
clusters K = 2, 3, . . . , 10, each of them obtained after carrying out the
K -means++ initialization and 100 random starts on the popular Iris data
set from the Irvine repository.

(see, for example, Fig. 1). Moreover, no universal solution to
the problem of finding a rule for determining the right number
of clusters has been found so far (see, for example, the recent
works [5], [6], [7], [8], [9]).

In the absence of outside information, two approaches for
choosing the optimal number of clusters can be distinguished:
(i) pre-analysis of a set of potential centroids in data, and
(ii) post-processing multiple runs of K-means with random
initializations at different values of K [1]. The approach
(i) can be exemplified by the so-called affinity propagation
algorithm [17] and iterated anomalous clustering [18], [19],
[20]. The latter is based on the complementary K-means
criterion (3) that can be maximized one-by-one.

This paper falls into the area of approach (ii) which can
be pursued by using different strategies, including those
mentioned in [1]:

• Resampling: choosing K according to the similarity of
clustering results on randomly perturbed or sampled
data;

• Combining multiple clusterings: choosing K according
to stability of multiple clustering results at different
values of K ;

• Variance-, or inertia-, based approach: using some
extensions of criterion (1) that should provide extreme
values at a correct K .

Among the best performers, one frequently encounters
cluster validity indices based on the inertia. Especially
frequent are mentions of the Calinski-Harabasz index [21],
the Elbow index (including a rather successful Curvature
index by [12]), and the Hartigan rule [22]. Less known are
the Xu index [23] and the WB (Within-Between) index [24].
The goal of our study is to present a comprehensive

experimental testing of these indices, in the presence of a
benchmark, especially for highly intermixed clusters, as well
as their versions based on different ways of summarizing the
results of multiple K-means runs at random initializations.
Specifically, we consider that not only the minimum of
the obtained inertia values should be taken into account,
but their mean as well. Also, we maintain that the inertia
can be computed by using both: conventional squared
Euclidean distance and the (non-squared) Euclidean distance

between the centers of clusters and their elements. Another
novelty of this paper concerns different explanations of the
elbow concept. Introduced somewhat vaguely in a speech
by [25], the concept of elbow admits different interpretations
depending on the numbers of clusters considered before and
after the current number of clusters K . In particular, we focus
on the three following indices: Elbow1, Elbow2, and Elbow3.
Elbow1 is computed as the ratio of the differences between
the value of inertia atK and one-step away values atK−1 and
K + 1, whereas Elbow2 is computed by using the differences
between the inertia values at K and two-steps away values
at K − 2 and K + 2. The Elbow3 is computed the same
way, except that it compares the current inertia with three-
steps away inertia values. It is worth noting that different
step parameters used in the numerator and denominator of
the Elbow formula, such as, for instance, difference between
inertia values at K − 1 and K in the denominator, or between
inertia values atK andK+2 in the numerator, lead to inferior
results.

III. INERTIA-BASED INDICES FOR DETERMINING THE
RIGHT NUMBER OF CLUSTERS
A. ELBOW CRITERIA
Since the alternatingly mininized inertia criterion, D(K ) in
Equation (1), cannot be used for determining the right number
of clusters as is, one should look for a marked drop in the
values of D(K ). The earliest reference to this idea, from an
inauguration speech, tells us this: ‘‘Intuitively, it seems that
a sudden marked flattening of the curve at any point should
identify a distinctively ‘‘right’’ value of K’’ [25]. Currently,
this is formulated as the idea of the largest ‘‘elbow’’ in the
shape of the function D(K ) (see Fig. 1), or the largest drop
from D(K − 1) to D(K ) relative to the drop from D(K ) to
D(K + 1):

EL1(K ) =
D(K − 1) − D(K )
D(K ) − D(K + 1)

. (5)

We should point out that the EL1(K ) index is closely
related to the so-called Curvature indexC(K ) that is a discrete
approximation of a derivative-based measure of curvature
in the function relating the number of clusters K to the
minimum inertia criterion D(K ) [12]. The value of C(K )
is equivalently expressed by the following equation [12]:
C(K ) =

D(K−1)−D(K )
D(K )−D(K+1) − 1, so that, obviously, EL1(K ) =

C(K )+ 1. Since in several studies, C(K ) showed superiority
over some popular metrics for choosing the true number of
clusters [12], we included it in our experiments.

In our view, the elbow concept should not be restricted
to one-step differences only. Thus, we define Elbow2, in a
similar way:

EL2(K ) =
D(K − 2) − D(K )
D(K ) − D(K + 2)

, (6)

as well as Elbow3, an index based on three-step differences:

EL3(K ) =
D(K − 3) − D(K )
D(K ) − D(K + 3)

. (7)
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Of course, the rule for selecting the right value of K is the
same for EL1, EL2, and EL3 - it corresponds to the maximum
values of these indices. We also tested ‘‘intermediate’’ Elbow
metrics by swapping either numerators or denominators in
Equations (5) and (6), but those versions appeared inferior in
our experiments and, thus, are omitted from this narrative.
In contrast, we did not expect the index EL3 to have any
relevance. However, it showed interesting results in our
experiments and, therefore, is included in the exposition.

B. CALINSKI-HARABASZ INDEX
The Calinski and Harabasz index, CH(K) [21], is defined
by the ratio of the between-group dispersion and the within-
group dispersion, i.e. SSB and SSW , in the manner of the
ANOVA F-criterion:

CH (K ) =
SSB(K )/(K − 1)
SSW (K )/(N − K )

, (8)

assuming that SSB has K − 1 degrees of freedom, whereas
SSW has N − K degrees of freedom. By using Equa-
tions (2) and (4), this is easily converted into the relative
cumulative drop in the D(K ) value after K steps, weighted
by a constant value:

CH (K ) =
D(1) − D(K )

D(K )
×
N − K
K − 1

. (9)

Allegedly, CH (K ) is supposed to reach its maximum at the
right number of clusters K .

C. HARTIGAN RULE
This rule works as follows. Let us step-by step increase K
by one starting from K = 1 and compute the corresponding
values of H (K ), below. The very first K at which H (K )
decreases to 10 is taken as the right K ; this rule is referred
to as the ‘‘rule of thumb’’ by [22].

H (K ) =

(
D(K )

D(K + 1)
− 1

)
× (N − K − 1). (10)

D. WB INDEX
The WB index [24] can be considered a rescaled reciprocal
of the CH index and defined as follows:

WB(K ) = K
SSW (K )
SSB(K )

=
KD(K )

D(1) − D(K )
. (11)

Obviously, WB(K ) =
K (K−1)

(N−K )CH (K ) . In contrast to the CH
index, theWB index reaches its minimum at the right number
of clusters, K .

E. XU INDEX
The Xu index [23] has been derived from a logarithmic
formula for divergence under a version of a Gaussian mixture
model. Its formula is the following:

XU (K ) = V log

(√
D(K )
VN 2

)
+ logK , (12)

where V is the dimensionality of the data, N is the number of
entities, and K is the number of clusters. It should reach its
minimum at the right number of clusters K .

F. FOUR WAYS OF USING THE CLUSTER VALIDITY INDICES
To apply any of the cluster validity indices described above,
one usually uses the following strategy. First, specify a range
of K values, say K = 2, . . . , 25. Then, for each K from the
pre-defined range, run K-means many times, with random
K entities taken as initial centers each time, and consider
the obtained local minimum inertia values as a proxy to the
global minimum value of inertia D(K ) for a given dataset.
After this, Equations (5) to (12) can be applied to compute
the best K values according to the minimum (or maximum)
of the corresponding index.

Besides this conventional use of Equations (5) to (12),
we will try some other, less conventional ways. Specifically,
we will consider, on par with Equation (1), an unconventional
Equation (13) below for computing D(K ) (not for running K-
means, though):

DE =

K∑
k=1

∑
i∈Sk

d(yi, ck ), (13)

where d(yi, ck ) =

√∑V
v=1(yiv − ckv)2 is the Euclidean

distance, and not its squared form used in Equation (1).
Also, when running through a range of K -values for

computing a proxy D(K ) to the minimum inertia value over
multiple runs of K-means at a given K , we will consider not
only the minimum, but the average value of the respective D-
values as well.

Therefore, in the follow-up experiments, every series of
multiple runs of K-means over a given dataset results in four
values of every index depending on the way of computing
the final value of D(K ): (a) the minimum of conventional
inertia values in Equation (1) (MinC); (b) the minimum of
non-squared Euclidean distances in Equation (13) (MinE);
(c) the mean of conventional inertia values in Equation (1)
(MeanC); (d) the mean of non-squared Euclidean distances
in Equation (13) (MeanE). This will allow us to test whether
any less conventional way of using cluster validity indices and
of computing inertia may be beneficial.

G. SILHOUETTE WIDTH INDEX
Silhouette width [26] is certainly one of the most popular
cluster validity indices not based on the inertia formula. Given
a dataset and a partition of entities S, the Silhouette width,
s(i) with i ∈ I , shows the degree of correspondence between
the entity i and the partition S. Let us first define the average
distance from i to its cluster Sk , i ∈ Sk :

a(i) =
1

|Sk | − 1

∑
j∈Sk ,j̸=i

d(yi, yj), (14)
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and to a nearest cluster to which i does not belong:

b(i) = min
Sk :i̸∈Sk

{
1

|Sk |

∑
j∈Sk

d(yi, yj)}. (15)

The Silhouette width s(i) of any entity i ∈ I is defined then
as the relative difference between a(i) and b(i):

s(i) =
b(i) − a(i)

max{a(i), b(i)}
. (16)

The average Silhouette width value s(S) =
1
N

∑
i∈I s(i)

shows the extent of consistency in partition S: the closer the
value of s(S) to its maximum value, i.e. the unity, the better.
The maximum value of s(S) over K , SW (K ), corresponds to
the right number of clusters. We are going to use this index
as a reasonable match to the inertia-based indices.

IV. EXPERIMENTAL SETTINGS
A. INDICES UNDER COMPARISON
The following cluster validity indices were used in our
simulations to select the right number of clusters:

1) SW (Silhouette width),
2) CH (Calinski-Harabasz),
3) HR (Hartigan),
4) WB (Within-Between),
5) XU (Xu),
6) EL1/EK2/EK3 (three Elbow indices differing by step

size).
The three common cluster validity indices SW, CH, and

HR have been tested in various experimental conditions by
several authors (see, for example, [12], [18], [27], [28], [29]).
In our experiences, the SW index, used as benchmark, was
frequently superior over CH and HR rules. The WB and XU
indices have been tested by [24] and found to be competitive
against existing cluster validity indices.

In contrast to some existing literature, we consider three
explanations of the concept of elbow in the curve presenting
inertia values for different numbers of clusters (see an
example in Fig. 1): one, Elbow conventional, based on
a one-step scale, the others, Elbow2 and Elbow3, are
unconventionally based on two-step and three-step scales,
respectively. Besides, we measure the Silhouette width (SW)
for each of the resulting partitions, using it as a popular
benchmark. As we mentioned above, each of these indices
is tested with four different options depending on how the
final value of D(K ) is computed (see Section III-F for more
details). This gives us four options for each of the indices:
MinC, MeanC, MinE, and MeanE.

B. K-MEANS SETTINGS
On each considered dataset, standardized with what we call
range normalization (for each feature, its grand mean is
subtracted from its values, with a follow-up division by
its range, the difference between maximum and minimum
values), we run K-means, from initial centers found with a
randomized MaxMin algorithm [16], 50 times for each K
from 2 to 31, and then process the 50 results, as described

above. Also, we apply Random Swap every 60 iterations (or
after convergence) to randomly change one of the centers
for one of the entities (swap step) and continue K-means
iterations. Random Swap applies 30 swaps per execution.

C. DATA FOR COMPUTATIONAL EXPERIMENTS
To test and compare the indices above, we need an ensemble
of datasets in which a hidden partition is known to us, so that
we could compare the partition hidden in data table with that
found by K-means using the number of clusters K advised
by the cluster validity index under consideration. In our
experiments, we use both real-world and synthetic datasets.

1) SYNTHETIC DATA GENERATOR
We generate synthetic data for clustering as a set of Gaussian
clusters that may be intermixed to a degree controlled
by one parameter only. Our data generator follows that
described by [30]. It produces an N × V data matrix Y with
a prespecified number K∗ of Gaussian clusters using the
following steps:

1) First, we specify the number of entities, N , the number
of features, V , and the number of clusters, K∗. Also,
we define the minimum cluster size, n, which may
be needed rather large – to operate with probabilistic
data models. The product K∗n must be less than N ,
so that the remaining N − K∗n entities could be
randomly distributed among theK∗ clusters. Moreover,
the number of cluster elements,Nk , can be specified for
each cluster to be generated.

2) For each cluster k , k = 1, 2, . . . ,K∗, its center is
generated as a V -dimensional vector ck of components,
following a uniform distribution over the interval (α −

1, 1 − α), where α is a user-defined real, 0 < α <

1, to characterize the intermix of generated clusters.
The larger the parameter α, the nearer to each other
the centers and the more intermixed the elements of
different clusters. This means that the value of α refers
to the level of squeezing the data points (see this effect
illustrated in Fig. 2).

3) To generate k-th cluster elements, we first generate a
vector of its standard deviations sk = (skv), following a
uniform distribution from the interval [0.05, 0.10], with
v = 1, 2, . . . ,V . Then, we generate Nk V -dimensional
vectors whose v-th components are taken from a
Gaussian distribution N (0, skv) with 0 expectation and
standard deviation skv, and add each of them to the
center ck . In this way, we obtain a matrix Yk of
dimension Nk × V of elements of cluster k .

4) To obtain an N × V data matrix Y , we combine the
matrices Yk together, so that entities from the same
cluster sit together, and a hidden partition of the matrix
row indices is known to the user.

2) REAL-WORLD DATASETS
We picked up eleven popular datasets of varying complexity
from the celebrated UCI Machine Learning Repository [31].
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FIGURE 2. A synthetic dataset with 7 differently colored Gaussian clusters at different squeeze parameter values, α = 0.25, on the left, α = 0.5, on the
center, and α = 0.75, on the right (N = 2, 500, V = 15). Clusters are more intermixed at the last picture because of the larger α.

Table 1 gives a short description of them. Unlike the synthetic
datasets, relations between the features and ground-truth
partition are not clear-cut and, quite possibly, may be very
complex in some of the real-world datasets.

3) OVERLAPPING DATASETS FROM THE LITERATURE
We use ‘‘benchmark’’ datasets from [32], which are specif-
ically designed to model various levels of cluster oddities.
These sets are:

1) Sets S: 4 sets of size 5, 000 × 2 with 15 equally-
sized Gaussian spherical, and partly truncated, clusters
of varying intermix. Clusters in the set S4 are highly
intermixed.

2) Sets G2 contain two Gaussian clusters at fixed
locations, eachwith 1,024 points. Intermix is created by
augmenting the standard deviation from 10 to 100. The
data dimensions vary from 2 to 1,024 (the dimensions
are of a 2n form with n = 1, 2, . . . , 10).

3) Unbalanced sets of data are created for eight clusters
in two groups. The first three clusters are dense with
2,000 points each, whereas five other clusters are sparse
with 100 points each.

Datasets (a) and (b) model various situations of intermix
among clusters, whereas datasets (c) have rather well-
separated, but highly unbalanced (in sizes), groups. They are
available at: http://cs.uef.fi/sipu/datasets.

D. EVALUATION OF RESULTS
We use three conventional metrics for evaluation of the
quality of reproduction of the partitions hidden in data by a
clustering algorithm. They are as follows:

• MARE, Mean Absolute Relative Error in the number of
clusters. We define absolute relative error in the number
of clusters as the ratio |K∗

−K |

|K∗|
, where K∗ is the number

of clusters in the ground-truth partition and K is the
number of clusters obtained by the algorithm under
consideration. If there are R runs of the algorithm at
different initializations, then we use the average of the

TABLE 1. Characteristics of datasets from UCI machine learning
repository used in our experiments.

R values, i.e. the mean absolute relative error:

MARE(K∗) =
1
R

R∑
r=1

|K∗
− Kr |
K∗

. (17)

• ARI, Adjusted Rand Index [33], a measure of similarity
between two partitions, based on the number of pairs
of entities that are consistent in the partitions, that is,
either belong to the same cluster, or to different clusters,
in both partitions. The maximum value of ARI is 1; it is
reached only if the partitions coincide. (18), as shown at
the bottom of the next page.
In the above, A and B are two partitions of the entity set
withKA andKB elements, respectively; ak and bm are the
cardinalities of parts A and B, respectively; nkm are the
frequencies in the joint AB distribution;

(n
2

)
is a binomial

term equal to n(n− 1)/2.
• NMI, Normalized Mutual Information between two
partitions according to a definition from [34]:

NMI (A,B) = 2 ×
H (A) + H (B) − H (A,B)

H (A) + H (B)
, (19)

where pk is the proportion of entities in k-th part of par-
tition A(k = 1, 2, . . . ,K ), H (A) = −

∑K
k=1 pk log(pk )

is the entropy of A, and H (AB) is the entropy of the joint
distribution AB.
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The MARE evaluates the performance of algorithms
in the recovery of the number of clusters, whereas ARI
and NMI evaluate the quality of recovery of the clusters
themselves.

V. RESULTS OF EXPERIMENTS
Before reporting the obtained results, we remark that the
Random Swap algorithm on top of K-means has hardly
inflicted any changes in the results. The differences between
results provided by the two implementations, i.e. with and
without Random Swap, were quite minor even when they
did occur. Moreover, sometimes it is the ‘‘naked’’ K-means
which demonstrated superior results over Random Swap, as,
for instance, for the WBC diagnosis dataset from the UCI
repository. The XU index led to good results with K-means
alone (ARI = 0.96 between the ground truth partition and that
found by the algorithm), whereas the maximum ARI value
was only 0.34 after the application of Random Swap. This
phenomenon perhaps can be explained by the nature of our
experiments which involve a number of random initializa-
tions, probably making an effect similar to that of random
swaps. Therefore, in our description, we decided to skip the
results found by using Random Swap; these results, as well as
all obtained experimental results, are available in our GitHub
repository: https://github.com/glendawur/indices_kmeans.

In the remainder of this section, we describe our exper-
imental results for each of the three main settings: (a)
synthetic datasets with a controllable cluster intermix; (b)
real-world datasets from the UCI repository, and (c) specif-
ically designed datasets from the literature, as explained in
Section IV-C3.

A. RESULTS FOR SYNTHETIC DATA
In our experiments, we generated datasets with N =

2, 500 entities (rows), V = 15 or V = 50 features, and
K∗

= 7, or 15, or 21 clusters. In this way, we can observe
cases at which the number of clusters is smaller than the
number of features versus cases at which, in contrast, the
number of clusters is greater than the number of features.
In our experience, some clustering algorithms might lead to
different clustering effects depending on the relation between
these two numbers. We considered the values of the squeeze
parameter at three levels: α = 0.5, 0.75, and 0.85. Therefore,
we had 2 × 3 × 3 = 18 combinations of parameters V , K∗,
and α. For each of them we generated 30 datasets and ran
K-means for each K from 2 to 31. The ARI values obtained
for various configurations of the squeeze parameter α and
the true number of clusters K∗ are presented in Table 2 (for
the space dimension V = 15) and Table 3 (for the space
dimension V = 50).

Observations on the results in Tables 2 and 3:
1) First, one cannot help but notice that the ARI values

monotonically weaken with the growth of the intermix
level. Also, we note that the growth of the space
dimension positively affects the results of every index.
Of course, this relates to the way the synthetic datasets
have been generated, so that features do not much differ
in relevance to the clusters.

2) Rather unexpectedly, the indices appear to differ with
respect to the ways the results of multiple runs of K-
means are processed. Two of them, CH and WB, are
best with the conventional squared Euclidean distance.
Moreover, taking the average rather than optimal
results leads to better cluster recovery for these two
indices. Two other indices, HR and XU, produce better
results with the Euclidean distance. In general, they are
also better off with the averaging option, although at a
greater cluster intermix (α = 0.85), taking the optimal
solution leads to better results. As to the elbow-based
indices EL1, EL2, and EL3, they seem to work equally
well with both the Euclidean distance and its squared
form. Using the mean post-processing results seems
beneficial for each of them, again with a caveat that at
a greater intermix using the optimal solution is slightly
better.

3) Among all the indices under consideration, SW is an
overall winner, especially at the larger space dimension
(V = 50). The only rival capable of getting superior
results, at V = 15, is the XU index. At greater cluster
intermixes, α = 0.75 or 0.85, with optimal values
and the Euclidean distance, XU frequently outperforms
SW, as can be seen in Table 2.

4) Among the inertia-based indices, EL2 and EL3 used
in the conventional mode (with the squared Euclidean
distance), as well as the XU index with the Euclidean
distance, mentioned above, both with the optimal post-
processing option, seem the most balanced. The CH
and WB indices, both in the conventional mode, work
quite well if clusters are not much intermixed; however,
with α = 0.85 both become irrelevant. The HR index
is good at V = 50; however, at V = 15, it is hopeless
for small numbers of clusters, although it gets better for
larger cluster numbers.

For the sake of space, we skip over presenting the results
obtained with the NMI criterion. They have an overall pattern
similar to those of ARI, although in a somewhat blurred way,
and we refer an interested reader to our GitHub repository:
https://github.com/glendawur/indices_kmeans.

Errors in the number of clusters generally follow
the patterns of ARI values. Therefore, we present

ARI (A,B) =

(N
2

)
×
∑KA

k=1
∑KB

m=1

(nkm
2

)
−
∑KA

k=1

(ak
2

)∑KB
m=1

(bm
2

)
1
2 ×

(N
2

)
×

[∑KA
k=1

(ak
2

)
+
∑KB

m=1

]
−
∑KA

k=1

(ak
2

)∑KB
m=1

(bm
2

) . (18)
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TABLE 2. Adjusted Rand Index values followed by their standard deviations obtained on synthetic datasets with 15 dimensions. Each of the inertia-based
indices was applied at four different modes, combining (a) two different distances: Euclidean distance and the conventional squared Euclidean distance;
and (b) using the average index value (mean) or the optimal one (max/min). An upper row contains the values of the ‘‘independent’’ benchmark index SW
(Silhouette width). The maximum ARI values are highlighted with bold font column-wise.

TABLE 3. Adjusted Rand Index values followed by their standard deviations obtained on synthetic datasets with 50 dimensions. Each of the inertia-based
indices was applied at four different modes, combining (a) two different distances: Euclidean distance and the conventional squared Euclidean distance;
and (b) using the average index value (mean) or the optimal one (max/min). An upper row contains the values of the ‘‘independent’’ benchmark index SW
(Silhouette width). The maximum ARI values are highlighted with bold font column-wise.

here only MARE values at V = 15 and skip
the intermediate cluster squeezing level α = 0.75
(see Table 4).

B. RESULTS FOR THE UCI REPOSITORY DATASETS
Tables 5 and 6 report, respectively, the ARI andMARE values
for eight of the eleven Irvine repository datasets considered in
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TABLE 4. Average mean absolute relative error (MARE) in the number of clusters followed by its standard deviation for synthetic datasets of
15 dimensions.

TABLE 5. Adjusted rand index (ARI) results, followed by their standard deviations, obtained for the real-world UCI repository datasets.

our study (see Table 1). Datasets Ionosphere, Pima Indian and
Glass were excluded because none of the presented indices
provided any reasonable value for them: the maxima of the
ARI values for these datasets were 0.20, 0.06, and 0.36,
respectively. This should be attributed to the fact that features
in these datasets are not quite indicative of the ground truth
partitions – which is also true for many other real-world
datasets.

TheARI values presented in Table 5 aremuchmore diverse
than those reported in Tables 2 and 3. The datasets differ, and
so differ the results. SW is not an overall winner anymore,
although it does win on four out of eight datasets: Optical
digits, bothWisconsin breast cancer, diagnosis and prognosis,
and Wine. Two other indices that win on four datasets
are CH and WB, in their conventional mode with optimal
choices. The ‘‘winning’’ datasets are the same for these two
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TABLE 6. Mean absolute relative error (MARE) number of clusters recovery results obtained for the real-world UCI repository datasets.

TABLE 7. ARI results, followed by their standard deviations, obtained for benchmark datasets (S and unbalance).

indices (E-coli, Iris, both Wisconsin breast cancer, diagnosis
and prognosis), pointing to some similarity between them
reflected in their definitions.

On two remaining datasets different indices win. HR index
wins over the Zoo dataset with ARI=0.87 (HR also wins
on Wine). Close runners-up are EL3 and EL2, in their
conventional mode over averaging results post-processing
with ARI values 0.85 and 0.80, respectively. The EL2
index wins over the Segmentation dataset (with three close

runners-up: EL3, CH and WB, all in their conventional
mode). EL2 and EL3 also win on E-coli.

One should notice that the winning modes of the inertia-
based indices in Tables 5 and 6 are exactly the same as their
winning modes on the synthetic datasets in Tables 2 and 3.
This can be considered as an empirical support for our
synthetic data generation model.

The winning patterns of the MARE criterion values in
Table 6 are almost identical to those obtained for ARI. The
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TABLE 8. Mean absolute relative error (MARE) number of clusters recovery results obtained for benchmark datasets (S and unbalance).

TABLE 9. ARI results, followed by their standard deviations, obtained for the G2 benchmark datasets.

only exception is the winning pattern of the CH index: it does
win on three out of four datasets, but it somewhat loses, to its
mate, WB, on E-coli.

C. RESULTS FOR THE LITERATURE DATASETS
The ARI cluster recovery results and the MARE number
of cluster errors for S and Unbalance are presented in
Tables 7 and 8; the results for G2 are reported in Table 9.
Let us first focus on the results obtained for the four S

datasets. The SW index shows almost impeccable perfor-
mance on all the four datasets, in terms of both ARI and
MARE. The MARE results are especially good: no errors
at all. Quite a few of the inertia-based indices demonstrate
similar performance. We will describe them here: CH, WB,
XU – all the three in the conventional mode, using the optimal
values (they provide the value of ARI=0.61, which is very
close to its maximum of 0.62); and E2 and E3 – both in the
Euclidean distance mode.

Regarding the Unbalance datasets, we can see somewhat
different winners. Here, CH, WB, and XU are still winners,
but at a different style of postprocessing after multiple runs of
K-means: the winning conventional mode now is averaging
the results rather than picking those optimal. EL2 and EL3

remain winners using the same Euclidean distancemode, also
with averaging the results.

It should be noted that the number of clusters here cannot
be recovered perfectly with the indices under consideration.
SW leads to the average MARE=0.28, which is matched by
the WB, XU, and E1 indices. EL2 leads to even a lesser error
with MARE=0.18.

For theG2 datasets, it appears that there are no differences
in the results of various approaches of index calculation,
so we removed the results for the Distance and Aggregation
modes from the table. Moreover, we observed two interesting
properties that led us to further decrease in the size of
the resulting table: (a) the errors monotonically, with no
exception, follow the growth of the within-cluster variance;
(b) the errors monotonically, with no exception, decrease
when the space dimension grows. Because of Property (a),
we report results for four within-cluster variance values (10,
50, 90, 100) only, leaving out all the intermediate variance
values. Because of Property (b), we report the results for
two space dimensions (V = 8 and 32) only, since the ARI
values, already quite high for V = 32, can only further grow
for larger space dimensions. The remainder constitutes the
content of Table 9.
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The results reported in Table 9 indicate that the indices
under consideration work on G2 datasets in an extremely
consistent and unified way, except for the two ‘‘failing
outliers’’, HR and EL1. The other indices remain quite steady
against the unbalanced cluster sizes.

VI. CONCLUSION
This paper is devoted to a popular approach for choosing
the right number of clusters K in K-means clustering.
We computationally review the use of cluster validity indices
based on the inertia, i.e., a square-error criterion of the
conventional K-means algorithm. To make our review more
investigative, we bring forth a set of novel uses of these
indices. These are: (a) using the Euclidean distance rather
than the squared Euclidean distance in criterion (1) with
K-means; (b) summarizing a set of inertia values resulting
from multiple runs of K-means by the mean, rather than
the minimum (or maximum) value. Another novelty is an
explicit use of a set of three Elbow indices specified by the
step size.

We consider three types of datasets involving cluster
intermix. Two of them involve explicit and controllable
intermix parameters: the first is a generator of ‘‘synthetic’’
cluster structures at which the intermix is represented by a
so-called squeezing parameter, and the second is based on the
within-cluster dispersion. The third data type, an ensemble
of relevant real-world datasets from the UCI repository has
no explicit intermix parameters; moreover, the extent of
association between the features and the ground-truth cluster
structure is very complex. Therefore, one may hope that our
conclusions are valid for a variety of practical situations.

First, one should note that the approach under analysis is
not always applicable. Three out of eleven UCI repository
datasets have shown no structure to recover – perhaps
because features in them are not much related to the ground-
truth partitions recovered by any version of K-means. Then,
we can safely conclude that the mechanism generating
synthetic cluster structures is rich enough to generate both
easily recoverable cluster structures and those ‘‘die hard’’,
especially with α = 0.85. Furthermore, some conclusions,
made for synthetic data, appear to hold for the real-world
datasets as well.

Our most unexpected observation is that the inertia-based
indices appear to work better not with the conventional
way of result postprocessing, by using the best try out
clustering generated by multiple runs of K-means, but by
averaging the results of these multiple runs. This was true
for both synthetic data and the real-world UCI repository
data.

As to the elbow-based indices EL1, EL2, and EL3, they
seem to work equally well with both the Euclidean distance
and its squared form. Using the mean postprocessing results
is beneficial for each of them too, again with a caveat that at a
greater intermix, using the optimal solution is slightly better.
Out of these three indices, EL2 is the best overall.

In contrast to our expectations, we cannot indicate a
convincing overall winner, although SWusually leads tomost
balanced solutions. Still, the XU index outperforms SW on
synthetic data with greater cluster intermixes, especially for
a smaller space dimension (V = 15). SW outperforms the
other competing indices on four UCI repository datasets,
along with WB and CH. These two indices are also good on
synthetic data with weaker intermixes; they, however, become
hopeless at a greater intermix, α = 0.85.

EL2 perhaps is the best match to SW, especially, on the
real-world and literature datasets. HR, obviously, is the only
candidate to refer to as the overall looser (see its very
poor results reported in Tables 7 and 8), as well as the
results obtained on synthetic datasets with smaller numbers
of clusters. However, we cannot recommend to never use it.
HR convincingly wins on Zoo dataset, as well as in a few
other cases.

In summary, we believe that our results are instructive
enough to the user who is looking for recovering the right
number of clusters with multiple running of K-means carried
out with different values of K . If in the end, SW and DB
(with averaging) suggest the same number of clusters and the
user’s dataset demonstrates a little intermix, then the results
could be accepted as is. Otherwise, the user should execute
the program with the XU, HR, and EL2 indices and compare
the obtained outcomes. If any two of these indices suggest the
same number of clusters, then this solution could be retained
as a final one.

Future work should include building more adequate
synthetic data generators as well as testing these indices on
some additional synthetic and real-world datasets.
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