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Many real-world systems of various origins are capable of self-organization to the edge of a phase transition, characterized by
avalanche-like behavior. Terefore, it is important, by observing the behavior of early warning measures for dynamical series
generated by systems, to timely see the early warning signals (precursors) of such self-organization and, if necessary, take
preventive measures. To date, convincing evidence of self-organization to the edge of a phase transition has been obtained, but no
efective precursors for this self-organization have been found. Tis research explores precursors for the Twitter self-organization
based on the analysis of the behavior of measures directly related to the critical slowdown of the network and measures of the
phase space reconstructed by the Takens method for the series of the number of network users creating avalanches of retweets in
the network, corresponding to the three debates of the 2016 United States Presidential Election. We hydrated the relevant Tweet
IDs, which were obtained from theHarvard Dataverse using the Social FeedManager, to form this series. Preliminarily, we explore
the potential of measures for early detection of self-organization of sandpile cellular automata as systems with Twitter-equivalent
self-organizationmechanisms.Te equivalence is justifed in the proposed discrete-timemodel for Twitter self-organization to the
edge of a phase transition. It is found that there are moremoments of the Twitter self-organization than the moments of time when
debates started, and Twitter stays at the edge of a phase transition longer than the debate lasts. Te efective measures, as the
measures with the lowest number of false early warning signals, among all studied measures and for all studied systems, are
dispersion and correlation dimension. Obtained results are practically important in the design and implementation of early
warning systems for the systems with similar mechanisms for sandpile cellular automata self-organization to the edge of a phase
transition.

1. Introduction

More than 35 years ago, it was found that self-organization is
capable of bringing complex systems on the edge of the
second-order phase transition without tuning the control
parameter to a critical value (e.g., see the paper [1]). Te
theory explaining such self-organization has been called the
theory of Self-Organized Criticality (SOC). It has been
established relatively recently (e.g., see papers [2, 3]) that
complex systems are not only capable of self-organization to

the edge of the second-order phase transition but also ca-
pable of self-organization to the edge of the frst-order phase
transition characterized by two stable confgurations.

Self-Organized Bistability (SOB) demonstrates the co-
existence of two stable confgurations in the hysteresis loop
corresponding to zero order parameter and nonzero order
parameter. Quantitative criteria of the system being on the
edge of a phase transition are, for example, the value of
autocorrelation at lag-1 of the order parameter equal to 1
and the power-law scaling exponent of the Power Spectral
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Density (PSD) of the order parameter belonging to the
interval from 1 to 2 (e.g., see papers [2, 4]).

Recently, numerous evidences of self-organization of
real-world systems of various origins to the edge of a phase
transition have been obtained (e.g., see papers [5, 6]). Tus,
SOC is a characteristic of social interaction networks (e.g.,
see papers [7–9]) and online social networks (e.g., see papers
[10–15]) such as Twitter. SOB is a characteristic of the brain
(e.g., see the paper [16]).

Tere are also more and more research studies devoted
to analyzing and searching for early warning signals (pre-
cursors) for a phase transition in complex systems (e.g., see
papers [17–20]). First of all, this is the search for precursors
based on the analysis of the observed sequence of order
parameter values generated by the system in real time. One
of the results of this research is measures, by the charac-
teristic change of which one can judge that the system is
approaching the edge of a phase transition. Further such
measures will be called the Early Warning Measures
(EWMs). Te number of EWMs and systems for which
EWMs give good results in predicting critical points is
regularly growing.

Despite the available variety of early warning signals for
a phase transition and the existence of numerous evidences
of Twitter on the edge of a phase transition, the obtained
EWMs (e.g., see papers [21–24]) are not suitable for use as
reliable measures used in early warning systems of the
Twitter self-organization to the edge of a phase transition.
First of all, this is due to the lack of studies of the behavior of
EWMs directly related and unrelated to the critical slow-
down of the system (e.g., see paper [25]) as they approach
and in the neighborhood of the edge of Twitter phase
transition on model systems isomorphic to Twitter in the
context of systems theory. In addition, given that in early
warning systems, measures are computed for real-time
observed series, the determination and investigation of
the efciency of EWMs for the Twitter self-organization to
the edge of a phase transition are required to obtain reliable
measures. Although the problem of measure efectiveness
for systems of very diferent origins has been repeatedly
discussed (e.g., see papers [18, 26, 27]), the question of the
efectiveness of EWMs in the context of early warning
systems for Twitter self-organization to the edge of a phase
transition remains open.

Previously (see the paper [28]), we introduced the
concept of the efectiveness of EWM and investigated the
efectiveness of the measures in early warning in Sandpile
Cellular Automata (SCA) self-organization to the edge of
a phase transition. SCA is isomorphic to Twitter with
a suitable choice of local rules and topological structure of
the graph (lattice). Terefore, the present study is based on
the results we obtained earlier.

Finding and analyzing efective EWMs are crucial when
designing and building early warning systems Twitter self-
organization to the edge of a phase transition. For example,
bringing the Twitter segment, which unites network users by
discussing a candidate in a political election during the
preelection debate, to the edge of a phase transition char-
acterized by an avalanche-like spread of retweets will allow

the election headquarters to take the required preventive
measures. Also, the presence of a Twitter segment on the
edge of a phase transition is one of the indicators that bots
are involved in avalanche-like spreading of microposts in the
network (e.g., see paper [29–31]).

To close the gaps mentioned, we investigated the be-
havior (see Subsection 3.2) and efectiveness (see Subsection
3.3) of various EWMs of the user number series of Twitter
users initiating avalanches of retweets on the network related
to the debates of the 2016 United States presidential election
(see Subsection 2.2). To ensure the representativeness of the
obtained results, we investigated the performance of not
only the most studied EWMs, such as some sample mo-
ments, autocorrelation, and power-law exponent of spectral
density, but also the understudied EWMs related to phase
space reconstruction from the time series data (see Sub-
section 2.3). As test series demonstrating the self-
organization of a system at the edge of a phase transition,
we used the number series of unstable nodes of directed CSA
on the Chung-Lu Graph (CLG) with Manna rules as sto-
chastic discrete-time compartmental models describing the
self-organization of Twitter segments at the edge (see
Subsections 2.1 and 3.1). By the term “segment,” we denote
the set of online users connected by the discussion of the
debates of the 2016 United States presidential election.

2. Data Set and Methods

We investigate the behavior and performance of EWMs’
self-organizing SCA and Twitter segment into a critical state
based on the behavior of discrete dynamical series. For
automata, these are the dynamic series t ∈[0, n], n ∈ N{ },
where ξt the number of unstable nodes of the automaton in
t-th iteration; for Twitter – is time series χt􏼈 􏼉, where χt is the
number of users of the online social network initiating
chains of retweets on the network and t is the time. We use
the most common window measure m, which is computed
in a window of fxed width w0� 1000.Te value of w0 used is
the minimum acceptable value to obtain correct measure
estimates.

By sliding the window along ξt􏼈 􏼉 and χt􏼈 􏼉 with the
computation of m for each window shifted by one iteration
step, starting from the window [ξ0, ξw0

] (for automaton) and
[χ0, χw0

] (for Twitter), we obtain dynamic series of measures
k ∈[0, n − w0]􏼈 􏼉. Te characteristic behavior of the series mt,
or zero-mean dynamic series of increments k ∈[0, n − w0]􏼈 􏼉,
as k approaches the moment of critical transition τc is
a precursor to the self-organization of the system (autom-
aton/Twitter) into a critical state. Te mean μk is computed
for the values of the series ξt􏼈 􏼉 and χt􏼈 􏼉 in each window.

In the following, we present a brief description of the
methods for obtaining the ξt􏼈 􏼉 (see Subsection 2.1) and χt􏼈 􏼉

(see Subsection 2.2) and the EWM calculation methods used
in the presented study (see Subsection 2.3).

2.1. Model Time Series Generated by Sandpile Cellular
Automata. In this subsection, we introduce a discrete-time
model that captures the self-organization dynamics of
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a Twitter segment on the edge of a phase transition and is
based on the Manna spread model (see the paper [32]). Tis
model draws inspiration from the functioning of elements
and their interactions within an undirected SCA created on
the directed modifcation of Chung-Lu random graph (e.g.,
see the paper [33]), drawing parallels with the Twitter
segment. Tese analogies are explored within the context of
systems theory (e.g., see the paper [34]). Te model’s pur-
pose is to elucidate the avalanche-like behavior observed in
the segment in transition of users as nodes from stable to the
unstable state, which is a characteristic of it being at the edge
of a phase transition. We are analyzing this specifc type of
transition due to its key role in the spread of the information.
Consequently, the model helps us comprehend the simi-
larities in the behavior of time series ξt􏼈 􏼉 and χt􏼈 􏼉. Estab-
lishing this analogy is of signifcant importance as it enables
us to employ ξt􏼈 􏼉 as a testing series for discerning the
features of EWMs. Tese identifed features can then be
utilized to detect reliable early warning signals indicating
Twitter’s self-organization approaching a phase transition
edge, as determined through the analysis of the χt􏼈 􏼉 series.

Manna automatons on the directed CLG are capable of
self-organization into a bistable state (SOB-state) corre-
sponding to a frst-order phase transition with periods of low
and high activity in the system that follow each other.
Frequency of the switches may be regulated by the volume of
pumping and by the switching between base and facilitated
models: the more we pump and the more random the model
becomes, the higher the frequency of the switching between
states.

In addition to the local rule of the automaton and the
graph for the pumping of information into the model, we
have tested three diferent rules:

(i) Discrete Uniform Distribution (DUD): on each
iteration, we drop 1 grain into the random node of
the model;

(ii) Exponential Distribution (EXD): on each iteration,
we drop a random number of grains determined by
the exponential distribution into the nodes of the
model;

(iii) Pareto Distribution (PAD): on each iteration, we
drop a random number of grains determined by the
Pareto distribution with α� 2 into the nodes of
the model.

For the toppling of the grains in the nodes, we use two
rules:

(i) StandardManna model, whose mathematical logic is
described in the formula (1). Its main idea is that the
toppling grains from the node randomly fall to the
nodes that are connected to the toppling node. A
node vj of the standard automaton is unstable when
zi(vj)≥ zcvj

:

zi vj􏼐 􏼑≥ zcvj
> 1:

zi+1 vj􏼐 􏼑⟶ zi+1 vj􏼐 􏼑 − zcvj
,

zi+1(Ne)⟶ zi+1(Ne) + δk,

􏽘

zcvj

k�1
δk � zcvj

, δk ≥ 0,

(1)

where Ne denotes the nearest neighboring site to the
site vj.

(ii) Facilitated Manna model, whose mathematical logic
is described in the formula (2). Its main idea is to add
one more layer of instability into the model: a node
vj of the facilitated automaton is unstable when
zi(vj)≥ zcvj

and when fi−1(vj)≥ 2 (fi−1 is the
number of topples to node vj at the previous
iteration):

zi vj􏼐 􏼑≥ zcvj
> 1∨fi vj􏼐 􏼑≥ 2,

zi vj􏼐 􏼑≥ zcvj
: zi+1 vj􏼐 􏼑⟶ zi+1 vj􏼐 􏼑 − zcvj

zi+1(Ne)⟶ zi+1(Ne)􏼚 􏼛 + δk,

􏽘

zcvj

k�1
δk � zc,

δk ≥ 0fi+1(Ne)⟶ fi+1(Ne) + δk,

δk > 0 zi vj􏼐 􏼑< zcvj
: zi+1(x, y)⟶ zi+1(x, y) − zi(x, y) zi+1(Ne)⟶ zi+1(Ne)􏼈 􏼉 + δk,

􏽘

zcvj

k�1
δk � zi vj􏼐 􏼑,

δk ≥ 0fi+1(Ne)⟶ fi+1(Ne) + δk,

δk > 0.

(2)
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In the context of the model we have put forward, the
sequence representing the number of unstable nodes in the
automaton, denoted as ξt􏼈 􏼉 (with t representing the iteration
number), bears a resemblance to the sequence refecting the
number of users within a segment who initiate retweet
chains, also denoted as χt􏼈 􏼉. Consequently, the ξt􏼈 􏼉 sequence
can serve as a testing dataset for identifying the charac-
teristics of EWM series behavior. Tis, in turn, allows us to
analyze how the EWM series behaves when segments ap-
proach the brink of a phase transition.

2.2.TwitterTimeSeries. Access to the data, specifcally Tweet
IDs, is facilitated through Harvard Dataverse and can be
accessed at [35]. Our analysis focused on tweets refecting
the responses of Twitter users to the frst, second, and third
debates among the candidates in the 2016 US presidential
election. Adhering to policy restrictions that prevent the
storage of any data beyond tweet IDs outside of Twitter, we
utilized Twitter APIs and developer tokens to retrieve the
data. By submitting requests to Twitter’s servers, we ob-
tained additional information if the queried tweet still
existed, and the associated account had not been deleted or
blocked by the platform’s administration.

Subsequently, the acquired dataset underwent a cleaning
process to eliminate extraneous information. Among other
things, the dataset included numerous system notifcations
related to blocked accounts, which were deemed irrelevant
for this study. After purging these notifcations, we reor-
ganized the data by specifcally gathering tweets at the
initiation of multiple retweet chains. Tis approach was
chosen as each chain inherently contains information about
the number of replies it received. Visualizing the comment
chain as a tree, the initial level, or root, already provides
information about the length of the entire branch.

We analyzed the following object felds:

(i) tweet[“id”]–ID of the tweet;
(ii) tweet[“user”][“screen_name”]–the name of the user

on whose behalf the tweet was published;
(iii) tweet[“retweet_count”]–feld that stores the num-

ber of retweets;
(iv) tweet[“created_at”]–creation time of the tweet;
(v) tweet[“text”]–text of the tweet.

Trough the fltering of technical and unoriginal tweets,
a total of 540,975 tweets related to the frst debate, 713,341
tweets related to the second debate, and 448,064 tweets
related to the third debate were gathered. For enhanced
visualization of the graphs, each 10-second interval was
amalgamated into a single point on the time series. Tis
reduction in granularity resulted in a decrease in the number
of data points from 60 to 6 per minute, simplifying the
overall presentation.

We calculated the number of retweet nucleation sources,
χ, by summarizing the “zero” tweets with the same time-
stamp t. In other words, χ is the number of sources, or
unique users, for each chain of retweets that occurred at time
t. Te modeling mechanisms for the origin of a chain

(sometimes an avalanche) of retweets are discussed in
Subsection 3.1.

2.3. Calculation Methods for Early Warning Measures and
Teir Efectiveness. We study the most efective EWMs for
SCA (see the paper [28]), which are both directly related to
their critical slowing down and not related to this phe-
nomenon. Moreover, we study Welch’s PSD estimate per-
formance for both a discrete-time Twitter segment model
and real Twitter segments. Te following is a fairly brief
description of the computational methods. A detailed de-
scription of the methods is presented in the paper [28].

Variance (σ2), kurtosis (κ), skewness (c), autocorrelation
at lag-1 (ρ), and power-law scaling exponent (β) of PSD are
window EWMs whose features of change as the system
approaches τc are interpreted by its critical slowing down
(e.g., see the paper [36]). Tese features are associated with
a decrease in the system recovery rate as τc is approached.
Terefore, a precursor signaling the self-organization of the
system to the edge of a phase transition is a sharp increase in
the values of the σ2k􏼈 􏼉 and ρk􏼈 􏼉, as well as a sharp increase
followed by a sharp decline in the values of the κk􏼈 􏼉 and ck􏼈 􏼉.
Moreover, if the system is at the edge of a phase transition,
then ρ � 1 (e.g., see papers [1, 28]).

Te precursor of the system self-organization to the edge
of a phase transition is also an increase in the values of the
series βt􏼈 􏼉 as the system approaches τc, which corresponds to
an increase in spectral power at low frequencies. Moreover,
if the system is on the edge of a phase transition, then
1≤ β≤ 2 (“ficker” efect) (e.g., see the papers [28, 36]). Te
exponent estimate β is a statistical estimate of the power-law
tangent for the PSD, S(f) � f− β, on a double logarithmic
scale. We used Welch’s PSD estimate (e.g., see the papers
[37]) as an estimate of the distribution of S over frequency f.

In addition to EWMs for the critical slowing down, we
investigated the behavior and efectiveness of measures
based on the reconstruction of the phase space, the attractor,
from one-dimensional realizations of ξt􏼈 􏼉 and χt􏼈 􏼉 by the
time delay method (e.g., see the paper [38]). Unlike critical
slowing down EWMs, which have been investigated for early
detection of critical transitions in Twitter (e.g., see the paper
[23]), reconstruction measures are investigated for the frst
time. Another motivation for investigating reconstruction-
based EWMs is that they are the most efcient EWMs for
SCA (see the paper [28]).

We computed the time delay using the average mutual
information algorithm (see the paper [38]), from which we
computed the embedding dimensionality using the false
nearest neighbor algorithm (see the paper [39]). We then
used the resulting embedding dimension to estimate the
correlation dimension (Dc) and approximation entropy
(AppEn) as EWMs uncorrelated with the critical delay. Te
Dc measure serves as a quantitative attribute of the attractor,
encapsulating information about the degree of complexity of
the behavior of the dynamical system (e.g., see the paper
[40]). Reconstructed attractor has a fractal geometry if Dc

takes fractional positive values. Te measure AppEn is
a measure of the regularity of the series (e.g., see the paper
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[38]). Te description of the used algorithms for estimating
Dc and AppEn is presented in [39].

We determine the efciency of EWMs by the number of
false precursors (]f), following our proposed approach,
a detailed description of which is presented in the paper [28].
In this approach, the efciency of the measure m is de-
termined by the number of members of the constant sign
sequence ∆ml,∆ml+1, . . . ,∆ml+m􏼈 􏼉, consisting of the values
of the series ∆mk􏼈 􏼉 and belonging to the segment
[−3c0σ0, 3c0σ0]. Here, c0∈ N is the normalizing multiplier,
σ0 is the mean square deviation of the values of the series
∆mk􏼈 􏼉, belonging to the initial window [ξ0, ξw0

] (for series
generated by Twitter compartmental model) and [χ0, χw0

]

(for a series generated by Twitter).
For example, if, starting from some l, ∆ml,􏼈 ∆ml+1,

. . . ,∆ml+m} ∈ (0, c0σ0]∪ (c0σ0, 2c0σ0]∪ (2c0σ0, 3c0σ0], then
the precursor is true. Otherwise, e.g., when ∆ml,∆ml+1,􏼈

. . . ,∆ml+m} ∈ (0, c0σ0], the precursor is false. A measure m1
is more efcient than a measure m2, if ]f1 < ]f2.

3. Results and Their Discussion

In Section 3, we present and analyze the results obtained
from computing EWMs for the self-organization of cellular
automata and Twitter to a critical state. We research the
behavior of the calculated EWMs as the systems approach τc,
which is both associated with their critical slowdown and
unrelated to this phenomenon (see Subsection 3.2). Tis
consideration holds signifcance because, given an appro-
priate selection of local rules, topological graph structures,
and pumping conditions, automata serve as apt models for
real-world systems, particularly Twitter segments (see
discrete-time Twitter segment model presented in
Subsection 3.1).

Terefore, the dynamic series generated by such
automata can be used as series for testing various EWMs
before using them for early detection of critical transitions in
Twitter segments. We then introduce the notion of an ef-
fective EWM, which we use to investigate the efectiveness of
the investigated EWMs (see Subsection 3.3).

3.1. Discrete-Time Twitter Segment Model. Tis subsection
presents the discrete-time model of self-organization of the
Twitter segment to the edge of a phase transition.Tis model
is based on the analogy of the functioning of elements and
links between elements of the CSA and Twitter segment, that
is, the analogy of the structures of these systems in the
context of systems theory [34]. Te model allows us to
explain the avalanche-like dynamics of the segment, char-
acteristic of its being on the edge of a phase transition, and,
accordingly, to explain the analogy in the behavior of ξt􏼈 􏼉

and χt􏼈 􏼉 time series.
Te importance of establishing such an analogy is di-

rectly related to the possibility of using ξt􏼈 􏼉 as a test series to
establish the features of EWMs’ behavior and using these
features in determining reliable early warning signals for
Twitter self-organization to the edge of a phase transition
based on the analysis of χt􏼈 􏼉 series.

We use the term “segment” to refer to a set of network
users connected by a discussion of some topic or event, such
as the debates of the 2016 United States presidential election.
Figure 1 demonstrates the formation of retweet chains in
a segment, starting with the pumping of tweets to a segment
of the network (the tweet is shown by a red lightning bolt in
Figure 1(a)) and ending with the complete relaxation of the
segment (see Figure 1(d)).

Te described procedure aligns with a particular iteration
of the self-organization process of the automaton. In the
graph, nodes represent users within the segment and the edges
signify interactions between these users. An edge connecting
two nodes (segment users) indicates that one of the segment
users is a subscriber to the other, allowing for the potential
transmission or acceptance of retweets along that edge. Te
local propagation of retweets is visually represented by the red
dashed arrow in Figure 1. Te topological structure of the
graph of interactions between segment users, as shown by the
authors of the paper [32], corresponds to the structure of the
CLG with acceptable accuracy.

Every network user can exist in either an active state,
represented by the red nodes in Figure 1, indicating their
readiness to send retweets to subscribers, or a passive state,
denoted by the green nodes in Figure 1, indicating that they
are currently unwilling or unable to send retweets. Active
users are akin to unstable nodes, while passive users are akin
to stable nodes within the automaton. Te act of sending
retweets to subscribers corresponds to the destabilization or
crumbling of an unstable node in the automaton, as detailed
in Subsection 2.1.

Let us examine a potential scenario concerning the
origin and propagation of retweets in a segment. Assume
that a user in a passive state receives a tweet, leading to
a switch to an active state (see Figure 1(a)). Tis event,
termed as “pumping,” initiates a series of retweets within the
segment, triggered by this user. Subsequently, this user
shares retweets with their followers, and let us posit that this
retweet propagation results in their transition to an active
state (see Figure 1(b)). Te process of transitioning between
passive and active states persists (see Figure 1(c)) until the
entire segment, initially comprising only passive users,
achieves a state of complete relaxation (see Figure 1(d)).

It should be pointed out that not every user of a segment
that receives a retweet can switch to an active state (see
Figures 1(c) and 1(d)), e.g., due to lack of interest in the
retweet. In addition, we do not account for other ways of
distributing microposts, such as through recommendations,
in the model. Te model only has incoming tweets and the
reaction of segment users to them in the form of retweets sent.

Te subsequent iteration initiates by disseminating tweets
to specifc users within the segment, setting of chains of
retweets within that segment. Starting at some iteration (τc), the
segment undergoes self-organization at the edge of a phase
transition characterized by an avalanche-like spread of retweets.

Tus, within the framework of the proposed model, the
series of the number of unstable nodes of the automaton, ξt􏼈 􏼉

(t is the iteration number) is analogous to the series of the
number of users of a segment initiating retweet chains in it,
χt􏼈 􏼉. Consequently, the series ξt􏼈 􏼉 can be used as a test series
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to establish the features of EWM series behavior and, ac-
cordingly, to study the behavior of EWM series for segments
as they approach the edge of a phase transition.

3.2. Behavior of Early Warning Measures. As a result of
calculations of EWMs, we found that the behavior of
a number of EWM, t ∈[0, k − w0]􏼈 􏼉, as the automaton ap-
proaches τc, remains independent of the specifc self-
organization type (SOB/SOC) and pumping conditions as
the automaton approaches. Te variations observed are solely
quantitative, holding signifcance in categorizing EWMs
based on their efcacy. Consequently, to maintain the gen-
erality of the discourse, we will confne our discussion to
delineating the series of measures derived for a sand cellular
automaton undergoing self-organization in the SOB state,
with pumping sourced from a discrete uniform distribution.

3.2.1. Sandpile Cellular Automata. Figure 2 illustrates the
series of EWMs whose behavior aligns with a rigorous
theoretical justifcation within the framework of critical
slowing down.

Te series representing the number of unstable nodes
ξt􏼈 􏼉, for which the EWM series was calculated, is depicted in
Figure 2(a). Te critical slowing down of the automaton
corresponds to an extension of its relaxation time, resulting
in an augmentation of the unstable node count. Conse-
quently, this leads to an increase in variance (σ2), a sharp
increase in the asymmetry (κ), and kurtosis (c) of the dis-
tribution of values of the series ξt􏼈 􏼉 as the right boundary of
the sliding window approaches τc (see Figures 2(b)–2(d)).
Te rationale behind this behavior is explored in [17, 18].

Critical slowing down is also marked by an increase in
“memory,” manifested as a growth in autocorrelation at lag-
1 (ρ). Additionally, as the critical state is approached, the
autocorrelation converges to a value near 1 and maintains
this level in the SOB state (see Figure 2(e)). Tis implies that
the stochastic dynamics of unstable nodes in the previous
(t − 1)th iteration signifcantly infuences the number of
unstable nodes in the current, tth, iteration. Te autocor-
relation pattern is theoretically described and substantiated
(refer to papers [17, 18]) and serves as an early warning
signal for the self-organization of the automaton toward the
edge of a phase transition.

Also, critical slowing down of the automata is accom-
panied by an increase in the power-law scaling exponent, β,
of PSD (see Figure 2(f )). Te well-known “ficker” efect,
1≤ β≤ 2, which is a precursor of the critical transition (see
the paper [40]), as well as a sign of the automaton being on
the edge of the phase transition (see papers [3, 4]). Hence,
the measure β is an EWM for critical transitions in the
automaton.

Let us proceed to the consideration of the behavior of
EWMs that have not been theoretically justifed so far in the
context of critical slowing down. Consider the EWMs of the
reconstructed phase space x (see Sequence (2)) of the dy-
namical series ξt􏼈 􏼉 by the time delay method.Te correlation
dimension of the reconstructed attractor (Dc) increases
sharply as the right boundary of the sliding window ap-
proaches τc, taking fractional values greater than zero in the
neighborhood of τc (see Figure 2(g)).Tis behavior indicates
the increasing complexity of the structure of the recon-
structed attractor and the increasing degree of chaotic
complexity of the series ξt􏼈 􏼉. Te geometry of the recon-
structed attractor is fractal if Dc takes fractional positive
values.

Te approximation entropy, AppEn, decreases sharply as
the right boundary of the window approaches τc (see
Figure 2(h)). Consequently, in the neighborhood of τc, there
is a sharp decrease in the uncertainty (irregularity and
unpredictability) of the behavior of the series ξt􏼈 􏼉, i.e., the
number of repeated patterns in such a series increases
sharply. Tus, a sharp change in the behavior of Dc and
AppEn in the neighborhood of τc is an early warning signal
for the automata self-organization to the edge of a phase
transition.

Let us turn to the discussion of the behavior of EWMs for
Twitter segments, which is presented in Figures 3–5. In these
fgures, the vertical red dashed line shows τc, the time in-
terval in which the debate took place is shown in the gray-
flled region and the time interval of being at the edge of the
phase transition is shown in the gray-flled region.

3.2.2. First Debate. Figure 3 shows the series for EWMs
calculated for the number of users of the Twitter segment
initiating chains of retweets meaningfully related to the frst
debate, χt􏼈 􏼉 (see Figure 3(a)).

(a) (b) (c) (d)

Figure 1: One of the scenarios for the emergence of a chain of retweets in the Twitter segment.
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Te Twitter segment self-organizes to the edge of the
phase transition and stays in this critical state from 01:36:40
on September 27 to 05:21:30 on September 27. Indeed, ρ � 1
(see Figure 3(e)) and 1≤ β≤ 2 (see Figure 3(f )) in this time
interval, which is a characteristic of systems arriving at the
edge of the phase transition. Approaching τc, corresponding
to 01:36:40 on September 27, the Twitter segment critically
slows down, as the σ2 (see Figure 3(b)), κ (see Figure 3(c))
and c (see Figure 3(d)) distributions of the series χt􏼈 􏼉 sharply
increase in the left neighborhood of the point τc.

Also, the approach to τc is indicated by the behavior of
EWMs that are not associated with critical slowing down.
Tus, in the left neighborhood of τc, measure Dc increases
sharply, taking fractional values between 0 and 1 (see Fig-
ure 3(g)). At the same time, the measure AppEn decreases
sharply in this neighborhood (see Figure 3(h)). Tus, the
behavior of EWMs presented in Figure 3 is an early warning
signal for the Twitter segment self-organization to the edge
of a phase transition.

Another, in our opinion, the interesting result is the
entry into the critical state of the Twitter segment 3minutes
and 40 seconds after the beginning of the frst debate and the
relaxation of the Twitter segment from the critical state at
2 hours 51minutes and 20 seconds after the end of the de-
bate.Te debate took place in the time interval from 01:00:00
on September 27 to 02:30:00 on September 27.

3.2.3. Second Debate. Te Twitter segment, consisting of
users involved in second debate communications, also self-
organizes to the edge of a phase transition 01:31:20 on
October 10 (this point in time corresponds to τc5). Tis is
confrmed by the behavior of the EWMs (presented in
Figure 4), which is a characteristic of the critical slowing
down of the Twitter segment as it approaches τc5. In the left
neighborhood of τcσ2 (see Figure 4(b)), κ (see Figure 4(c))
and c (see Figure 4(d)) sharply increased.

Moreover, although these behaviors were observed at
k< τc5, only starting at τc5 and ending at 05:04:10 on October
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Figure 2: Dynamic series of the number of unstable SOB automaton nodes (a), variance (b), kurtosis (c), skewness (d), autocorrelation at
lag-1 (e), Welch’s PSD estimation for power law exponent (f ), correlation dimension (g), and approximate entropy (h) for the sandpile
cellular automaton on the CLG with the Manna rule and pumping according to the law of discrete uniform distribution. Te vertical red
dashed line indicates a critical iteration.
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10, measure ρ � 1 (see Figure 4(e)) and the inequality
1≤ β≤ 2 (see Figure 4(f)) is satisfed.

Also, in the left neighborhood of τc5, measure Dc

increases sharply, taking fractional values from 0 to 1 (see
Figure 4(g)), and the measure AppEn decreases sharply
in this neighborhood (see Figure 4(h)). Te Twitter
segment stays at the edge of the phase transition from 01:
31:20 on October 10 to 05:04:10 on October 10. Tis time
interval is longer than the time interval corresponding to
the second debate that started 01:00:00 on October 10
and ended 02:30:00 on October 10 (see Figure 4(a)).

Unlike the frst debate, the Twitter segment corre-
sponding to the second debate possibly self-organizes to the
edge of a phase transition not only at 01:31:20 on October 10.
Figure 4 also shows four additional time intervals that
possibly correspond to the Twitter segment staying to the
edge of a phase transition. At least, this is indicated by the
behavior of the EWMs in the left neighborhoods of the four
critical points, and the inequality 1≤ β≤ 2 is satisfed. But,
despite this, it takes values from 0.7 to 0.8 for all four

intervals. We do not exclude that by using interval statistical
estimates of the measures ρ, we can obtain reliable state-
ments about the segment’s staying in these four intervals, but
obtaining such estimates is beyond the scope of the
presented study.

3.2.4. Tird Debate. Figure 5 shows the series for EWMs
corresponding to the retweet activity (see series χt􏼈 􏼉 in
Figure 5(a)), associated with the third debate. Tere is
a sharp increase in σ2 (see Figure 5(b)), κ (see Figure 5(c)), c

(see Figure 5(d)), and Dc (see Figure 5(g)), as well as a sharp
decrease in AppEn (see Figure 5(h)) as we approach c (01:32:
20 on October 20).

In addition, ρ � 1 (see Figure 5(e)) and 1≤ β≤ 2 (see
Figure 5(f)) in the time interval from 01:32:20 on October 20
to 05:15:50 on October 20. Hence, the Twitter segment self-
organizes to the edge of the phase transition at time τc and
stays in such a critical state in this time interval. Moreover, as
in the previous cases, the time interval corresponding to the
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Figure 3: Dynamic series of initial microposts corresponding to the frst debate (a), variance (b), kurtosis (c), skewness (d), autocorrelation
at lag-1 (e), Welch’s PSD estimation for power law exponent (f ), correlation dimension (g), and approximate entropy (h) for the sandpile
cellular automaton on the CLG with the Manna rule and pumping according to the law of discrete uniform distribution. Te vertical red
dashed line indicates a critical time. Te time interval in which the debate took place is shown as a gray-flled region, the time interval for
staying at the edge of the phase transition is shown as a red-flled region.
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third debate (from 01:00:00 on October 20 to 02:30:00 on
October 20) is less than the time of the Twitter segment’s stay
in the critical state. Apparently, as in the previous case, the
EWMs are not efcient enough (see Subsection 3.3).

Consequently, it is not always the case that avalanche-like
behavior of online social media is only observed during the
discussion period of high-profle events, such as the debate
period.

3.3. Efectiveness of Early Warning Measures. Te efciency
parameters (]f) of all investigated EWMs for output
automata and Twitter segments on the edge of the phase
transition are presented in Figure 6. To identify an au-
tomaton, we use the abbreviations for the pumping equa-
tions introduced in Subsection 2.1. For example, SOB-PAD
stands for a sand cellular automaton with the Manna al-
gorithm based on the Chung-Lu random graph with in-
formation pumping via the Pareto distribution that allows it
to switch to the SOB state.

Let us consider the efects of the type of self-organization
(SOB/SOC) and the distribution for pumping (DUD/EXD/
PAD) on the efciency of the EWM. For two automata with
the same pumping, the efciency of the EWM does not
depend on the type of self-organization of the automata
since ]f takes the same values at the same distributions for
pumping the automata.

An increase in the degree of pumping stochasticity,
determined by an increase in the mean and variance of the
distribution for pumping, leads to a decrease in the efciency
of the EWMs of all automata regardless of the type of self-
organization of the automata. Measures σ2 and DC have the
smallest ]f, and hence, they are the most efcient EWMs
regardless of the type of self-organization and distribution
law for pumping automata.

Also, measures σ2 and DC are the most efective EWMs
(]f� 2) for the Twitter segments (frst and third debates)
self-organization to the edge of a phase transition. Measures
σ2 and DC are the most efective EWMs (]f� 3) for the early
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Figure 4: Dynamic series of initial microposts corresponding to the second debate (a), variance (b), kurtosis (c), skewness (d), auto-
correlation at lag-1 (e), Welch’s PSD estimation for power law exponent (f ), correlation dimension (g), and approximate entropy (h) for the
sandpile cellular automaton on the CLG with the Manna rule and pumping according to the law of discrete uniform distribution. Te
vertical red dashed line indicates a critical time. Te time interval in which the debate took place is shown as a gray-flled region, the time
interval for staying at the edge of the phase transition is shown as a red-flled region.
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Figure 5: Dynamic series of initial microposts corresponding to the third debate (a), variance (b), kurtosis (c), skewness (d), autocorrelation
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detection τc of the Twitter segment, corresponding to the
second debates.

Tus, only the behavior of EWMs, based on variance and
correlation dimensionality estimates, in the left neighbor-
hood of the point τc is an efective precursor of the Twitter
segments self-organization to the edge of a phase transition,
provided that ρ and β approach a value equal to 1.

4. Conclusions

Te discrete-time Twitter segment model, based on sandpile
cellular automata with Manna rule on the Chung-Lu graph,
is a model system that generates series of the number of
unstable nodes of the automaton. Such series are analogous
to the series of the number of users of a segment initiating
chains of retweets in it and hence are test series for estab-
lishing the features of EWM series behavior as the system
(automaton and Twitter segment) approaches the edge of
a phase transition.

Such early warning signals can be used in a real-time
early-warning system of self-organization to the edge of
a phase transition in a real-world system if its structure is
similar to that of sandpile cellular automata, i.e., the systems
are isomorphic in the context of systems theory. Such
systems are a segment of a stock exchange (e.g., see the paper
[41]), epidemiological networks (e.g., see the papers [5, 42]),
continuous media systems (e.g., see the paper [43]), and
complex networks (e.g., see the paper [44]). Te known
models of information dynamics in Twitter (e.g., see the
papers [45, 46]) do not allow us to explain the self-
organization of a network on the edge of a phase transi-
tion and therefore cannot be used as models for
testing EWMs.

Te sharp increase in the variance and correlation di-
mension, as well as the proximity of the autocorrelation at
lag-1 to 1 and the power-law scaling exponent of PSD to the
interval from 1 to 2, can be used as efective (characterized by
the smallest number of false signals) early warning signals
for Twitter self-organization to the edge of a phase transi-
tion. Such features of the behavior of the autocorrelation at
lag-1 to 1 and the belonging of the power-law scaling ex-
ponent of the power spectral density in the neighborhood of
the edge of a phase transition are presented in the papers
[4, 47, 48], but the efectiveness of EWMs directly related to
critical slowing down and unrelated to this phenomenon has
not been determined and investigated.

Te sharp increases of EWMs based on estimates of
dispersion and correlation dimensionality are efective early
warning signals for the Twitter segments’ self-organization
to the edge of a phase transition. At the same time, the
efectiveness of such measures does not depend signifcantly
on the pumping features of sandpile cellular automata as
Twitter segment models.

Te Twitter segments self-organize at the edge of a phase
transition, some time after the start of a debate and stay on
the edge for longer than the debate takes place. Te self-
organization of segments at the edge of a phase transition
was established by the authors of the paper [49]. During the
second debate, the segment of Twitter self-organizes on the

edge fve times. Te stay of the segments on the edge is
characterized by an avalanche-like propagation of retweets.
Given that self-organization on the edge of a phase transition
occurs later than the start of the debate, the start time of the
debate is not an early warning time.

To conclude this section, we will point out the main
limitations of the proposed approach in the context of early
warning systems.

Te used rule, topological graph structure, and dis-
tribution for pumping sand cell automata take place. In
the context of early warning systems, the main limitation
of our study is the use of an initial window of a certain
width (for example, w0 � 1000). Tus, if τc � 505, a win-
dow with width w0 will not allow to identify τc, and it is
necessary to use a window with, for example w0 � 500.
Reducing the width of the window is not always acceptable
because the quality of estimation of some measures, such
as correlation dimensionality, is very sensitive to the
sample size.

Reducing the initial window width without reducing the
efciency of EWMs is possible if some EWM can be in-
dependently estimated by several methods. For example,
independent estimates for the power-law scaling exponent of
the PSD are Welch’s estimate, wavelet leader estimate, and
wavelet transform modulus maxima estimate. Welch’s es-
timate is less sensitive to changes in the width of the initial
window but is sensitive to changes in the degree of in-
homogeneity. Tis is another limitation of our approach,
which is related to the choice of the estimation method of
EWMs for their use in early warning systems.

Te proposed approach to determining the efectiveness
of EWMs is also limited to the search for early warning
signals for Twitter self-organization to the edge of a phase
transition, based on abrupt changes (increasing/decreasing)
of EWMs as the network approaches the edge. For example,
the approach is of little use for identifying the early warning
signals in the behavior of point statistical estimates for the
autocorrelation and the power-law scaling exponent for
which the aspiration to values close to unity is primarily
important. In these cases, the use of interval static estimates
will eliminate this limitation.

Finally, a limitation is the need to use high-frequency
series for the estimation of EWMs, for which the time step of
the foppy series is much smaller than the time of fnding the
network at the edge of a phase transition. Te use of such
series for the early warning of self-organization of systems at
the edge of a phase transition is necessary if the systems are
characterized by a relatively short time of being in a sub-
critical phase. For example, for the Twitter segments, this
time is less than one hour and we were able to fnd the
precursors of self-organization since the EWM estimates are
obtained for the series of retweet activity with a step of
10 seconds.

In conclusion, we observe that the chosen rule, topo-
logical graph structure, and distribution for pumping
sandpile cellular automata have enabled the investigation of
the efciency of EWMs in the context of bifurcation-induced
tipping. However, it is noteworthy that this form of tipping
does not confne the exploration of measure efectiveness.
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Trough a thoughtful selection of local rules and pumping
confgurations, it is possible to observe noise-induced and
rate-induced tipping in sandpile cellular automata (e.g., see
the paper [19]). Terefore, the prospect of our further re-
search is to use directed sandpile cellular automata with
Pastor-Satorras-Vespignani rules with stochastic node
fuctuations as the most adequate hierarchical model of
retweet propagation in the network.
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“Profling users and bots in Twitter through social media
analysis,” Information Sciences, vol. 613, pp. 161–183, 2022.

[31] A. Aldayel and W. Magdy, “Characterizing the role of bots’ in
polarized stance on social media,” Social Network Analysis
and Mining, vol. 12, no. 1, p. 30, 2022.

[32] S. S. Manna, “Two-state model of self-organized criticality,”
Journal of Physics A: Mathematical and General, vol. 24, no. 7,
pp. L363–L369, 1991.

[33] K. Shaposnikov, I. Sagaeva, A. Grigoriev, A. Faizliev, and
A. Vlasov, “Random graph models and their application to
twitter network analysis,” in Proceedings of the Fourth
Workshop on Computer Modelling in Decision Making,
pp. 2589–4900, Saratov, Russia, November, 2019.

[34] L. Skyttner, General Systems Teory: Problems, Perspectives,
Practice, World Scientifc, Singapore, 2006.

[35] J. Littman, L. Wrubel, and D. Kerchner, “2016 United States
presidential election tweet ids,” Harvard Dataverse, vol. 3,
2016.

[36] J. P. L. Tan and S. S. Cheong, “Critical slowing down asso-
ciated with regime shifts in the US housing market,” Te
European Physical Journal B, vol. 87, no. 2, p. 38, 2014.

[37] P. Stoica and M. Randolph, Spectral Analysis of Signals,
Prentice Hall, Upper Saddle River, NJ, USA, 2005.

[38] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,
vol. 7, Cambridge University Press, Cambridge, UK, 2004.

[39] R. Hegger and H. Kantz, “Improved false nearest neighbor
method to detect determinism in time series data,” Physical
Review E, vol. 60, no. 4, pp. 4970–4973, 1999.

[40] S. Wallot and D. Monster, “Calculation of average mutual
information (AMI) and false-nearest neighbors (FNN) for the
estimation of embedding parameters of multidimensional
time series in Matlab,” Frontiers in Psychology, vol. 9, pp. 1–10,
2018.

[41] A. Dmitriev, A. Lebedev, V. Kornilov, and V. Dmitriev,
“Multifractal early warning signals about sudden changes in
the stock exchange states,” Complexity, vol. 2022, Article ID
8177307, 10 pages, 2022.

[42] S. Moghari and M. Ghorani, “A symbiosis between cellular
automata and dynamic weighted multigraph with application
on virus spread modeling,” Chaos, Solitons and Fractals,
vol. 155, Article ID 111660, 2022.

[43] M. Pla-Castells, I. Garcia, and R. J. Mart́ınez, “Approximation
of continuous media models for granular systems using
cellular automata,” Lecture Notes in Computer Science,
vol. 3305, pp. 230–237, 2004.

[44] D. Fazli and N. Azimi-Tafreshi, “Emergence of oscillations in
fxed-energy sandpile models on complex networks,” Physical
Review E, vol. 105, no. 1, Article ID 014303, 2022.

[45] J. Ko, H. W. Kwon, H. S. Kim, K. Lee, and M. Y. Choi, “Model
for Twitter dynamics: public attention and time series of
tweeting,” Physica A: Statistical Mechanics and Its Applica-
tions, vol. 404, pp. 142–149, 2014.

[46] Y. Ota and N. Mizutani, “Estimating parameters in mathe-
matical model for societal booms through bayesian inference
approach,” Mathematical and Computational Applications,
vol. 25, no. 3, p. 42, 2020.

[47] A. Shapoval, D. Savostianova, and M. Shnirman, “Universal
predictability of large avalanches in the Manna sandpile
model,” Chaos, vol. 32, no. 8, Article ID 083130, 2022.

[48] F. Hasselman, “Early warning signals in phase space: geo-
metric resilience loss indicators from multiplex cumulative
recurrence networks,” Frontiers in Physiology, vol. 13, Article
ID 859127, 2022.

[49] A. Dmitriev and V. Dmitriev, “Identifcation of self-organized
critical state on twitter based on the retweets’ time series
analysis,” Complexity, vol. 2021, Article ID 6612785, 12 pages,
2021.

Complexity 13




