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Abstract—We examine smooth four-dimensional vector fields reversible under some smooth
involution L that has a smooth two-dimensional submanifold of fixed points. Our main interest
here is in the orbit structure of such a system near two types of heteroclinic connections
involving saddle-foci and heteroclinic orbits connecting them. In both cases we found families
of symmetric periodic orbits, multi-round heteroclinic connections and countable families of
homoclinic orbits of saddle-foci. All this suggests that the orbit structure near such connections
is very complicated. A non-variational version of the stationary Swift –Hohenberg equation is
considered, as an example,where such structure has been found numerically.
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To jubileers — our old friends, with best wishes

1. INTRODUCTION

Reversible dynamical systems (both vector fields and diffeomorphisms) appear in different
branches of science as representative models. As examples one can mention models in hydro-
dynamics [6], nonlinear optics [49], and engineering [42]. More references can be found in the
reviews [12, 33]. So, their study is of great interest both from mathematical and applied points of
view.

In this paper we study the orbit behavior near two types of heteroclinic connections in reversible
systems. To be precise, we recall some needed notions. Let M be a smooth (C∞) manifold of even
dimension and L : M → M be a smooth mapping that is an involution, L2 = L ◦L = idM . We shall
assume below that the set of fixed points of the involution L, Fix (L) ≡ {x ∈ M : L(x) = x}, is a
smooth submanifold of the dimension equal to half the phase space dimension. In particular, for a
four-dimensional case we study here, dimFix (L) = 2. As an example of such a system we mention
the system (1.2) in R

4 presented below with two-dimensional plane Fix (L).

A smooth vector field v on M is reversible w.r.t. L if the identity DL(v) ≡ −v ◦ L holds. This
implies that, if Φt is the flow generated by the vector field v, then the reversed flow, Φ−t, is conjugate
to the forward flow:

L
(
Φt(x)

)
= Φ−t

(
L(x)

)
. (1.1)
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Henceforth, we assume the flow Φt to be complete, i. e., any its orbit is defined on all R. Recall that
an orbit γ of a reversible vector field is symmetric if it is invariant w.r.t. L: L(γ) = γ. Asymmetric
orbits meet in pairs {γ, L(γ)}. Symmetric equilibria are those which belong to Fix (L), symmetric
orbits are those which intersect Fix (L) once, and an orbit γ intersecting Fix (L) twice is periodic,
its period is the double time of the passage from one intersection point with Fix (L) to another
one [15].

We are concerned with the orbit structure of a smooth reversible vector field in neighborhoods
of two types of twin heteroclinic connections. The first of them is made up of an asymmetric pair
of saddle-foci p1, p2, p2 = L(p1), and two symmetric nondegenerate heteroclinic orbits Γi, i = 1, 2,
connecting these two saddle-foci (see Fig. 1, left panel). For a smooth four-dimensional vector field
a saddle-focus is an equilibrium p such that the linearization operator at p, acting on tangent space
TpM , has the quadruple of eigenvalues α1 ± iβ1, α2 ± iβ2, αiβi �= 0, α1α2 < 0. Such an equilibrium
is of saddle type, it possesses locally two smooth 2-dimensional invariant manifolds, stable W s(p)
and unstable W u(p), transversally intersecting at p. A saddle value of a saddle-focus is the number
σ = α1 + α2. For the asymmetric pair of saddle-foci p1, p2, p2 = L(p1), their saddle values σ1, σ2
have opposite signs: σ2 = −σ1. This follows from the relation for linearization operators A1, A2 for
p1, p2 A2 = −DL ◦A1 ◦DL−1 implies that the eigenvalues of A2 are minus eigenvalues of A1. To
be definite, we assume that σ1 < 0, hence σ2 > 0.

By a heteroclinic orbit of a vector field we mean here an orbit which tends to different equilibria
as t → −∞ and t → ∞. Other types of heteroclinic orbits which connect equilibria and periodic
orbits, invariant tori, are also studied, but we restrict ourselves to equilibria as limit sets. In our
case it will be an orbit which connects p1 and p2. We assume, in addition, that both orbits Γ1,Γ2

are symmetric (L(Γi) = Γi) and nondegenerate. The heteroclinic orbit belongs to the intersection
of the stable manifold of one equilibrium and the unstable manifold of another equilibrium. Take a
point q on this orbit and choose some cross-section N to the flow through this point. Intersection of
N with the stable manifold of one saddle-focus and the unstable manifold of another saddle-focus
for the four-dimensional case gives two smooth curves through q. Nondegeneracy of the heteroclinic
orbit means that these two curves are noncollinear at q.

Fig. 1. Two types of twin heteroclinic connections.

Another type of twin heteroclinic connections in a reversible system to be considered is
a connection which contains two symmetric saddle-foci p1, p2 ∈ Fix (L) and two asymmetric
heteroclinic orbits Γ1,Γ2 which join p1, p2 and are permuted by the involution, Γ2 = L(Γ1) (see
Fig. 1, right panel). In contrast to the first type of the twin connection, which is structurally stable
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in the class of reversible vector fields w.r.t. L, the second type is not, since the heteroclinic orbit
Γ1 (and Γ2) is not symmetric and can be destroyed by a reversible perturbation. This follows from
the fact that homo- and heteroclinic orbits to equilibria are not structurally stable objects in the
class of generic vector fields. This latter type of a heteroclinic connection was studied earlier [29],
where the existence of 1-round homoclinic orbits to any of pi was proved.

In the case of the first type twin connection, the existence of two symmetric heteroclinic orbits Γi,
i = 1, 2, means that the local unstable manifold W u(p2), being extended by the flow, intersects the
stable manifold W s(p1) along Γ1, moreover, the symmetry means L(Γ1) = Γ1. The same holds
true for Γ2, but Γ2 ⊂ W u(p1) ∩W s(p2). Recall [15] that the symmetry of an orbit implies that
this orbit intersects the fixed point set Fix (L). Denote qi = Γi ∩ Fix L, i = 1, 2. We denote the
solutions ϕi(t) of v which start at the points qi at t = 0, ϕi(0) = qi. Such a solution possesses the
symmetry property ϕi(t) = Lϕi(−t) and limϕ1(t) = p1 as t → ∞, limϕ1(t) = p2 as t → −∞, and
limϕ2(t) = p2 as t → ∞, limϕ2(t) = p1 as t → −∞.

L.P. Shilnikov was the first who discovered the complicated orbit behavior near a homoclinic
orbit to a saddle-focus with a positive saddle value in a 3-dimensional system [44, 45]. Later these
results were extended to systems of greater dimension Shilnikov’ results cannot be carried over
directly to the reversible and Hamiltonian systems, since their saddle values are always zero due
to symmetry of the spectrum at equilibrium (for a reversible system at a symmetric equilibrium).
Devaney [14] found a hyperbolic subset (a suspension over Bernoulli’s scheme) in a neighborhood
of a transversal homoclinic orbit for a Hamiltonian system and found a one-parameter family of
symmetric periodic orbits (SPOs) in a four-dimensional reversible system near a nondegenerate
homoclinic orbit to a symmetric saddle-focus [15]. The complete orbit behavior on the degenerate
level of a Hamiltonian and bifurcations in varying the level set of a Hamiltonian near a transverse
homoclinic loop of a saddle-focus were described in [35, 37]. Heteroclinic connections were also
much studied both for general systems [50] and for special systems like Hamiltonian [36, 53] and
reversible ones [29, 51]. Much information can be found in the review [26]. Many details of the
orbit behavior near a homoclinic orbit to saddle-focus, including the reversible case, can be found
in [2, 27]. The methods which allow one to discover homoclinic/heteroclinic orbits in Hamiltonian
systems were developed in many papers, for example, [13, 16, 17, 34, 40], to mention but a few. Such
orbits either appear in Hamiltonian systems close to integrable ones or arise via local bifurcations
of equilibria.

As an example, where a reversible system possesses a heteroclinic connection ofthe first type,
consider a PDE whose stationary (not depending on time) solutionsare described by an ODE that is
transferred to a reversible system of ODEs. This isa variant of the Swift –Hohenberg equation [48].
Some versions of this equation are obtained from variational principles and their reductions are
Hamiltonian [4, 9, 18]; however, there are also non-Hamiltonian versions [31]. One such case has
stationary solutions u(x) that obey the ODE

(1 + ∂2
x)

2u− αu− βu∂xu+ u3 = 0,

where parameter α can be arbitrary, but β will be assumed positive, since the change of variable
u → −u makes it positive if β < 0. Upon defining the variables q1 = u, q2 = u′, p1 = −u′ − u′′′, and
p2 = u+ u′′, the equation transforms to the four-dimensional first order system

q′1 = q2, q′2 = p2 − q1 ,

p′1 = p2 − αq1 − βq1q2 + q31 , p′2 = −p1. (1.2)

This system is reversible with respect to the linear involution L : (q1, q2, p1, p2) → (−q1, q2, p1,−p2)
and volume-preserving. It has up to three equilibria: the origin, which is symmetric, and (when

α > 1) the asymmetric pair (±
√
α− 1, 0, 0,±

√
α− 1) arising at α = 1 from the symmetric one.

This system is not Hamiltonian, as can be verified by computing the eigenvalues of the asymmetric
pair. Indeed,the characteristic polynomial at these equilibria,

P (λ) = λ4 + 2λ2 ∓ β
√
α− 1λ+ 2(α− 1),
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is not even, as it would have to be if the system were Hamiltonian, the zeroth coefficient at λ3 is due
to volume preservation. By contrast, the characteristic polynomial for the symmetric equilibrium
at the origin is

P (λ) = λ4 + 2λ2 + 1− α,

so that when α < 0 it is a saddle-focus. It can be shown this equilibrium does have symmetric
homoclinic orbits. Indeed, here we get the reversible Hopf bifurcation when α crosses zero, since
at α = 0 the equilibrium has two double pure imaginary eigenvalues with two-dimensional Jordan
boxes for each of them. For α < 0 the equilibrium is a saddle-focus and it is an elliptic point for
positive 0 < α < 1. Generically there are two types of this bifurcation depending on the sign of
some coefficient in the normal form of the third order in r.h.s. calculated through terms of the
second and third order at α = 0 (if the linear part has already been transformed to the standard
Jordan form). For the equation above this coefficient is 27− β2 as in the Hamiltonian case for the

case of the usual Swift –Hohenberg equation [10, 18]. This means that for |β| < 3
√
3 the bifurcation

is subcritical and two symmetric one-round homoclinic orbits exist in this case [28].

The pair of nonsymmetric equilibria arising for α > 1 are saddles for μ =
√
α− 1 small enough,

since at α = 0 the degenerate symmetric equilibrium has two simple eigenvalues ±i
√
2 and double

zero eigenvalue. Simple eigenvalues continue as follows: λ1,2 = ±i
√
2− βμ/4 +O(μ2), they give a

stable focus on the stable manifold. Zeroth eigenvalues become two real positive, when α > 1 with
small μ > 0 and β2 > 8, their expansion in μ looks as follows:

λ3,4 =
1

4
(β ±

√
β2 − 8)μ +O(μ2).

For 0 < β2 < 8 we have complex conjugate eigenvalues, their expansion in μ looks as follows:

λ3,4 =
1

4
(β ± i

√
8− β2)μ+O(μ2).

For instance, at α = 1.25 and β = 2 eigenvalues for the upper equilibrium are λ1,2 ≈ −0.2751 ±
1.4087i, λ3,4 ≈ 0.2751± 0.4087i, that is, we have a saddle-foci of the type (2, 2) at two symmetrically
connected points. But if we take α = 1.25 and β = 5, then these points are saddles of the types
(2, 2) with one saddle having a stable manifold with a focus on it (λ1,2 ≈ −0.4849 ± 1.5887i) and
an unstable node on a two-dimensional unstable manifold (λ3,4 ≈ 0.7170, 0.2527), respectively, with
opposite signs for eigenvalues of the symmetric equilibrium. The figures presenting the graphs of
u(x) = q1(x) for both heteroclinic orbits and projections of these orbits onto the plane (q1, p2) for

parameters μ =
√
α− 1 = 0.5, β = 2 are shown in Fig. 2, and for μ = 0.5, β = 5, in Fig. 3.

For completeness, we recall the behavior of multipliers for a family of symmetric periodic orbits.
Let γ be some symmetric periodic orbit of the family. Such an orbit intersects the submanifold
Fix (L) twice. Let q be a point of intersection γ ∩ Fix (L). Recall that there exists a cross-section
N near q which is invariant w.r.t. L and contains a disk D ⊂ Fix (L). Thus the Poincaré mapP
on N near the symmetric periodic orbit is reversible and its linearizationsatisfies the equality
DL ◦DP = DP−1 ◦DL.The tangent vector to the trace of SPO at any its point is invariant w.r.t.
DP , so the unity is the root of the characteristic equation. Two other roots make up the pair μ, μ−1,
where we denote by μ the root for which |μ| � 1. Thus, the characteristic equation for this orbit is
of the form −(μ− 1)(μ2 − τμ+ 1) = 0. There are the following types of symmetric periodic orbits

1) quasi-hyperbolic orientable, when τ > 2, so that 0 < μ < 1, ;

2) quasi-hyperbolic nonorientable, when τ < −2, so that −1 < μ < 0;

3) quasi-elliptic, when |τ | < 2, so that μ = e±2πiω, 0 < ω < 1
2 ;

4) parabolic, when τ = ±2, then μ = ±1.

Thus, we expect, as in the case of a nondegenerate homoclinic orbit to a symmetric saddle-focus [15],
that, when moving along the spiral which is the trace of SPOs on the disk D (see Theorem 3),
the value τ will pass infinitely many times through ±2 providing the transition from orientable
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Fig. 2. Parameters μ = 0.5, β = 2.

Fig. 3. Parameters μ = 0.5, β = 5.

quasi-hyperbolic SPOs to quasi-elliptic SPOs, then to nonorientable quasi-hyperbolic SPOs and
again to quasi-elliptic SPOs. But for the case of heteroclinic connections, the situation is much
more complicated and results in this direction remain unsolved so far. We hope to fill this gap
elsewhere.

The structure of the paper is as follows. In the next section we provide precise formulations of the
problems and formulate the results obtained. In Section 3 we present necessary technical theorems
concerning the local normal forms near saddle-foci used in the proofs and forms of the global maps.
Section 4 contains the proofs for theorems for the first type twin heteroclinic connection. Section 5
does the same for the second type heteroclinic connection. In the Conclusion we discuss the results
obtained and further avenues of research.

2. SET-UP AND MAIN RESULTS

In this section we formulate the conditions on the twin heteroclinic connection under which we
study the orbit behavior nearby. The symmetric heteroclinic orbit Γ1 ⊂ W s(p1)∩W u(p2) intersects
Fix (L) at the point q1, hence q1 belongs to the intersection W s(p1) and Fix (L). Both these sets
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near q1 ∈ M are smooth two-dimensional submanifolds and we assume their intersection to be
transverse, such a symmetric heteroclinic orbit will be called elementary, similar to [15]. The same
is assumed for Γ2 ⊂ W u(p1)∩W s(p2). Below we assume a more strong property for the intersection
of W s(p1) and W u(p2) (and for Γ2 as well). As was noted above, there is a cross-section N1 through
the point q1 such that N1 contains a piece D1 of Fix (L) near q1 and N1 is invariant w.r.t. the
action of L. The intersection of W s(p1) with N1 is a smooth curve ls1 which can be transverse to
D1 at q1, but can be tangent to D1 at q1. The same holds true for the intersection of W u(p2) and
N1, it is a smooth curve lu1 . Due to symmetry of Γ1 and invariance of N1 under the action of L,
the relation L(ls1) = lu1 holds. So, if ls1 is transverse to D1 in N1, then lu1 is also transverse to D1 at
q1 and curves ls1, l

u
1 are noncollinear at q1 in N1. In this case we call Γ1 nondegenerate. We assume

this to hold true later on.

For a twin heteroclinic connection of the second type the orbit Γ1 connects two symmetric
saddle-foci p1, p2 ∈ Fix (L), it belongs to the set W u(p1) ∩W s(p2). Since this intersection contains
the curve Γ1, the intersection cannot be transverse in the four-dimensional M , so we assume this
intersection to be simplest degenerate. This means the following: fix some point q1 ∈ Γ1, then in
the tangent space Tq1M 2-planes Tq1W

u(p1), Tq1W
s(p2) intersect each other along a straight line

tangent to Γ1 at q1. Let us choose a smooth 3-dimensional disk N1 
 q1 being a cross-section
to Γ1. Then the intersections of W u(p1) and W s(p2) with N1 are two smooth curves containing q1,
their tangent vectors at q1 are assumed to be noncollinear. By symmetry, the same holds true for
Γ2 ⊂ W s(p1) ∩W u(p2).

The study of orbits in a neighborhood U of the heteroclinic connection in both cases will be
carried out by investigating the related Poincaré map on some cross-sections for Γi, i = 1, 2. Usually
the most technically burdened part of this study is related to the investigation of the orbit behavior
near equilibria. For a saddle equilibrium of general type the boundary value method due to Shilnikov
is used here (see [47] for details). For the saddle-focus point we shall use two normal form theorems.
For a twin connection of the first type, where both saddle-foci are nonsymmetric, we apply Belitskii’s
linearization theorem used in a similar problem in [11, 22].

Theorem 1. Let f : U → R
n be a C2-smooth diffeomorphism of a neighborhood U of the origin,

f(0) = 0, with the spectrum of eigenvalues λ1, . . . , λn. If the inequalities

|λi| �= |λj ||λk|, (∀|λj| � 1 � |λk|)

hold for all {i, j, k}, then there is a C1-smooth diffeomorphism h : U → U such that h−1 ◦ f ◦ h is
the linear map in R

n defined by Df(0).

Now standard arguments show that, if a vector field v has an equilibrium of saddle-focus type
at the origin with the local flow ϕt, then the linearization of the map ϕ1 at the equilibrium has
numbers exp[α1 ± iβ1] and exp[α2 ± iβ2] as eigenvalues, whose absolute values are exp[α1] < 1 and
exp[α2] > 1, therefore, ϕ1 is linearizable. Hence, the linearization of the flow in a neighborhood of
the saddle-focus follows (see, for instance, [23]). Due to symmetry, the linearization near p1 implies
the linearization near p2 = L(p1), see Section 3 for details.

For the case of two symmetric equilibria we apply the theorem on the normal form that follows
from the results [8] in the analytic case, from [39] for the C∞-smooth case and from [1, 7] for a
finitely smooth case Cr, r � 12.

Theorem 2. There is a neighborhood of a symmetric equilibrium in M and coordinates
(x1, x2, y1, y2) such that in these coordinates the involution L acts as (x1, x2, y1, y2) → (−y2,−y1,
−x2,−x1) and the system casts as

ẋ1 = −H1(ξ, η)x1 +H2(ξ, η)x2, ẏ1 = H1(ξ, η)y1 +H2(ξ, η)y2,

ẋ2 = −H2(ξ, η)x1 −H1(ξ, η)x2, ẏ2 = −H2(ξ, η)y1 +H1(ξ, η)y2,
(2.1)

where Hi, i = 1, 2, are two functions in variables ξ = x1y1 + x2y2 and η = x1y2 − x2y1, defined in
U , H1(0, 0) = α and H2(0, 0) = β. Functions Hi are real analytic if M and v are analytic, and they
are C∞-smooth if M and v are such. For a finitely differentiable case functions Hi are polynomials.
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The great advantage of this normal form is its integrability that allows one to construct the
local map near a symmetric saddle-focus.

Now we are ready to formulate our results. The first result deals with the first-type heteroclinic
connection where the theorem was formulated without a proof by Devaney [15]

Theorem 3. There is a neighborhood U of the heteroclinic connection C = Γ1 ∪ Γ2 such that U
contains a smooth one-parameter family of symmetric periodic orbits γτ that accumulate at C. The
parametrization of the family can be taken as the period of γτ and γτ tend topologically to C as
τ → ∞.

The second result here is the existence of countably many two-round symmetric heteroclinic
connections involving p1, p2. The roundness of the orientable closed curve γ lying in a neighborhood
of a given orientable closed curve C is called the integer which expresses the class of loose homotopy
for γ w.r.t. C: [γ] = n[C].

Theorem 4. There is a neighborhood U of the heteroclinic connection C = Γ1 ∪ Γ2 such that U
contains a countable set of symmetric two-round nondegenerate heteroclinic orbits going from p2
to p1 as time increases. Similarly, there is a countable set of symmetric two-round nondegenerate
heteroclinic orbits going from p1 to p2 as time increases. Thus, taking by one heteroclinic orbit from
these two families, we get countably many twin heteroclinic connections of the first type.

This theorem allows one to prove the existence of 2n-round symmetric nondegenerate heteroclinic
connections existing in a neighborhood of the primary twin connection C. But in order to prove
the existence connections of any roundness, one needs to prove symmetric heteroclinic orbits on an
odd roundness. To that goal, we prove the following

Theorem 5. For any neighborhood of the connection C there is a finite number of symmetric 3-
round heteroclinic orbits going, as time increases, from p2 to p1. There exists another similar, finite
family of symmetric 3-round heteroclinic orbits going, as time increases, from p1 to p2.

Our next theorem is concerned with unfoldings of reversible vector fields depending smoothly
on a parameter. Let vμ be such a family, and let each vector field vμ be reversible w.r.t. the smooth
involution L of the same type as above. We assume a critical vector field v0 to have a heteroclinic
connection of the first type.

Theorem 6. Suppose the family vμ satisfies the genericity condition, namely, [β1(μ)/β2(μ)]
′ �= 0

at μ = 0. Then for any fixed neighborhood V of the heteroclinic connection C at μ = 0 there is a
sequence of μn accumulating at the critical value μ = 0 such that the vector field vμn has a symmetric
pair of nonsymmetric homoclinic orbits, one to p1 and the other to p2. Both homoclinic orbits belong
to the neighborhood V.

Theorem 6 has a corollary that if, in addition, the saddle values at pi do not vanish, i. e.,
the inequality α1 + α2 �= 0 holds, then for μ = μn the vector field vμn satisfies the conditions of
theorem by Shilnikov [46] on the existence of a countable set of saddle periodic orbits (nonsymmetric
here) in a neighborhood of the homoclinic orbit for p1. By symmetry, there is a similar family of
nonsymmetric periodic orbits in a neighborhood of the pairing homoclinic orbit for p2. Another
result, proved in [41], says that, if the saddle value is negative at p1, then in a generic two-parameter
unfolding there are systems which have stable periodic orbits near a homoclinic orbit of p1.
Definitely, such two-parameter unfolding can be constructed to be reversiblewith two nonsymmetric
saddle-foci and a heteroclinic connection. Due to reversibility, such a system has also completely
unstable periodic orbits near a pairing homoclinic orbit of p2 where the saddle value is positive.
Such a situation says that in this case the system has mixed dynamical behavior [19], when the
phase space contains periodic orbits of stable, saddle, unstable types, as well as elliptic symmetric
periodic orbits. For instance, this type of the heteroclinic connection is encountered in one model
of a celtic stone [20]. So, one can indeed assert that in that model of the celtic stone stable periodic
orbit exist.

Further results concern the existence of periodic and homoclinic orbits for the second-type
connection. The first of them is the following.

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No. 1 2024



TWIN HETEROCLINIC CONNECTIONS OF REVERSIBLE SYSTEMS 47

Theorem 7. For any neighborhood U of the second-type twin heteroclinic connection C and any
n ∈ N there are countable families of n-round nondegenerate symmetric homoclinic orbits for pi,
i = 1, 2, and countably many of one-parameter families of symmetric periodic orbits.

This theorem was proved in fact in [29], here we present another geometric proof.

Another result concerns the existence of 2-round connections near the primary C for generic
reversible one-parameter unfoldings of a reversible system with the connection Cof the second type.
These connections involve two symmetric saddle-foci p1, p2 that are continuations of the initial ones
and each such connection contains two nondegenerate nonsymmetric 2-round heteroclinic orbits
permuted by involution L.

Theorem 8. Suppose the family vμ satisfies some genericity condition at μ = 0 to be formulatedin
the Section 5. Then for any fixed neighborhood V of the heteroclinic connection C at μ = 0 there
is a sequence of μn accumulating to the critical value μ = 0 such that the vector field vμn has
a heteroclinic connection of the second type involving a pair of symmetric saddle-foci and two
nonsymmetric nondegenerate two-round heteroclinic orbits connecting saddle-foci and permuted by
the involution. Both heteroclinic orbits belong to the neighborhood V.

3. LOCAL AND GLOBAL MAPS

In this section we utilize the approach of [32] (Section 2.1). We should make first more precise
the choice of linearizing coordinates in symmetrically defined neighborhoods U,U ′ of the equilibria
p1, p2, U

′ = L(U). Denote by (U,ϕ) the chart near the point p1 in which the vector field v is
linear (4.1), thus ϕ : (x, y) → U , (x, y) are Belitskii’s coordinates in R

4. Integration of v in these
coordinates gives the representation T (t) of the flow:

x1(t) = etα1 [x01 cos(β1t)− x02 sin(β1t)], y1(t) = etα2 [y01 cos(β2t)− y02 sin(β2t)],

x2(t) = etα1 [x01 sin(β1t) + x02 cos(β1t)], y2(t) = etα2 [y01 sin(β2t) + y02 cos(β2t)].
(3.1)

If we denote by Φt : M → M the flow generated by v on M , then we have T (t) = ϕ−1 ◦Φt ◦ ϕ for
the flow in U in Belitskii’s coordinates. By reversibility, we have L ◦ Φt = Φ−t ◦ L.

Let now ϕ1 : (u, v) → U ′ be a coordinate frame in the symmetrically chosen neighborhood
U ′ = L(U) of the point p2. We search for ϕ1 in the form ϕ1 = L ◦ ϕ ◦R−1, where R is some
diffeomorphism R : (x, y) → (u, v). Thus, we have the following representation:

T (t) = ϕ−1 ◦ Φt ◦ ϕ = ϕ−1 ◦ L−1 ◦ Φ−t ◦ L ◦ ϕ,
or, using the representation for ϕ1, we come to

T (t) = R−1 ◦ ϕ−1
1 ◦ Φ−t ◦ ϕ1 ◦R.

Denote T1(t) = ϕ−1
1 ◦Φt ◦ϕ1, i. e., the representation of Φt in coordinates (u, v) in U ′. But since R is

the diffeomorphism, R−1 ◦Φ−t ◦R is nothing than the representation of T1(−t) in (u, v)-coordinates.
Then we have the connection between T (t) and T1(t) :

T (t) = R−1 ◦ T1(−t) ◦R. (3.2)

Until now, the choice of R has been arbitrary, but now we take as R the linear mapping
R(x1, x2, y1, y2) = (v1, v2, u1, u2). Differentiating both sides of equality (3.2) and setting t = 0 gives
the relation for the related vector fields in coordinates (x, y) and (u, v), respectively

−

⎛

⎝ẋ

ẏ

⎞

⎠ =

⎛

⎝ 0 E2

E2 0

⎞

⎠

⎛

⎝u̇

v̇

⎞

⎠

⎛

⎝ 0 E2

E2 0

⎞

⎠ , E2 =

⎛

⎝1 0

0 1

⎞

⎠ .
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This gives the matrix of the linear vector field in (u, v) variables
⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

−α2 β2 0 0

−β2 −α2 0 0

0 0 −α1 β1

0 0 −β1 −α1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (3.3)

Recall that we have assumed α1 < 0, α2 > 0, so R transforms the stable plane of p1 to the unstable
plane of p2 and vice versa.

The next task is to clarify the form of the global maps. We choose cross-sections Σs
i ,Σ

u
i , i = 1, 2,

near the points p1, p2 as some solid tori. The intersections of heteroclinic orbits Γ1,Γ2 with these
cross-sections are points Mij, where j means the number of a heteroclinic orbit and i enumerates
the equilibria. In coordinates (x, y) near p1 the coordinates of the point M11 (for entering the
p1 heteroclinic orbit) is x = x∗, y = 0, similar for the point M12 (for leaving the p1 heteroclinic
orbit) x = 0, y = y∗. In polar coordinates near p1 we have x∗1 = ρs cos θ∗, x∗2 = ρs sin θ∗, r = 0 and
y∗1 = ru cosϕ∗, y∗2 = ru sinϕ∗, ρ = 0. Applying the involution, whose action in coordinates is R,
we have the points M21 = R(M11),M22 = R(M12) with coordinates u = 0, v = x∗, v = 0, u = y∗.
The corresponding polar coordinates near p2 are v∗1 = ρs cos θ∗, v∗2 = ρs sin θ∗, u∗1 = ru cosϕ∗,
u∗2 = ru sinϕ∗.

To understand the properties of the global maps and afterwards the Poincaré map, we present
global maps in a convenient form. First, we choose some local cross-sections near the points Mij

in such a way that a cross-section containing the point M11 is L-symmetric to the cross-section
containing M21 and, similarly, a cross-section containing the point M12 is L-symmetric to the
cross-section containing M22. This has been done earlier, we need only to choose sufficiently small
neighborhoods Πij of the points in the related solid tori. Let us emphasize that cross-sections Σs

1
and Σu

2 are permuted by the involution L and cross-sections Σu
1 , Σ

s
2 are permuted by L. Similarly,

their pieces Πij are also symmetrically connected: Π11 with Π21 and Π12 with Π22.

Now recall that cross-sections N1, N2 near points q1 = Γ1 ∩ Fix(L) and q2 = Γ2 ∩ Fix(L) have
also been chosen, both of them are invariant w.r.t. the action of L and each contains the related
disk from the submanifold Fix(L). Denote by F1 the transition map F1 : N1 → Π11 generated by
the flow. F1 is a diffeomorphism that is defined in a small enough neighborhood of the point q1.
We wish to express the transition map h1 : Π21 → Π11 via F1 and L. Take a point b ∈ Π21 close
enough to M21 and consider the point Φt1(b) ∈ N1 where t1, t2 are the times of passage by the flow
orbit Φt(b) from point b to N1 and from N1 to Π11. If the flow orbit through b is not symmetric

w.r.t. L, then points Φt1(b) and L ◦Φt1(b) ∈ N1 generate a symmetric pair of orbits through them1).

Thus, one has L−1b ∈ Π11 and, due to reversibility of the flow and invariance N1 w.r.t. L, we get
(a picture is needed here)

h1(b) = F1 ◦ L ◦ F−1
1 ◦ L−1(b), (3.4)

with its inverse map h−1
1 : Π11 → N1

h−1
1 = L ◦ F1 ◦ L−1 ◦ F−1

1 . (3.5)

Let us express this in coordinates. As stated above, the coordinates (ξ1, η1, ζ1) in N1 can be chosen
in such a way that the action of L casts as (ξ1, η1, ζ1) → (ξ1, η1,−ζ1) and the trace of the stable
manifold W s(p1) in N1 is a smooth curve through q1 being transverse to Fix(L) = {ζ1 = 0}. So, in
coordinates (ξ1, η1, ζ1) in N1 and (θ1, y1, y2) on Σ1 near the point M11 we have the representation

1)In fact, points Φt1(b) and L ◦Φt1(b) will be different even if the orbit through b is symmetric, but its intersection
point with Fix(L) does not belong to N1.
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for F1

θ1 − θ∗1 = g(ξ1, η1, ζ1),

y1 = f1(ξ1, η1, ζ1),

y2 = f2(ξ1, η1, ζ1),

where functions fi, g are smooth, f1(0, 0, 0) = f2(0, 0, 0) = g(0, 0, 0) = 0, the Jacobian does not
vanish at (0, 0, 0) and the transversality means that at the point (0, 0, 0), the following inequality
holds:

det

⎛

⎝
∂f1
∂ξ1

∂f1
∂ξ2

∂f2
∂ξ1

∂f2
∂η1

⎞

⎠ �= 0,

which geometrically means that the F1-image in Π11 of the disk Fix(L) ⊂ N1 is transverse to the
trace of the stable manifold W s(p1) in Σ1. The involution L restricted on Σ1 acts in coordinates as
R(θ1, y1, y2) = (u1, u2, ϕ2) = (u1, u2, θ1). In particular, one has ϕ∗

2 = θ∗1.
In a similar way, the mapping h2 : Π12 → Π22 is constructed. Denote by F2 : Π12 → N2 the

transition map generated by the flow, which is a diffeomorphism as well. Then the map h2 is
expressed via F2, L as follows

h2 = L ◦ F−1
2 ◦ L ◦ F2.

The map F2 in coordinates (ϕ1, x1, x2) in Π12 and (ξ2, η2, ζ2) in N2 is expressed as follows

ξ2 = A1(ϕ1 − ϕ∗
1, x1, x2),

η2 = A2(ϕ1 − ϕ∗
1, x1, x2),

ζ2 = B(ϕ1 − ϕ∗
1, x1, x2),

(3.6)

with smooth functions Ai, B, A1(0, 0, 0) = A2(0, 0, 0) = B(0, 0, 0) = 0, the Jacobian does not vanish
at (0, 0, 0) and the transversality means that at the point (0, 0, 0), the following inequality holds:

∂B

∂ϕ1
�= 0 at (ϕ∗

1, 0, 0).

4. PROOFS

We start with the proof of Theorem 3. To find a symmetric periodic orbit (briefly, SPO), we
need to prove that there is an orbit that intersects the set Fix (L) at two different points. To that
end, we apply first the theorem from [5] which says

Theorem 9. For any point m ∈ Fix (L) there is a neighborhood V of m and smooth coordinates
(a1, a2, b1, b2) in V such that V is invariant w.r.t. L and acts as L(a1, a2, b1, b2) = (a1, a2,−b1,−b2).
In particular, the set Fix (L) ∩ V is given as b1 = b2 = 0.

Suppose m ∈ Fix (L) is a point such that the vector v(m) does not belong to the tangent plane
TmFix (L). For instance, so are the points q1 and q2. The following assertion is well known

Lemma 1. There is a cross-section N 
 m to the flow such that N contains disk D ⊂ Fix (L) and
N is invariant w.r.t. the action of L: L(N) = N.

According to Lemma 1, we choose two L-invariant cross-sections N1, N2 to the flow such that
qi ∈ Ni, i = 1, 2, and these cross-sections contain disks Di ⊂ Fix (L) ∩Ni containing the points qi.
It will be shown that the transition map G1 : N1 → N2, G1 = F2 ◦ T1 ◦ F1, generated by the flow
near Γ1 ∪ Γ2, transforms the disk D1 transversely to the disk D2 and their intersection is a spiral
σ ⊂ N2 winding up at the point q2, hence, symmetric periodic orbits pass through points of σ.
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Now recall that W s(p1) is transverse to Fix (L) at the point q1 (the same holds true for W u(p1)
at q2). Along with the assumption on the nondegeneracy of Γ1 this implies that the intersection
W s(p1) ∩N1 = ls1 is a smooth segment which in N1 is transverse to D1 at q1. By the symmetry, the
curve L(ls1) = lu1 is the trace of W u(p2) in N1 with the same property.

To construct the transition map G1 : N1 → N2, we choose in a neighborhood U of p1,
where the Belitskii linearization theorem works, two more cross-sections Σs

1,Σ
u
1 to the orbits on

W s(p1),W
u(p1), respectively. In Belitskii’s coordinates (x1, x2, y2, y2) the system near p1 is written

as

ẋ1 = α1x1 − β1x2, ẏ1 = α2y1 − β2y2,

ẋ2 = β1x1 + α1x2, ẏ2 = β2y1 + α2y2,
(4.1)

recall that we suppose α1 < 0, α2 > 0, and both βi > 0.

It is more convenient to work in polar coordinates in U : x1 = ρ1 cos θ1, x2 = ρ1 sin θ1,
y1 = r1 cosϕ1, y2 = r1 sinϕ1. As cross-sections near p1 we take the solid tori Σs

1 : x
2
1 + x22 = ρ2s,

y21 + y22 � δ2s , and Σu
1 : y21 + y22 = r2u, x21 + x22 � δ2u. The heteroclinic orbit Γ1 hits Σs

1 at the
point M11 = (ρs cos θ

∗
1, ρs sin θ

∗
1, 0, 0), and the heteroclinic orbit Γ2 hits Σu

1 at the point M12 =
(0, 0, ru cosϕ

∗
1, ru sinϕ

∗
1). Then we choose the neighborhoods of these points on the related circles

by inequalities |θ1 − θ∗1| � ε and |ϕ1 − ϕ∗
1| � ε for positive ε small enough.

For the first twin connection we have two nonsymmetric saddle-foci p1, p2 permuted by the
involution L. We have already introduced linearizing coordinates in neighborhoods U,U ′ of p1, p2
consistent with the action of L. Related cross-sections Σs

i ,Σ
u
i near p1, p2 will be denoted by the

same letters with indices 1, 2. Because of the symmetry of orbits Γ1,Γ2, it will be convenient
to represent transition maps h1 : Σ

u
2 → Σs

1 and h2 : Σ
u
1 → Σs

2, generated by the flow, via L and
transition mappings F1, F2 from cross-sections N1 to Σs

1 (F1) and from Σu
1 to N2 (F2). Both F1, F2

are local diffeomorphisms defined near points q1 ∈ N1 and M12 ∈ Σu
1 . This implies that the F1-

image of disk D1 is the disk Ds
1 ⊂ Σs

1 transversal at the point M11 to the curve — the trace of
W s(p1). Similarly, the F2-preimage of the disk D2 ⊂ Fix(L) ∩N2 is the disk Du

1 ⊂ Σu
1 transversal

at M12 to the curve — the trace of W u(p1). This means that the disk Ds
1 can be written as a

graph of the smooth function θ1 = hs(r1 cosϕ1, r1 sinϕ1), hs(0, 0) = θ∗1. Analogously, we have the
representation for Du

1 : ϕ1 = hu(ρ1 cos θ1, ρ1 sin θ1), hu(0, 0) = ϕ∗
1.

Integration of equations (4.1) in polar coordinates

ρ1(t) = ρs exp[−α1t], θ1(t) = θ01 + β1t,

r1(t) = r01 exp[α2t], ϕ1(t) = ϕ0
1 + β2t.

(4.2)

gives the representation for the map T1 : Σ
s
1 → Σu

1 generated by the flow. To find the passage time
tp of an orbit from Σs

1 to Σu
1 , we solve the equation ru = r01 exp[α2tp]. After inserting the passage

time into (4.2) we have

ρ1 = ρs(
r0
ru

)−α1/α2 = Crν10 , θ1 = θ0 + γ1 ln(ru/r0)) (mod 2π), ν1 = −α1/α2, γ1 = β1/α2,

ϕ1 = ϕ0 + γ2 ln(ru/r0)) (mod 2π), C = ρsr
−α1/α2
u , γ2 = β2/α2,

(4.3)

where (θ0, r0, ϕ0) is an initial point in Σs
1, and (ϕ1, ρ1, θ1) is the hit point in Σu

1 for the flow orbit
through the initial point, and one has to select only those initial points where |θ0 − θ∗0| � ε.

Later on we will need some lemma that is used for proving the existence of multi-round
heteroclinic orbits. Notice that the noncollinearity at the point M11 of some smooth curve and
a piece of W s(p1) ∩Π11 allows one to represent this smooth curve, more exactly, both halves of it
without M11, as a smooth function in r0.

Lemma 2. Let θ0 = a(r0), ϕ0 = b(r0), 0 � r0 < r∗0, be a smooth curve in Σs
1 with a(0) = θ∗0, b(0) =

ϕ∗
0, and let its tangent vector

(
a′(0), 1, b′(0)

)
to the curve at r0 = 0 be noncollinear with the vector

(1, 0, 0) (the tangent vector to the trace of W s(p1)). Then the T1-image of this curve in Σu
1 is an
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infinite spiral such that the intersection of this spiral with the neighborhood of the point M12 defined
by inequality |ϕ1 − ϕ∗

1| � ε is a countable set of segments Jn which accumulate in C1-topology, as
n → ∞, to the segment ρ1 = 0 – the trace of W u(p1) in Σu

1 .

Proof. The T1-image of the curve is given in the parametric form as follows:

θ1 = a(r0) + γ1 ln(ru/r0) (mod 2π),

ρ1 = Crν10 ,

ϕ1 = b(r0) + γ2 ln(ru/r0) (mod 2π).

(4.4)

We consider now the coordinate ϕ1 to be infinite (in the covering of the solid tori Σu
1 which is then

an infinite solid cylinder) and express r0 as a function of ϕ1 from the last equation. Since function
b is smooth with bounded derivative, the derivative dϕ1/dr0 = b′(r0)− γ2/r0 is large enough in
modulus for r∗0 small enough, therefore it does not vanish and there is an inverse function r0 = Φ(ϕ1)
defined for ϕ1 � ϕ0

1 or ϕ1 � ϕ0
1 depending on the sign of γ2. This function tends to zero as ϕ1 → ∞

or ϕ1 → −∞ with the exponential estimate Φ(ϕ1) � κ exp[−ϕ1/γ2], κ > 0. We assume below that
ϕ1 � ϕ0

1 is definite. Differentiating the identity ϕ1 = b(Φ) + γ2 ln(ru/Φ), we come to the equality

Φ′(ϕ1) =
−ru

γ2 − b′(Φ)Φ
exp[(b(Φ)− ϕ1)/γ2].

This gives the exponential estimate for Φ′ as well. So, packing the curve (ρ1(ϕ1), θ1(ϕ1)) into the
solid torus and intersecting the spiral obtained with the neighborhood Π12, where |ϕ1 − ϕ∗

1| � ε,
we come to the conclusion of the lemma. Indeed, the expression for θ1 is as follows: θ1 =

a(Φ)− β1

β2
b(Φ) + β1

β2
ϕ1 with bounded c(Φ) = a(Φ)− β1

β2
b(Φ). Returning to the Cartesian coordinates

x1 = ρ1 cos θ1, x2 = ρ1 sin θ1, this gives

x1 = CΦν1 cos
[
c(Φ) +

β1
β2

ϕ1

]
, x2 = CΦν1 sin

[
c(Φ) +

β1
β2

ϕ1

]
,

with exponentially small estimates for dx1/dϕ1 and dx2/dϕ1. �

To find a symmetric periodic orbit, we need to prove that the T1-image of the disk Ds
1 intersects

the disk Du
2 , SPOs pass through any intersection point. The T1-image of disk Ds

1 is expressed in a
parametric form with parameters (r, ϕ) as follows:

θ1 = hs(r cosϕ, r sinϕ) + γ1 ln(ru/r)) (mod 2π),

ρ1 = Crν1 , ν1 > 0,

ϕ1 = ϕ+ γ2 ln(ru/r)) (mod 2π).

(4.5)

To understand the shape of this set and its position w.r.t. the disk Du
1 , let us fix the value

r = r0 assuming r0 small enough. In Σs
1 this equality singles out a thin cylinder r = r0, 0 � ϕ0 �

2π, |θ0 − θ∗1| � ε, whose points are close to the segment r0 = 0. Because of the transversality of
Ds

1 and the curve r0 = 0 — the trace of W s(p1), — the intersection of the thin cylinder with
Ds

1 gives a smooth closed curve θ0 = hs(r0 cosϕ0, r0 sinϕ0), for small r0 this curve is close to the
point r0 = 0, θ0 = θ∗1. The T1-image of this small closed curve in the whole cross-section Σu

1 is a
closed curve on the torus ρ1 = Crν10 that is very close to the closed curve ρ1 = 0. The resulting
closed curve on this torus makes the complete go-round in ϕ1 and is almost constant in θ1, since
hs(r cosϕ, r sinϕ) is close to θ∗1 and the second term is constant in the expression for θ1. This follows
from the first and third relations in (4.5).

The restriction of the resulting closed curve to the cylinder |ϕ1 − ϕ∗
1| � ε, gives a segment. Now

we see that, as r0 → 0, the union of these segments in Σu
1 makes up a smooth scroll-shaped two-

dimensional surface which is wrapped around the central segment ρ1 = 0 in Σu
1 . Moreover, each
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segment of this surface, corresponding to the fixed r0, is C
1-close to the segment ρ1 = 0. This implies

that for r0 small enough each segment intersects the disk Du
1 transversely at a single point. The

union of these intersection points makes up a smooth spiral σ on Du
1 winding up at the point M12.

The preimage w.r.t. T1 of this smooth spiral is also a spiral in Ds
1 winding up at the point M11. So,

Theorem 3 has been proved. �
In order to prove Theorem 4, we consider again the smooth curve ls1 which is the trace of

W s(p1) in the cross-section N1 and shall find the trace of its continuation by the flow (in backward
direction in time) in N2 after one round passing near lower halves of Γ1 ∪ {p2} ∪ Γ2 (see Fig. 1, left
panel). If we prove that some orbit through a point on ls1 \ q1 intersects at some point m the disk
D2 ⊂ Fix (L), then the second half of this orbit, when time changes in backward direction, after
passing the point m and t → −∞, forms by symmetry a 2-round heteroclinic orbit connecting p2
and p1. Along this orbit the time moves points from p2 to p1. In a similar way, heteroclinic orbits
going from p1 to p2, as time increases, are sought for, starting from the ls2 — the trace of W s(p2)
on N2.

So, consider the curve ls1. Its point q1 divides the curve into two pieces, each piece has a
representation in coordinates (ξ1, η1, ζ1) on N1, in which q1 = (0, 0, 0), L(ξ1, η1, ζ1) = (ξ1, η1,−ζ1):
ξ1 = a(ζ1), η1 = b(ζ1), with smooth functions a, b, a(0) = b(0) = 0, due to the transversality of this
curve to D1. According to the action of L in these coordinates, the curve lu1 (the trace of W u(p2)
in N1) has the representation ξ1 = a(−ζ1), η1 = b(−ζ1). These two curves ls1, l

u
1 are noncollinear to

each other at q1, since Γ1 is nondegenerate, and both of them are transverse to D1. This implies

that for the transition map F̃1 : Π21 → N1, generated by the flow, F̃1-preimages of two curves ls1, l
u
1

are two smooth curves in Π21, one of which is a piece of the trace of W s(p1) ∩ Σu
2 and the other is

a piece of W u(p2) ∩Σu
2 near the point M21. Since F̃1 is a diffeomorphism, these two smooth curves

are also noncollinear. So, each half of the smooth segment W s(p1) ∩Π21 near the point M21 is
written as ϕ2 = g(ρ2), θ2 = h(ρ2), g(0) = ϕ∗

2, h(0) = θ02 with smooth functions g, h defined on some

segment [0, ρ∗], ρ∗ > 0. Here we utilize the assertion of Lemma 2 for the map T−1
2 (similar to (4.3))

and we conclude that the T2-preimages in Σs
2 of two halves of the segment are two infinite spirals

winding at the closed curve — the trace of W s(p2) ∩ Σs
2.

Therefore, in the neighborhood Π22 we get two countable sets of smooth segments accumulating
in C1-topology to the segment r2 = 0. Consequently, in N2 we get similar sets of segments
accumulating in C1-topology to the curve ls2 — the trace of W s(p2). The curve ls2 intersects
transversely the disk D2, so for ρ∗ small enough all curves of both countable sets of segments
intersect transversely D2, giving two countable sets of points with the limit point at q2 for both
of them. Every such intersection point is the trace of a symmetric heteroclinic orbit going twice
around the connection C. All these heteroclinic orbits go, as time increases, from p2 to p1.

In a similar way, starting with the curve ls2, which is a portion of W s(p2) ∩N2, we shall find
a countable set of symmetric heteroclinic orbits going twice around the connection C, when time
increases from p1 to p2. Taking one symmetric heteroclinic 2-round orbit from each countable family,
we shall get a network of heteroclinic connections. This proves the first part of Theorem 4.

Remark 1. The method can be iterated, since at every step we have a heteroclinic connection
involving nondegenerate symmetric heteroclinic orbits. So, we can find connections of roundness
2n for any n ∈ N.

Now we shall prove Theorem 5 on the existence of 3-round symmetric nondegenerate heteroclinic
orbits. Here we are able to prove the existence of a finite number of such orbits, in contrast to the 2-
round ones. We again start with the smooth curve ls1. As was proved above, the two halves of ls1 \ {q1}
are transformed under the map G−1

2 ◦ T−1
2 ◦G−1

1 : N1 → N2 into two countable families of smooth

segments which C1-smoothly tend to the segment ls2. Segments of both families which are C1-
close to ls2 intersect transversely disk D2 and 2-round heteroclinic orbits pass through intersection
points. We are interested in such orbits on these segments which do not belong to the disk D2

and go further in backward direction in time to hit D1. Such an orbit will be 3-round symmetric
heteroclinic, since, by symmetry, its second part composes such an orbit. To find such an orbit, we
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consider the image of the disk D1 under the map F2 ◦ T1 ◦ F1. As was proved above, this image is a
scroll that infinitely wraps the curve lu2 which is its topological limit. This scroll is composed from
smooth curves, they tend to lu2 in C1-topology. The curve ls2 is noncollinear to lu2 and intersects it
at the point q2. This implies that ls2 intersects the scroll transversely (except for q2) at infinitely
many points. So, each curve of a countable family, which is C1-close to ls2, intersects the scroll
transversely at only finitely many points. In principle, among curves of both countable families
there may exist curves which have tangency with the scroll (or, one can find such a tangency one
deals with the generic reversible unfolding of the vector field under consideration). Thus, we get
a finite number of 3-round heteroclinic orbits going from p2 to p1. In a similar way, we prove the
existence of finitely many symmetric 3-round nondegenerate heteroclinic orbits going from p1 to
p2. This proves Theorem 5. �

Our last task for the first type connection is to prove Theorem 6. Consider an unfolding vμ
of reversible vector fields on M which at the critical value of the parameter μ = 0 has the vector
field v0 that satisfies the above-mentioned conditions on the existence of a heteroclinic connection
C of the first type. The Belitskii theorem works also for all small enough values of |μ|, the only
difference with the parameterless case is the smooth dependence αi(μ), βi(μ), i = 1, 2. Without
loss of generality, one may suppose equilibria pi to be fixed, we shall assume this later on and
therefore we omit their explicit dependence on μ. So, one can suppose that all cross-sections for
C, constructed above, remain cross-sections for all vector fields of the unfolding for μ close enough
to the critical one. Also, traces of stable and unstable manifolds of saddle-foci in these coordinates
will be expressed in the same way. Henceforth, we assume this holds true.

Thus, for all |μ| small enough the vector fields vμ have two saddle-foci p1, p2 permuted by
the involution and their stable and unstable manifolds intersect each other along two symmetric
nondegenerate heteroclinic orbits Γ1(μ) and Γ2(μ) for any |μ| small enough. These orbits intersect
cross-sections N1, N2 at the points q1(μ), q2(μ) which belong to the disks D1 ⊂ Fix (L) and
D1 ⊂ Fix (L). We shall prove the existence of nonsymmetric homoclinic orbits for p2, assuming
that the saddle value for p2 is positive (0 < ν2(0) < 1). By symmetry, pairing homoclinic orbits will
exist for p1, the only difference is that the saddle value for p1 is negative (ν1(μ) > 1).

To this end, for some small values of |μ| we need to find intersections of W u(p2) with W s(p2). For
the vector field v0 we know that the trace of the unstable manifold W u(p2) in the cross-section N1 is
the smooth curve lu1 passing through the point q1, and the trace of the stable manifold W s(p1)∩N1

is the curve ls1, L(l
u
1 ) = ls1. Similarly, the curves ls2 = W s(p2) ∩N2 and lu2 = L(ls2) are defined in N2,

in both cases they intersect each other noncollinearly at the points q1 and q2, respectively.

Let us drag the curve ls2 by the flow in backward direction in time into the neighborhood
of the point p1 up to the cross-section Π12 and get there a smooth curve w̃s

2. This latter curve is
noncollinear to the curve wu

1 = W u(p1)∩Π12. Similarly, we drag the curve lu1 by the flow in forward
direction up to the cross-section Π11 and get a smooth curve w̃u

2 — the trace of W u(p2). This latter
curve intersects the curve ws

1 = W s(p1) ∩Π11 at the point M11 noncollinearly. After continuing by
the flow in forward direction in time through a neighborhood of p1 of orbits passing through the
points of w̃u

2 , we get in Π12 two countable families of smooth segments accumulating in C1-topology
to the curve wu

1 . For the unfolding vμ the related curve w̃u
2 will depend smoothly on μ (by smooth

dependence of W u(p2) on μ) and similarly, the curve w̃s
2 also smoothly depends on μ. Now we

need to prove that varying μ allows one to find an intersection of segments from the countable set
with w̃s

2. The transition from Π11 to Π12 is given by the map (4.4) all coefficients of which depend
smoothly on μ. The following lemma holds.

Lemma 3. Consider the map (4.4) and two smooth segments in the neighborhood of p1, one w̃u
2

intersecting noncollinearly ws
1 at the point M11 and the other w̃s

2 intersecting noncollinearly wu
1 at

the point M12. Then there are two sequences μ
(σ)
n → 0, σ = ±1, such that at μ = μ

(σ)
n the vector

field v
μ
(σ)
n

has two orbits which start on the curve w̃u
2 (μ

(σ)
n ) and pass through the curve w̃s

2(μ
(σ)
n ).

Proof. We outline the proof omitting some details of the calculation. The beginning of the proof
resembles that of Lemma 2. In coordinates (θ0, r0, ϕ0) in Π11 the curve w̃

u
2 , due to its noncollinearity
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at the point M11 with the segment ws
1 = {r0 ≡ 0}, has the representation θ0 = a±(r0, μ), ϕ0 =

b±(r0, μ), 0 � r0 � δ. Here the smooth curve w̃u
2 is represented as the union of its two halves with the

common point M11. These halves are given by the differentiable functions a±, b± with the equalities
a±(0, μ) = θ∗1(μ),

(
a′+(0, μ), b

′
+(0, μ)

)
= −

(
a′−(0, μ), b

′
−(0, μ)

)
. We shall prove the statements for the

half of the curve, therefore we omit below the indices ±. As in Lemma 2, we have the image of the
curve w̃u

2 in Π12 under the local map T1(μ)

θ1 = a(r0, μ) + γ1(μ) ln(ru/r0) (mod 2π),

ρ1 = Cr
ν1(μ)
0 ,

ϕ1 = b(r0, μ) + γ2(μ) ln(ru/r0) (mod 2π).

We again solve the third equation w.r.t. r0, considering μ as a parameter and ϕ1 as the infinite
coordinate in the universal covering of the solid torus Σu

1 . We get an inverse function r0 = Φ(ϕ1, μ)
defined on the region ϕ1 � ϕ0

1, |μ| � κ. This function decays exponentially fast to zero as ϕ1 → ∞.
Inserting this function into the first and second relations gives the representation of the curve in
the solid cylinder being the half (ϕ1 � ϕ0

1) of the covering of the solid torus Σu
1

ρ1 = CΦν1(μ)(ϕ1, μ), ν1(0) > 1,

θ1 = Θ(ϕ1, μ) = a(Φ, μ) + γ1(μ) ln(ru/Φ)) = c(Φ(ϕ1, μ), μ) +
β1(μ)

β2(μ)
ϕ1,

where c(Φ(ϕ1, μ), μ) = a(Φ, μ)−
(
β1(μ)/β2(μ)

)
b(Φ, μ). The function CΦν1(μ) and its derivative in

ϕ1 satisfy the exponential estimates uniformly in μ. In particular, at any fixed μ this function decays
to zero exponentially fast as ϕ1 tends to infinity. Hence, if we restrict the graph of the vector-function
(ρ1, θ1) on the set |ϕ1 − ϕ∗

1(μ)| � ε in the solid torus Σu
1 , we get in Π12, as in Lemma 2, a countable

set of smooth segments corresponding each to intervals 2πn+ ϕ∗
1 − ε � ϕ1 � 2πn+ ϕ∗

1 + ε. In Π12

these countable sets of curvilinear segments accumulate in C1-topology, as n → ∞, to the segment
ρ1 = 0. The dependence of any such segment in the angular variable θ1 is described by the function
Θ(ϕ1, μ) at a fixed n.

The second curve w̃s
2 has a similar representation in Π12 θ1 = A±(ρ1, μ), ϕ1 = B±(ρ1, μ) with

bounded differentiable functionsA±, B±, A+(0, μ) = θ12(μ), A−(0, μ) = θ12(μ)+π, B±(0, μ) = ϕ∗
1(μ)

and related equalities for their derivatives expressing the smoothness of the whole curve w̃s
2 at the

point M12. We again work only with the half of this curve and therefore omit the indices ±.
Now we want to understand how each segment from the countable set in Π12 rotates in angular

direction θ1 when μ varies. To this purpose, we calculate the derivative of Θ in μ using the notation
bμ, br0 , cμ, cr0 for the partial derivatives in the related variables

∂Θ

∂μ
= cr0

∂Φ

∂μ
+ cμ +

β′
1β2 − β1β

′
2

β2
2

ϕ1 = cr0
Φbμ + γ′2Φ ln(ru/Φ)

γ2 − Φbr0
+ cμ +

β′
1β2 − β1β

′
2

β2
2

ϕ1. (4.6)

The functions cr0 , cμ, br0 , bμ are bounded and continuous, Φ as the function in ϕ1 tends to zero
exponentially fast as ϕ1 → ∞ uniformly in μ. Thus, if the quantity (β1/β2)

′(0) does not vanish
(this is just the genericity condition on the unfolding), then for ϕ1 large enough, i. e., for segments
of the family with large numbers n, the derivative is very large in modulus (they rotate fast in θ1-
direction as μ changes) or the inverse functions μ = Mn(θ1, ϕ1) exist and their derivatives ∂Mn/∂θ1
tends to zero as n → ∞ uniformly in ϕ1 for any n.

Let us now fix some κ > 0 small enough and consider the direct product Σu
1 × (−κ, κ). For any

μ ∈ (−κ, κ) we have a smooth segment in Σu
1 given as θ1 = A(ρ1, μ), ϕ1 = B(ρ1, μ) intersecting

noncollinearly the trace ρ1 = 0 of W u(p1) at the point ϕ1 = ϕ∗
1(μ), ϕ

∗
1(0) ∈ (ϕ∗

1 − ε, ϕ∗
1 + ε). We

need to find solutions for the system of equations
⎧
⎪⎨

⎪⎩

A(ρ1, μ) = Θ(ϕ1, μ),

ϕ1 − 2πn = B(ρ1, μ),

ρ1 = CΦν1(μ)(ϕ1, μ),
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where μ ∈ (−κ, κ) and for fixed n ∈ N large enough, i. e., ϕ1 ∈ (2πn + ϕ∗
1 − ε, 2πn + ϕ∗

1 + ε).
Inserting ϕ1 from the second relation into the third relation gives the equation, depending of
μ, with respect to ρ1 from which we find ρ1 as a function of μ: ρ1 = hn(μ). This is done using the
exponential decay of the function Φ and large n. Finally, we substitute ϕ1 into the first relation
and after that we insert there the function hn instead of ρ1. This provides the equation w.r.t. to μ
which is solved using the large derivative of Θ in the variable μ due to (4.6). Here the genericity
assumption implies that, when varying μ, the curve lu2 (μ) will move in such a way that it intersects
at countably many values μn the curves of countable families noncollinearly, each intersection point
gives the crossing stable and unstable manifolds of the point p2(μ). This completes the proof. �

5. THE SECOND TWIN HETEROCLINIC CONNECTION

In this section we study homoclinic orbits and SPOs near a twin heteroclinic connection of the
second type, i. e., consisting of two symmetric saddle-foci p1, p2 ∈ Fix (L) and two nondegenerate
heteroclinic orbits Γ1,Γ2 permuted by involution: Γ2 = L(Γ1). Also, we present the proof of the
existence of two-round heteroclinic connections of the second type in a generic reversible unfolding
of a system having a connection of the second type.

In neighborhoods of symmetric saddle-foci pi, i = 1, 2, we use coordinates (2.1), where the
functions ξ and η are local integrals of the vector field. We have worked so far in a neighborhood
of the symmetric saddle-focus p1, but the same holds true near p2. To simplify notation, we omit
here subindices 1, 2.

Remark 2. In fact, one can also use the linearizing Belitskii coordinates as was done in [2, 22, 27,
29], this is sufficient for the results in this section, but this tool is not well suited for the purposes
of the bifurcations which we intend to develop elsewhere. Therefore, we want to use another tool
of the normal form which works for this case with any assumption of smoothness.

Since H1 and H2 depend only on invariants ξ, η, they are constant along the orbit, and (2.1) is
effectively a linear system with constant coefficients and can be integrated

x(t) = e−tH1RtH2x(0), y(t) = etH1RtH2y(0), (5.1)

where H1 and H2 are evaluated at the constant values of the invariants ξ, η at the initial point
x(0), y(0), andRθ is the rotation matrix at the angle θ. We assume further, without loss of generality,
that α1 > 0, α2 > 0, this always can be achieved by the linear change of variables.

The stable and unstable manifolds of the point p are given in the form

W s = {y1 = y2 = 0}, W u = {x1 = x2 = 0},
and the action of involution is defined as

L(x1, x2, y1, y2) = (−y2,−y1,−x2,−x1).

Thus, the plane of fixed points of the involution (in fact, it is a 2-disk) is determined by the
equalities:

Fix(L) = {x1 + y2 = 0, x2 + y1 = 0}.

The form (5.1) allows the local map to be constructed. To this end, we define two three-
dimensional cross-sections,N s andNu, to the stable and unstable manifolds, respectively, as follows:

N s = {x21 + x22 = ρ2, y21 + y22 � δ2},

Nu = {y21 + y22 = ρ2, x21 + x22 � δ2}.

Each of these sections is a solid torus. We have selected them to be symmetric to each other, so
that L(N s) = Nu, and vice versa.

Since the stable manifold of p1 corresponds to the set y = 0, its intersection with N s is the
circle x21 + x22 = ρ2, y1 = y2 = 0, and the intersection of the heteroclinic orbit Γ2 (later on it will

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No. 1 2024



56 KULAGIN et al.

be p1, p2, Γ1,Γ2, N
s
1 , N

u
1 , etc.) with N s is a point with coordinates (x∗1, x

∗
2, 0, 0). The cross-sections

are transposed by L, hence the trace of W u on Nu is the circle y21 + y22 = ρ2, x1 = 0, x2 = 0, and
the trace of Γ1 ∩Nu

1 corresponds to the point (0, 0,−x∗2,−x∗1) in accordance with the action of L
in coordinates.

It is convenient to use local integrals (ξ, η) for coordinates on N s and Nu along with angular
coordinates θ, ϕ. Let θ∗ denote the angle on the circle, corresponding to the trace of Γ1, defined by
relations x∗1 = ρ cos θ∗, x∗2 = ρ sin θ∗. Combining these with the integrals implies that

x1 = ρ cos(θ + θ∗), y1 = ρ−1
(
ξ cos(θ + θ∗)− η sin(θ + θ∗)

)
,

x2 = ρ sin(θ + θ∗), y2 = ρ−1
(
ξ sin(θ + θ∗) + η cos(θ + θ∗)

)
,

(5.2)

so that
N s = {(ξ, η, θ) :

√
ξ2 + η2 � ρδ, θ ∈ S1} .

Note that in these coordinates W s ∩N s is the circle ξ = η = 0, and Γ1 ∩N s = (0, 0, 0).

Similarly, we define an angle ϕ on Nu such that ϕ = 0 corresponds to L(Γ2) ∩Nu. Symmetry
implies that ϕ∗ = 3π/2 − θ∗, since then −ρ sin θ∗ = ρ cosϕ∗, −ρ cos θ∗ = ρ sinϕ∗. Thus, in Nu we
have

x1 = ρ−1
(
ξ sin(ϕ− θ∗)− η cos(ϕ− θ∗)

)
, y1 = ρ sin(ϕ− θ∗),

x2 = ρ−1
(
− ξ cos(ϕ− θ∗)− η sin(ϕ− θ∗)

)
, y2 = −ρ cos(ϕ− θ∗),

(5.3)

where

Nu = {(ξ, η, ϕ) :
√

ξ2 + η2 � ρδ, ϕ ∈ S1}.
As before, W u ∩Nu is the circle ξ = η = 0, the intersection Γ2 ∩Nu is the origin (0, 0, 0).

Finally, in the new coordinate systems, the restriction of the involution L : N s → Nu becomes

L(ξ, η, θ) = (ξ, η, ϕ) = (ξ, η,−θ) . (5.4)

Now we are ready to construct the local map T : N s → Nu generated by the local flow (5.1).
The passage time tp from N s to Nu is derived from the equation ‖y(tp)‖2 = ρ2 and is equal to

tp =
1

H1(ξ, η)
ln

ρ

‖y(0)‖ .

Since ξ, η are local integrals, the local map in these coordinates is given by

(ξ̄, η̄, ϕ) = T (ξ, η, θ) =
(
ξ, η, s(ξ, η, θ)

)
, (5.5)

where s(ξ, η, θ) is a circle map in the variable θ. To find the form of s, we insert tp into the equations

for y(t) in (5.1). Using ‖y(0)‖2 = (ξ2 + η2)/ρ2 and (5.3), after easy calculations, we find

ϕ = s(ξ, η, θ) = θ + 2θ∗ + π/2−Δ(ξ, η) + Φ(ξ, η) (mod 2π), (5.6)

where we have defined the polar angle Φ(ξ, η) in the (ξ, η) plane in such a way that

ξ = d cos Φ , η = d sinΦ,

and the shift

Δ(ξ, η) ≡ H2tp =
H2

H1
ln

ρ2

d
.

We now prove the existence of nondegenerate symmetric homoclinic orbits. To this end we need
to find the intersection of unstable manifold W u(p2) with the disk D1 ⊂ Fix (L) near p1, and
similarly, W u(p1) with a disk D2 ⊂ Fix (L) near p2. By symmetry, we shall get the second halves
of the related homoclinic orbits.

To do this, we prove first an auxiliary lemma.
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Lemma 4. The image in Nu
1 under the local map T1 of a local disk D1 ⊂ Fix (L) near p1 is a

scroll Scu1 that wraps infinitely many times onto the circle W u
1 ∩Nu

1 . The scroll is transverse to
any disk ϕ1 = const for any ϕ1 in [0, 2π] giving at the intersection a spiral with the limit point
ξ = η = 0 of this disk.

Proof. We choose a local disk D1 ⊂ Fix (L) near p1 and find its image under the flow in Nu
1 . In

terms of (x, y) coordinates (2.1) we have Fix (L) = {x1 = −y2, x2 = −y1}. Hence, we may use y as
the local coordinates in D1. We will use polar coordinates for y, (y1, y2) = (d1 cosχ1, d1 sinχ1), so
that D1 corresponds to the set 0 � d1 � ρ1/2, 0 � χ1 � 2π.

According to the local flow (5.1), the time for a point y(0) ∈ D1 to reach Nu
1 is

τp =
1

H1
1 (ξ1, η1)

ln
ρ1
d1

=

(
1

α1
+O(d21)

)
ln

ρ1
d1

,

since ξ1 = −d21 sin 2χ1 and η1 = d21 cos 2χ1. Using the coordinates (ξ1, η1, ϕ1) on Nu
1 (see (5.3)), we

obtain from the equations in (5.1) for y1 the circle map χ1 → ϕ1:

ϕ1 = χ1 + π/2 + θ∗1 −
(
β1/α1 +O(d21)

)
ln(d1/ρ1) (mod 2π). (5.7)

This implies that each circle ||y1(0)|| = d1 in D1 is transformed to a closed curve in Nu
1 that lies on

the torus ξ21 + η21 = d41 and has the (1, 1) homology with respect to the standard generators ϕ1 and
ϕ1 = const. Thus, only a segment |ϕ1| � ε1 of this curve belongs to the neighborhood V u

1 ⊂ Nu
1 :

V u
1 = {(ξ1, η1, ϕ1) ∈ Nu

1 : |ϕ1| � ε1}.
The preimage of this segment in D1 is an arc of the initial circle. From (5.6) the extreme points

of the arc are χ±
1 (d1) = ±ε1 − π/2− θ∗1 + (β1/α1 +O(d21)) ln(ρ1/d1). Thus, as d1 → 0, we get two

infinite rays through these extreme points which rotate spirally infinitely many times about the
point (0, 0) in D1. These two spirals, along with a boundary arc on the circle d1 = ρ1/2, delineate
a thick spiral that represents all points on D1 that map to V u

1 by the local flow. The image of the
thick spiral under the action of the map given by the flow orbits is a scroll Σu

1 ⊂ V u
1 that wraps

infinitely many times onto the segment W u(p1) ∩ V u
1 . �

Similarly, if one chooses a local disk D2 ⊂ Fix (L) near p2 and finds its preimage under the flow
in Nu

2 , then, reasoning as above, we also get a scroll Σs
2 ⊂ V s

2 that wraps infinitely many times onto
the trace of W s(p2) ∩ V s

2 .

Consider now the global map S1 : N
u
1 → N s

2 defined near the point qu1 = Γ1 ∩Nu
1 . This map is

a diffeomorphism, it takes values near the point qs1 = Γ1 ∩N s
2 . The equality S1(q

u
1 ) = qs1 holds and

S1 transforms the trace of W u(p1) – smooth curve through the point qu1 – to the smooth curve
through the point qs1 which is noncollinear at qs1 to the curve W s(p2) ∩N s

2 . We shall show that

two surfaces Σu
1 and S−1

1 (Σs
2) intersect along a countable set of spiral-shaped curves whose sizes

decrease when approaching to the intersection point qu1 of two noncollinear smooth curves — traces
of unstable W u(p1) and stable W s(p2) manifolds. That is, the intersection of two scrolls gives a
sequence of curves contracting to the intersection point of the traces W u(p1) and W s(p2). Each
such spiral-shaped curve will correspond to a one-parameter family of symmetric periodic orbits
which lie entirely in the vicinity of the heteroclinic connection C.

As was noted above, the coordinates on Nu
1 are (ξ1, η1, ϕ1). The trace of the stable manifold

W s(p2) in Nu
1 is a smooth curve ls1 given parametrically as (ξ1(γ), η1(γ), ϕ1(γ)) with smooth

functions ξ1, η1, ϕ1, where γ is a parameter on the curve. For instance, using the map S1 one
can take θ2 varying near θ∗2 as γ. We assume that γ = 0 corresponds to the intersection point
qs1 = (0, 0, ϕ∗

1), hence, limϕ1(γ) = ϕ∗
1, as γ → 0. The assumption of nondegeneracy for Γ1 means

that the tangent vector
(
ξ′1(0), η

′
1(0), ϕ

′
1(0)

)
is not collinear to the tangent vector (0, 0, 1) to the

trace of W u(p1), i. e., [ξ
′
1(0)]

2 + [η′1(0)]
2 �= 0.

Now we search first for intersection points of Σu
1 with ls1. They correspond to the traces of

symmetric homoclinic orbits of p2. As is known from Devaney’s theorem [15], for each symmetric
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Fig. 4. Intersection of Σu
1 and ls1 with traces of SPOs.

homoclinic orbit to a symmetric saddle-focus (here it is p2) there is a one-parameter family of SPOs
accumulating to this homoclinic orbit. Here we prove the existence of a countable set of symmetric
homoclinic orbits for p2 and related sets of SPOs.

The scroll Σu
1 in a parametric form with parameters (d1, χ1) varying on D1 is given as follows,

similarly to (5.7):

ξ1 = −d21 sin(2χ1),

η1 = d21 cos(2χ1),

ϕ1 = χ1 +
π

2
+ θ∗1 −

(β1
α1

+O(d21)
)
ln

d1
ρ1

(mod 2π).

Thus, the intersection points of the scroll and ls1 are given by the solutions of the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ1(γ) = −d21 sin(2χ1),

η1(γ) = d21 cos(2χ1),

ϕ1(γ) = χ1 +
π

2
+ θ∗1 −

(β1
α1

+O(d21)
)
ln

d1
ρ1

(mod 2π).

(5.8)

Lemma 5. There is d01 small enough such that for 0 < d1 � d01 the system (5.8) has a countable

set of solutions (γn, d
(n)
1 , χ

(n)
1 ), where the following limits take place as n → ∞:

lim γn = 0, lim d
(n)
1 = 0.

At the points of intersection Σu
1 with ls1 the intersection is transverse.

Proof. Because [ξ′1(0)]
2 + [η′1(0)]

2 �= 0, at least one of derivatives ξ′1(0) or η′1(0) does not vanish.
Suppose, for definiteness, that ξ′1(0) does not vanish. From the first two equations in (5.8) we can

express ξ1(γ)
√

1 + [η1(γ)/ξ(γ)]2 = d21 Applying l’Hopital’s rule for the ratio under the square root,
we conclude the existence of the limit τ0 = lim η1(γ)/ξ1(γ), as γ → 0. Denote τ(γ) = η1(γ)/ξ1(γ).

Then from the equation ξ1(γ)
√

1 + τ2(γ) = R, R = d21, we have by the implicit function theorem

the unique solution γ = b(R), b(0) = 0, b′(0) = 1/ξ′1(0)
√

1 + τ20 .

Now from the first equation in (5.8) we get sin(2χ1) = −ξ1
(
b(R)

)
/R. The function on the

r.h.s. has the limit as R → 0 equal to −1/
√

1 + τ20 . So, the equation has two solutions c(R) =

±1
2 arcsin(ξ1(b(R))/R) on each segment [−π/2 + nπ,−π/2 + nπ].

At last, we consider the last equation of the system, where instead of γ and χ1 the related
functions b(d21) and c(d21) + nπ/2 are inserted. It can be rewritten in the form

ϕ1(b(d
2
1))− c(d21)− θ∗1 − (n+ 1)

π

2
= −

(
β1
α1

+O(d21)

)
ln

d1
ρ1

(mod 2π).
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Taking into account that the function on the r.h.s. is monotonically increasing and tends to +∞
as d1 → +0 and the function on the l.h.s. is smooth finite, we conclude that for positive d1 small

enough there are two solutions d
(k)
1 , d̃

(k)
1 of the system on every 2π-period.

The resulting countable set of points on ls1 are those through which symmetric homoclinic orbits
of p2 pass, since these orbits of W

s(p2) intersect Fix (L) and, by symmetry, they return in backward
direction in time to the equilibrium p2.

Now we shall show that at each intersection point the curve ls2 is transverse to the scroll Σu
1 .

Let us change the parameter d21 = R and calculate at the intersection point the determinant
composed from three tangent vectors: (ξ′1, η

′
1, ϕ

′
1) to the curve ls1, and (∂ξ1/∂R, ∂η1/∂R, ∂ϕ1/∂R)

and (∂ξ1/∂χ, ∂η1/∂χ, ∂ϕ1/∂χ) — to the scroll Σu
1 . Then we get

∣
∣
∣∣
∣∣
∣∣
∣∣

ξ′1 − sin(2χ1) −2R cos(2χ1)

η′1 cos(2χ1) −2R sin(2χ1)

ϕ′
1 −C ln

√
R

ρ1
− 1

2(
β1

α1
+O(R)) 1

R 1

∣
∣
∣∣
∣∣
∣∣
∣∣

To evaluate this we take into account that at the intersection point we have the equalities:
sin(2χ1) = −ξ1/R, cos(2χ1) = η1/R. Substituting them into the determinant, we obtain the equality

−ξ21
R

(η1
ξ1

)′
+ 2R2ϕ′

1 + (ξ21 + η21)
′
(

C ln

√
R

ρ1
+

1

2

(β1
α1

+O(R)
) 1

R

)

.

Because η1/ξ1 = − cot(2χ1) from (5.8), the first term in the equality above equals −2R. So, the

main term in the equality is (ξ21 + η21)
′(( β1

α1
+O(R)) 1

R ), since Rk → 0. Thus, we conclude that the

determinant does not vanish for all k large enough. So, all found symmetric homoclinic orbits of
p2 are elementary and nondegenerate.

Because the scroll Σs
p2 wraps and tends to the trace of W s(p2) in N s

2 , two surfaces - the scrolls
Σu
p1 and Σs

p2 - intersect along curves that wind up to the intersection points found above of the
trace of the stable manifold W s

p2 and the scroll Σu
p1 . Their intersection provides all SPOs existing

near the connection, but we may clearly separate only its part consisting of the countable set of
spirals near the points corresponding to traces of symmetric homoclinic orbits of p1 and p2.

Similarly, considering the intersection of the trace of the unstable manifold W u(p1) and the
scroll Σs

2, we obtain a countable set of points through which symmetric homoclinic points of p1
pass. �

Each found symmetric homoclinic orbit for a related saddle-focus is nondegenerate by construc-
tion. Therefore, use can be made of the result by Devaney [15] which suggests that there exists a one-
parameter family of SPOs for any such homoclinic orbit Γ. The traces of SPOs of the family on the
disk near the point q = Γ∩Fix (L) form a spiral winding at the point q. Moreover, if one goes along
this spiral and calculates multipliers for each SPO, then the types of these SPOs change from quasi-
hyperbolic orientable to quasi-elliptic, then through double multiplier −1 to nonorientable quasi-
hyperbolic and again through quadruple multiplier +1. Also, for each nondegenerate symmetric
homoclinic orbits the results by Härterich [22] and Champneys [11] can be applied which guarantee
the existence of multi-round nondegenerate homoclinic orbits near the primary one and families of
multi-round SPOs, respectively.

Applying these results to our case, we can assert that near any nondegenerate symmetric
homoclinic orbit a family of SPOs exist which accumulate to this homoclinic orbit. The diameter
of that neighborhood of the intersection point of a scroll Σu

1 and a curve ls2, where these SPOs exist
for sure, tends to zero as k → ∞, here k numerates homoclinics which approach the heteroclinic
orbit Γ1.

Similarly, considering the intersection of the trace of the unstable manifold W u(p1) and the scroll
Σs
2 in V s

2 , we obtain the second family of symmetric homoclinic orbits of p1. In each neighborhood of
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such a homoclinic orbit we again find a family SPOs which accumulate at this homoclinic orbit and
this neighborhood becomes thinner and thinner when a homoclinic orbit approaches the heteroclinic
orbit Γ1. Now we discuss the proof of Theorem 8, first of all, in relation to the genericity condition
for the family. Let vμ be a reversible unfolding of the field v0 containing the connection C of the

second type. All vμ are reversible w.r.t. the same involution L.2) The connection C contains the
heteroclinic orbit Γ1 going, as time increases, from p1 to p2. Take a point q ∈ Γ1 and a cross-
section N 
 q to the flow. For |μ| small enough all vμ have two symmetric saddle-foci with their
invariant stable and unstable manifolds, they smoothly depend on the parameter [22, 47]. For all
vμ the submanifold N remains a cross-section for their flows. Consider a four-dimensional manifold
N × R, μ ∈ R. The continuations of W u(p1) and W s(p2) have their traces in N × R, giving two
smooth two-dimensional submanifolds intersecting at the point (q, 0) ∈ N ×R.We assume these two
submanifolds to be transverse at (q, 0). This is the genericity condition for the unfolding mentioned
in Theorem 8. Geometrically this condition means that two smooth curves in N smoothly depending
on a parameter cross each other noncollinearly at μ = 0 and they diverge from each other for μ �= 0
with nonzero speed.

Again, as above, we remark that all cross-sections for C, constructed above, remain cross-sections
for all vector fields of the unfolding for μ close enough to the critical μ = 0. We assume this further.
To prove the theorem, we need for a given neighborhood V of the initial connection C to find a set of
parameters μn such that the vector field vμn has a heteroclinic connection Cn that involves saddle-

foci p1, p2 and two nonsymmetric nondegenerate heteroclinic orbits G
(n)
1 , G

(n)
2 , G

(n)
2 = L(G

(n)
1 ),

which belong to V and such that a closed loop G
(n)
1 ∪G

(n)
2 is homotopic to the go-around twice the

initial closed loop C̄.

To find such μn, we take the cross-section Nu
1 (see Fig. 1, right panel, where V u

1 ⊂ Nu
1 ) containing

the trace lu1 of W u(p1) (a piece of the closed curve ξ1 = η1 = 0 near the point q1(μ) = Γ1(μ) ∩Nu
1 ).

The trace of W s(p2) in Nu
1 is the smooth segment ls1(μ) intersecting at μ = 0 the curve lu1 (μ)

noncollinearly at the point q1(μ). Due to the genericity condition on the unfolding, for μ �= 0 these
curves diverge at the distance of order |μ|. Using the transition map S1(μ) : N

u
1 → N s

2 , which is
defined near the point q1(μ), we transfer the curves lu1 (μ), l

s
1(μ) to the cross-section N s

2 . Here the
curve ls1(μ) transforms to the segment of the closed curve W s(p2)∩N s

2 , but l
u
1 (μ) transforms to the

curve lu2 (μ) which is noncollinear to the trace of W s(p2) at μ = 0, but these two curves diverge for
μ �= 0.

Let us first describe the picture for μ = 0. The curve lu2 (0) is divided by the point q2 = Γ1(0)∩N s
2

into two halves to which Lemma 2 is applicable. Thus, we get in the cross-section Nu
2 = L(N s

2 ) two
infinite spirals winding at the closed curve W u(p2) ∩Nu

2 . The intersection of these spirals with
the neighborhood V u

2 ⊂ Nu
2 (see Fig. 1, right panel) of the point q′2 = L(q2) gives two infinite

sets of segments approaching in C1-topology the segment W u(p2) ∩ V u
2 . Using the transition map

S2 : N
u
2 → N s

1 , S2 = L ◦ S−1
1 ◦ L−1, we transfer these sets of segments to the cross-section N s

1 .
In N s

1 these segments tend to the smooth segment W u(p2) ∩ V s
1 which are noncollinear to the

trace of the smooth segment W s(p1) ∩ V s
1 . Again, by Lemma 2, the T1-preimage of the segment

ls1 = W s(p2) ∩ V u
1 gives two infinite spirals in N s

1 winding at the closed curve W s
1 ∩N s

1 and their

intersection with V s
1 gives the infinite set of segments approaching in C1-topology the segment

W s(p1) ∩ V s
1 . The intersections of segments from these two infinite families give (if they exist) the

heteroclinic orbit going from p1 to p2 as time increases, but generally speaking, these two sets of
segments do not intersect, since their basic curves are noncollinear.

Now we shall vary μ near zero. Both saddle-foci and their stable/unstable manifolds smoothly
depend on a parameter if vμ depends smoothly on μ. But the trace ls1(μ) ⊂ V u

1 for μ �= 0 does not
intersect the curve lu1 (μ) due to the genericity assumption. Therefore, the preimage of ls1(μ) under
the map T1(μ) for μ small enough is a smooth curve that makes many revolutions around the closed
curve W s(p1) ∩N s

1 approaching it, but after a large number of revolutions (their number depends

2)Similarly, one may consider the involution Lμ smoothly depending on μ.
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on the smallness |μ|: the smaller μ, the larger the number of revolutions and the closer the sharp
tip of the curve to the trace W s(p2) ∩N s

1 ), it makes a sharp turn and unwinds in the backward
direction along the θ1-coordinate in N s

1 .

Remark 3. The situation described here is very similar to that encountered in Hamiltonian
systems near a transverse homoclinic orbit of a saddle-focus [37] or a heteroclinic contour with
two saddle-foci, when both of them belong to the same level set of the Hamiltonian [36]. When
passing through the singular level set of the Hamiltonian, the local map has discontinuity along
the trace of the stable manifold and any transversal segment to this trace behaves under the local
map similarly to what we see for the reversible case. There the role of a parameter is played by
the value of the Hamiltonian for the case of a homoclinic orbit or the detuning parameter μ which
transfers saddle-foci to different level sets of the Hamiltonian.

The same behavior takes place for the curve lu1 (μ). Namely, at μ �= 0 this curve transforms by the
map S1(μ) to the curve lu2 (μ) ⊂ N s

2 which does not intersect the trace of W s(p2) and after the
action of the map T2(μ) it transforms to the smooth curve in Nu

2 that behaves similar to what
is said above. We work with its pieces which belong to the neighborhood V u

2 . The transition map
S2(μ) transforms these curves into V s

1 . Thus, again, we have two sets of curves. One set consists of

finitely many (though large enough) segments which are C1-close to the curve ls1 : ξ1 = η1 = 0, the
other set consists of finitely many (though also large enough) segments which are C1-close to the
curve W u(p2) ∩ V s

1 . When μ varies from −μ0 to μ0, in view of the genericity condition, for some
μn some pairs of segments from different families necessarily intersect, giving for the related value
of μn a heteroclinic orbit G1(μn) going from p1 to p2. By symmetry, we have in this case a pairing
heteroclinic orbit G2(μn). These two heteroclinic orbits together form a heteroclinic connection
which is 2-round w.r.t. the initial one, C. This completes the proof of Theorem 8.

6. CONCLUSION

In this paper we studied two types of heteroclinic connections involving saddle-foci, which for
the first type form a pair of nonsymmetric equilibria, being permuted by the involution and for
the second type a pair of symmetric saddle-foci. In both cases these equilibria are connected by
a pair of nondegenerate heteroclinic orbits, making up, along with the saddle-foci, an orientable
closed curve. The focus was on the existence of families of symmetric periodic orbits, heteroclinic
connections of higher roundness and existence of homoclinic orbits of saddle-foci. The investigation
of the orbit structure near the connection has shown that the orbit behavior is very complicated,
so we restricted our attention to these classes of orbits. It is well known, however, that near the
homoclinic orbit of a saddle-focus with a positive saddle value many hyperbolic sets are contained.
But the situation in a reversible system is more delicate [24, 25, 29, 30] and requires a separate
study. In particular, here the phenomena of switching for homoclinic networks are observed [2, 27].
We hope to examine them elsewhere.
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