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Spaces of harmonic maps of the projective
plane to the four-dimensional sphere
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Abstract. The spaces of harmonic maps of the projective plane to the four-
dimensional sphere are investigated in this paper by means of twistor lifts.
It is shown that such spaces are empty in case of even harmonic degree.
In case of harmonic degree less than 6 it was shown that such spaces are
path-connected and an explicit parameterization of the canonical repre-
sentatives was found. In addition, the last section provides comparisons
with the known results for harmonic maps of the two-dimensional sphere
to the four-dimensional sphere of harmonic degree less than 6.
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1. Introduction

Let φ : M → N be a map between Riemannian manifolds. We define its energy
by the formula

E(φ) =
1
2

∫

M

|dφ(x)|2dx,

where dφ(x) is the differential of φ at the point x ∈ M ; and dx is the volume
element of M . Euler-Lagrange operator τ(φ) = div(dφ) associated with the
functional E is called a tension field of φ. The map φ : M → N is said to be
harmonic if its tension field vanishes identically i.e. φ is a critical point of E.

Some particular cases of harmonic maps are well-known, i.e.

• If dimM = 1, then the harmonic maps are the geodesics of N .
• If N = R, they are harmonic functions on M .
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• If dimM = 2, they include parametric representations of the minimal
surfaces of N ; the energy is the Dirichlet-Douglas integral.

The author’s interest to harmonic maps is motivated by the relationship be-
tween harmonic maps and isoperimetric inequalities for the Laplace operator
eigenvalues. It was discovered by Nadirashvili [19] and El Soufi and Ilias [11]
that these inequalities are closely connected to minimal and harmonic maps
from surfaces to spheres Sn. This connection permitted to completely solve
recently the problem of isoperimetric inequalities for Laplace eigenvalues on
the sphere Sn, see the paper [15] for the general case and the previous papers
[13,21,22] for particular cases, and on the projective plane, see the paper [14]
for the general case and the previous papers [17] and [20] for particular cases.
More information on this subject could be found in surveys [23] and [24].

There are many papers on the theory of the harmonic maps. This paper is
based on the results of the famous works of E. Calabi [6,7], J. Barbosa [1], R.
L. Bryant [5], and essentially uses ideas developed in works of J. Bolton and
L. M. Woodward [2–4]. We also refer to important results on the topology of
spaces of harmonic maps from S2 to S4 obtained by B. Loo in [18], M. Kotani
in [16], and M. Furuta, M. A. Guest, M. Kotani, and Y. Ohnita in [12]. We
use the following proposition and fundamental theorems.

Proposition 1 [10]. An isometric immersion φ : (M, g) → (N,h) is minimal
if and only if it is harmonic.

Theorem 1 (E. Calabi [6]). Let X : S2 → R
n be an immersion of a sphere

S2 into R
n, whose image is a locally minimal surface in a sphere rSn−1 of

radius r, and is not contained in any hyperplane of R
n. Then the following

conclusions hold.

(1) The area A = A(S2) of the image sphere S2 is an integer multiple of 2πr2.

(2) The dimension n is odd.

In this theorem one uses an assumption that the image of X : S2 → R
n is not

contained in any hyperplane of Rn. Such maps are called linearly full. It should
be noted that if we induce metric on S2 by X in the conditions of Theorem 1,
then X is an isometric immersion, and hence harmonic due to Proposition 1.
J. Barbosa clarifies paragraph (1) of Theorem 1 in the case of r = 1.

Theorem 2 (J. Barbosa [1]). The area of a generalized minimal immersion
X : S2 → S2m is 4πd, for some d ∈ N, d ≥ m(m+1)

2 .

The word generalized in this theorem means that the immersion X may be
branched at isolated points. The number d, appearing in this theorem, is called
a harmonic degree (or degree) of a harmonic map X. The case m = 2 has been
investigated by R. L. Bryant in [5] using the construction of twistor fibration
π : CP 3 → S4 introduced in Sect. 2. In the following theorem horizontal
means orthogonal to the fibers of π (see Sect. 2).
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Theorem 3 (R. L. Bryant [5]). (1) Let ψ : S2 → CP 3 be a linearly full hori-
zontal holomorphic curve then φ = πψ : S2 → S4 is a linearly full harmonic
map. Conversely every linearly full harmonic map φ : S2 → S4 is equal to
±πψ for some uniquely determined linearly full horizontal holomorphic curve
ψ called the twistor lift of φ.

(2) Twistor lift of a linearly full harmonic map φ : S2 → S4 is an algebraic
curve.

(3) Area of S2 w.r.t. the metric induced by φ is equal to 4πd, and d is a degree
of its twistor lift.

This paper investigates harmonic maps φ : RP 2 → S4 by using standard
Riemannian double cover S2 → RP 2 and twistor lifts to CP 3 of invariant
harmonic maps S2 → S4 (i.e. harmonic maps that can be factorized through
the double cover S2 → RP 2). In this way we define harmonic degree of the
map φ : RP 2 → S4 as a degree of its lift φ̃ : S2 → S4 under double cover.

One of our aims in this paper is to show that there are two path-connected
components AHarm±

d (S4) in the spaces of harmonic maps from the projec-
tive plane to the four-dimensional sphere of low harmonic degrees. The similar
question for spaces of harmonic maps from S2 to S4 of arbitrary degrees is ad-
dressed by B. Loo [18] and the more general case of maps to higher-dimensional
spheres by M. Kotani [16]. Moreover, fundamental groups of the spaces of har-
monic 2-spheres in the n-sphere are obtained by M. Furuta, M. A. Guest, M.
Kotani, and Y. Ohnita in [12]. For the general overview on harmonic maps one
may refer to the classical texts [8–10].

The structure of the paper is following. In Sect. 2 we give an overview of the
twistor fibration and groups acting on it. Section 3 is devoted to the higher sin-
gularities that occur for the twistor lifts of harmonic maps. In Sect. 4 topologies
on the sets of linearly full horizontal holomorphic curves and harmonic maps
are defined, and their homeomorphism is described. Section 5 addresses gen-
eral results on harmonic maps of arbitrary degree, for example, it shows that
there are no harmonic maps from the projective plane to the four-dimensional
sphere of even degree. In Sect. 6 the new facts obtained in previous section
and similar ideas as used by J. Bolton and L. M. Woodward in [2] allow us
to describe the spaces of harmonic maps of degree less than 6, and to show
path-connectedness of these spaces and the “bubbling” phenomenon. We also
compare throughout this section the results on path-connectedness for the
projective plane with the similar results for the two-dimensional sphere.

2. The twistor fibration

We introduce the construction of the twistor fibration π : CP 3 → S4. The
Hopf map ρ : CP 3 → HP 1 is given by

ρ([z1, z2, z3, z4]) = [z1 + z2j, z3 + z4j].
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The canonical identification of HP 1 and S4 ⊂ H ⊕ R = R
5 is given by the

stereographic projection from the south pole of S4 onto the equatorial hyper-
plane H in R

5 which is included in HP 1 by q �→ [1, q]. This identification is
given by

[q1, q2] ∈ HP 1 ↔ (2q̄1q2, |q1|2 − |q2|2)
|q1|2 + |q2|2 ∈ S4.

Now if H2 is a left quaternionic vector space, then π is obtained by composing
Hopf map ρ with the canonical identification of HP 1 and S4.

Hence, we obtain an explicit formula for the twistor fibration

π([z1, z2, z3, z4]) =

=
(2(z̄1z3 + z2z̄4), 2(z̄1z4 − z2z̄3), |z1|2 + |z2|2 − |z3|2 − |z4|2)

|z1|2 + |z2|2 + |z3|2 + |z4|2 .

If CP 3 is endowed with the Fubini-Study metric of constant holomorphic sec-
tional curvature 1 then π is a Riemannian submersion and the horizontal distri-
bution on CP 3 consists of those tangent vectors to CP 3 which are orthogonal
to the fibers of π.

Let

J =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ . (1)

Then the projectivization PSp(2;C) of the complexified symplectic group

Sp(2;C) = {A ∈ SL(4;C)|AtJA = J}
acts on CP 3 in the standard way as the group of holomorphic diffeomorphisms,
which preserve the horizontal distribution, with PSp(2) = PSp(2;C) ∩ PU(4)
the subgroup of holomorphic isometries which preserve the horizontal distri-
bution [3].

It should be noted that all of these groups act transitively on CP 3 and the
groups PSp(2,C) and PSp(2) are path-connected [26]. It should be noted also
that the elements of Sp(2) are matrices (u, Jū,v, J v̄) such that u,v are unit
vectors in C

4, and v unitarily orthogonal to u and Jū.

Let S be a Riemann surface and ψ : S → CP 3 be a holomorphic curve. Then
ψ is horizontal if at each point it is tangent to the horizontal distribution on
CP 3, or equivalently if it intersects each fiber of π orthogonally. It was proved
in [5] that the condition for a holomorphic curve ψ = [f ] = [f1, f2, f3, f4] to be
horizontal is

(f ′, Jf) = 0, (2)
where ( , ) denotes the complex bilinear extension to C

4 of the standard real
scalar product on R

4. The horizontality condition may be written as

f ′
1f2 − f1f

′
2 + f ′

3f4 − f3f
′
4 = 0. (3)
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Here and throughout the rest of the paper we write holomorphic curves ψ :
S → CPn locally in terms of a local complex coordinate z in the form ψ = [f ] =
[f1, f2, . . . , fn+1], where f1, . . . , fn+1 are holomorphic functions of z without
common zeros. We will call such a representation a reduced form of ψ.

3. Higher singularities for horizontal holomorphic curves

Let us recall the definition of singularity type of holomorphic curves in CPn

[2]. Let S be a Riemann surface and suppose that ψ : S → CPn is a lin-
early full holomorphic curve. We write ψ locally in reduced form ψ = [f ] =
[f1, f2, . . . , fn+1], and let f (j) denote the j-th derivative of f with respect to z.
For each k = 0, . . . , n − 1 we define k-th osculating curve as [f ∧ . . . ∧ f (k)]. A
higher singularity of ψ is a point p ∈ S where the derivative of k-th osculat-
ing curve is equal to zero for some k = 0, . . . , n − 1. The set Z(ψ) of higher
singularities of ψ is therefore given by

Z(ψ) = {p ∈ S | f ∧ · · · ∧ f (n)(p) = 0}.

If z is a local complex coordinate with z(p) = 0, then f can be written in the
normal form

f(z) = h0(z)a0 + zr0(p)+1h1(z)a1 + · · · + zr0(p)+···rn−1(p)+nhn(z)an

for some suitable choice of basis a0, . . . ,an of C
n+1, non-negative integers

r0(p), . . . , rn−1(p), and holomorphic functions h0(z), . . . , hn(z), each non-zero
at z = 0. If rk(p) > 0 then the derivative of the k-th osculating curve has a
zero of order rk(p) at p and the singularity type of ψ is defined to be the set

{(p; r0(p), . . . , rn−1(p)) | p ∈ Z(ψ)}.

Lemma 1 [2]. Let g ∈ PGL(n + 1;C) and ω be a conformal diffeomorphism
of S. If ψ has singularity type {(p; r0(p), . . . , rn−1(p)) | p ∈ Z(ψ)} then gψω−1

has singularity type {(ω(p); r0(p), . . . , rn−1(p)) | p ∈ Z(ψ)}.
We now give a criterion for determining the higher singularities of a linearly
full horizontal holomorphic curve ψ : S → CP 3.

Lemma 2 [2]. Let ψ : S → CP 3 be a linearly full horizontal holomorphic
curve written locally in terms of a complex coordinate z in the reduced form as
ψ(z) = [f(z)] = [f1(z), f2(z), f3(z), f4(z)]. Then z = a is a higher singularity
of ψ if and only if

(f ′′
1 f ′

2 − f ′
1f

′′
2 + f ′′

3 f ′
4 − f ′

3f
′′
4 )(a) = 0, (4)

or equivalently, (f ′′, Jf ′)(a) = 0.

For a linearly full holomorphic curve ψ : S2 → CPn and k = 0, . . . , n − 1 we
define

rk =
∑

p∈Z(ψ)

rk(p).
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Proposition 2. Let ψ : S2 → CP 3 be a linearly full horizontal holomorphic
curve and p ∈ S2. Then r0(p) = r2(p) and

2r0 + r1 = 2d − 6, (5)

where d is the degree of ψ.

Proofs of the lemmas and proposition of this section can be found in [2].

4. A canonical form

Due to Theorem 3, the fact that linearly full harmonic map φ : S2 → S4 has a
twistor lift which is, moreover, an algebraic curve, gives us a good opportunity
for investigating harmonic maps. Namely, let HHolLF

d (CP 3) denote the set
of linearly full horizontal holomorphic maps of S2 to CP 3 of degree d, and
let HarmLF

d (S4) denote the set of linearly full harmonic maps of S2 to S4

with induced area 4πd. Then HarmLF
d (S4) is divided into two components

Harm+
d (S4) and Harm−

d (S4), which can be interchanged by the antipodal
involution of S4, and there is a bijective correspondence

π±
∗ : HHolLF

d (CP 3) → Harm±
d (S4) (6)

defined by π±
∗ (ψ) = ±π ◦ ψ.

Clearly, p ∈ S2 is a branch point of ψ if and only if r0(p) > 0 while as is
shown in Section 7 of [3], if r0(p) = 0 then p is an umbilic of ψ if and only if
r1(p) > 0. Further, it follows from the paper [25] that the branch points and
umbilics of φ coincide with those of ψ. Thus the higher singularities of ψ occur
at the branch points or umbilics of φ.

It is clear that the group PSp(2) acts freely on HHolLF
d (CP 3) by postcom-

position via its standard action on CP 3 and it follows from Lemma 1 that
the singularity type is preserved. The identifications determined by π±

∗ de-
termine an action of PSp(2) on Harm±

d (S4) which preserves induced area,
branch points, umbilics and antipodal invariance. Similarly the rotation group
SO(3) ∼= PSU(2) also acts on HHolLF

d (CP 3) and Harm±
d (S4) by precom-

position via its standard action on S2 = CP 1 and also preserves antipodal
invariance. Note that the actions of PSp(2) and PSU(2) commute and that
the maps π±

∗ are PSp(2)-equivariant and PSU(2)-equivariant.

Now we consider the vector space C[z]d of polynomials of degree at most d, and
let V be the subset of (C[z]d)4 consisting of those quadruples of coprime poly-
nomials with maximum degree d for which the map z → [f1(z), f2(z), f3(z),
f4(z)] is linearly full in CP 3. Then V is a projective subset of (C[z]d)4, and we
identify its projectivisation P (V ) with the space of linearly full holomorphic
maps of degree d from S2 to CP 3 in the usual way via

[f1, f2, f3, f4] ↔ (z → [f1(z), f2(z), f3(z), f4(z)]).
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Here, and subsequently, we use the complex coordinate on S2 defined by the
stereographic projection from the south pole of S2 onto the equatorial plane
which means, in the usual sense, we may identify S2 with C∪{∞}. According
to this identification antipodal involution interchanges z and − 1

z̄ .

We endow (C[z]d)4 with its natural topology as a vector space, and P ((C[z]d)4)
the quotient topology. Then V is an open subset of (C[z]d)4, and P (V ) is an
open subset of P ((C[z]d)4). Subsets of any of these spaces are then endowed
with the induced topology. We denote by V H ⊂ V the subset of horizontal
maps. Next we give HarmLF

d (S4) the compact-open topology and rewrite a
lemma from [4].

Lemma 3. Harm±
d (S4) are closed subsets of HarmLF

d (S4), and the maps π±
∗ :

P (V H) → Harm±
d (S4) are homeomorphisms.

For convenience, we introduce coefficient matrix (or matrix ) of a holomorphic
curve f(z) = (f1(z), f2(z), f3(z), f4(z)) ∈ (C[z]d)4. It is given by

F =

⎛
⎜⎜⎝

a0
1 a1

1 . . . ad−1
1 ad

1

a0
2 a1

2 . . . ad−1
2 ad

2

a0
3 a1

3 . . . ad−1
3 ad

3

a0
4 a1

4 . . . ad−1
4 ad

4

⎞
⎟⎟⎠ ,

where aj
i is a j-th coefficient of the polynomial fi(z) = a0

i + a1
i z + · · · +

aj
iz

j + · · · + ad
i z

d, and 1 ≤ i ≤ 4, 0 ≤ j ≤ d. It is clear from definition that
(f(z))t = F ·(1, z, z2, . . . , zd)t and also that f(z) is linearly full if the coefficient
matrix F has a full rank.

Note that an element A ∈ Sp(2), acting on f(z) ∈ (C[z]d)4 by postcomposition
(i.e. f(z) → A ◦ f(z)), acts on coefficient matrix F by the left multiplication
(i.e. F → AF ). Also, as noted earlier, the group PSU(2) ∼= SO(3) acts on S2

as a group of rotations. This action defines an action of PSU(2) on RP 2 since
it preserves the antipodal points. It should be noted that the group PSU(2)
is path-connected as well as the group of Möbius transformations PSL(2,C)
[26].

In the following sections we investigate linearly full harmonic maps of S2 to
S4 of degrees d = 3, 4, 5 and 6, which are the lifts of harmonic maps of
RP 2 to S4 through the double cover, i.e. maps invariant w.r.t. the antipodal
map (we will call them invariant maps for brevity). Let AHarmLF

d (S4) ⊂
HarmLF

d (S4) denote the space of invariant linearly full harmonic maps of S2

to S4of degree d, with AHarm±
d (S4) ⊂ Harm±

d (S4). And let us denote the
twistor lifts of this spaces as AHHolLF

d (CP 3) ⊂ HHolLF
d (CP 3). Our main

idea is the deformation of elements of AHarm±
d (S4) ⊂ Harm±

d (S4) to some
canonical form by the action by some appropriate elements of PSU(2) and
PSp(2). Note that these groups act continuously on AHHolLF

d (CP 3) and,
due to their path-connectedness, we can recover some information about path-
connectedness of AHHolLF

d (CP 3).
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5. Harmonic maps of arbitrary degree

In this section we will exclude the condition of antipodal invariance by finding
the general form of invariant maps. In this way we will need some addition to
Theorem 3.

Theorem 4 (R. L. Bryant [5]). Let ψ̂ : S2 → CP 3 be a linearly full horizontal
antiholomorphic curve then φ = πψ̂ : S2 → S4 is a linearly full harmonic
map. Conversely every linearly full harmonic map φ : S2 → S4 is equal to
±πψ̂ for some uniquely determined linearly full horizontal antiholomorphic
curve ψ̂ called the antiholomorphic twistor lift of φ.

Moreover if ψ = [f ] = [f1, f2, f3, f4] is a twistor lift of φ then ψ̂ = ψ̄J = [f̄J ] =
[f̄2,−f̄1, f̄4,−f̄3] is an antiholomorphic twistor lift of φ [3].

For f(z) = (f1(z), f2(z), f3(z), f4(z)) of degree n we introduce

f̃(z) = (f̃1(z), f̃2(z), f̃3(z), f̃4(z)) =
= (z̄nf1(−1/z̄), z̄nf2(−1/z̄), z̄nf3(−1/z̄), z̄nf4(−1/z̄)).

Then [f̃(z)] is an antiholomorphic curve in CP 3.

Theorem 5. There is no harmonic maps of real projective plane to the four-
dimensional sphere of even degree, i.e. spaces AHarmLF

n (S4) are empty for
even n.

Proof. Let us suppose that such maps exist. Then for each map φ ∈ AHarmLF
n

(S4) we will compose its twistor lift ψ = [f(z)] = [f1(z), f2(z), f3(z), f4(z)] with
antipodal involution of S2 and get an antiholomorphic twistor lift ψ̃ = [̃f(z)].
Using Theorem 4 we get ψ = − ¯̃

ψJ . Then

g(z) · f(z) = g(z) · (f1(z), f2(z), f3(z), f4(z))
= −f̃(z)J = (−f̃2(z), f̃1(z),−f̃4(z), f̃3(z)),

(7)

for some function g(z) on S2. Now we will prove that g(z) is a holomorphic
function. From (7) we have

g(z) =
−f̃2(z)
f1(z)

=
f̃1(z)
f2(z)

=
−f̃4(z)
f3(z)

=
f̃3(z)
f4(z)

. (8)

It is clear that f̃i(z) (i = 1, 2, 3, 4) are polynomials of z of degree less or
equal to n, so they are holomorphic functions on C. At the same time fi(z)
(i = 1, 2, 3, 4) don’t have common roots and therefore g(z) is holomorphic on
C. By the definition there is polynomial of degree n among fi(z) (i = 1, 2, 3, 4)
and from (8) we conclude that g(z) is holomorphic at ∞. Thus g(z) is a
holomorphic function on S2 and therefore g(z) = 1

β = const �= 0.

Since fi(z) = a0
i + a1

i z + · · ·+ aj
iz

j + · · ·+ an
i zn, (i = 1, 2, 3, 4) we have f̃i(z) =

(−1)nan
i + (−1)n−1an−1

i z + · · · + (−1)n−jan−j
i zj + · · · + a0

i z
n, (i = 1, 2, 3, 4).

Considering (8) we can write
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

an
1 = −βa0

2, a0
2 = (−1)nβan

1 ,

an
2 = βa0

1, a0
1 = (−1)n+1βan

2 ,

an
3 = −βa0

4, a0
4 = (−1)nβan

3 ,

an
4 = βa0

3, a0
3 = (−1)n+1βan

4 .

(9)

From these relations we can conclude for leading coefficients an
i = (−1)n+1|

β|2an
i and since n is even one has an

i = −|β|2an
i . But it can only be when

an
i = 0 (i = 1, 2, 3, 4) and thus the degree of the curve is less than n. So we

have a contradiction which proves this theorem. �

Remark 1. In the case of odd n we have an
i = |β|2an

i for leading coefficients,
therefore |β| = 1 and β = exp(iβ̃) for some β̃ ∈ R. In this way any curve
of odd degree is of the form ψ = [f(z)] = [f1(z), βf̃1(z), f3(z), βf̃3(z)]. Note
that if we act on the curve by rotation ω(z) = exp(−i β̃

n )z, we get the curve
with β = 1. (Note also that this rotation leaves points 0 and ∞ unchanged).
Thus any curve of odd degree can be rotated to a curve of form ψ = [f(z)] =
[f1(z), f̃1(z), f3(z), f̃3(z)].

We need the following useful lemmas in the next sections.

Lemma 4. Any curve ψ ∈ HHolLF
d (CP 3) by an appropriate element g ∈

PSp(2) ⊂ PSp(2,C) can be reduced to the curve gψ with the coefficient matrix
of the form ⎛

⎜⎜⎝
� � � � . . . � � � �
0 0 0 � . . . � � � �
0 � � � . . . � � � �
0 0 � � . . . � � � �

⎞
⎟⎟⎠ .

In addition, if ψ ∈ AHHolLF
d (CP 3) ⊂ HHolLF

d (CP 3) then by the action of
an appropriate element g ∈ PSp(2) it can be reduced to the curve gψ with the
coefficient matrix of the form⎛

⎜⎜⎝
� � � � . . . � 0 0 0
0 0 0 � . . . � � � �
0 � � � . . . � � 0 0
0 0 � � . . . � � � 0

⎞
⎟⎟⎠ .

Proof. First, the transitivity of the action of PSp(2) on CP 3 allows us to
change the first column to the announced form. Next, we notice that the
elements of Sp(2) that preserve the vector (1, 0, 0, 0)t have the form⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 v1 −v̄2
0 0 v2 v̄1

⎞
⎟⎟⎠ ,

and, since we have a matrix from U(2) in the right bottom corner, we can
eliminate the last term of the second column. Other two zeros in the second
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row is due to the horizontality condition (3). Finally, we get zeros in the right
side of the coefficient matrix due to Remark 1. �

Lemma 5 [2]. The group PSp(2,C) acts transitively on CP 3 and the stabilizer
of the point [1, 0, 0, 0]t consists of the matrices of the form⎛

⎜⎜⎝
ξ η ξ(γλ − αμ) ξ(δλ − βμ)
0 ζ 0 0
0 λ α β
0 μ γ δ

⎞
⎟⎟⎠ , αδ − βγ = ξζ = 1.

6. Spaces of linearly full harmonic maps of degree less than 6

In previous sections we have shown that there are no linearly full harmonic
maps of RP 2 to S4 of even degree. Also it is clear (due to Theorem 2) that
there are no linearly full maps of degree less than 3. Let us describe spaces of
harmonic maps of degree 3, 4 and 5, and compare the results with similar ones
for maps from S2 due to Bolton and Woodward [2], Kotani [16], and Loo [18].

Theorem 6. Every linearly full horizontal holomorphic curve ψ ∈ AHHolLF
3

(CP 3) can be reduced by the action of appropriate elements g ∈ PSp(2) and
ω ∈ PSU(2) to the canonical form

Ψ3(z) = gψω(z) = [1,−z3,
√

3z,
√

3z2].

Proof. Using Lemma 4 and Remark 1 we get the coefficient matrix⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 a 0 0
0 0 −ā 0

⎞
⎟⎟⎠ .

Then, acting on this curve with

ω(z) = −z, g = diag{1, 1, exp(−iarg(a)), exp(iarg(a))}, (10)

we get ⎛
⎜⎜⎝

1 0 0 0
0 0 0 −1
0 −a 0 0
0 0 −a 0

⎞
⎟⎟⎠ ,

with a ∈ R. Checking horizontality condition (3) we conclude a2 = 3. Thus we
have two cases⎛

⎜⎜⎝
1 0 0 0
0 0 0 −1
0

√
3 0 0

0 0
√

3 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 0 0 −1
0 −√

3 0 0
0 0 −√

3 0

⎞
⎟⎟⎠
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which can be interchanged by g = diag{1, 1,−1,−1}. This completes the proof.

�

Corollary 1. Spaces AHHolLF
3 (CP 3) and AHarm±

3 (S4) are path-connected.

Proof. follows from Theorem 6, Lemma 3 and path-connectedness and conti-
nuity of actions of PSp(2) and PSU(2). �

Thus, the spaces of linearly full harmonic maps of RP 2 to S4 of area 6π in
the induced metric have two path-connected components AHarm+

3 (S4) and
AHarm−

3 (S4), which are homeomorphic through the antipodal involution of
S4. It is worth mentioning that all induced metrics by these maps are canonical
since PSp(2) and PSU(2) act by isometries on the respective Riemannian
manifolds.

We have the similar results for harmonic two-spheres.

Theorem 7. Every linearly full horizontal holomorphic curve ψ ∈ HHolLF
3

(CP 3) can be reduced by the action of appropriate elements g ∈ PSp(2,C) and
ω ∈ PSL(2,C) to the canonical form

Ψ̃3(z) = gψω(z) = [1,−z3,
√

3z,
√

3z2].

Proof. Using Lemma 4 we get coefficient matrix of the form

⎛
⎜⎜⎝

1 a b c
0 0 0 d
0 r p q
0 0 s t

⎞
⎟⎟⎠ . (11)

Next, we use Lemma 5 several times. After the each time, we rename all
non-zero coefficients as they were before. So, our sequence of transformation
matrices from Lemma 5 is following

⎛
⎜⎜⎝

1 0 t
d 0

0 1 0 0
0 0 d−1 0
0 − t 0 d

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 − q
d

0 1 0 0
0 − q d 0
0 0 0 d−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 s − p
0 0 0 s−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

d − c 0 0
0 d−1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

√−d 0 0 0
0

√−d
−1

0 0
0 0

√
s
r 0

0 0 0
√

r
s

⎞
⎟⎟⎠ .

(12)
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This sequence of transformations gives us the following sequence of coefficient
matrices ⎛

⎜⎜⎝
1 a b c
0 0 0 d
0 r p 0
0 0 s t

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

1 a b c
0 0 0 d
0 r p 0
0 0 s 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

1 a b c
0 0 0 d
0 r 0 0
0 0 s 0

⎞
⎟⎟⎠ →

→

⎛
⎜⎜⎝

1 a b 0
0 0 0 d
0 r 0 0
0 0 s 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

1 a b 0
0 0 0 −1
0 s 0 0
0 0 s 0

⎞
⎟⎟⎠ .

(13)

Now we use the horizontality condition (3) and conclude that a = b = 0, s2

3 =
1. We have s = ±√

3 and these ± cases can be interchanged by g = diag{1, 1,
−1,−1}. This completes the proof. �

Corollary 2. Spaces HHolLF
3 (CP 3) and Harm±

3 (S4) are path-connected.

Proof. follows from Theorem 7, Lemma 3 and path-connectedness and conti-
nuity of actions of PSp(2,C) and PSL(2,C). �

Here we see that the canonical form Ψ̃3(z) for S2 is equal to the canonical
form Ψ3(z) for RP 2.

We continue with the case of harmonic maps of degree 4. We already know that
there are no such maps of the projective plane. As for the maps of two-sphere
we conclude from (5) that such maps can have either 1 or 2 higher singularities.
We will see later that the case of one higher singularity is impossible.

Theorem 8. Every linearly full horizontal holomorphic curve ψ ∈ HHolLF
4

(CP 3) can be reduced by the action of appropriate elements g ∈ PSp(2,C) and
ω ∈ PSL(2,C) to the canonical form

Ψ̃4
a(z) = gψω(z) = [1 + az,−z4,

√
2z(1 +

3
2
az),

√
2z3], a ∈ R.

Proof. We move one of the higher singularities to zero using an appropriate
element ω ∈ PSU(2). Next we use Lemma 4 and get the coefficient matrix of
form ⎛

⎜⎜⎝
1 a b e c
0 0 0 f d
0 r m p q
0 0 l s t

⎞
⎟⎟⎠ . (14)

We conclude that rl = 0 because of (4) and higher singularity at zero. It is
clear that without loss of generality we may assume that l = 0. Horizontality
condition (3) gives us f = − rl

3 = 0. So, in fact, our coefficient matrix is of the
form ⎛

⎜⎜⎝
1 a b e c
0 0 0 0 d
0 r m p q
0 0 0 s t

⎞
⎟⎟⎠ . (15)
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Next we use sequence of transformations (12) and get the coefficient matrix⎛
⎜⎜⎝

1 a b e 0
0 0 0 0 −1
0 s m 0 0
0 0 0 s 0

⎞
⎟⎟⎠ . (16)

For this matrix horizontality condition (3) implies b = e = 0, 3a = ms, s2 = 2.

So s = ±√
2 and these two cases can be interchanged by g = diag{1, 1,−1,−1}.

We choose s =
√

2, then m = 3√
2
a. Now let x = arg(a), then using multipli-

cation by ei2x and actions of g = {e−i2x, ei2x, e−ix, eix}, ω(z) = e−ixz we get
a ∈ R. This completes the proof. �

Remark 2. In this theorem we see that the parametric family Ψ̃4
a(z) is contin-

uously dependent on a, therefore we can deform each of its elements to the
form

Ψ̃4
0(z) = [1,−z4,

√
2z,

√
2z3]. (17)

Equation (4) describing the higher singularities for these curves is z(az +2) =
0, therefore the second singularity is at the point z0 = − 2

a . Note that the
second singularity for Ψ̃4

0(z) is at infinity. On the other hand, if we want to
move the second singularity to zero, we must move a to infinity, but then
degree of the curve is decreasing to 1. So we conclude that such curves cannot
have one higher singularity. Therefore, in fact, we can deform every curve of
degree 4 to Ψ̃4

0(z) by some element g ∈ PSp(2,C) and Moebius transformation
ω ∈ PSL(2,C) which moves higher singularities to the points 0 and ∞. In
fact, we have here a bubbling phenomenon. An a-parametric family of curves
degenerates to a map of degree 1 and the bubble grows as “a” tends to ∞.

This remark immediately leads us to the following.

Corollary 3. Spaces HHolLF
4 (CP 3) and Harm±

4 (S4) are path-connected.

Proof. follows from Theorem 8, Lemma 3, Remark 2 and path-connectedness
and continuity of actions of PSp(2,C) and PSL(2,C). �

Note that canonical forms for cases of degrees 3 and 4 coincide with the fol-
lowing theorem from [2].

Theorem 9 [2]. Let ψ : S2 → CP 3 be a linearly full horizontal holomorphic
curve of degree d which has at most two higher singularities. Then there exist
elements g ∈ PSp(2,C) and ω ∈ PSL(2,C) such that Ψ(z) = gψμ(z) =
[1, k2z

2k1+k2 ,−(2k1 + k2)zk1 , zk1+k2 ], for some positive integers k1, k2 with
2k1 + k2 = d. The higher singularities of Ψ(z), if any, occur at points 0 and
∞.

The last harmonic degree we consider in this paper is 5.
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Theorem 10. Every linearly full horizontal holomorphic curve ψ ∈ AHHolLF
5

(CP 3) can be reduced by the action of appropriate elements g ∈ PSp(2) and
ω ∈ PSU(2) to the canonical form

Ψ5
η(z) = gψω(z) = [1 + qz,−qz4 + z5, μz + ηz2, ηz3 − μz4],

where q = η√
3

√
η2+5
η2+4 , μ = 2√

3

√
η2+5
η2+4 , η ∈ [0,+∞).

Proof. First, we can conclude from (5) that such curves have four higher sin-
gularities. Certainly, they are two pairs of antipodal points. We choose one of
these points and rotate it to 0 by an appropriate element of PSU(2). Next,
using Lemma 4 and Remark 1 we obtain the coefficient matrix⎛

⎜⎜⎝
1 q p 0 0 0
0 0 0 p̄ −q̄ 1
0 μ η ν 0 0
0 0 −ν̄ η̄ −μ̄ 0

⎞
⎟⎟⎠ .

Using horizontality condition (3), we get a system of equations⎧⎪⎨
⎪⎩

−3p + νμ̄ = 0,

2q − pq̄ − ημ̄ = 0,

−3qq̄ + pp̄ + 5 − 3μμ̄ + ηη̄ + νν̄ = 0.

(18)

Using (4) and taking into account (18), we get the equation of higher singulari
ties

pz4 + 2qz3 + (5 − qq̄ − μμ̄)z2 − 2q̄z +
μν̄

3
= 0. (19)

Since we have higher singularity at 0, we get μν̄ = 0. Then the first equation of
(6) implies follows p = 0. Let us suppose that μ = 0, then the second equation
of (18) implies q = 0, but this contradicts last equation of (18). Thus, we have
ν = 0.

The next step is transforming non-zero coefficients into the reals. Let q =
q̃eix, then using multiplication by exp i52x and actions of ω(z) = exp (−ix)z,

g = diag{exp − 5
2x, exp 5

2x, 1, 1} we get q ∈ R. Further, we use the action of
g = diag{1, 1, e−iArg(μ), eiArg(μ)} and get μ ∈ R. We conclude from the second
equation of (18) that also η ∈ R. So, we have the coefficient matrix⎛

⎜⎜⎝
1 q 0 0 0 0
0 0 0 0 −q 1
0 μ η 0 0 0
0 0 0 η −μ 0

⎞
⎟⎟⎠

and equations {
2q − ημ = 0,

−3q2 + 5 − 3μ2 + η2 = 0,
(20)

with real coefficients. The solutions of these equations are

μ = ± 2√
3

√
η2 + 5
η2 + 4

, q = ± η√
3

√
η2 + 5
η2 + 4

, η ∈ R.
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This pair of families of the solutions can be interchanged by multiplication on
−i and actions of ω(z) = −z, g = diag{i,−i, i,−i}. The last step is to notice
that multiplication by −i and actions of ω(z) = −z, g = diag{i,−i,−i, i} send
η, q, μ to −η,−q, μ, respectively. This completes the proof. �

Corollary 4. The spaces AHHolLF
5 (CP 3) and AHarm±

5 (S4) are path -connec-
ted.

Proof. We can see that the canonical form Ψ5
η(z) depends continuously on η.

Thus, there is a path connecting any canonical form Ψ5
η(z) with Ψ5

0(z). Then
our statement follows from Theorem 10, Lemma 3 and path-connectedness and
continuity of actions of PSp(2) and PSU(2). �

Hence the space of linearly full harmonic maps of RP 2 to S4 of area 10π in
the induced metric has two path-connected components AHarm+

5 (S4) and
AHarm−

5 (S4), which are homeomorphic through the antipodal involution of
S4.

Remark 3. Under the conditions of Theorem 10 the coefficient matrix of the
canonical form for η = 0 is⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1

0 −
√

5
3 0 0 0 0

0 0 0 0
√

5
3 0

⎞
⎟⎟⎟⎟⎠ ,

and herewith four umbilic points with r1(p) = 1 are glued in two umbilic points
with r1(0) = 2, r1(∞) = 2.

On the other hand if we put η → +∞ then we get the following coefficient
matrix ⎛

⎜⎜⎝
0 1 0 0 0 0
0 0 0 0 −1 0
0 0

√
3 0 0 0

0 0 0
√

3 0 0

⎞
⎟⎟⎠ .

This matrix gives us a map from CP 1 = S2 to CP 3 which is not defined in
z = 0, and coincides with the canonical curve of degree 3 from Theorem 6 at
all other points. It means that we can define this limit map by continuity at
the point z = 0, and this map will be the same as the canonical curve of degree
3 with coefficient matrix ⎛

⎜⎜⎝
1 0 0 0
0 0 0 −1
0

√
3 0 0

0 0
√

3 0

⎞
⎟⎟⎠ .

It looks like we have here an annihilation of pairs of umbilic points at 0 and
∞. We look closer on this further.
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It is also worth mentioning here that η parameterizes the angle between diame-
ters connecting pairs of antipodal singularities on S2, where η = 0 corresponds
to the angle equal to 0, and η = +∞ to the angle equal to π, and as we seen
before this two cases are different. We see that curves in Theorem 10 with
different values of η belong to different orbits of the action of PSp(2) and
PSU(2) since the action of PSp(2) does not change higher singularities and
PSU(2) does not change the angle between any pair of diameters.

One can ask “What about the area? Why it decreases discontinuously?” The
answer to this question is that we have a bubbling phenomenon. We will find
the weak limit of the sequence of conformal factors of metrics induced on RP 2

to see it. In fact, the bubble occur right at the converging point of higher
singularities. For this reason we need a more appropriate parameterization in
which the pair of higher singularities is real, symmetric with respect to zero
and converges to zero. Same calculations as in the proof of Theorem 10 give
us following 1-parametric family

Ψ5
m(z) = [1 + pz2, pz3 + z5,mz + nz3,−nz2 − mz4],

with n = 3
√

3m2−5
m2+9 and p = nm

3 = m
√

3m2−5
m2+9 , |m| ≥

√
5
3 .

Let us look at the limit when m tends to +∞. In this parameterization

lim
m→+∞Ψ5

m(z) = [z, z2,
1√
3
,− 1√

3
z3]

is of the third degree (in the sense of 3).

It is well known fact that there is just one conformal class of metrics on S2 and
on RP 2. This fact allows us to compute a conformal factor h(z) of each induced
metric with respect to the canonical metric on S2 of area 4π (gind = h(z)gcan).
Let us apply both induced and canonical metrics to the reification X of the
vector field

√
2 ∂

∂z and find

h(z) =
gind(X,X)
gcan(X,X)

. (21)

The canonical metric on S2 in terms of the isothermal coordinate z = x + iy

is gcan = 4 dx2+dy2

(1+|z|2)2 . Hence, gcan(X,X) = 4
(1+|z|2)2 . We endowed CP 3 with the

Fubini-Study metric

gFS = 4
|Z|2|dZ|2 − (Z̄, dZ)(Z, dZ̄)

|Z|4 = 4
ZαZ̄αdZβdZ̄β − Z̄αZβdZαdZ̄β

(ZαZ̄α)2

which has a reification g̃FS = Re gFS . It is easy to check that

g̃FS(ReΞ, ReΞ) =
1
2
gFS(Ξ,Ξ) (22)

for any holomorphic vector field Ξ. It suffices now to compute
g̃FS((Ψ5

m)∗X, (Ψ5
m)∗X) = gind;m(X,X) for finding the denominator of (21).
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Indeed, twistor fibration is a Riemannian submersion and Ψ5
m is orthogonal to

the fibers as it mentioned before. We have

g̃FS((Ψ5
m)∗X, (Ψ5

m)∗X) = 4
|Ψ5

m|2| ∂
∂z Ψ5

m|2 − |(Ψ5
m, ∂

∂z Ψ5
m)|2

|Ψ5
m|4 =

= 4
∂

∂z̄

∂

∂z
ln |Ψ5

m|2 = � ln |Ψ5
m|2

according to (22). We do further calculations in the polar coordinates z =
r(cos ϕ + i sin ϕ), � = 1

r
∂
∂r (r ∂

∂r ) + 1
r2

∂2

∂ϕ2 . Let hm(z) be the conformal factor
for the metric induced by Ψ5

m.

Proposition 3. Conformal factors hm(z) converge as m → +∞ to the 4πδ(x, y)
+ 3 in the weak sense (δ(x, y) is the Dirac delta).

Proof. First, we find out that |Ψ5
m|2 = (1 + r2)3wm(r, ϕ) with

wm(r, ϕ) = (2pr2 cos 2ϕ + r4 + (m2 − 3)r2 + 1).

Then, clearly,

� ln |Ψ5
m|2 = � ln wm(r, ϕ) + 3� ln(1 + r2) = � ln wm(r, ϕ) +

12
(1 + r2)2

and

hm(z) =
(1 + r2)2

4
� ln wm(r, ϕ) + 3.

Thus, we have to show that h̃m(r, ϕ) = (1+r2)2

4 � ln wm(r, ϕ) converges weakly
to 4πδ(x, y). Since

∫ 2π

0
dϕ

∫ 1

0
hm(z) 4rdr

(1+r2)2 = 10π is an area of RP 2 it sufficient
to show that

lim
m→+∞

2π∫

0

dϕ

1∫
1
m

h̃m(r, ϕ)
4rdr

(1 + r2)2
= lim

m→+∞

2π∫

0

dϕ

1∫
1
m

r� ln wm(r, ϕ)dr = 0.

First, we note that
∫ 2π

0
∂2

∂ϕ2 ln wm(r, ϕ)dϕ = ∂
∂ϕ ln wm(r, ϕ)|2π

0 = 0. Next,

w̃m(r, ϕ) = r
∂

∂r
ln wm(r, ϕ) = 2 + 2

r4 − 1
wm(r, ϕ)

,

w̃m(0, ϕ) = 0,

w̃m(1, ϕ) − w̃m

(
1
m

,ϕ

)
=

1
p

(
1 − 1

m2

)
1

cos 2ϕ+ 1
2pm2 + m2−2

2p

<
2

m2 − 2p − 2
,
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and thus

2π∫

0

dϕ

1∫
1
m

r
1
r

∂

∂r

(
r

∂

∂r

)
ln wm(r, ϕ)dr =

2π∫

0

dϕ

(
r

∂

∂r
ln wm(r, ϕ)

)
|11
m

=

=

2π∫

0

dϕ

(
w̃m(1, ϕ) − w̃m

(
1
m

,ϕ

))
<

2π∫

0

2
m2 − 2p − 2

dϕ −−−−−→
m→+∞ 0.

�

This means that we have here the bubbling phenomenon, i.e. the “bubble” of
area 4π is growing at the point 0 whilst the metric on RP 2 converges to canon-
ical metric of area 6π. The word “bubble” means S2 with canonical metric.
And actually, we observe that the area is preserved. We see here that “bubble”
appear right at the point 0 where we defined the limit map by continuity in 3.
In fact, pairs of higher singularities can annihilate in any point (for example,
we can just send 0 to other point by the action of PSU(2)). This means that
there are other copies of AHHolLF

3 (CP 3) in the closure of AHHolLF
5 (CP 3) in

the space P ((C[z]5)4) and they differ by the point where “bubble” appears, i.e.
regular parts of conformal factors of induced metrics are the same but singular
parts are different.

Let us now look at the closure of AHHolLF
d (CP 3) in the space P ((C[z]d)4). We

call the relative complement of AHHolLF
d (CP 3) in the closure of AHHolLF

d

(CP 3) in P ((C[z]d)4) the boundary of AHHolLF
d (CP 3) in the space P ((C[z]d)4).

We have the following lemma for the boundary of AHHolLF
d (CP 3).

Lemma 6. A point in the boundary of AHHolLF
d (CP 3) could be identified with

a linearly full invariant horizontal holomorphic curve of degree less than d.

Proof. Recall that AHHolLF
d (CP 3) is the subspace in the space P ((C[z]d)4)

defined by the number of conditions. Let us figure out which of these condi-
tions are held by the closure points of AHHolLF

d (CP 3). Horizontality and
invariance conditions are held since they are defined by algebraic equalities.
It is also easy to show that if a limiting curve (a point of the closure) are
not linearly full then all the coefficients of such curve must vanish. Hence, the
closure points represent linearly full maps. We see that there are two conditions
which could not be preserved by closure points, - the condition of degree, and
the condition of coprime polynomials. For polynomials that are not coprime
we can define the required curve by dividing all these polynomials by greatest
common divisor, which is the same as to define the limit map by continuity at
the points where greatest common divisor vanishes. �

Remark 4. It is now fair to assume that “bubbles” occur at the zeros of greatest
common divisor, i.e. we have here the same phenomenon as in Proposition 3.
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Now we need to define the space AHHolLF
≤5 (CP 3) of linearly full invariant

horizontal holomorphic curves of degree less or equal to 5. We define it as the
closure of AHHolLF

5 (CP 3) in the space P ((C[z]5)4).

Proposition 4. The boundary of AHHolLF
5 (CP 3) in the space P ((C[z]5)4) is

the orbit of the point with η = +∞ in Remark 3 under the action of PSp(2)
and PSU(2).

Proof. Let us denote by L ⊂ AHHolLF
5 (CP 3) the subspace of canonical forms

from Theorem 10, i.e. the subspace consisting of points Ψ5
η ∈ AHHolLF

5 (CP 3),
with η ∈ [0,+∞). Then the only limit point of L in P ((C[z]5)4) which does not
lie in L is that with η = +∞ in Remark 3. The groups PSp(2) and PSU(2)
act on the larger space P ((C[z]5)4) ⊃ AHHolLF

5 (CP 3) and this action is
continuous, in the sense that the action map

A : PSp(2) × P ((C[z]5)4) × PSU(2) → P ((C[z]5)4), A : (g, ψ, ω) �→ gψω

is continuous. Let us look at a boundary point ψ. It is the limit of the sequence
{ψn} ⊂ AHHolLF

5 (CP 3). By the Theorem 10 we have sequences {(gn, ωn)} ⊂
PSp(2) × PSU(2) and {Ψ5

ηn
} ⊂ L ⊂ AHHolLF

5 (CP 3), such that ψn =
gnΨ5

ηn
ωn. Since PSp(2) × P ((C[z]5)4) × PSU(2) is compact and metrizable,

we have a subsequence {(gk,Ψ5
ηk

, ωk)}, which converges to a point (g,Ψ5
∞, ω),

with Ψ5
∞ = limk→+∞ Ψ5

ηk
. Note that the subsequence {ψk = gkΨ5

ηk
ωk} con-

verges to the point ψ. Since A is continuous, we have A (g,Ψ5
∞, ω) = gψω.

Clearly, the point Ψ5
∞ ∈ P ((C[z]5)4) does not lie in L, but it is a limit point

of L. This completes the proof of the inclusion boundary ⊂ orbit. The proof
of the inverse inclusion is trivial. �

Theorem 11. The space AHHolLF
≤5 (CP 3) is path-connected.

Proof. follows immediately from the definition of AHHolLF
≤5 (CP 3), Corol-

lary 4, Proposition 4, and path-connectedness of the closure of L ⊂ P ((C[z]5)4).

�

As for the harmonic maps of the two-sphere we start the description with the
simple case when ψ has at most two higher singularities.

Theorem 12. Let ψ : S2 → CP 3 be a linearly full horizontal holomorphic
curve of degree 5 which has at most two higher singularities. Then there exist
elements g ∈ PSp(2,C) and ω ∈ PSL(2,C) reducing ψ to the one of the
following form

Ψ̃5
1(z) =

[
1, z5, 2z2,−5

2
z3

]
, (23)

Ψ̃5
2(z) =

[
1, z5, z,−5

3
z4

]
. (24)



40 Page 20 of 23 R. Gabdurakhmanov J. Geom.

Proof. From Theorem 9 we get two possible cases Ψ(z) = [1, z5,−5z2, z3] and
Ψ(z) = [1, 3z5,−5z, z4] which can be reduced to (23) and (24) by elements
g1 = diag{1, 1,− 2

5 ,− 5
2} and g2 = diag{√3, 1√

3
,−

√
3
5 ,− 5√

3
} respectively. �

It is worth mentioning that, in fact, both of forms from this theorem have two
higher singularities.

So, we can consider the case of at least two higher singularities. In this most
general case we have the following result.

Theorem 13 [2]. Let ψ : S2 → CP 3 be a linearly full horizontal holomorphic
curve of degree 5. Then there exist elements g ∈ PSp(2,C) and ω ∈ PSL(2,C)
such that

Ψ̃5(z) = gψμ(z) = [1 + az, (h + z)z4, (r + lz)z, (m + sz)z3] (25)

canonical linearly full horizontal holomorphic curve, where a, h, r, l,m, s satisfy

2a + ls = 0, 5 + 3ah + lm + 3rs = 0, 2h + rm = 0. (26)

Remark 5. Degree of curve from parametric family {(25), (26)} decreases iff
ah = 1, rs = lm = −2, hl = r or, equivalently, ah = 1, rs = lm = −2, ar = l.
In this case degree of the curve is 4 and we have a bubbling phenomenon here.
Two of higher singularities are at points 0 and ∞, and another two are meeting
at point −1 and are annihilating with the birth of bubble of area 4π.

Lemma 7. Every canonical form Ψ̃5(z) from Theorem 13 can be deformed to
canonical form Ψ̃5

0(z) = [1 + z, (2 + z)z4, (1 + 2z)z,−(4 + z)z3].

Proof. The first step is in showing that there exists deformation of Ψ̃5
1(z) to

Ψ̃5
2(z) from Theorem 12. We will do it by deformation both of Ψ̃5

1(z) and Ψ̃5
2(z)

to Ψ̃5
0(z). These deformations are given by

Ψ̃5
1(z, t) =

[
1 + tz, (2t + z)z4, (t + 2z)z,

(−5 − 3t2

2
+ tz

)
z3

]
, t ∈ [0, 1] (27)

and

Ψ̃5
2(z) =

[
1 + tz, (2t + z)z4, (1 + 2tz)z,

(
−4t +

2t2 − 5
3

z

)
z3

]
, t ∈ [0, 1]

(28)
respectively.

The second step is in deforming every curve Ψ̃5(z) to one of the two curves
Ψ̃5

1(z) and Ψ̃5
2(z). Here we have three cases

1. rs = 0, lm = −5 and the deformation to Ψ̃5
1(z) is given by

Ψ̃5
1(z, t) = [1 + a(1 − t)z, (h(1 − t) + z)z4,
(r(1 − t) + lz)z, (m + s(1 − t)z)z3], t ∈ [0, 1] (29)

and then applying g1 = diag{1, 1, 2
l ,− 5

2m}.
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2. lm = 0, rs = − 5
3 and the deformation to Ψ̃5

2(z) is given by

Ψ̃5
2(z, t) = [1 + a(1 − t)z, (h(1 − t) + z)z4,
(r + l(1 − t)z)z, (m(1 − t) + sz)z3], t ∈ [0, 1] (30)

and then applying g2 = diag{1, 1, 1
r ,− 5

3s}.
3. r, l,m, s �= 0 and the deformation to Ψ̃5

2(z) is given by

Ψ̃5
2(z, t) = [1 + a(1 − t)z, (h(1 − t) + z)z4, (r + l(1 − t)z)z,

(m(1 − t) − 5 + (3ah + lm)(1 − t)2

3r
z)z3], t ∈ [0, 1] (31)

and then applying g2 = diag{1, 1, 1
r , r}.

It is clear from Remark 5 that the degree is preserved throughout all of these
deformations. This completes the proof. �

Corollary 5. Spaces HHolLF
5 (CP 3) and Harm±

5 (S4) are path-connected.

Proof. follows from Theorem 13, Lemmas 3, 7 and path-connectedness and
continuity of actions of PSp(2,C) and PSL(2,C). �

For the closures of spaces HHolLF
d (CP 3) in P ((C[z]d)4) we can see that the

limit points may represent not linearly full maps. As an example, one can
just take any ψ = [f1, f2, f3, f4] ∈ HHolLF

d (CP 3) and construct 1-parametric
family ψt = [f1, tf2, f3, tf4] ∈ HHolLF

d (CP 3) for all positive t, which obviously
converges to not linearly full map as t → 0.
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