On homeomorphisms of three-dimensional manifolds with pseudo-Anosov attractors and repellers

Grines V.Z., Pochinka O.V., Chilina E.E.

Abstract

The present paper is devoted to a study of orientation-preserving homeomorphisms on three-dimensional manifolds with a non-wandering set consisting of a finite number of surface attractors and repellers. The main results of the paper relate to a class of homeomorphisms for which the restriction of the map to a connected component of the non-wandering set is topologically conjugate to an orientation-preserving pseudo-Anosov homeomorphism. The ambient Ω-conjugacy of a homeomorphism from the class with a locally direct product of a pseudo-Anosov homeomorphism and a rough transformation of the circle is proved. In addition, we prove that the centralizer of a pseudo-Anosov homeomorphisms consists of only pseudo-Anosov and periodic maps. Keywords: pseudo-Anosov homeomorphism, two-dimensional attractor.

1 Introduction

In [3, 6] the dynamics of three-dimensional A-diffeomorphisms was studied under the assumption that their non-wandering set consists of surface twodimensional basic sets. It is proved that diffeomorphisms of this class are ambiently Ω-conjugate to locally direct products of an Anosov diffeomorphism of a two-dimensional torus and a rough transformation of a circle. This work is a generalization of these results to a wider class \mathcal{G} of maps, which we define as follows.

The set \mathcal{G} consists of orientation-preserving homeomorphisms f of a closed orientable topological 3-manifold M^{3} with the non-wandering set $N W(f)$ consisting of a finite number of connected components B_{0}, \ldots, B_{m-1} satisfying for any $i \in\{0, \ldots, m-1\}$ the following conditions:

1. B_{i} is a cylindrical embedding of a closed orientable surface of genus greater than 1 ;

[^0]2. there is a natural number k_{i} such that $f^{k_{i}}\left(B_{i}\right)=B_{i}, f^{\tilde{k}_{i}}\left(B_{i}\right) \neq B_{i}$ for any natural number $\tilde{k}_{i}<k_{i}$ and the restriction of the map $\left.f^{k_{i}}\right|_{B_{i}}$ is topologically conjugate to an orientation-preserving pseudo-Anosov homeomorphism;
3. B_{i} is either an attractor ${ }^{2}$ or a repeller for the homeomorphism $f^{k_{i}}$.

The simplest representatives of the class \mathcal{G} are homeomorphisms of the set Φ which are constructed as follows.

Represent the circle as a subset of the complex plane $\mathbb{S}^{1}=\left\{e^{i 2 \pi \theta} \mid 0 \leq \theta<1\right\}$ and define a covering $p: \mathbb{R} \rightarrow \mathbb{S}^{1}$ so that $p(r)=s$, where $s=e^{i 2 \pi r}$.

Consider sets of numbers n, k, l such that $n, k \in \mathbb{N}, l \in \mathbb{Z}$, where $l=0$ if $k=1$, and $l \in\{1, \ldots, k-1\}$ is coprime to k if $k>1$. For each set n, k, l we define a diffeomorphism $\bar{\varphi}_{n, k, l}: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
\bar{\varphi}_{n, k, l}(r)=r+\frac{1}{4 \pi n k} \sin (2 \pi n k r)+\frac{l}{k} .
$$

Since $\bar{\varphi}_{n, k, l}(r)+1=\bar{\varphi}_{n, k, l}(r+1)$, it follows that the diffeomorphism $\bar{\varphi}_{n, k, l}$ is the lift of the circle map $\varphi_{n, k, l}(s)=p\left(\bar{\varphi}_{n, k, l}\left(p^{-1}(s)\right)\right)$, where $p^{-1}(s)$ is the preimage of the point $s \in \mathbb{S}^{1}$ (see Statement 2.8).

Denote by S_{g} a closed orientable surface of genus $g>1$ and by $Z(P)$ the centralizer $Z(P)=\left\{J: S_{g} \rightarrow S_{g} \mid P J=J P\right\}$ of a homeomorphism $P: S_{g} \rightarrow S_{g}$.

Let us denote by \mathcal{P} the set of all pseudo-Anosov homeomorphisms on the surface S_{g}.

Theorem 1. A homeomorphism $J \in Z(P)$, where $P \in \mathcal{P}$, is either pseudo-Anosov or periodi ${ }^{3}$.

Consider orientation-preserving homeomorphisms $P \in \mathcal{P}$ and $J \in Z(P)$ such that the map $J^{l} P^{k}$ is a pseudo-Anosov homeomorphism. Let us represent the manifold M_{J} as the quotient space of the manifold $S_{g} \times \mathbb{R}$ by the action of the group $\Gamma=\left\{\gamma^{i}, i \in \mathbb{Z}\right\}$ of degrees of homeomorphism $\gamma: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$, given by the formula $\gamma(z, r)=(J(z), r-1)$, with natural projection $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}$.

[^1]Define the map $\bar{\varphi}_{P, J, n, k, l}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ by the formula

$$
\bar{\varphi}_{P, J, n, k, l}(z, r)=\left(P(z), \bar{\varphi}_{n, k, l}(r)\right) .
$$

It is readily verified that $\bar{\varphi}_{P, J, n, k, l} \gamma=\gamma \bar{\varphi}_{P, J, n, k, l}$. Then the orientationpreserving homeomorphism $\varphi_{P, J, n, k, l}: M_{J} \rightarrow M_{J}$ is correctly defined (see Statement 2.8) and given by the formula

$$
\varphi_{P, J, n, k, l}(w)=p_{J}\left(\bar{\varphi}_{P, J, n, k, l}\left(p_{J}^{-1}(w)\right)\right),
$$

where $w \in M_{J}$ and $p_{J}^{-1}(w)$ is the preimage of the point $w \in M_{J}$. We call homeomorphisms of the form $\varphi_{P, J, n, k, l}$ model maps. Denote by Φ the set of all model maps.

Theorem 2. Any homeomorphism from the class Φ belongs to the class \mathcal{G}.
Theorem 3. Any homeomorphism from the class \mathcal{G} is ambiently Ω-conjugat \llbracket^{4} to a homeomorphism from the class Φ.

2 Main definitions and auxiliary statements

2.1 Pseudo-Anosov homeomorphisms

Let M^{n} be a topological manifold of dimension n.
Family $\mathcal{F}=\left\{L_{\alpha} ; \alpha \in A\right\}$ of path-connected subsets in M^{n} is called a k dimensional foliation if it satisfies the following three conditions:

- $L_{\alpha} \cap L_{\beta}=\emptyset$ for any $\alpha, \beta \in A$ such that $\alpha \neq \beta$;
- $\bigcup_{\alpha \in A} L_{\alpha}=M^{n}$;
- for any point $p \in M^{n}$ there is a local map $(U, \varphi), p \in U$, so that if $U \cap L_{\alpha} \neq \emptyset$, $\alpha \in A$, then the path-connected components of the set $\varphi\left(U \cap L_{\alpha}\right)$ have

[^2]the form $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \varphi(U) ; x_{k+1}=c_{k+1}, x_{k+2}=c_{k+2}, \ldots, x_{n}=c_{n}\right\}$, where the numbers $c_{k+1}, c_{k+2}, \ldots, c_{n}$ are constant on the linearly connected components.

A foliation \mathcal{F} with a set of singularities S of M^{n} is a family of path-connected subsets of M^{n} such that the family of sets $\mathcal{F} \backslash S$ is a foliation of $M^{n} \backslash F$.

Let $q \in \mathbb{N}$. The foliation W_{q} on \mathbb{C} with the standard saddle singularity at the point O and q separatrices is a family of path-connected subsets in \mathbb{C} such that $W_{q} \backslash O$ is a foliation on $\mathbb{C} \backslash O$ and $\operatorname{Im} z^{\frac{q}{2}}=$ const on leaves of $W_{q} \backslash O$. Rays $l_{1}, \ldots, l_{q} \in W_{q}$ satisfying equality $\operatorname{Im} z^{\frac{q}{2}}=0$ are called separatrices of the point O 。

Figure 1: The foliation W_{q} on \mathbb{C} with the standard saddle singularity at the point O and q separatrices for $q=1,2,3,4$.

A one-dimensional foliation \mathcal{F} on M^{2} is called a foliation with saddle singularities if the set S of singularities of the foliation \mathcal{F} consists of a finite number of points s_{1}, \ldots, s_{c} and for any point $s_{i}(i \in\{1, \ldots, c\})$ there is a neighborhood $U_{i} \subset M^{2}$, a homeomorphism $\psi_{i}: U_{i} \rightarrow \mathbb{C}$ and a number $q_{i} \in \mathbb{N}$ such that $\psi_{i}\left(s_{i}\right)=O$ and $\psi_{i}\left(\mathcal{F} \cap U_{i}\right)=W_{q_{i}} \backslash\{O\}$. The leaf containing the curve $\psi_{i}^{-1}\left(l_{j}\right), j \in\left\{1, \ldots, q_{i}\right\}$, is called the separatrix of the point s_{i}. The point s_{i} is called a saddle singularity with q_{i} separatrices.

The transversal measure μ for a foliation \mathcal{F} with saddle singularities on M^{2} associates with each arc α transversal to \mathcal{F} a non-negative Borel measure $\left.\mu\right|_{\alpha}$ with the following properties:

1. if β is a subarc of the arc α, then $\left.\mu\right|_{\beta}$ is a restriction of the measure $\left.\mu\right|_{\alpha}$;
2. if α_{0} and α_{1} are two arcs transversal to \mathcal{F} and connected by a homotopy $\alpha:[0,1] \times[0,1] \rightarrow M^{2}$ such that $\alpha([0,1] \times\{0\})=\alpha_{0}, \alpha([0,1] \times\{1\})=\alpha_{1}$ and $\alpha(\{t\} \times[0,1])$ for any $t \in[0,1]$ is contained in a leaf of \mathcal{F} (see Fig. 22), then $\left.\mu\right|_{\alpha_{0}}=\left.\mu\right|_{\alpha_{1}}$.

Figure 2: Curves α_{0} and α_{1} are connected by homotopy α.
An orientation-preserving homeomorphism $P: S_{g} \rightarrow S_{g}$ of a closed orientable surface of genus $g>1$ is called a pseudo-Anosov map ($p A$-homeomorphism) with dilatation $\lambda>1$ if on surface S_{g} there is a pair of P-invariant transversal foliations $\mathcal{F}_{P}^{s}, \mathcal{F}_{P}^{u}$ with a set of saddle singularities S and transversal measures μ_{s}, μ_{u} such that:

- each saddle singularity from S has at least three separatrices;
- $\mu_{s}(P(\alpha))=\lambda \mu_{s}(\alpha)\left(\mu_{u}(P(\alpha))=\lambda^{-1} \mu_{u}(\alpha)\right)$ for any arc α transversal to \mathcal{F}_{P}^{s} $\left(\mathcal{F}_{P}^{u}\right)$.

Let $P: S_{g} \rightarrow S_{g}$ be a pseudo-Anosov homeomorphism. Define the stable (unstable) manifold $W^{s}(x)=\left\{y \in M^{3}: d\left(P^{n}(x), P^{n}(y)\right) \rightarrow 0, n \rightarrow+\infty\right\}$ $\left(W^{u}(x)=\left\{y \in M^{3}: d\left(P^{n}(x), P^{n}(y)\right) \rightarrow 0, n \rightarrow-\infty\right\}\right)$ of $x \in S_{g}$, where d is a metric on S_{g}. Note that the stable (unstable) manifold of the point $x \notin S$ is a leaf of the foliation $\mathcal{F}_{P}^{s}\left(\mathcal{F}_{P}^{u}\right)$ and a stable (unstable) manifold of the point $x \in S$ is the union of a finite number of separatrices belonging to the foliation $\mathcal{F}_{P}^{s}\left(\mathcal{F}_{P}^{u}\right)$ and the point x.
A rectangle is a subset $\Pi \subset S_{g}$ that is the image of a continuous map v of the square $[0,1] \times[0,1]$ into S_{g} with the following properties: v is one-to-one on the interior of the square and maps segments of its horizontal partition into arcs of leaves \mathcal{F}_{P}^{s}, and segments of its vertical partition into arcs of leaves \mathcal{F}_{P}^{u}. Denote by
$\dot{\Pi}$ the image of the interior of the square. We will call the images of the horizontal and vertical sides contracting and stretching sides of the rectangle Π.

A Markov partition for a pseudo-Anosov homeomorphism P is a finite family of rectangles $\tilde{\Pi}=\left\{\Pi_{1}, \ldots, \Pi_{n}\right\}$ for which the following conditions are satisfied:

- $\bigcup_{i} \Pi_{i}=S_{g} ; \dot{\Pi}_{i} \cap \dot{\Pi}_{j}=\emptyset$ for $i \neq j ;$
- let $\partial^{s} \tilde{\Pi}\left(\partial^{u} \tilde{\Pi}\right)$ be the union of all contracting (stretching) sides of rectangles Π_{1}, \ldots, Π_{n}, then $P\left(\partial^{s} \tilde{\Pi}\right) \subset \partial^{s} \tilde{\Pi} ; P\left(\partial^{u} \tilde{\Pi}\right) \supset \partial^{u} \tilde{\Pi}$.

Statement 2.1 ([1], Proposition 10.17). A pseudo-Anosov homeomorphism has a Markov partition.

A foliation \mathcal{F} is called uniquely ergodic if there exists a single \mathcal{F}-invariant measure up to multiplication by a scalar.

Statement 2.2 ([1], Theorem 12.1). The foliations \mathcal{F}_{P}^{s} and \mathcal{F}_{P}^{u} of the pseudoAnosov homeomorphism P are uniquely ergodic.

Statement 2.3 ([1], Theorem 12.5). Two homotopic pseudo-Anosov diffeomorphisms are conjugate by a diffeomorphism isotopic to the identity.

Statement 2.4 ([8], Lemma 3.1). A homeomorphism that is topologically conjugate to a pseudo-Anosov homeomorphism is also pseudo-Anosov.

Statement 2.5 ([8], Theorem 3.2). The set of periodic points of a pseudo-Anosov homeomorphism is dense everywhere on the surface.

Statement 2.6 ($\left[8\right.$, Note 3.6). Every leaf of foliations \mathcal{F}_{P}^{s} and \mathcal{F}_{P}^{u} of the pseudoAnosov homeomorphism P is everywhere dense on S_{g}.

2.2 Group action on a topological space

Let us recall some facts related to the action of a group on a topological space (for more details, see [4).

For a continuous mapping $h: X \rightarrow Y$ of a topological space X into a topological space Y, denote by $h^{-1}(V)$ the preimage of the set $V \subset Y$, that is, $h^{-1}(V)=\{x \in$ $X \mid h(x) \in V\}$.

Let the action of a group G be free and discontinuous on a Hausdorff space X and let the orbits space X / G be connected. The definition of the projection $p_{X / G}: X \rightarrow X / G$ implies that $p_{X / G}^{-1}(x)$ is an orbit of some point $\bar{x} \in p_{X / G}^{-1}(x)$. Let c be a path in X / G for which $c(0)=c(1)=x$. The monodromy theorem implies that there is the unique path \bar{c} in X starting from $\bar{x}(\bar{c}(0)=\bar{x})$ which is a lift of the pathc. Therefore, there is an element $g \in G$ for which $\bar{c}(1)=g(\bar{x})$. Hence, the map $\eta_{X / G, \bar{x}}: \pi_{1}(X / G, x) \rightarrow G$ defined by $\eta_{X / G, \bar{x}}([c])=g$ is well defined, i.e. it is independent of the choice of the path in the class $[c]$.

Statement 2.7 ([4], Statement 10.32). The map $\eta_{X / G, \bar{x}}: \pi_{1}(X / G, x) \rightarrow G$ is a nontrivial homomorphism. It is called the homomorphism induced by the cover $p_{X / G}: X \rightarrow X / G$.

Let G be an abelian group and let \bar{c}^{\prime} be the lift of a path $c \in \pi_{1}(X / G, x)$ starting from a point $\bar{x}^{\prime}=\bar{c}^{\prime}(0)$ distinct from the point \bar{x} and let $g^{\prime}\left(\bar{x}^{\prime}\right)=\bar{c}^{\prime}(1)$. Since there is the unique element $g^{\prime \prime} \in G$ for which $g^{\prime \prime}(\bar{x})=\bar{x}^{\prime}$ the monodromy theorem implies $g^{\prime \prime}(\bar{c})=\bar{c}^{\prime}$. Then $g^{\prime \prime} g=g^{\prime} g^{\prime \prime}$ and, therefore, $g^{\prime}=g$. Thus $\eta_{X / G, \bar{x}}=\eta_{X / G, \bar{x}^{\prime}}$ and from now on we omit the index \bar{x} in the notation of the epimorphism $\eta_{X / G, \bar{x}}$ and we write $\eta_{X / G}$ if G is an abelian group.

Statement 2.8 ([4], Statement 10.35). Let cyclic groups G, G^{\prime} act freely and discontinuously on G, G^{\prime} - space X and let g, g^{\prime} be their respective generators. Then

1. if $\bar{h}: X \rightarrow X$ is a homeomorphism for which $\bar{h}(g(\bar{x}))=g^{\prime}(\bar{h}(\bar{x}))$ for every $\bar{x} \in X$ then the map $h: X / G \rightarrow X / G^{\prime}$ defined by $h=p_{X / G^{\prime}}\left(\bar{h}\left(p_{X / G}^{-1}(x)\right)\right)$ is a homeomorphism and $\eta_{X / G}=\eta_{X / G^{\prime}} h_{*}$;
2. if $h: X / G \rightarrow X / G^{\prime}$ is a homeomorphism for which $\eta_{X / G}=\eta_{X / G^{\prime}} h_{*}$ then there is the unique homeomorphism $\bar{h}: X \rightarrow X$ which is a lift of h and such that $\bar{h}(g(\bar{x}))=g^{\prime}(\bar{h}(\bar{x})), \bar{h}(\bar{x})=\bar{x}^{\prime}$ for $\bar{x} \in X$ and $\bar{x}^{\prime} \in p_{X / G^{\prime}}^{-1}\left(x^{\prime}\right)$, where $x^{\prime}=h\left(p_{X / G}(\bar{x})\right)$.

3 On the centralizer of a pseudo-anosov map

In this section we prove that a homeomorphism $J \in Z(P)$, where $P \in \mathcal{P}$, is either a pseudo-Anosov homeomorphism or a periodic homeomorphism.

Proof. Let $P \in \mathcal{P}$ and $J \in Z(P)$. Since $P=J P J^{-1}$, it follows that J maps stable manifolds of P into stable ones, and unstable ones into unstable ones. Therefore, $J\left(\mathcal{F}_{P}^{s}\right)=\mathcal{F}_{P}^{s}$ and $J\left(\mathcal{F}_{P}^{u}\right)=\mathcal{F}_{P}^{u}$. The foliations $\mathcal{F}_{P}^{s}, \mathcal{F}_{P}^{u}$ have transversal measures μ_{s}, μ_{u}. Let us define for the foliation $\mathcal{F}_{P}^{s}\left(\mathcal{F}_{P}^{u}\right)$ a transversal measure $\tilde{\mu}_{s}\left(\alpha_{s}\right)=\mu_{s}\left(J\left(\alpha_{s}\right)\right)\left(\tilde{\mu}_{u}\left(\alpha_{u}\right)=\mu_{u}\left(J\left(\alpha_{u}\right)\right)\right)$, where $\alpha_{s}\left(\alpha_{u}\right)$ is the arc transversal to the foliation $\mathcal{F}_{P}^{s}\left(\mathcal{F}_{P}^{u}\right)$. Since foliations $\mathcal{F}_{P}^{s}, \mathcal{F}_{P}^{u}$ are uniquely ergodic (Proposition 2.3), there exist numbers $\nu_{s}, \nu_{u} \in \mathbb{R}_{+}$such that $\tilde{\mu}_{s}=\nu_{s} \mu_{s}$ and $\tilde{\mu}_{u}=\nu_{u} \mu_{u}$. Thus, $\mu_{s}\left(J\left(\alpha_{s}\right)\right)=\nu_{s} \mu_{s}\left(\alpha_{s}\right), \mu_{u}\left(J\left(\alpha_{u}\right)\right)=\nu_{u} \mu_{u}\left(\alpha_{u}\right)$ for arc α_{s} transversal to \mathcal{F}_{P}^{s} and the $\operatorname{arc} \alpha_{u}$ transversal to \mathcal{F}_{P}^{u}.

Since the pseudo-Anosov homeomorphism P has a Markov partition (see Statement 2.1) consisting of n rectangles Π_{1}, \ldots, Π_{n}, it follows that on each rectangle $\Pi_{i}(i \in\{1, \ldots, n\})$ the measure $\mu_{s} \otimes \mu_{u}$ is defined by the formula $\mu_{s} \otimes \mu_{u}\left(\Pi_{i}\right)=\mu_{s}\left(\alpha_{s, i}\right) \mu_{u}\left(\alpha_{u, i}\right)=\mu_{i}$, where $\alpha_{s, i}$ is the stretching side of the rectangle Π_{i} and $\alpha_{u, i}$ is the contracting side. Since the foliations $\mathcal{F}_{P}^{s}, \mathcal{F}_{P}^{u}$ are invariant under J, it follows that the set $J\left(\Pi_{i}\right)(i \in\{1, \ldots, n\})$ is also a rectangle with measure $\mu_{s} \otimes \mu_{u}\left(J\left(\Pi_{i}\right)\right)=\mu_{s}\left(J\left(\alpha_{s, i}\right)\right) \mu_{u}\left(J\left(\alpha_{u, i}\right)\right)=\nu_{s} \nu_{u} \mu_{i}$. Thus, $\mu_{s} \otimes \mu_{u}\left(S_{g}\right)=$ $\mu_{s} \otimes \mu_{u}\left(\bigcup_{i} \Pi_{i}\right)=\bigcup_{i} \mu_{i}$ and $\mu_{s} \otimes \mu_{u}\left(J\left(S_{g}\right)\right)=\mu_{s} \otimes \mu_{u}\left(\bigcup_{i}\left(J\left(\Pi_{i}\right)\right)\right)=\nu_{s} \nu_{u}\left(\bigcup_{i} \mu_{i}\right)$. Since $J\left(S_{g}\right)=S_{g}$, it follows that $\nu_{s} \nu_{u}=1$. Let $\nu=\nu_{s}$.

Consider the case $\nu \neq 1$. The homeomorphism J has a pair of invariant transversal foliations $\mathcal{F}_{P}^{s}, \mathcal{F}_{P}^{u}$ with a common set of saddle singularities having at least three separatrices, and transversal measures μ_{s}, μ_{u} such that that $\mu_{s}(J(\alpha))=\nu \mu_{s}(\alpha)\left(\mu_{u}(J(\alpha))=\nu^{-1} \mu_{u}(\alpha)\right)$ for any arc α transversal to $\mathcal{F}_{P}^{s}\left(\mathcal{F}_{P}^{u}\right)$. Consequently, for $\nu>1(\nu<1)$ the homeomorphism J is a pseudo-Anosov map with dilatation $\nu>1\left(\frac{1}{\nu}>1\right)$.

Consider the case $\nu=1$. Since the foliation \mathcal{F}_{P}^{s} is invariant under J, it follows that separatrices of saddle singularities under the action of J are mapped into separatrices of saddle singularities. Since the set of separatrices is finite, there exists $m \in \mathbb{N}$ such that $J^{m}\left(s_{i}\right)=s_{i}$ and $J^{m}(l)=l$ for some separatrix l of the
saddle singularity s_{i} of the foliation \mathcal{F}_{P}^{s}.
Let us prove that $J^{m}(x)=x$ for any point $x \in l$. Let $\left[s_{i}, x\right]$ be the arc of the curve l bounded by points s_{i} and x. Since $\mu_{u}\left(J^{m}\left[s_{i}, x\right]\right)=\mu_{u}\left(\left[s_{i}, x\right]\right)$, it follows that $J^{m}\left(\left[s_{i}, x\right]\right)=\left[s_{i}, x\right]$. Therefore, $J^{m}(x)=x$.

Since the leaf l is dense everywhere on S_{g} (see Statement 2.6) and $\left.J^{m}\right|_{l}=i d$, it follows that $J^{m}(z)=z$ for any $z \in S_{g}$.

Consequently, the map J is a periodic homeomorphism for $\nu=1$ and is pseudoAnosov for $\nu \neq 1$.

4 On the model maps

In this section we prove Theorem 2 and auxiliary lemmas.
Recall that a map $f_{2}: Y \rightarrow Y$ of a topological space Y is called a factor of a map $f_{1}: X \rightarrow X$ of a topological space X if there is a surjective continuous map $h: X \rightarrow Y$ such that $h f_{1}=f_{2} h$. The map h is called semiconjugacy.

Lemma 4.1. Let $f_{1}: X \rightarrow X, f_{2}: Y \rightarrow Y$ be homeomorphisms of topological spaces X and Y such that f_{2} is a factor of f_{1} with semiconjugacy $h: X \rightarrow Y$. Then:

1. $h\left(N W\left(f_{1}\right)\right) \subset N W\left(f_{2}\right)$;
2. if $f_{2}^{k}\left(V_{y}\right)=V_{y}$ for some $k \in \mathbb{N}, V_{y} \subset Y$, then $f_{1}^{k}\left(V_{x}\right) \subset V_{x}$;
3. if $f_{1}^{k}\left(V_{x}\right)=V_{x}$ for some $k \in \mathbb{N}, V_{x} \subset X$, then $f_{2}^{k}\left(V_{y}\right)=V_{y}$, where $V_{y}=h\left(V_{x}\right)$.

Proof. Let $f_{1}: X \rightarrow X, f_{2}: Y \rightarrow Y$ be homeomorphisms of topological spaces X and Y such that f_{2} is a factor of f_{1} with semiconjugacy $h: X \rightarrow Y$, that is, $h f_{1}=f_{2} h$. Let us prove each point of the lemma separately.

1. Consider the point $x \in N W\left(f_{1}\right)$ and the point $y=h(x)$ with an arbitrary open neighborhood U_{y}. Let $U_{x}=h^{-1}\left(U_{y}\right)$. Since h is a continuous map, the inverse image U_{x} of the open set U_{y} is also open. Then, by the definition of a non-wandering point x, there exists $n \in \mathbb{N}$ such that $f_{1}^{n}\left(U_{x}\right) \cap U_{x} \neq \emptyset$. Let $f_{1}^{n}\left(U_{x}\right) \cap U_{x}=\hat{U}_{x}$ and $\hat{U}_{y}=h\left(\hat{U}_{x}\right)$. Since $\hat{U}_{x} \subset U_{x}$, then $h\left(\hat{U}_{x}\right) \subset h\left(U_{x}\right)$,
that is, $\hat{U}_{y} \subset U_{y}$. Note that $h f_{1}^{n}=f_{2}^{n} h$. Since $\hat{U}_{y} \subset h\left(f_{1}^{n}\left(U_{x}\right)\right)$, then $\hat{U}_{y} \subset f_{2}^{n}\left(h\left(U_{x}\right)\right)=f_{2}^{n}\left(U_{y}\right)$. Therefore, $f_{2}^{n}\left(U_{y}\right) \cap U_{y} \neq \emptyset$. Thus, $y=h(x) \in$ $N W\left(f_{2}\right)$.
2. Let $f_{2}^{k}\left(V_{y}\right)=V_{y}$, where $k \in \mathbb{N}, V_{y} \subset Y, V_{x}=h^{-1}\left(V_{y}\right)$ and $f_{1}^{k}\left(V_{x}\right)=V_{x}^{\prime}$. Then $f_{2}^{k}\left(h\left(V_{x}\right)\right)=f_{2}^{k}\left(V_{y}\right)=V_{y}$ and $h\left(f_{1}^{k}\left(V_{x}\right)\right)=h\left(V_{x}^{\prime}\right)$. Since $h f_{1}^{k}=f_{2}^{k} h$, it follows that $h\left(V_{x}^{\prime}\right)=V_{y}$. Therefore, $V_{x}^{\prime} \subset V_{x}$, that is, $f_{1}^{k}\left(V_{x}\right) \subset V_{x}$.
3. Let $f_{1}^{k}\left(V_{x}\right)=V_{x}$, where $k \in \mathbb{N}, V_{x} \subset X$ and $V_{y}=h\left(V_{x}\right)$. Then $h\left(f_{1}^{k}\left(V_{x}\right)\right)=$ $h\left(V_{x}\right)=V_{y}$. Since $h f_{1}^{k}=f_{2}^{k} h$, then $f_{2}^{k}\left(h\left(V_{x}\right)\right)=f_{2}^{k}\left(V_{y}\right)=V_{y}$. Therefore, $f^{k}\left(V_{y}\right)=V_{y}$.

We will call a set of numbers n, k, l correct if $n, k \in \mathbb{N}, l \in \mathbb{Z}$, where $l=0$ for $k=1$ and $l \in\{1, \ldots, k-1\}$ is coprime to k for $k>1$. Everywhere else in this section the set of numbers n, k, l is correct. Let us recall main notation and formulas.

- The manifold M_{J} is the quotient space of $S_{g} \times \mathbb{R}$ under the action of the group $\Gamma=\left\{\gamma^{i}, i \in \mathbb{Z}\right\}$ of degrees of homeomorphism $\gamma: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ given by the formula $\gamma(z, r)=(J(z), r-1)$, where $J: S_{g} \rightarrow S_{g}$ is an orientationpreserving homeomorphism;
- $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}$ is the natural projection inducing the homomorhisms $\eta_{M_{J}}: M_{J} \rightarrow \mathbb{Z} ;$
- $\bar{\varphi}_{n, k, l}: \mathbb{R} \rightarrow \mathbb{R}$ is the diffeomorphism given by the formula

$$
\begin{equation*}
\bar{\varphi}_{n, k, l}(r)=r+\frac{1}{4 \pi n k} \sin (2 \pi n k r)+\frac{l}{k} ; \tag{1}
\end{equation*}
$$

- $\mathbb{S}^{1}=\left\{e^{i 2 \pi \theta} \mid 0 \leq \theta<1\right\}, p: \mathbb{R} \rightarrow \mathbb{S}^{1}$ is the covering, given by the formula $p(r)=s$, where $s=e^{i 2 \pi r} ;$
- $\varphi_{n, k, l}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is the diffeomorphism given by the formula

$$
\begin{equation*}
\varphi_{n, k, l}(s)=p\left(\bar{\varphi}_{n, k, l}\left(p^{-1}(s)\right)\right) ; \tag{2}
\end{equation*}
$$

- $\bar{\varphi}=\bar{\varphi}_{P, J, n, k, l}(z, r): S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ is the homeomorphism given by the formula

$$
\begin{equation*}
\bar{\varphi}(z, r)=\left(P(z), \bar{\varphi}_{n, k, l}(r)\right), \tag{3}
\end{equation*}
$$

where $P: S_{g} \rightarrow S_{g}$ is an orientation-preserving pseudo-Anosov homeomorphism such that $J \in Z(P)$;

- model homeomorphism $\varphi=\varphi_{P, J, n, k, l}: M_{J} \rightarrow M_{J}$ is given by the formula

$$
\begin{equation*}
\varphi(w)=p_{J}\left(\bar{\varphi}\left(p_{J}^{-1}(w)\right)\right) ; \tag{4}
\end{equation*}
$$

- Φ is a set of model homeomorphisms.

Let us introduce the following notation:

- $\mathcal{B}_{i}=p_{J}\left(S_{g} \times\left\{\frac{i}{2 n k}\right\}\right) \in M_{J}(i \in\{0, \ldots, 2 n k-1\}) ;$
- $b_{i}=p\left(\frac{i}{2 n k}\right) \in \mathbb{S}^{1}(i \in\{0, \ldots, 2 n k-1\}) ;$
- $p_{J, r}: S_{g} \times\{r\} \rightarrow p_{J}\left(S_{g} \times\{r\}\right)$ is the homeomorphism given by the formula

$$
\begin{equation*}
p_{J, r}=\left.p_{J}\right|_{S_{g} \times\{r\}}, r \in \mathbb{R} ; \tag{5}
\end{equation*}
$$

- $\rho: S_{g} \times \mathbb{R} \rightarrow S_{g}$ is the canonical projection given by the formula

$$
\begin{equation*}
\rho(z, r)=z ; \tag{6}
\end{equation*}
$$

- $\rho_{r}: S_{g} \times\{r\} \rightarrow S_{g}$ is the homeomorphism given by the formula

$$
\begin{equation*}
\rho_{r}=\left.\rho\right|_{S_{g} \times\{r\}}, r \in \mathbb{R} \tag{7}
\end{equation*}
$$

Note that the Eq. (4) is obtained from the relation

$$
\begin{equation*}
p_{J} \bar{\varphi}=\varphi p_{J} \tag{8}
\end{equation*}
$$

and Eq. (2) is obtained from the relation

$$
\begin{equation*}
p \bar{\varphi}_{n, k, l}=\varphi_{n, k, l} p . \tag{9}
\end{equation*}
$$

Since $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}$ is a natural projection, it follows that

$$
\begin{equation*}
p_{J} \gamma=p_{J} . \tag{10}
\end{equation*}
$$

Denote by $h_{J}: M_{J} \rightarrow \mathbb{S}^{1}$ the continuous surjective map given by the formula

$$
\begin{equation*}
h_{J}(w)=p(r), \text { where } w=p_{J}(z, r) \in M_{J} . \tag{11}
\end{equation*}
$$

It is readily verified that $h_{J} \varphi=\varphi_{n, k, l} p_{J}$. Thus, the following lemma is true.
Lemma 4.2. The homeomorphism $\varphi_{n, k, l}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is the factor of the homeomorphism $\varphi: M_{J} \rightarrow M_{J}$ with semiconjugacy $h_{J}: M_{J} \rightarrow \mathbb{S}^{1}$.

It is directly verified (see Eqs. (1) and (2)) that the non-wandering set of the diffeomorphism $\varphi_{n, k, l}$ consists of $2 n k$ points $b_{0}, \ldots, b_{2 n k-1}$ of period k such that points with odd indices i are sinks and points with even indices are source.

Let us prove Theorem 2, that is, we prove the inclusion $\Phi \subset \mathcal{G}$.
Proof. Consider the model homeomorphism $\varphi=\varphi_{P, J, n, k, l}: M_{J} \rightarrow M_{J}$. Since the homeomorphism J preserves orientation, it follows that the manifold M_{J} is orientable. Preserving orientation of homeomorphisms P and $\varphi_{n, k, l}$ implies preserving orientation by homeomorphism φ inducing by map $\bar{\varphi}(z, r)=\left(P(z), \bar{\varphi}_{n, k, l}(r)\right)$.

Let us prove that the connected component $\mathcal{B}_{i}(i \in\{0, \ldots, 2 n k-1\})$ is a cylindrical embedding of the surface S_{g}. For $i \in\{0, \ldots, 2 n k-1\}$ we set $\bar{U}_{i}=S_{g} \times$ $\left[\frac{i}{2 n k}-\frac{i}{4 n k}, \frac{i}{2 n k}+\frac{i}{4 n k}\right]$ and $U_{i}=p_{J}\left(\bar{U}_{i}\right)$. Since $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}$ is a covering, it follows that for any $i \in\{0, \ldots, 2 n k-1\}$ its restriction $\left.p_{J}\right|_{\bar{U}_{i}}: \bar{U}_{i} \rightarrow U_{i}$ is a homeomorphism. In addition, $p_{J} \left\lvert\, \bar{U}_{i}\left(S_{g} \times\left\{\frac{i}{2 n k}\right\}\right)=\mathcal{B}_{i}\right.$. Therefore, $\mathcal{B}_{i}(i \in\{0, \ldots, 2 n k-1\})$ is a cylindrical embedding of S_{g}.

Let us prove that $\varphi^{k}\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i}, \varphi^{\tilde{k}_{i}}\left(\mathcal{B}_{i}\right) \neq \mathcal{B}_{i}(i \in\{0, \ldots, 2 n k-1\})$ for any natural number $\tilde{k}_{i}<k$. In accordance with Lemma 4.2, the map $\varphi_{n, k, l}$ is the factor of a homeomorphism φ with semiconjugacy h_{J}. Note that $h_{J}^{-1}\left(b_{i}\right)=\mathcal{B}_{i}$
$(i \in\{0, \ldots, 2 n k-1\})$, where $b_{i} \in \mathbb{S}^{1}$ is a point of period k. It follows from Lemma 4.1 that $\varphi^{k}\left(\mathcal{B}_{i}\right) \subset \mathcal{B}_{i}$. Since the map φ^{k} is a homeomorphism and the component \mathcal{B}_{i} is homeomorphic to S_{g}, it follows that $\varphi^{k}\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i}$. Suppose that $\varphi^{\tilde{k}}\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i}$ for some natural number $\tilde{k}<k$. Then Lemma 4.1 implies that $\varphi_{n, k, l}^{\tilde{k}}\left(b_{i}\right)=b_{i}$. We come to contradiction that point b_{i} has period k.

Let us prove that the map $\left.\varphi^{k}\right|_{\mathcal{B}_{i}}(i \in\{0, \ldots, 2 n k-1\})$ is topologically conjugate to the orientation-preserving pseudo-Anosov homeomorphism. Since

$$
\begin{equation*}
\gamma^{l}\left(\bar{\varphi}^{k}\left(z, \frac{i}{2 n k}\right)\right)=\left(J^{l}\left(P^{k}(z)\right), \frac{i}{2 n k}\right), \tag{12}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\rho_{\frac{i}{2 n k}}\left(\gamma^{l}\left(\bar{\varphi}^{k}\left(\rho_{\frac{i}{2}}^{2 n k}(z)\right)\right)\right)=J^{l}\left(P^{k}(z)\right) . \tag{13}
\end{equation*}
$$

For any point $w \in \mathcal{B}_{i}$ we get $\varphi^{k}(w) \stackrel{[4]}{=} p_{J}\left(\bar{\varphi}^{k}\left(p_{J}^{-1}(w)\right)\right) \stackrel{10}{=} p_{J}\left(\gamma^{l}\left(\bar{\varphi}^{k}\left(p_{J}^{-1}(w)\right)\right)\right) \stackrel{\sqrt[12]{=}}{=}$ $p_{J, \frac{i}{2 n k}}\left(\gamma^{l}\left(\bar{\varphi}^{k}\left(p_{J, \frac{i}{2 n k}}^{-1}(w)\right)\right) \stackrel{(13)}{=} p_{J, \frac{i}{2 n k}}\left(\rho_{\frac{i}{2 n k}}^{-1}\left(J^{l}\left(P^{k}\left(\rho_{\frac{i}{2 n k}}\left(p_{J, \frac{i}{2 n k}}^{-1}(w)\right)\right)\right)\right)\right.\right.$. Consequently, the homeomorphism $\left.\varphi^{k}\right|_{\mathcal{B}_{i}}$ is topologically conjugate to the orientation-preserving pseudo-Anosov homeomorphism $J^{l} P^{k}$ via the homeomorphism $p_{J, \frac{i}{2 n k}} \rho_{i}^{-1}$.

Lemmas 4.1 and 4.2 imply that $N W(\varphi) \subset\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{2 n k-1}\right)$.
Since the set of periodic points of a pseudo-Anosov homeomorphism is dense everywhere on the surface (Proposition 2.5) and $\varphi^{k}\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i}(i \in\{0, \ldots, 2 n k-1\})$, it follows that $N W(\varphi)=\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{2 n k-1}$.

Let us prove that the connected components \mathcal{B}_{i} with odd indices i belong to the set of attractors of the homeomorphism φ. Points b_{i} with odd indices i are sink points of the diffeomorphism $\varphi_{n, k, l}^{k}$. Therefore, $\varphi^{k}\left(u_{i}\right) \subset$ int u_{i} and $\bigcap_{j \geq 0} \varphi_{n, k, l}^{j k}\left(u_{i}\right)=b_{i}$ for the neighborhood $u_{i}=h_{J}\left(U_{i}\right)=p\left(\left[\frac{i}{2 n k}-\frac{i}{4 n k}, \frac{i}{2 n k}+\frac{i}{4 n k}\right]\right)$ of point b_{i} with odd index i. Since $h_{J}^{-1}(p[a, b])=p_{J}\left(S_{g} \times[a, b]\right)$ for any $a, b \in \mathbb{R}$, $h_{J} \varphi^{j k}=\varphi_{n, k, l}^{j k} h_{J}$ and $h_{J}^{-1}\left(b_{i}\right)=\mathcal{B}_{i}$, it follows that $\varphi^{k}\left(U_{i}\right) \subset \operatorname{int} U_{i}, \bigcap_{j \geq 0} \varphi^{j k}\left(U_{i}\right)=\mathcal{B}_{i}$. Consequently, connected components \mathcal{B}_{i} with odd indices i are attractors of the $\operatorname{map} \varphi^{k}$.

Analogously one proves that connected components \mathcal{B}_{i} with even indices i belong to the set of repellers.

Thus $\varphi \in \mathcal{G}$.

5 The ambient Ω-conjugacy of a homeomorphism $f \in \mathcal{G}$ to a model map

Recall that the set Φ consists of model homeomorphisms of the form $\varphi_{P, J, n, k, l}$. This section contains a proof of Ω-conjugacy of homeomorphisms of the class \mathcal{G} with homeomorphisms of the set Φ and auxiliary lemmas. We will also use the notation introduced in the Section 3 below.

Let us denote by \mathcal{H} the set of all homeomorphisms f satisfying the following conditions:

1. there exists an orientation-preserving homeomorphism $J: S_{g} \rightarrow S_{g}$ such that $f: M_{J} \rightarrow M_{J} ;$
2. f preserves the orientation of M_{J};
3. there exists $m \in \mathbb{N}$ such that the non-wandering set $N W(f)$ of the homeomorphism f consists of $2 m$ connected components $\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{2 m-1}$;
4. for any $i \in\{0, \ldots, 2 m-1\}$ there is a natural number k_{i} such that $f^{k_{i}}\left(\mathcal{B}_{i}\right)=$ $\mathcal{B}_{i}, f^{\tilde{k}_{i}}\left(\mathcal{B}_{i}\right) \neq \mathcal{B}_{i}$ for any natural $\tilde{k}_{i}<k_{i}$ and the map $\left.f^{k_{i}}\right|_{\mathcal{B}_{i}}$ preserves the orientation of \mathcal{B}_{i};
5. $f\left(\mathcal{B}_{i}\right)=\mathcal{B}_{j}$, where the numbers $i, j \in\{0, \ldots, 2 m-1\}$ are either even or odd at the same time.

Note that homeomorphisms of the set Φ belong to the class \mathcal{H}.
For $m \in \mathbb{N}$ we denote by \mathcal{T}_{m} the set $\mathcal{T}_{m}=\left\{\frac{i}{2 m}, i \in \mathbb{Z}\right\}$. Then $p_{J}^{-1}(N W(f))=$ $S_{g} \times \mathcal{T}_{m}$, where $f \in \mathcal{H}$.

Lemma 5.1. For any homeomorphism $f \in \mathcal{H}$ with non-wandering set consisting of $2 m$ connected components, there exist and unique correct set of numbers n, k, l and a lift $\bar{f}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ such that

$$
\bar{f}(z, r)=\left(f_{r}(z), r+\frac{l}{k}\right), \forall r \in \mathcal{T}_{n k},
$$

where $n k=m$ and $f_{r}: S_{g} \rightarrow S_{g}$ is an orientation-preserving homeomorphism given by

$$
f_{r}=\rho_{r+\frac{l}{k}} \bar{f} \rho_{r}^{-1} .
$$

Proof. Let $f: M_{J} \rightarrow M_{J}$ be a homeomorphism from the class \mathcal{H}.
Let us prove that there is a lift $\bar{f}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ of the homeomorphism f. By Statement 2.8 it sufficies to show that $\eta_{M_{J}}=\eta_{M_{J}} f_{*}$.

Consider the loop $c \in M_{J}$ which is the projection of the curve $\bar{c} \in S_{g} \times \mathbb{R}$ $\left(p_{J}(\bar{c})=c\right)$, bounded by points $\bar{c}(0)=(z, 1), \bar{c}(1)=\gamma(\bar{c}(0))=(J(z), 0)$ and intersecting each set $S_{g} \times\left\{\frac{i}{2 m}\right\}, i \in\{0, \ldots, 2 m-1\}$ at exactly one point. By construction, the curve c intersects each connected component $\mathcal{B}_{0}, \ldots, \mathcal{B}_{2 m-1}$ at exactly one point and $\eta_{M_{J}}([c])=1$. We set $C=f(c)$ and $C(0)=f(c(0))$. Since f is a homeomorphism such that $f\left(\mathcal{B}_{i}\right)=\mathcal{B}_{i^{\prime}}, i, i^{\prime} \in\{0, \ldots, 2 m-1\}$, it follows that the curve $C=f(c)$ also intersects each component of $\mathcal{B}_{0}, \ldots, \mathcal{B}_{2 m-1}$ at exactly one point. We set $\mathcal{B}_{j}=f\left(\mathcal{B}_{0}\right)$. Choosing a point $\bar{C}(0) \in p_{J}^{-1}(C(0))$ such that $\bar{C}(0) \in S_{g} \times\left\{\frac{j}{2 m}+1\right\}$ by the monodromy theorem there is a unique lift \bar{C} of the path C starting at the point $\bar{C}(0)$. Since the loop C intersects each component $\mathcal{B}_{0}, \ldots, \mathcal{B}_{2 m-1}$ at exactly one point, it follows that there are 2 cases: 1) $\left.\bar{C}(1)=\gamma^{-1}(\bar{C}(0)), 2\right) \bar{C}(1)=\gamma(\bar{C}(0))$.

Let us show that the case 1) is not realized.
Consider the case $m=1$. Then $f\left(\mathcal{B}_{0}\right)=\mathcal{B}_{0}$. Since the homeomorphism f preserves the orientation M_{J} and the orientation \mathcal{B}_{0}, it follows that the curve $C(t)$ must be parameterized in one direction with the parameterization of the curve $c(t)$ with respect to the surface \mathcal{B}_{0}. Thus $\bar{C}(1)=\gamma(\bar{C}(0))$.

Consider the case $m>1$. Let us denote by $\xi_{c}: \mathbb{S}^{1} \rightarrow c, \xi_{C}: \mathbb{S}^{1} \rightarrow C$ homeomorphisms such that $\xi_{c}\left(b_{i}\right)=\mathcal{B}_{i} \cap c, \xi_{C}\left(b_{i}\right)=\mathcal{B}_{i} \cap C$, where $i \in\{0, \ldots, 2 m-1\}$. Define the homeomorphism $\psi: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ by the formula $\psi=\xi_{C}^{-1} f \xi_{c}$. Let us prove that the homeomorphism ψ preserves orientation. Assume the converse. Let us prove that there exists $q \in\{0, \ldots, 2 m-1\}$ such that $\psi\left(b_{q}\right)=b_{q}$. Let $\mathcal{B}_{j}=f\left(\mathcal{B}_{0}\right)$. Then $\psi\left(b_{0}\right)=b_{j}$. If $j=0$, then $q=0$. Let $j \neq 0$. By the condition of the class \mathcal{H}, the number j is even. Since ψ by assumption changes the orientation of \mathbb{S}^{1} and the set $b_{0} \cup \cdots \cup b_{2 m-1}$ is invariant, it follows that the arc of the circle $\left(b_{0}, b_{j}\right)$ is mapped into itself and $\psi\left(b_{i}\right)=b_{j-i}, i \in\left\{0, \ldots, \frac{j}{2}\right\}$. Thus $\psi\left(b_{\frac{j}{2}}\right)=b_{\frac{j}{2}}$ and $q=\frac{j}{2}$.

Therefore, $f\left(\mathcal{B}_{q}\right)=\mathcal{B}_{q}$. Since ψ changes orientation, it follows that the curve $C(t)$ is parameterized in the direction opposite to the parameterization of the curve $c(t)$ with respect to the surface \mathcal{B}_{q} (see Fig. 3). Since the homeomorphism f preserves the orientation M_{J} and the orientation \mathcal{B}_{q}, then the parameterization of the curve $C(t)$ must be parameterized in one direction with the parameterization of the curve $c(t)$ with respect to the surface \mathcal{B}_{q}. We got a contradiction. Consequently, the homeomorphism ψ preserves the orientation of \mathbb{S}^{1}. Then $\bar{C}(1)=\gamma(\bar{C}(0))$.

Figure 3: Direction of increasing parameter $t \in[0,1]$ on curves c and C.

Thus $\bar{C}(1)=\gamma(\bar{C}(0))$ and $\eta_{M_{J}}\left(f_{*}([c])\right)=1$. Consequently, $\eta_{M_{J}}=\eta_{M_{J}} f_{*}$ and there is a unique lift $\bar{f}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ of the homeomorphism f such that $\bar{f}(\bar{c}(1))=\bar{C}(1)$ and

$$
\begin{equation*}
\bar{f} \gamma=\gamma \bar{f} \tag{14}
\end{equation*}
$$

Let us find the correct set of numbers n, k, l for the homeomorphism f. The case $m=1$ corresponds to the correct set of numbers $n=1, k=1$ and $l=0$. Consider the case $m>1$. Since the homeomorphism ψ is orientation preserving, it follows that it has a rational rotation number $\frac{l}{k}$, where $k \in \mathbb{N}, l \in\{0, \ldots, k-1\}$ and $(l, k)=1$ (see [7, Theorem 4.1]). From [7, Theorem 4.2] it follows that all periodic points of the homeomorphism ψ have period k. Since point b_{i} with even (odd) index i is mapped to point $b_{i^{\prime}}$ with even (odd) index i^{\prime}, it follows that $2 m$ points $b_{0}, \ldots, b_{2 m-1}$ are divided into 2 invariant sets of equal power, each of which consists of points of period k. Therefore, m is divisible by k. We set $n=\frac{m}{k}$. Thus
n, k, l is the required correct set of numbers.
Since the rotation number of ψ is equal to $\frac{l}{k}$, it follows that $\psi\left(b_{0}\right)=b_{2 n l}$, that is, $f\left(\mathcal{B}_{0}\right)=\mathcal{B}_{2 n l}$.

Let us find a formula that defines the map \bar{f} for the point $(z, r) \in S_{g} \times \mathcal{T}_{n k}$. Since $\bar{C}(1)=\gamma(\bar{C}(0))$, it follows that $\bar{C}(1) \in S_{g} \times\left\{\frac{2 n l}{2 n k}\right\}=S_{g} \times\left\{\frac{l}{k}\right\}$. Invariance of the set $p_{J}^{-1}(N W(f))=S_{g} \times \mathcal{T}_{n k}$ under \bar{f} implies that $\bar{f}\left(S_{g} \times[0,1]\right)=S_{g} \times\left[\frac{l}{k}, 1+\frac{l}{k}\right]$, where $\bar{f}\left(S_{g} \times\{0\}\right)=S_{g} \times\left\{\frac{l}{k}\right\}$. From here we get that $\bar{f}\left(S_{g} \times\left\{\frac{i}{2 n k}\right\}\right)=S_{g} \times\left\{\frac{i}{2 n k}+\frac{l}{k}\right\}$ for any $i \in\{0, \ldots, 2 n k-1\}$. Using Eq. (14) we obtain that $\bar{f}=\gamma^{m} \bar{f} \gamma^{-m}$ for any $m \in \mathbb{Z}$. Then $\bar{f}\left(S_{g} \times\{r\}\right)=\gamma^{[r]}\left(\bar{f}\left(\gamma^{-[r]}\left(S_{g} \times\{r\}\right)\right)\right)$, where $[r]$ is the integer part of the number $r \in \mathbb{R}$. Thus it is readily verified that $\bar{f}\left(S_{g} \times\{r\}\right)=S_{g} \times\left\{r+\frac{l}{k}\right\}$ for $r \in \mathcal{T}_{n k}$. Then for any $r \in \mathcal{T}_{n k}$ the homeomorphism $f_{r}: S_{g} \rightarrow S_{g}$ is correctly defined and given by the formula $f_{r}=\rho_{r+\frac{l}{k}} \bar{f} \rho_{r}^{-1}$. Thus $\bar{f}(z, r)=\left(f_{r}(z), r+\frac{l}{k}\right)$ for any $r \in \mathcal{T}_{n k}$.

It remains to prove that f_{r} preserves the orientation of S_{g}, where $r \in \mathcal{T}_{n k}$. Preserving orientation of M_{J} by f implies preserving orientation of $S_{g} \times \mathbb{R}$ by its lift \bar{f}. Since $\bar{f}\left(S_{g} \times\{r\}=f_{r}\left(S_{g}\right) \times\left\{r+\frac{l}{k}\right\}\right.$ for any $r \in \mathcal{T}_{n k}$, it follows that the homeomorphism \bar{f} preserves the orientation of \mathbb{R}. Therefore, \bar{f} preserves the orientation of S_{g}, that is, f_{r} preserves the orientation of S_{g}.

Note that in the case $f=\varphi_{P, J, n, k, l}$ the equality $f_{r}(z)=P(z)$ holds for any $r \in \mathcal{T}_{n k}$ and $\bar{f}=\bar{\varphi}_{P, J, n, k, l}$.

Lemma 5.2. Let $f \in \mathcal{H}$. Then f_{r} is isotopic to f_{0} for any $r \in \mathcal{T}_{n k}$.
Proof. Let $f \in \mathcal{H}$. Let us prove that f_{r} is isotopic to f_{0} for any $r \in \mathcal{T}_{n k}$.
Define a family of continuous maps $F_{r, t}: S_{g} \rightarrow S_{g}$ by the formula $F_{r, t}(z)=$ $\rho(\bar{f}(z, r t))$, where $t \in[0,1], r \in \mathcal{T}_{n k}$. Then $F_{r, t}$ defines a homotopy connecting the maps $F_{r, 0}=f_{0}$ and $F_{r, 1}=f_{r}$. Thus, homeomorphisms f_{0} and f_{r} are homotopic. It follows from [9, p. 5.15] that they are isotopic for any $r \in \mathcal{T}_{n k}$.

Lemma 5.3. Let $f: M^{3} \rightarrow M^{3}$ be a homeomorphism from the class \mathcal{G}. Then there exists a homeomorphism $f^{\prime} \in \mathcal{H}$ is topologically conjugate to f.

Proof. Let $f: M^{3} \rightarrow M^{3}$ be a homeomorphism from the class \mathcal{G} with nonwandering set consisting of q connected components B_{0}, \ldots, B_{q-1}.

In accordance with [2, Lemma 2.1], the set $M^{3} \backslash\left(B_{0} \cup \cdots \cup B_{q-1}\right)$ consists of q connected components V_{0}, \ldots, V_{q-1}, bounded by one connected component of an attractor and one connected component of a repeller. Therefore, $q=2 m$, where $m \in \mathbb{N}$. Without loss of generality, for $m>1$ we can assume that $c l V_{i} \cap c l V_{i-1}=$ B_{i-1}, where $i \in\{1, \ldots, 2 m-2\}$ and $c l V_{0} \cap c l V_{2 m-1}=B_{2 m-1}$.

In accordance with [2, Lemma 2.2], each connected component $V_{i}, i \in$ $\{0, \ldots, 2 m-1\}$ of the set $M^{3} \backslash\left(B_{0} \cup \cdots \cup B_{2 m-1}\right)$ is homeomorphic to $S_{g} \times[0,1]$. It follows from [5, Lemma 2] that there exists a continuous surjective map $H: S_{g} \times[0,1] \rightarrow M^{3}$ (see Fig. 4p such that maps $\left.H\right|_{S_{g} \times\left\{\frac{i}{m}\right\}}: S_{g} \times\left\{\frac{i}{m}\right\} \rightarrow B_{i}$ $(i \in\{0, \ldots, 2 m-1\}),\left.H\right|_{S_{g} \times\{1\}}: S_{g} \times\{1\} \rightarrow B_{0}$ and $\left.H\right|_{S_{g} \times(0,1)}: S_{g} \times(0,1) \rightarrow M^{3} \backslash B_{0}$ are homeomorphisms.

Figure 4: Action of the homeomorphism H in the case $m=2$.
Let $J(z)=\rho_{0}\left(\left(\left.H\right|_{S_{g} \times\{0\}}\right)^{-1}\left(\left.H\right|_{S_{g} \times\{1\}}\left(\rho_{1}^{-1}(z)\right)\right)\right)$ (see Fig. 5).
Denote by $[r]$ the integer part of the number $r \in \mathbb{R}$. Define a continuous map $h: S_{g} \times \mathbb{R} \rightarrow M^{3}$ by the formula $h(z, r)=H\left(\gamma^{[r]}(z, r)\right)$.

Let the homeomorphism $\xi: M^{3} \rightarrow M_{J}$ be given by the formula $\xi=p_{J}\left(h^{-1}(w)\right)$. Set $f^{\prime}=\xi f \xi^{-1}$.

Let us prove that the homeomorphism f^{\prime} satisfies all 5 conditions of the class \mathcal{H}. Since M^{3} is orientable and homeomorphic to M_{J}, it follows that J preserves

Figure 5: Homeomorphism $J: S_{g} \rightarrow S_{g}$.
the orientation of S_{g} and condition 1 is satisfied. Since f preserves the orientation of M^{3}, it follows that f^{\prime} preserves the orientation of M_{J} and condition 2 is satisfied. Since $\xi(N W(f))=N W\left(f^{\prime}\right)$ and $h^{-1}(N W(f))=S_{g} \times \mathcal{T}_{n k}$, it follows that $N W\left(f^{\prime}\right)=p_{J}\left(h^{-1}(N W(f))\right)=p_{J}\left(S_{g} \times \mathcal{T}_{n k}\right)=\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{2 m-1}$. Therefore, condition 3 is satisfied. Since for any $B_{i}(i \in\{0, \ldots, 2 m-1\})$ there is a natural number k_{i} such that $f^{k_{i}}\left(B_{i}\right)=B_{i}, f^{\tilde{k}_{i}}\left(B_{i}\right) \neq B_{i}$ for any natural $\tilde{k}_{i}<k_{i}$ and the map $\left.f^{k_{i}}\right|_{B_{i}}$ preserves the orientation of B_{i}, it follows that the same is true for the connected component \mathcal{B}_{i} of the non-wandering set $N W\left(f^{\prime}\right)$, that is, condition 4 is satisfied. The connected components of the non-wandering set $N W(f)$ of the homeomorphism f are numbered in such a way that if B_{i} is the connected component of an attractor of the homeomorphism f, then $B_{i+1}(\bmod 2 m)$ is the connected component of a repeller of the homeomorphism f. Therefore, $f\left(B_{i}\right)=B_{j}$, where $i, j \in\{0, \ldots, 2 m-1\}$ are either even or odd at the same time. Since $\xi\left(B_{i}\right)=\mathcal{B}_{i}$ $(i \in\{0, \ldots, 2 m-1\})$, it follows that $f^{\prime}\left(\mathcal{B}_{i}\right)=\mathcal{B}_{j}$, where $i, j \in\{0, \ldots, 2 m-1\}$ are simultaneously either even or odd, that is, condition 5 is satisfied. Thus, $f^{\prime} \in \mathcal{H}$.

Everywhere below in this section we mean by \bar{f}, f_{r} and n, k, l the lift of the homeomorphism $f \in \mathcal{H}$, the homeomorphism $f_{r}: S_{g} \rightarrow S_{g}, r \in \mathcal{T}_{n k}$, and the correct set of numbers n, k, l from Lemma 5.1 .

Lemma 5.4. Let $f \in \mathcal{H} \cap \mathcal{G}$. Then f_{0} is isotopic either to some periodic homeomorphism or to some pseudo-Anosov homeomorphism.

Proof. Let $f \in \mathcal{H} \cap \mathcal{G}$.

Let us prove that f_{0} is isotopic either to some periodic homeomorphism or to some pseudo-Anosov homeomorphism.

Since \bar{f} is a lift of a homeomorphism f, it follows that

$$
\begin{equation*}
p_{J} \bar{f}=f p_{J} \tag{15}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f(w)=p_{J}\left(\bar{f}\left(p_{J}^{-1}(w)\right)\right) . \tag{16}
\end{equation*}
$$

For $r \in \mathcal{T}_{n k}$ denote by $\phi_{r}: S_{g} \rightarrow S_{g}$ the homeomorphism given by the formula

$$
\begin{equation*}
\phi_{r}=J^{l} f_{r+\frac{(k-1) l}{k}} \cdots f_{r+\frac{l}{k}} f_{r} \tag{17}
\end{equation*}
$$

Then it is readily verified that

$$
\begin{equation*}
\gamma^{l}\left(\left.\bar{f}^{k}\right|_{S_{g} \times \mathcal{T}_{n k}}(z, r)\right)=\left(\phi_{r}(z), r\right), \quad \text { where } r \in \mathcal{T}_{n k} \tag{18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\phi_{r}=\rho_{r} \gamma^{l} \bar{f}^{k} \rho_{r}^{-1} . \tag{19}
\end{equation*}
$$

Thus, $\left.\quad f^{k}\right|_{\mathcal{B}_{0}}(w) \stackrel{16}{=} p_{J}\left(\bar{f}^{k}\left(p_{J}^{-1}(w)\right)\right) \stackrel{10}{=} p_{J}\left(\gamma^{l}\left(\bar{f}^{k}\left(p_{J}^{-1}(w)\right)\right)\right) \stackrel{18}{=}$ $p_{J, 0}\left(\gamma^{l}\left(\bar{f}^{k}\left(p_{J, 0}^{-1}(w)\right)\right)\right) \stackrel{\text { 199 }}{=}$ $p_{J, 0}\left(\rho_{0}^{-1}\left(\phi_{0}\left(\rho_{0}\left(p_{J, 0}^{-1}(w)\right)\right)\right)\right)$, that is,

$$
\begin{equation*}
\left.f^{k}\right|_{\mathcal{B}_{0}}=p_{J, 0} \rho_{0}^{-1} \phi_{0} \rho_{0} p_{J, 0}^{-1} . \tag{20}
\end{equation*}
$$

Therefore, the homeomorphism ϕ_{0} is topologically conjugate to the homeomorphism $\left.f^{k}\right|_{\mathcal{B}_{0}}$ via the map $p_{J, 0} \rho_{0}^{-1}$. Since the homeomorphism $\left.f^{k}\right|_{\mathcal{B}_{0}}$ is topologically conjugate to the pseudo-Anosov homeomorphism, it follows that the homeomorphism ϕ_{0} is also a pseudo-Anosov map (see Statement 2.4.

Eq. (14) implies that $\left(J\left(f_{r}(z)\right), r+\frac{l}{k}-1\right)=\left(f_{r-1}(J(z)), r-1+\frac{l}{k}\right)$ and

$$
\begin{equation*}
J f_{r}=f_{r-1} J \text { for any } r \in \mathcal{T}_{n k} . \tag{21}
\end{equation*}
$$

Therefore, $f_{0} J^{l}=J^{l} f_{l}$. Then $f_{0}\left(J^{l} f_{\frac{(k-1) l}{k}} \cdots f_{\frac{l}{k}} f_{0}\right)=\left(J^{l} f_{l} f_{\frac{(k-1) l}{k}} \cdots f_{\frac{l}{k}}\right) f_{0}$, that is,

$$
\begin{equation*}
\phi_{0}=f_{0}^{-1} \phi_{\frac{l}{k}} f_{0} . \tag{22}
\end{equation*}
$$

It follows from Eq. (22) and Statement 2.4 that $\phi_{\frac{l}{k}}$ is also a pseudo-Anosov homeomorphism.

Since f_{r} is isotopic to f_{0} for any $r \in \mathcal{T}_{n k}$ by Lemma 5.2, it follows that $J^{l} f_{\frac{(k-1) l}{k}} \cdots f_{\frac{l}{k}} f_{0}$ is isotopic to $J^{l} f_{l} f_{\frac{(k-1) l}{k}} \cdots f_{\frac{l}{k}}$, that is, ϕ_{0} is isotopic to $\phi_{\frac{l}{k}}$. Then, according to Statement 2.3 , there exists an isotopic to the identity homeomorphism $h: S_{g} \rightarrow S_{g}$ such that

$$
\begin{equation*}
\phi_{0}=h \phi_{\frac{l}{k}} h^{-1} . \tag{23}
\end{equation*}
$$

Putting Eq. (23) in Eq. (22), we obtain that $\phi_{0}=f_{0}^{-1}\left(h^{-1} \phi_{0} h\right) f_{0}$, that is, $\left(h f_{0}\right) \phi_{0}=\phi_{0}\left(h f_{0}\right)$.

Since $\phi_{0} \in \mathcal{P}$ and $h f_{0} \in Z\left(\phi_{0}\right)$, it follows that the homeomorphism $h f_{0}$ is either periodic or pseudo-Anosov by Theorem 1. Isotopicity to the identity of h implies that f_{0} is isotopic either to some periodic homeomorphism or to some pseudo-Anosov homeomorphism.

Lemma 5.5. Let $f \in \mathcal{H} \cap \mathcal{G}$ and f_{0} be isotopic to some periodic homeomorphism. Then there exists a homeomorphism $f^{\prime} \in \mathcal{H}$ such that f^{\prime} is topologically conjugate to f and f_{0}^{\prime} is isotopic to some pseudo-Anosov homeomorphism.

Proof. Let $f: M_{J} \rightarrow M_{J}$ be a homeomorphism from the class $\mathcal{H} \cap \mathcal{G}$ with nonwandering set consisting of $2 n k$ connected components of period k, and f_{0} is isotopic to some periodic homeomorphism.

Let us show that $k \neq 1$. Assume the converse. Then $l=0$ and the homeomorphism ϕ_{0} has the form $\phi_{0}=f_{0}$ (see Eq. (17)). According to Eq. (20), the homeomorphism ϕ_{0} is topologically conjugate to the pseudo-Anosov homeomorphism $\left.f^{k}\right|_{\mathcal{B}_{0}}$. We come to contradiction with the fact that $k=1$. Therefore, $k>1$.

Define the homeomorphisms $\bar{h}, \gamma^{\prime}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ by the formulas $\bar{h}(z, r)=$ $(z,-r), \gamma^{\prime}(z, r)=\left(J^{-1}(z), r-1\right)$. Recall that $\gamma(z, r)=(J(z), r-1)$. Since $(J(z),-(r-1))=(J(z),(-r)+1)$, it follows that $\bar{h} \gamma=\left(\gamma^{\prime}\right)^{-1} \bar{h}$. Therefore, the homeomorphism \bar{h} projects into the homeomorphism $h: M_{J} \rightarrow M_{J^{-1}}$ (see

Statement 2.8), given by the formula $h=p_{J^{-1}}\left(\bar{h}\left(p_{J}^{-1}(w)\right)\right)$, where $p_{J^{-1}}: S_{g} \times \mathbb{R} \rightarrow$ $M_{J^{-1}}$ is a natural projection.

Set $f^{\prime}=h f h^{-1}$. Recall that for a homeomorphism $f \in \mathcal{H}$ there is a unique lift $\bar{f}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ such that $\bar{f}_{S_{g} \times \mathcal{T}_{n k}}(z, r)=\left(f_{r}(z), r+\frac{l}{k}\right)$, where n, k, l is the correct set of numbers. Consider the lift \bar{f}^{\prime} of the homeomorphism f^{\prime} given by the formula $\bar{f}^{\prime}=\gamma^{-1} \bar{h} \bar{f} \bar{h}^{-1}$. Then for any $r \in \mathcal{T}_{n k}$ we have $\bar{f}^{\prime}(z, r)=\left(J\left(f_{r}(z)\right), r+\frac{k-l}{k}\right)$. Since $k \neq 1$, it follows that $l \in\{1, \ldots, k-1\}$. Therefore, $(k-l) \in\{1, \ldots, k-1\}$ and coprime to k. Thus, $n, k,(k-l)$ is the correct set of numbers and $f_{r}^{\prime}=J f_{r}$.

Let us prove that the homeomorphism f_{0}^{\prime} is isotopic to some pseudo-Anosov homeomorphism. By Lemma 5.4 the homeomorphism f_{0}^{\prime} is isotopic either to some periodic map or to some pseudo-Anosov map. Suppose that the homeomorphism $f_{0}^{\prime}=J f_{0}$ is isotopic to a periodic homeomorphism. Then the homeomorphism $J=f_{0}^{\prime} f_{0}^{-1}$ is also isotopic to a periodic homeomorphism. Since J and f_{0} are isotopic to periodic homeomorphisms and, according to Lemma 5.2, f_{0} is isotopic to f_{r} for any $r \in \mathcal{T}_{n k}$, it follows tha the homeomorphism $\phi_{0}=J^{l} f_{\frac{(k-1) l}{k}} \cdots f_{\frac{l}{k}} f_{0}$ is also isotopic to periodic homeomorphism. We come to contradiction with the fact that ϕ_{0} is topologically conjugate to the pseudo-Anosov homeomorphism $\left.f^{k}\right|_{\mathcal{B}_{0}}$ (see Eq. (20). Consequently, the homeomorphism f_{0}^{\prime} is isotopic to the pseudo-Anosov homeomorphism. Thus, $f^{\prime} \in \mathcal{H}$ is topologically conjugate to f and f_{0}^{\prime} is isotopic to some pseudo-Anosov homeomorphism.

Lemma 5.6. Let $f \in \mathcal{H} \cap \mathcal{G}$ and f_{0} be isotopic to some pseudo-Anosov homeomorphism P. Then there is a homeomorphism $f^{\prime}: M_{J^{\prime}} \rightarrow M_{J^{\prime}}$ from the class \mathcal{H} such that f^{\prime} is topologically conjugate to $f, J^{\prime} P=P J^{\prime}$ and f_{0}^{\prime} is isotopic to P.

Proof. Let $f: M_{J} \rightarrow M_{J}$ be a homeomorphism from the class $\mathcal{H} \cap \mathcal{G}$ and P be a pseudo-Anosov homeomorphism of the surface S_{g}, isotopic to f_{0}.

Let us construct a homeomorphism $J^{\prime}: S_{g} \rightarrow S_{g}$. Set

$$
\begin{equation*}
P^{\prime}=J^{-1} P J \tag{24}
\end{equation*}
$$

Denote by F_{t} the isotopy connecting the homeomorphisms $F_{0}=f_{0}$ and $F_{1}=P$. Then the family of maps $J^{-1} F_{t} J$ defines an isotopy connecting the maps $J^{-1} F_{0} J=$ $J^{-1} f_{0} J=f_{1}$ and $J^{-1} F_{1} J=J^{-1} P J=P^{\prime}$. Since f_{0} is isotopic to f_{1} (see Lemma
5.2) and to P, f_{1} is isotopic to P^{\prime}, it follows that P is isotopic to P^{\prime}. Homeomorphism P is topologically conjugate to the pseudo-Anosov homeomorphism P^{\prime}, P is isotopic to P^{\prime}. Then by Statement 2.3 there exists an isotopic to the identity homeomorphism ξ such that

$$
\begin{equation*}
P^{\prime}=\xi P \xi^{-1} . \tag{25}
\end{equation*}
$$

Set

$$
\begin{equation*}
J^{\prime}=J \xi, \gamma^{\prime}=\left(J^{\prime}(z), r-1\right) \tag{26}
\end{equation*}
$$

Let us construct a homeomorphism $Y: M_{J} \rightarrow M_{J^{\prime}}$. Denote by ξ_{t} the isotopy connecting the homeomorphism $\xi_{0}=\xi$ and the identity map $\xi_{1}=i d$. Define the homeomorphism $y_{r}: S_{g} \rightarrow S_{g}$ by the formula

$$
y_{r}= \begin{cases}\xi_{6 n k(1-r)} & \text { for } r \in\left[1-\frac{1}{6 n k}, 1\right] ; \\ i d & \text { for } r \in\left[0.1-\frac{1}{6 n k}\right]\end{cases}
$$

Define the homeomorphism $y: S_{g} \times[0,1] \rightarrow S_{g} \times[0,1]$ by the formula $y(z, r)=$ $\left(y_{r}(z), r\right)$. Note that

$$
\begin{equation*}
y(z, 0)=(z, 0) \text { and } y\left(z, \frac{l}{k}\right)=\left(z, \frac{l}{k}\right) . \tag{27}
\end{equation*}
$$

Denote by $[r]$ the integer part of the number $r \in \mathbb{R}$. Define the homeomorphism $\bar{Y}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ by the formula

$$
\begin{equation*}
\bar{Y}(z, r)=\left(\gamma^{\prime}\right)^{-[r]}\left(y\left(\gamma^{[r]}(z, r)\right)\right) . \tag{28}
\end{equation*}
$$

Since $\gamma^{\prime} \bar{Y}=\bar{Y} \gamma$, it follows that the homeomorphism \bar{Y} projects into the homeomorphism $Y: M_{J} \rightarrow M_{J^{\prime}}$ (see Statement 2.8), given by the formula $Y=$ $p_{J^{\prime}}\left(\bar{Y}\left(p_{J}^{-1}(w)\right)\right)$, where $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}, p_{J^{\prime}}: S_{g} \times \mathbb{R} \rightarrow M_{J^{\prime}}$ are natural projections.

Set $f^{\prime}=Y f Y^{-1}: M_{J^{\prime}} \rightarrow M_{J^{\prime}}$. By construction $f^{\prime} \in \mathcal{H}$. Let us prove that f_{0}^{\prime} is isotopic to P. Consider the lift

$$
\begin{equation*}
\bar{f}^{\prime}=\bar{Y} \bar{f} \bar{Y}^{-1} \tag{29}
\end{equation*}
$$

of the homeomorphism f. It is readily verified that $\bar{f}^{\prime}(z, r)=\left(f_{r}^{\prime}(z), r+\frac{l}{k}\right)$, where $r \in \mathcal{T}_{n k}$ and f_{r}^{\prime} is a homeomorphism of S_{g}. Let us show that $f_{0}^{\prime}=f_{0}$. Indeed, $\bar{f}^{\prime}(z, 0) \stackrel{\sqrt[29]{=}}{=} \bar{Y}\left(\bar{f}\left(\bar{Y}^{-1}(z, 0)\right)\right) \stackrel{\sqrt[28]{=}}{=} \bar{Y}\left(\bar{f}\left(y^{-1}(z, 0)\right)\right) \stackrel{\sqrt[27]{=}}{=} \bar{f}(\bar{f}(z, 0))=\bar{Y}\left(f_{0}(z), \frac{l}{k}\right) \stackrel{28}{=}$ $y_{\frac{l}{k}}\left(f_{0}(z), \frac{l}{k}\right) \stackrel{(277}{=}\left(f_{0}(z), \frac{l}{k}\right)$. Thus, f_{0}^{\prime} is also isotopic to P.

Let us prove that any homeomorphism from the class \mathcal{G} is ambiently Ω conjugate to a homeomorphism from the class Φ.

Proof. Let $f \in \mathcal{G}$.
According to Lemma 5.3, wihout loss of generality, we may assume that f is defined on $M_{J}=S_{g} \times \mathbb{R} / \Gamma$ with natural projection $p_{J}: S_{g} \times \mathbb{R} \rightarrow M_{J}$, where J is a orientation-preserving homeomorphism of the surface S_{g} and $\Gamma=\left\{\gamma^{i} \mid i \in \mathbb{Z}\right\}$ is a group of degrees of the homeomorphism $\gamma: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ given by the formula $\gamma(z, r)=(J(z), r-1)$. It follows from Lemma 5.1 that the non-wandering set of the homeomorphism f consists of $2 n k$ connected components $\mathcal{B}_{0}, \ldots, \mathcal{B}_{2 n k-1}$ and there is a lift \bar{f} of the homeomorphism f such that $\bar{f}(z, r)=\left(f_{r}(z), r+\frac{l}{k}\right)$ for any $r \in \mathcal{T}_{n k}$, where $f_{r}: S_{g} \rightarrow S_{g}$ is an orientation preserving homeomorphism of the surface and n, k, l is the correct set of numbers.

According to Lemmas 5.2 5.4 5.5 5.5.6, without loss of generality we may assume that f_{r} is isotopic to some orientation-preserving pseudo-Anosov homeomorphism P for any $r \in \mathcal{T}_{n k}$ and $J \in Z(P)$. Since J preserves the orientation of S_{g}, it follows that the homeomorphism $J^{l} P^{k}$ also preserves the orientation of S_{g}.

Let us prove that the homeomorphism $J^{l} P^{k}$ is a pseudo-Anosov homeomorphism. Using Eqs. (18) and (19), we obtain

$$
\begin{equation*}
\left.f^{k}\right|_{p_{J}\left(S_{g} \times\{r\}\right)}=p_{J, r} \rho_{r}^{-1} \phi_{r} \rho_{r} p_{J, r}^{-1}, r \in \mathcal{T}_{r k}, \tag{30}
\end{equation*}
$$

that is, the homeomorphism $\phi_{r}\left(r \in \mathcal{T}_{n k}\right)$ is topologically conjugate to the pseudo-Anosov homeomorphism $\left.f^{k}\right|_{p_{J}\left(S_{g} \times\{r\}\right)}$. Since by Lemma 5.2 the homeomorphism f_{r} for any $r \in \mathcal{T}_{n k}$ is isotopic to P, it follows that the homeomorphism $\phi_{r}=J^{l} f_{r+\frac{(k-1) l}{k}} \cdots f_{r+\frac{l}{k}} f_{r}$ is isotopic to $J^{l} P^{k}$, that is, the homeomorphism $J^{l} P^{k}$ is isotopic to the pseudo-Anosov homeomorphism. According to Theorem 11, we obtain that the homeomorphism $J^{l} P^{k}$ is a pseudo-Anosov map.

Note that homeomorphisms $J^{l} P^{k}$ and ϕ_{r} are isotopic for any $r \in \mathcal{T}_{n k}$ and are pseudo-Anosov homeomorphisms. Then, according to Statement 2.3, maps ϕ_{r} and $J^{l} P^{k}$ are topologically conjugate for any $r \in T$ via some isotopic to the identity homeomorphism. Denote such a homeomorphism by h_{r}. Then for any $r \in \mathcal{T}_{n k}$ we obtain that

$$
\begin{equation*}
J^{l} P^{k}=h_{r}\left(\phi_{r}\right) h_{r}^{-1} \tag{31}
\end{equation*}
$$

Thus, each homeomorphism $f \in \mathcal{G}$ corresponds to the correct set of numbers n, k, l and orientation-preserving homeomorphisms $P: S_{g} \rightarrow S_{g}, J: S_{g} \rightarrow S_{g}$ such that the homeomorphisms $P, J^{l} P^{k}$ are pseudo-Anosov and $J \in Z(P)$. Therefore, there is correctly defined model map $\varphi_{P, J, n, k, l} \in \Phi$.

Let us prove that the homeomorphism f is ambiently Ω-conjugate to $\varphi_{P, J, n, k, l}$. We construct a homeomorphism $f^{\prime}: M_{J} \rightarrow M_{J}$, topologically conjugate to f and coinciding with the homeomorphism $\varphi_{P, J, n, k, l}$ on the non-wandering set $\left(\left.f^{\prime}\right|_{N W\left(f^{\prime}\right)}=\left.\varphi_{P, J, n, k, l}\right|_{N W\left(\varphi_{P, J, n, k, l}\right)}\right)$.

We divide the construction into steps.
Step 1. Construct a homeomorphism $x: S_{g} \times U \rightarrow S_{g} \times U$, where $U=$ $\bigcup_{j \in\{0, \ldots, k-1\}} U_{j}, U_{j}=\left[-\frac{1}{4 n k}-j \frac{l}{k}, \frac{1}{k}-\frac{1}{4 n k}-j \frac{l}{k}\right)$.

Let $T=\left\{0, \frac{1}{2 n k}, \ldots, \frac{2 n-1}{2 n k}\right\}$. Note that $T=\mathcal{T}_{n k} \cap U_{0}$ and $r \in \mathcal{T}_{n k} \cap U_{j}$ has the form $r=i-j \frac{l}{k}$, where $j \in\{0, \ldots, k-1\}$ and the number $i \in T$ is uniquely determined. For $i \in T$ and $j \in\{0, \ldots, k-1\}$ we define the homeomorphism $\xi_{i, j}: S_{g} \rightarrow S_{g}$ by the formula

$$
\begin{equation*}
\xi_{i, j}=P^{-j} h_{i} \underbrace{f_{i-j \frac{l}{k}+(j-1) \frac{l}{k}} \cdots f_{i-j \frac{l}{k}}}_{j \text { maps }} . \tag{32}
\end{equation*}
$$

Since the homeomorphism $f_{i-j \frac{l}{k}+(j-1) \frac{l}{k}} \cdots f_{i-j \frac{l}{k}+\frac{l}{k}} f_{i-j \frac{l}{k}}$ is isotopic to P^{j} for $j \in$ $\{1, \ldots, k-1\}$ and the homeomorphism h_{i} is isotopic to the identity, it follows that the homeomorphism $\xi_{i, j}$ is isotopic to the identity for any $j \in\{0, \ldots, k-1\}$. Let $\xi_{i, j, t}$ denote the isotopy connecting the homeomorphism $\xi_{i, j, 0}=\xi_{i, j}$ and the identity map $\xi_{i, j, 1}=i d$.

For $r \in U$ we define the homeomorphism $x_{r}: S_{g} \rightarrow S_{g}$ by the formula

$$
x_{r}= \begin{cases}\xi_{i, j, 6 n k\left|r-\left(i-j \frac{l}{k}\right)\right|} & \text { for }\left|r-\left(i-j \frac{l}{k}\right)\right| \leq \frac{1}{6 n k} \\ i d & \text { for others } r \in U\end{cases}
$$

Define the homeomorphism $x: S_{g} \times U \rightarrow S_{g} \times U$ by the formula

$$
x(z, r)=\left(x_{r}(z), r\right) .
$$

Note that

$$
\begin{equation*}
x\left(z, i-j \frac{l}{k}\right)=\left(\xi_{i, j}(z), i-j \frac{l}{k}\right) . \tag{33}
\end{equation*}
$$

Step 2. Let us extend the homeomorphism $x: S_{g} \times U \rightarrow S_{g} \times U$ to the homeomorphism $\bar{X}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$.

Let us prove that for any point $r \in \mathbb{R}$ there is a unique integer $m \in \mathbb{Z}$ such that $(r-m) \in U$.

Divide the half-interval $\left[-\frac{1}{4 n k}, 1-\frac{1}{4 n k}\right)$ into k half-intervals: $\left[-\frac{1}{4 n k}, 1-\frac{1}{4 n k}\right)=$ $\left[-\frac{1}{4 n k}, \frac{1}{k}-\frac{1}{4 n k}\right) \cup\left[-\frac{1}{4 n k}+\frac{1}{k}, \frac{2}{k}-\frac{1}{4 n k}\right) \cup \cdots \cup\left[-\frac{1}{4 n k}+\frac{k-1}{k}, 1-\frac{1}{4 n k}\right)$. Obviously, for any $r \in \mathbb{R}$ there is a unique number $a \in \mathbb{Z}$ such that $r-a \in\left[-\frac{1}{4 n k}, 1-\frac{1}{4 n k}\right)$. Let $r-a \in$ $\left[-\frac{1}{4 n k}+\frac{j}{k}, \frac{j+1}{k}-\frac{1}{4 n k}\right)$, where $j \in\{0, \ldots, k-1\}$. Since j runs through the complete system of residues $\{0,1, \ldots, k-1\}$ modulo k and l is coprime with k, it follows that $(-j l)$ also runs through a complete system of residues $\{0,-l, \ldots,-l(k-1)\}$ modulo k [10, page 46]. Consequently, there are integers $i \in\{0,-l, \ldots,-l(k-1)\}$ and b such that $j+b k=i$. Then $(r-a+b) \in\left[-\frac{1}{4 n k}+\frac{j+b k}{k}, \frac{j+1+b k}{k}-\frac{1}{4 n k}\right)=$ $\left[-\frac{1}{4 n k}+\frac{i}{k}, \frac{1}{k}+\frac{i}{k}-\frac{1}{4 n k}\right) \subset U$. Thus, $m=a-b$ is the required integer such that $(r-m) \in U$.

Let $\varrho(r)$ denotes an integer $\varrho(r) \in \mathbb{Z}$ such that $(r-\varrho(r)) \in U$. Define the $\operatorname{map} \bar{X}: S_{g} \times \mathbb{R} \rightarrow S_{g} \times \mathbb{R}$ by the formula $\bar{X}(z, r)=\gamma^{-\varrho(r)}\left(x\left(\gamma^{\varrho(r)}(z, r)\right)\right)$ for $(z, r) \in S_{g} \times \mathbb{R}$. Then $\bar{X} \gamma=\gamma \bar{X}$.

Step 3. Construct a homeomorphism $f^{\prime}: M_{J} \rightarrow M_{J}$.
Let us set $\bar{f}^{\prime}=\bar{X} \bar{f} \bar{X}^{-1}$. Since $\bar{X} \gamma=\gamma \bar{X}$ and $\bar{f} \gamma=\gamma \bar{f}$, it follows that $\bar{f}^{\prime} \gamma=\gamma \bar{f}^{\prime}$ and homeomorphisms \bar{X} and \bar{f}^{\prime} project into homeomorphisms $f^{\prime}: M_{J} \rightarrow M_{J}$, $X: M_{J} \rightarrow M_{J}\left(\right.$ see Statement 2.8), given by the formulas $f^{\prime}=p_{J}\left(\bar{f}^{\prime}\left(p_{J}^{-1}(w)\right)\right)$, $X=p_{J}\left(\bar{X}\left(p_{J}^{-1}((w))\right)\right.$ and $f^{\prime}=X f X^{-1}$.

Let us prove that $\left.\bar{f}^{\prime}\right|_{S_{g} \times \mathcal{T}_{n k}}=\left.\bar{\varphi}_{P, J, n, k, l}\right|_{S_{g} \times \mathcal{T}_{n k}}$. Since $\bar{X}\left(S_{g} \times\{r\}\right)=S_{g} \times\{r\}$ and $\bar{f}\left(S_{g} \times\{r\}\right)=S_{g} \times\left\{r+\frac{l}{k}\right\}$ for any $r \in \mathcal{T}_{n k}$, it follows that $\bar{f}^{\prime}\left(S_{g} \times\{r\}\right)=$ $\bar{X}\left(\bar{f}\left(\bar{X}^{-1}\left(S_{g} \times\{r\}\right)\right)\right)=S_{g} \times\left\{r+\frac{l}{k}\right\}$. Then for any $r \in \mathcal{T}_{n k}$ the homeomorphisms $f_{r}^{\prime}: S_{g} \rightarrow S_{g}, X_{r}: S_{g} \rightarrow S_{g}$ are correctly defined by $f_{r}^{\prime}=\rho_{r+\frac{l}{k}} \bar{f}^{\prime} \rho_{r}^{-1}, X_{r}=$ $\rho_{r+\frac{l}{k}} \bar{X} \rho_{r}^{-1}$ and

$$
\begin{equation*}
f_{r}^{\prime}=X_{r+\frac{l}{k}} f_{r} X_{r}^{-1} . \tag{34}
\end{equation*}
$$

Then

$$
\begin{equation*}
X_{r}=J^{-m(r)} x_{r} J^{m(r)} \tag{35}
\end{equation*}
$$

By construction, $\bar{\varphi}_{P, J, n, k, l}(z, r)=\left(P(z), r+\frac{l}{k}\right)$ and $\bar{f}^{\prime}(z, r)=\left(f^{\prime}{ }_{r}(z), r+\frac{l}{k}\right)$ for any $r \in \mathcal{T}_{n k}$.

Let us prove that $f^{\prime}{ }_{r}=P$ for any $r \in \mathcal{T}_{n k}$. Let us represent $r \in \mathcal{T}_{n k}$ in the form $r=i-j \frac{l}{k}+m$, where $i \in T, j \in\{0, \ldots, k-1\}$ and $m \in \mathbb{Z}$.

Let $k=1$. Then $f^{\prime}{ }_{r}=f^{\prime}{ }_{i+m} \stackrel{\sqrt[34]{ }}{=} X_{i+m} f_{i+m} X_{i+m}^{-1}$ $J^{-m} x_{i} J^{m} f_{i+m} J^{-m} x_{i}^{-1} J^{m} \stackrel{\text { (33) }}{=}$
$J^{-m} \xi_{i, 0} J^{m} f_{i+m} J^{-m} \xi_{i, 0}^{-1} J^{m} \stackrel{(21)}{=} J^{-m} \xi_{i, 0} f_{i} \xi_{i, 0}^{-1} J^{m} \stackrel{\text { 322 }}{=} J^{-m} h_{i} f_{i} h_{i}^{-1} J^{m}$ $J^{-m} h_{i} \phi_{i} h_{i}^{-1} J^{m} \stackrel{\text { 311 }}{=}$
$J^{-m} P J^{m}=P$.
Let $k>1$. We consider the cases 1) $j \geq 1$ and 2) $j=0$ separately.

1) If $j \geq 1$, then $j-1 \in\{0, \ldots, k-2\}$ and the homeomorphism $\xi_{i, j-1}$ is correctly defined. We obtain that $f_{r}^{\prime}=f^{\prime}{ }_{i-j \frac{l}{k}+m} \stackrel{(34)}{=} X_{i-(j-1) \frac{l}{k}+m} f_{i-j \frac{l}{k}+m} X_{i-j \frac{l}{k}+m}^{-1} \stackrel{35}{=}$ $J^{-m} x_{i-(j-1) \frac{l}{k}} J^{m} f_{i-j \frac{l}{k}+m} J^{-m} x_{i-j \frac{l}{k}}^{-1} J^{m}$ $\stackrel{(33)}{=} J^{-m} \xi_{i, j-1} J^{m} f_{i-j \frac{l}{k}+m} J^{-m} \xi_{i, j}^{-1} J^{m} \stackrel{(21)}{=} J^{-m} \xi_{i, j-1} f_{i-j \frac{l}{k}} \xi_{i, j}^{-1} J^{m} \stackrel{(32)}{=}$ $J^{-m} P^{-j+1} h_{i} f_{i-(j-1) \frac{l}{k}+(j-2) \frac{l}{k}} \ldots f_{i-(j-1) \frac{l}{k}} f_{i-j \frac{l}{k}} f_{i-j \frac{l}{k}}^{-1} \ldots f_{i-j \frac{l}{k}+(j-1) \frac{l}{k}}^{-1} h_{i}^{-1} P^{j} J^{m}=$ $J^{-m} P^{-j+1} h_{i} h_{i}^{-1} P^{j} J^{m}=P$.
2) If $j=0$, then $r+\frac{l}{k}=i+\frac{l}{k}+m=i-(k-1) \frac{l}{k}+(m+l)$. We obtain that $f^{\prime}{ }_{r}=f^{\prime}{ }_{i+m} \stackrel{\sqrt{34}}{=} X_{i-(k-1) \frac{l}{k}+(m+l)} f_{i+m} X_{i+m}^{-1} \stackrel{\sqrt{35}}{=} J^{-m-l} \xi_{i, k-1} J^{m+l} f_{i+m} J^{-m} \xi_{i, 0}^{-1} J^{m} \stackrel{\text { 21 }}{=}$ $J^{-m-l} \xi_{i, k-1} J^{l} f_{i} \xi_{i, 0}^{-1} J^{m} \stackrel{(32)}{=}$
$J^{-m-l} P^{-k+1} h_{i} f_{i-(k-1) \frac{l}{k}+(k-2) \frac{l}{k}} \ldots f_{i-(k-1) \frac{l}{k}} J^{l} f_{i} h_{i}^{-1} J^{m}$
$\stackrel{\text { (21) }}{=} J^{-m-l} P^{-k+1} h_{i} J^{l} f_{i+(k-1) \frac{l}{k}} \ldots f_{i-\frac{l}{k}} f_{i} h_{i}^{-1} J^{m} \stackrel{\sqrt{17)}}{=} J^{-m-l} P^{-k+1} h_{i} \phi_{i} h_{i}^{-1} J^{m}$
$\stackrel{311}{=} J^{-m-l} P^{-k+1} J^{l} P^{k} J^{m}=P$.

We obtain that $\bar{f}^{\prime}\left(p_{J}^{-1}\left(N W\left(f^{\prime}\right)\right)=\bar{\varphi}_{P, J, n, k, l}\left(p_{J}^{-1}\left(\varphi_{P, J, n, k, l}\right)\right.\right.$.
Consequently, $\left.f^{\prime}\right|_{N W\left(f^{\prime}\right)}=\left.\varphi_{P, J, n, k, l}\right|_{N W\left(\varphi_{P, J, n, k, l)}\right)}$ and the homeomorphism f is ambiently Ω-conjugate to the homeomorphism $\varphi_{P, J, n, k, l}$ via the map X.

FUNDING

The work is supported by the Russian Science Foundation under grant 22-1100027 except for the results of Section 3 which was supported by the Laboratory of Dynamical Systems and Applications NRU HSE, grant of the Ministry of science and higher education of the RF, ag. № 075-15-2022-1101.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

References

[1] Fathi, A., Laudenbach, F., and Po「ⓝaru, V.,Thurston's Work on Surfaces, (MN-48) (Vol. 48), Princeton University Press, 2021.
[2] Grines V.Z., Pochinka O.V. and Chilina E.E., Dynamics of 3Homeomorphisms with Two-Dimensional Attractors and Repellers, Journal of Mathematical Sciences, 2023, vol. 270, no. 5, pp. 683вЂ"692.
[3] Grines V.Z., Levchenko Yu. A., Medvedev V. S. and Pochinka O. V., On the dynamical coherence of structurally stable 3-diffeomorphisms, Regular and Chaotic Dynamics, 2014, vol. 19, no.4, pp. 506-512.
[4] Grines, V.Z., Medvedev, T.V. and Pochinka, O. V., Dynamical systems on 2-and 3-manifolds (Vol. 46), Cham: Springer, 2016.
[5] Grines V.Z., Levchenko Yu. A. and Pochinka O. V., On the topological classification of diffeomorphisms on 3-manifolds with surface two-dimensional attractors and repellers, Russian Journal of Nonlinear Dynamics, 2014, vol. 10, no. 1, pp. 17вЂ"33, (Russian).
[6] Grines, V.Z., Levchenko, Y.A., Medvedev, V.S. and Pochinka, O V., The topological classification of structurally stable 3 -diffeomorphisms with twodimensional basic sets, Nonlinearity, 2015, vol. 28, no. 11, pp. 4081.
[7] Sanhueza D. A. S., Lecture Notes on Dynamical Systems, 2018.
[8] Topological conjugacy of pseudo-Anosov homeomorphisms, A. Yu. Zhirov, M.: MCCME, 2014 (Russian).
[9] Surfaces and discontinuous groups, Zieschang H., Vogt E., Koldewai H. Science, 1988. (Russian)
[10] Foundations of number theory, Vinogradov IM., M.-L.:Gostekhizdat, 1952 (Russian).

[^0]: ${ }^{1}$ A subspace X of a topological space Y is called a cylindrical embedding into Y of a topological space \bar{X} if there is a homeomorphism onto the image $h: \bar{X} \times[-1,1] \rightarrow Y$ such that $X=$ $h(\bar{X} \times\{0\})$.

[^1]: ${ }^{2}$ An invariant set B of a homeomorphism f is called an attractor if there is a closed neighborhood U of the set B such that $f(U) \subset$ int $; U, \bigcap_{j \geq 0} f^{j}(U)=B$. The attractor for the homeomorphism f^{-1} is called the repeller of the homeomorphism f.
 ${ }^{3}$ A homeomorphism f is called periodic if there exists $m \in \mathbb{N}$ such that $f^{m}=i d$.

[^2]: ${ }^{4}$ Recall that homeomorphisms $f_{1}: X \rightarrow X$ and $f_{2}: Y \rightarrow Y$ of topological manifolds X and Y are called ambiently Ω-conjugated if there is a homeomorphism $h: X \rightarrow Y$ such that $h\left(N W\left(f_{1}\right)\right)=N W\left(f_{2}\right)$ and $\left.h f_{1}\right|_{N W\left(f_{1}\right)}=\left.f_{2} h\right|_{N W\left(f_{1}\right)}$.

