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Аbstract. The present paper is devoted to a study of orientation-preserving
homeomorphisms on three-dimensional manifolds with a non-wandering set con-
sisting of a finite number of surface attractors and repellers. The main results
of the paper relate to a class of homeomorphisms for which the restriction of the
map to a connected component of the non-wandering set is topologically conju-
gate to an orientation-preserving pseudo-Anosov homeomorphism. The ambient
Ω-conjugacy of a homeomorphism from the class with a locally direct product of a
pseudo-Anosov homeomorphism and a rough transformation of the circle is proved.
In addition, we prove that the centralizer of a pseudo-Anosov homeomorphisms
consists of only pseudo-Anosov and periodic maps. Keywords: pseudo-Anosov

homeomorphism, two-dimensional attractor.

1 Introduction

In [3, 6] the dynamics of three-dimensional A-diffeomorphisms was stud-
ied under the assumption that their non-wandering set consists of surface two-
dimensional basic sets. It is proved that diffeomorphisms of this class are am-
biently Ω-conjugate to locally direct products of an Anosov diffeomorphism of a
two-dimensional torus and a rough transformation of a circle. This work is a gen-
eralization of these results to a wider class G of maps, which we define as follows.

The set G consists of orientation-preserving homeomorphisms f of a closed
orientable topological 3-manifold M3 with the non-wandering set NW (f) consist-
ing of a finite number of connected components B0, . . . , Bm−1 satisfying for any
i ∈ {0, . . . ,m− 1} the following conditions:

1. Bi is a cylindrical1 embedding of a closed orientable surface of genus greater
than 1;

1A subspace X of a topological space Y is called a cylindrical embedding into Y of a topological
space X̄ if there is a homeomorphism onto the image h : X̄ × [−1, 1] → Y such that X =
h(X̄ × {0}).
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2. there is a natural number ki such that fki(Bi) = Bi, f k̃i(Bi) ̸= Bi for any
natural number k̃i < ki and the restriction of the map fki |Bi

is topologically
conjugate to an orientation-preserving pseudo-Anosov homeomorphism;

3. Bi is either an attractor2 or a repeller for the homeomorphism fki .

The simplest representatives of the class G are homeomorphisms of the set Φ

which are constructed as follows.
Represent the circle as a subset of the complex plane S1 = {ei2πθ|0 ≤ θ < 1}

and define a covering p : R → S1 so that p(r) = s, where s = ei2πr.
Consider sets of numbers n, k, l such that n, k ∈ N, l ∈ Z, where l = 0 if k = 1,

and l ∈ {1, . . . , k − 1} is coprime to k if k > 1. For each set n, k, l we define a
diffeomorphism φ̄n,k,l : R → R by the formula

φ̄n,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
.

Since φ̄n,k,l(r) + 1 = φ̄n,k,l(r + 1), it follows that the diffeomorphism φ̄n,k,l is
the lift of the circle map φn,k,l(s) = p(φ̄n,k,l(p

−1(s))), where p−1(s) is the preimage
of the point s ∈ S1 (see Statement 2.8).

Denote by Sg a closed orientable surface of genus g > 1 and by Z(P ) the
centralizer Z(P ) = {J : Sg → Sg|PJ = JP} of a homeomorphism P : Sg → Sg.

Let us denote by P the set of all pseudo-Anosov homeomorphisms on the
surface Sg.

Theorem 1. A homeomorphism J ∈ Z(P ), where P ∈ P, is either pseudo-Anosov
or periodic3.

Consider orientation-preserving homeomorphisms P ∈ P and J ∈ Z(P ) such
that the map J lP k is a pseudo-Anosov homeomorphism. Let us represent the
manifold MJ as the quotient space of the manifold Sg × R by the action of the
group Γ = {γi, i ∈ Z} of degrees of homeomorphism γ : Sg × R → Sg × R, given
by the formula γ(z, r) = (J(z), r − 1), with natural projection p

J
: Sg × R →MJ .

2An invariant set B of a homeomorphism f is called an attractor if there is a closed neigh-
borhood U of the set B such that f(U) ⊂ int ;U ,

⋂
j≥0

f j(U) = B. The attractor for the

homeomorphism f−1 is called the repeller of the homeomorphism f .
3A homeomorphism f is called periodic if there exists m ∈ N such that fm = id.
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Define the map φ̄P,J,n,k,l : Sg × R → Sg × R by the formula

φ̄P,J,n,k,l(z, r) = (P (z), φ̄n,k,l(r)).

It is readily verified that φ̄P,J,n,k,lγ = γφ̄P,J,n,k,l. Then the orientation-
preserving homeomorphism φP,J,n,k,l : MJ → MJ is correctly defined (see State-
ment 2.8) and given by the formula

φP,J,n,k,l(w) = p
J
(φ̄P,J,n,k,l(p

−1
J
(w))),

where w ∈ MJ and p−1
J (w) is the preimage of the point w ∈ MJ . We call home-

omorphisms of the form φP,J,n,k,l model maps. Denote by Φ the set of all model
maps.

Theorem 2. Any homeomorphism from the class Φ belongs to the class G.

Theorem 3. Any homeomorphism from the class G is ambiently Ω-conjugate4 to
a homeomorphism from the class Φ.

2 Main definitions and auxiliary statements

2.1 Pseudo-Anosov homeomorphisms

Let Mn be a topological manifold of dimension n.
Family F = {Lα;α ∈ A} of path-connected subsets in Mn is called a k-

dimensional foliation if it satisfies the following three conditions:

• Lα ∩ Lβ = ∅ for any α, β ∈ A such that α ̸= β;

•
⋃
α∈A

Lα =Mn;

• for any point p ∈Mn there is a local map (U,φ), p ∈ U , so that if U∩Lα ̸= ∅,
α ∈ A, then the path-connected components of the set φ(U ∩ Lα) have

4Recall that homeomorphisms f1 : X → X and f2 : Y → Y of topological manifolds X
and Y are called ambiently Ω-conjugated if there is a homeomorphism h : X → Y such that
h(NW (f1)) = NW (f2) and hf1|NW (f1) = f2h|NW (f1).
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the form {(x1, x2, . . . , xn) ∈ φ(U); xk+1 = ck+1, xk+2 = ck+2, . . . , xn = cn},
where the numbers ck+1, ck+2, . . . , cn are constant on the linearly connected
components.

A foliation F with a set of singularities S of Mn is a family of path-connected
subsets of Mn such that the family of sets F \ S is a foliation of Mn \ F .

Let q ∈ N. The foliation Wq on C with the standard saddle singularity at the
point O and q separatrices is a family of path-connected subsets in C such that
Wq \ O is a foliation on C \ O and Im z

q
2 = const on leaves of Wq \ O. Rays

l1, . . . , lq ∈ Wq satisfying equality Im z
q
2 = 0 are called separatrices of the point

O.

Figure 1: The foliation Wq on C with the standard saddle singularity at the point
O and q separatrices for q = 1, 2, 3, 4.

A one-dimensional foliation F on M2 is called a foliation with saddle singu-
larities if the set S of singularities of the foliation F consists of a finite number
of points s1, . . . , sc and for any point si (i ∈ {1, . . . , c}) there is a neighborhood
Ui ⊂M2, a homeomorphism ψi : Ui → C and a number qi ∈ N such that ψi(si) = O

and ψi(F ∩Ui) = Wqi \{O}. The leaf containing the curve ψ−1
i (lj), j ∈ {1, . . . , qi},

is called the separatrix of the point si. The point si is called a saddle singularity
with qi separatrices.

The transversal measure µ for a foliation F with saddle singularities on M2

associates with each arc α transversal to F a non-negative Borel measure µ|α with
the following properties:

1. if β is a subarc of the arc α, then µ|β is a restriction of the measure µ|α;
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2. if α0 and α1 are two arcs transversal to F and connected by a homotopy
α : [0, 1] × [0, 1] → M2 such that α([0, 1] × {0}) = α0, α([0, 1] × {1}) = α1

and α({t} × [0, 1]) for any t ∈ [0, 1] is contained in a leaf of F (see Fig. 2),
then µ|α0 = µ|α1 .

Figure 2: Curves α0 and α1 are connected by homotopy α.

An orientation-preserving homeomorphism P : Sg → Sg of a closed orientable
surface of genus g > 1 is called a pseudo-Anosov map (pA-homeomorphism) with
dilatation λ > 1 if on surface Sg there is a pair of P -invariant transversal foliations
F s

P , Fu
P with a set of saddle singularities S and transversal measures µs, µu such

that :

• each saddle singularity from S has at least three separatrices;

• µs(P (α)) = λµs(α) (µu(P (α)) = λ−1µu(α)) for any arc α transversal to F s
P

(Fu
P ).

Let P : Sg → Sg be a pseudo-Anosov homeomorphism. Define the stable
(unstable) manifold W s(x) = {y ∈ M3 : d(P n(x), P n(y)) → 0, n → +∞}
(W u(x) = {y ∈ M3 : d(P n(x), P n(y)) → 0, n → −∞}) of x ∈ Sg, where d is
a metric on Sg. Note that the stable (unstable) manifold of the point x /∈ S is a
leaf of the foliation F s

P (Fu
P ) and a stable (unstable) manifold of the point x ∈ S

is the union of a finite number of separatrices belonging to the foliation F s
P (Fu

P )
and the point x.

A rectangle is a subset Π ⊂ Sg that is the image of a continuous map υ of the
square [0, 1] × [0, 1] into Sg with the following properties: υ is one-to-one on the
interior of the square and maps segments of its horizontal partition into arcs of
leaves F s

P , and segments of its vertical partition into arcs of leaves Fu
P . Denote by
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Π̇ the image of the interior of the square. We will call the images of the horizontal
and vertical sides contracting and stretching sides of the rectangle Π.

A Markov partition for a pseudo-Anosov homeomorphism P is a finite family
of rectangles Π̃ = {Π1, . . . ,Πn} for which the following conditions are satisfied:

•
⋃
i

Πi = Sg; Π̇i ∩ Π̇j = ∅ for i ̸= j;

• let ∂sΠ̃ (∂uΠ̃) be the union of all contracting (stretching) sides of rectangles
Π1, . . . ,Πn, then P (∂sΠ̃) ⊂ ∂sΠ̃; P (∂uΠ̃) ⊃ ∂uΠ̃.

Statement 2.1 ([1], Proposition 10.17). A pseudo-Anosov homeomorphism has a
Markov partition.

A foliation F is called uniquely ergodic if there exists a single F -invariant
measure up to multiplication by a scalar.

Statement 2.2 ([1], Theorem 12.1). The foliations F s
P and Fu

P of the pseudo-
Anosov homeomorphism P are uniquely ergodic.

Statement 2.3 ([1], Theorem 12.5). Two homotopic pseudo-Anosov diffeomor-
phisms are conjugate by a diffeomorphism isotopic to the identity.

Statement 2.4 ([8], Lemma 3.1). A homeomorphism that is topologically conju-
gate to a pseudo-Anosov homeomorphism is also pseudo-Anosov.

Statement 2.5 ([8], Theorem 3.2). The set of periodic points of a pseudo-Anosov
homeomorphism is dense everywhere on the surface.

Statement 2.6 ([8], Note 3.6). Every leaf of foliations F s
P and Fu

P of the pseudo-
Anosov homeomorphism P is everywhere dense on Sg.

2.2 Group action on a topological space

Let us recall some facts related to the action of a group on a topological space
(for more details, see [4]).

For a continuous mapping h : X → Y of a topological spaceX into a topological
space Y , denote by h−1(V ) the preimage of the set V ⊂ Y , that is, h−1(V ) = {x ∈
X|h(x) ∈ V }.
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Let the action of a group G be free and discontinuous on a Hausdorff space
X and let the orbits space X/G be connected. The definition of the projection
pX/G : X → X/G implies that p−1

X/G(x) is an orbit of some point x̄ ∈ p−1
X/G(x). Let

c be a path in X/G for which c(0) = c(1) = x. The monodromy theorem implies
that there is the unique path c̄ in X starting from x̄ (c̄(0) = x̄) which is a lift of
the pathc. Therefore, there is an element g ∈ G for which c̄(1) = g(x̄). Hence, the
map ηX/G,x̄ : π1(X/G, x) → G defined by ηX/G,x̄([c]) = g is well defined, i.e. it is
independent of the choice of the path in the class [c].

Statement 2.7 ([4], Statement 10.32). The map ηX/G,x̄ : π1(X/G, x) → G is a
nontrivial homomorphism. It is called the homomorphism induced by the cover
pX/G : X → X/G.

Let G be an abelian group and let c̄′ be the lift of a path c ∈ π1(X/G, x) starting
from a point x̄′ = c̄′(0) distinct from the point x̄ and let g′(x̄′) = c̄′(1). Since there
is the unique element g′′ ∈ G for which g′′(x̄) = x̄′ the monodromy theorem implies
g′′(c̄) = c̄′. Then g′′g = g′g′′ and, therefore, g′ = g. Thus ηX/G,x̄ = ηX/G,x̄′ and
from now on we omit the index x̄ in the notation of the epimorphism ηX/G,x̄ and
we write ηX/G if G is an abelian group.

Statement 2.8 ([4], Statement 10.35). Let cyclic groups G, G′ act freely and
discontinuously on G, G′- space X and let g, g′ be their respective generators.
Then

1. if h̄ : X → X is a homeomorphism for which h̄(g(x̄)) = g′(h̄(x̄)) for every
x̄ ∈ X then the map h : X/G→ X/G′ defined by h = pX/G′(h̄(p−1

X/G(x))) is a
homeomorphism and ηX/G = ηX/G′h∗;

2. if h : X/G → X/G′ is a homeomorphism for which ηX/G = ηX/G′h∗ then
there is the unique homeomorphism h̄ : X → X which is a lift of h and such
that h̄(g(x̄)) = g′(h̄(x̄)), h̄(x̄) = x̄′ for x̄ ∈ X and x̄′ ∈ p−1

X/G′(x′), where
x′ = h(pX/G(x̄)).
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3 On the centralizer of a pseudo-anosov map

In this section we prove that a homeomorphism J ∈ Z(P ), where P ∈ P , is
either a pseudo-Anosov homeomorphism or a periodic homeomorphism.

Proof. Let P ∈ P and J ∈ Z(P ). Since P = JPJ−1, it follows that J maps stable
manifolds of P into stable ones, and unstable ones into unstable ones. There-
fore, J(F s

P ) = F s
P and J(Fu

P ) = Fu
P . The foliations F s

P , Fu
P have transversal

measures µs, µu. Let us define for the foliation F s
P (Fu

P ) a transversal measure
µ̃s(αs) = µs(J(αs)) (µ̃u(αu) = µu(J(αu))), where αs (αu) is the arc transversal to
the foliation F s

P (Fu
P ). Since foliations F s

P , Fu
P are uniquely ergodic (Proposition

2.3), there exist numbers νs, νu ∈ R+ such that µ̃s = νsµs and µ̃u = νuµu. Thus,
µs(J(αs)) = νsµs(αs), µu(J(αu)) = νuµu(αu) for arc αs transversal to F s

P and the
arc αu transversal to Fu

P .
Since the pseudo-Anosov homeomorphism P has a Markov partition (see

Statement 2.1) consisting of n rectangles Π1, . . . ,Πn, it follows that on each
rectangle Πi (i ∈ {1, . . . , n}) the measure µs ⊗ µu is defined by the formula
µs ⊗ µu(Πi) = µs(αs,i)µu(αu,i) = µi, where αs,i is the stretching side of the rectan-
gle Πi and αu,i is the contracting side. Since the foliations F s

P , Fu
P are invariant

under J , it follows that the set J(Πi) (i ∈ {1, . . . , n}) is also a rectangle with
measure µs ⊗ µu(J(Πi)) = µs(J(αs,i))µu(J(αu,i)) = νsνuµi. Thus, µs ⊗ µu(Sg) =

µs⊗µu(
⋃
i

Πi) =
⋃
i

µi and µs⊗µu(J(Sg)) = µs⊗µu(
⋃
i

(J(Πi))) = νsνu(
⋃
i

µi). Since

J(Sg) = Sg, it follows that νsνu = 1. Let ν = νs.
Consider the case ν ̸= 1. The homeomorphism J has a pair of invariant

transversal foliations F s
P , Fu

P with a common set of saddle singularities hav-
ing at least three separatrices, and transversal measures µs, µu such that that
µs(J(α)) = νµs(α) (µu(J(α)) = ν−1µu(α)) for any arc α transversal to F s

P (Fu
P ).

Consequently, for ν > 1 (ν < 1) the homeomorphism J is a pseudo-Anosov map
with dilatation ν > 1 ( 1

ν
> 1).

Consider the case ν = 1. Since the foliation F s
P is invariant under J , it follows

that separatrices of saddle singularities under the action of J are mapped into
separatrices of saddle singularities. Since the set of separatrices is finite, there
exists m ∈ N such that Jm(si) = si and Jm(l) = l for some separatrix l of the
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saddle singularity si of the foliation F s
P .

Let us prove that Jm(x) = x for any point x ∈ l. Let [si, x] be the arc of the
curve l bounded by points si and x. Since µu(J

m[si, x]) = µu([si, x]), it follows
that Jm([si, x]) = [si, x]. Therefore, Jm(x) = x.

Since the leaf l is dense everywhere on Sg (see Statement 2.6) and Jm|l = id,
it follows that Jm(z) = z for any z ∈ Sg.

Consequently, the map J is a periodic homeomorphism for ν = 1 and is pseudo-
Anosov for ν ̸= 1.

4 On the model maps

In this section we prove Theorem 2 and auxiliary lemmas.
Recall that a map f2 : Y → Y of a topological space Y is called a factor of a

map f1 : X → X of a topological space X if there is a surjective continuous map
h : X → Y such that hf1 = f2h. The map h is called semiconjugacy.

Lemma 4.1. Let f1 : X → X, f2 : Y → Y be homeomorphisms of topological
spaces X and Y such that f2 is a factor of f1 with semiconjugacy h : X → Y .
Then:

1. h(NW (f1)) ⊂ NW (f2);

2. if fk
2 (Vy) = Vy for some k ∈ N, Vy ⊂ Y , then fk

1 (Vx) ⊂ Vx;

3. if fk
1 (Vx) = Vx for some k ∈ N, Vx ⊂ X, then fk

2 (Vy) = Vy, where Vy = h(Vx).

Proof. Let f1 : X → X, f2 : Y → Y be homeomorphisms of topological spaces
X and Y such that f2 is a factor of f1 with semiconjugacy h : X → Y , that is,
hf1 = f2h. Let us prove each point of the lemma separately.

1. Consider the point x ∈ NW (f1) and the point y = h(x) with an arbitrary
open neighborhood Uy. Let Ux = h−1(Uy). Since h is a continuous map, the
inverse image Ux of the open set Uy is also open. Then, by the definition of
a non-wandering point x, there exists n ∈ N such that fn

1 (Ux)∩Ux ̸= ∅. Let
fn
1 (Ux) ∩ Ux = Ûx and Ûy = h(Ûx). Since Ûx ⊂ Ux, then h(Ûx) ⊂ h(Ux),
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that is, Ûy ⊂ Uy. Note that hfn
1 = fn

2 h. Since Ûy ⊂ h(fn
1 (Ux)), then

Ûy ⊂ fn
2 (h(Ux)) = fn

2 (Uy). Therefore, fn
2 (Uy) ∩ Uy ̸= ∅. Thus, y = h(x) ∈

NW (f2).

2. Let fk
2 (Vy) = Vy, where k ∈ N, Vy ⊂ Y , Vx = h−1(Vy) and fk

1 (Vx) = V ′
x.

Then fk
2 (h(Vx)) = fk

2 (Vy) = Vy and h(fk
1 (Vx)) = h(V ′

x). Since hfk
1 = fk

2 h, it
follows that h(V ′

x) = Vy. Therefore, V ′
x ⊂ Vx, that is, fk

1 (Vx) ⊂ Vx.

3. Let fk
1 (Vx) = Vx, where k ∈ N, Vx ⊂ X and Vy = h(Vx). Then h(fk

1 (Vx)) =

h(Vx) = Vy. Since hfk
1 = fk

2 h, then fk
2 (h(Vx)) = fk

2 (Vy) = Vy. Therefore,
fk(Vy) = Vy.

We will call a set of numbers n, k, l correct if n, k ∈ N, l ∈ Z, where l = 0

for k = 1 and l ∈ {1, . . . , k − 1} is coprime to k for k > 1. Everywhere else in
this section the set of numbers n, k, l is correct. Let us recall main notation and
formulas.

• The manifoldMJ is the quotient space of Sg×R under the action of the group
Γ = {γi, i ∈ Z} of degrees of homeomorphism γ : Sg × R → Sg × R given
by the formula γ(z, r) = (J(z), r − 1), where J : Sg → Sg is an orientation-
preserving homeomorphism;

• pJ : Sg × R → MJ is the natural projection inducing the homomorhisms
ηMJ

: MJ → Z;

• φ̄n,k,l : R → R is the diffeomorphism given by the formula

φ̄n,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
; (1)

• S1 = {ei2πθ|0 ≤ θ < 1}, p : R → S1 is the covering, given by the formula
p(r) = s, where s = ei2πr;

• φn,k,l : S1 → S1is the diffeomorphism given by the formula

φn,k,l(s) = p(φ̄n,k,l(p
−1(s))); (2)
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• φ̄ = φ̄P,J,n,k,l(z, r) : Sg × R → Sg × R is the homeomorphism given by the
formula

φ̄(z, r) = (P (z), φ̄n,k,l(r)), (3)

where P : Sg → Sg is an orientation-preserving pseudo-Anosov homeomor-
phism such that J ∈ Z(P );

• model homeomorphism φ = φP,J,n,k,l : MJ →MJ is given by the formula

φ(w) = p
J
(φ̄(p−1

J
(w))); (4)

• Φ is a set of model homeomorphisms.

Let us introduce the following notation:

• Bi = p
J
(Sg × { i

2nk
}) ∈MJ (i ∈ {0, . . . , 2nk − 1});

• bi = p( i
2nk

) ∈ S1 (i ∈ {0, . . . , 2nk − 1});

• pJ,r : Sg × {r} → p
J
(Sg × {r}) is the homeomorphism given by the formula

pJ,r = pJ |Sg×{r}, r ∈ R; (5)

• ρ : Sg × R → Sg is the canonical projection given by the formula

ρ(z, r) = z; (6)

• ρr : Sg × {r} → Sg is the homeomorphism given by the formula

ρr = ρ|Sg×{r}, r ∈ R. (7)

Note that the Eq. (4) is obtained from the relation

p
J
φ̄ = φp

J
, (8)

11



and Eq. (2) is obtained from the relation

pφ̄n,k,l = φn,k,lp. (9)

Since p
J
: Sg × R →MJ is a natural projection, it follows that

p
J
γ = p

J
. (10)

Denote by hJ : MJ → S1 the continuous surjective map given by the formula

hJ(w) = p(r), where w = pJ(z, r) ∈MJ . (11)

It is readily verified that hJφ = φn,k,lpJ . Thus, the following lemma is true.

Lemma 4.2. The homeomorphism φn,k,l : S1 → S1 is the factor of the homeomor-
phism φ : MJ →MJ with semiconjugacy hJ : MJ → S1.

It is directly verified (see Eqs. (1) and (2)) that the non-wandering set of the
diffeomorphism φn,k,l consists of 2nk points b0, . . . , b2nk−1 of period k such that
points with odd indices i are sinks and points with even indices are source.

Let us prove Theorem 2, that is, we prove the inclusion Φ ⊂ G.

Proof. Consider the model homeomorphism φ = φP,J,n,k,l : MJ → MJ . Since the
homeomorphism J preserves orientation, it follows that the manifold MJ is ori-
entable. Preserving orientation of homeomorphisms P and φn,k,l implies preserving
orientation by homeomorphism φ inducing by map φ̄(z, r) = (P (z), φ̄n,k,l(r)).

Let us prove that the connected component Bi (i ∈ {0, . . . , 2nk − 1}) is a
cylindrical embedding of the surface Sg. For i ∈ {0, . . . , 2nk− 1} we set Ūi = Sg ×
[ i
2nk

− i
4nk
, i
2nk

+ i
4nk

] and Ui = pJ(Ūi). Since p
J
: Sg×R →MJ is a covering, it follows

that for any i ∈ {0, . . . , 2nk−1} its restriction p
J
|Ūi

: Ūi → Ui is a homeomorphism.
In addition, p

J
|Ūi

(Sg × { i
2nk

}) = Bi. Therefore, Bi (i ∈ {0, . . . , 2nk − 1}) is a
cylindrical embedding of Sg.

Let us prove that φk(Bi) = Bi, φk̃i(Bi) ̸= Bi (i ∈ {0, . . . , 2nk − 1}) for any
natural number k̃i < k. In accordance with Lemma 4.2, the map φn,k,l is the
factor of a homeomorphism φ with semiconjugacy hJ . Note that h−1

J (bi) = Bi

12



(i ∈ {0, . . . , 2nk−1}), where bi ∈ S1 is a point of period k. It follows from Lemma
4.1 that φk(Bi) ⊂ Bi. Since the map φk is a homeomorphism and the component
Bi is homeomorphic to Sg, it follows that φk(Bi) = Bi. Suppose that φk̃(Bi) = Bi

for some natural number k̃ < k. Then Lemma 4.1 implies that φk̃
n,k,l(bi) = bi. We

come to contradiction that point bi has period k.
Let us prove that the map φk|Bi

(i ∈ {0, . . . , 2nk−1}) is topologically conjugate
to the orientation-preserving pseudo-Anosov homeomorphism. Since

γl
(
φ̄k

(
z,

i

2nk

))
=

(
J l
(
P k(z)

)
,
i

2nk

)
, (12)

it follows that
ρ i

2nk

(
γl
(
φ̄k

(
ρ−1

i
2nk

(z)
)))

= J l
(
P k(z)

)
. (13)

For any point w ∈ Bi we get φk(w)
(4)
= p

J
(φ̄k(p−1

J
(w)))

(10)
= p

J
(γl(φ̄k(p−1

J
(w))))

(12)
=

pJ, i
2nk

(γl(φ̄k(p−1
J, i

2nk

(w))))
(13)
= pJ, i

2nk
(ρ−1

i
2nk

(J l(P k(ρ i
2nk

(p−1
J, i

2nk

(w)))))). Consequently,

the homeomorphism φk|Bi
is topologically conjugate to the orientation-preserving

pseudo-Anosov homeomorphism J lP k via the homeomorphism pJ, i
2nk
ρ−1

i
2nk

.
Lemmas 4.1 and 4.2 imply that NW (φ) ⊂ (B0 ∪ · · · ∪ B2nk−1).
Since the set of periodic points of a pseudo-Anosov homeomorphism is dense

everywhere on the surface (Proposition 2.5) and φk(Bi) = Bi (i ∈ {0, . . . , 2nk−1}),
it follows that NW (φ) = B0 ∪ · · · ∪ B2nk−1.

Let us prove that the connected components Bi with odd indices i belong
to the set of attractors of the homeomorphism φ. Points bi with odd indices
i are sink points of the diffeomorphism φk

n,k,l. Therefore, φk(ui) ⊂ int ui and⋂
j≥0

φjk
n,k,l(ui) = bi for the neighborhood ui = hJ(Ui) = p([ i

2nk
− i

4nk
, i
2nk

+ i
4nk

])

of point bi with odd index i. Since h−1
J (p[a, b]) = pJ(Sg × [a, b]) for any a, b ∈ R,

hJφ
jk = φjk

n,k,lhJ and h−1
J (bi) = Bi, it follows that φk(Ui) ⊂ int Ui,

⋂
j≥0

φjk(Ui) = Bi.

Consequently, connected components Bi with odd indices i are attractors of the
map φk.

Analogously one proves that connected components Bi with even indices i be-
long to the set of repellers.

Thus φ ∈ G.
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5 The ambient Ω-conjugacy of a homeomorphism

f ∈ G to a model map

Recall that the set Φ consists of model homeomorphisms of the form φP,J,n,k,l.
This section contains a proof of Ω-conjugacy of homeomorphisms of the class G
with homeomorphisms of the set Φ and auxiliary lemmas. We will also use the
notation introduced in the Section 3 below.

Let us denote by H the set of all homeomorphisms f satisfying the following
conditions:

1. there exists an orientation-preserving homeomorphism J : Sg → Sg such that
f : MJ →MJ ;

2. f preserves the orientation of MJ ;

3. there exists m ∈ N such that the non-wandering set NW (f) of the homeo-
morphism f consists of 2m connected components B0 ∪ · · · ∪ B2m−1;

4. for any i ∈ {0, . . . , 2m− 1} there is a natural number ki such that fki(Bi) =

Bi, f k̃i(Bi) ̸= Bi for any natural k̃i < ki and the map fki |Bi
preserves the

orientation of Bi ;

5. f(Bi) = Bj, where the numbers i, j ∈ {0, . . . , 2m− 1} are either even or odd
at the same time.

Note that homeomorphisms of the set Φ belong to the class H.
For m ∈ N we denote by Tm the set Tm = { i

2m
, i ∈ Z}. Then p−1

J (NW (f)) =

Sg × Tm, where f ∈ H.

Lemma 5.1. For any homeomorphism f ∈ H with non-wandering set consisting
of 2m connected components, there exist and unique correct set of numbers n, k, l
and a lift f̄ : Sg × R → Sg × R such that

f̄(z, r) =
(
fr(z), r +

l

k

)
, ∀r ∈ Tnk,

14



where nk = m and fr : Sg → Sg is an orientation-preserving homeomorphism given
by

fr = ρr+ l
k
f̄ρ−1

r .

Proof. Let f : MJ →MJ be a homeomorphism from the class H.
Let us prove that there is a lift f̄ : Sg ×R → Sg ×R of the homeomorphism f .

By Statement 2.8 it sufficies to show that ηMJ
= ηMJ

f∗.
Consider the loop c ∈ MJ which is the projection of the curve c̄ ∈ Sg × R

(pJ(c̄) = c), bounded by points c̄(0) = (z, 1), c̄(1) = γ(c̄(0)) = (J(z), 0) and
intersecting each set Sg × { i

2m
}, i ∈ {0, . . . , 2m − 1} at exactly one point. By

construction, the curve c intersects each connected component B0, . . . ,B2m−1 at
exactly one point and ηMJ

([c]) = 1. We set C = f(c) and C(0) = f(c(0)).
Since f is a homeomorphism such that f(Bi) = Bi′ , i, i′ ∈ {0, . . . , 2m − 1}, it
follows that the curve C = f(c) also intersects each component of B0, . . . ,B2m−1

at exactly one point. We set Bj = f(B0). Choosing a point C̄(0) ∈ p−1
J (C(0))

such that C̄(0) ∈ Sg × { j
2m

+ 1} by the monodromy theorem there is a unique
lift C̄ of the path C starting at the point C̄(0). Since the loop C intersects each
component B0, . . . ,B2m−1 at exactly one point, it follows that there are 2 cases: 1)
C̄(1) = γ−1(C̄(0)), 2) C̄(1) = γ(C̄(0)).

Let us show that the case 1) is not realized.
Consider the case m = 1. Then f(B0) = B0. Since the homeomorphism f

preserves the orientation MJ and the orientation B0, it follows that the curve C(t)
must be parameterized in one direction with the parameterization of the curve c(t)
with respect to the surface B0. Thus C̄(1) = γ(C̄(0)).

Consider the case m > 1. Let us denote by ξc : S1 → c, ξC : S1 → C homeo-
morphisms such that ξc(bi) = Bi ∩ c, ξC(bi) = Bi ∩ C, where i ∈ {0, . . . , 2m− 1}.
Define the homeomorphism ψ : S1 → S1 by the formula ψ = ξ−1

C fξc. Let us prove
that the homeomorphism ψ preserves orientation. Assume the converse. Let us
prove that there exists q ∈ {0, . . . , 2m− 1} such that ψ(bq) = bq. Let Bj = f(B0).
Then ψ(b0) = bj. If j = 0, then q = 0. Let j ̸= 0. By the condition of the class H,
the number j is even. Since ψ by assumption changes the orientation of S1 and
the set b0 ∪ · · · ∪ b2m−1 is invariant, it follows that the arc of the circle (b0, bj) is
mapped into itself and ψ(bi) = bj−i, i ∈ {0, . . . , j

2
}. Thus ψ(b j

2
) = b j

2
and q = j

2
.
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Therefore, f(Bq) = Bq. Since ψ changes orientation, it follows that the curve C(t)
is parameterized in the direction opposite to the parameterization of the curve c(t)
with respect to the surface Bq (see Fig. 3). Since the homeomorphism f preserves
the orientation MJ and the orientation Bq, then the parameterization of the curve
C(t) must be parameterized in one direction with the parameterization of the
curve c(t) with respect to the surface Bq. We got a contradiction. Consequently,
the homeomorphism ψ preserves the orientation of S1. Then C̄(1) = γ(C̄(0)).

Figure 3: Direction of increasing parameter t ∈ [0, 1] on curves c and C.

Thus C̄(1) = γ(C̄(0)) and ηMJ
(f∗([c])) = 1. Consequently, ηMJ

= ηMJ
f∗ and

there is a unique lift f̄ : Sg × R → Sg × R of the homeomorphism f such that
f̄(c̄(1)) = C̄(1) and

f̄γ = γf̄ . (14)

Let us find the correct set of numbers n, k, l for the homeomorphism f . The
case m = 1 corresponds to the correct set of numbers n = 1, k = 1 and l = 0.
Consider the case m > 1. Since the homeomorphism ψ is orientation preserving,
it follows that it has a rational rotation number l

k
, where k ∈ N, l ∈ {0, . . . , k− 1}

and (l, k) = 1 (see [7, Theorem 4.1]). From [7, Theorem 4.2] it follows that all
periodic points of the homeomorphism ψ have period k. Since point bi with even
(odd) index i is mapped to point bi′ with even (odd) index i′, it follows that 2m

points b0, . . . , b2m−1 are divided into 2 invariant sets of equal power, each of which
consists of points of period k. Therefore, m is divisible by k. We set n = m

k
. Thus
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n, k, l is the required correct set of numbers.
Since the rotation number of ψ is equal to l

k
, it follows that ψ(b0) = b2nl, that

is, f(B0) = B2nl.
Let us find a formula that defines the map f̄ for the point (z, r) ∈ Sg × Tnk.

Since C̄(1) = γ(C̄(0)), it follows that C̄(1) ∈ Sg ×{ 2nl
2nk

} = Sg ×{ l
k
}. Invariance of

the set p−1
J (NW (f)) = Sg×Tnk under f̄ implies that f̄(Sg× [0, 1]) = Sg× [ l

k
, 1+ l

k
],

where f̄(Sg×{0}) = Sg×{ l
k
}. From here we get that f̄(Sg×{ i

2nk
}) = Sg×{ i

2nk
+ l

k
}

for any i ∈ {0, . . . , 2nk − 1}. Using Eq. (14) we obtain that f̄ = γmf̄γ−m for any
m ∈ Z. Then f̄(Sg × {r}) = γ[r](f̄(γ−[r](Sg × {r}))), where [r] is the integer part
of the number r ∈ R. Thus it is readily verified that f̄(Sg × {r}) = Sg × {r + l

k
}

for r ∈ Tnk. Then for any r ∈ Tnk the homeomorphism fr : Sg → Sg is correctly
defined and given by the formula fr = ρr+ l

k
f̄ρ−1

r . Thus f̄(z, r) = (fr(z), r+
l
k
) for

any r ∈ Tnk.
It remains to prove that fr preserves the orientation of Sg, where r ∈ Tnk.

Preserving orientation of MJ by f implies preserving orientation of Sg × R by
its lift f̄ . Since f̄(Sg × {r} = fr(Sg) × {r + l

k
} for any r ∈ Tnk, it follows that

the homeomorphism f̄ preserves the orientation of R. Therefore, f̄ preserves the
orientation of Sg, that is, fr preserves the orientation of Sg.

Note that in the case f = φP,J,n,k,l the equality fr(z) = P (z) holds for any
r ∈ Tnk and f̄ = φ̄P,J,n,k,l.

Lemma 5.2. Let f ∈ H. Then fr is isotopic to f0 for any r ∈ Tnk.

Proof. Let f ∈ H. Let us prove that fr is isotopic to f0 for any r ∈ Tnk.
Define a family of continuous maps Fr,t : Sg → Sg by the formula Fr,t(z) =

ρ(f̄(z, rt)), where t ∈ [0, 1], r ∈ Tnk. Then Fr,t defines a homotopy connecting the
maps Fr,0 = f0 and Fr,1 = fr. Thus, homeomorphisms f0 and fr are homotopic.
It follows from [9, p. 5.15] that they are isotopic for any r ∈ Tnk.

Lemma 5.3. Let f : M3 →M3 be a homeomorphism from the class G. Then there
exists a homeomorphism f ′ ∈ H is topologically conjugate to f .

Proof. Let f : M3 → M3 be a homeomorphism from the class G with non-
wandering set consisting of q connected components B0, . . . , Bq−1.

17



In accordance with [2, Lemma 2.1], the set M3 \ (B0 ∪ · · · ∪Bq−1) consists of q
connected components V0, . . . , Vq−1, bounded by one connected component of an
attractor and one connected component of a repeller. Therefore, q = 2m, where
m ∈ N. Without loss of generality, for m > 1 we can assume that cl Vi ∩ cl Vi−1 =

Bi−1, where i ∈ {1, . . . , 2m− 2} and cl V0 ∩ cl V2m−1 = B2m−1.
In accordance with [2, Lemma 2.2], each connected component Vi, i ∈

{0, . . . , 2m− 1} of the set M3 \ (B0 ∪ · · · ∪B2m−1) is homeomorphic to Sg × [0, 1].
It follows from [5, Lemma 2] that there exists a continuous surjective map
H : Sg × [0, 1] → M3 (see Fig. 4) such that maps H|Sg×{ i

m
} : Sg × { i

m
} → Bi

(i ∈ {0, . . . , 2m−1}), H|Sg×{1} : Sg×{1} → B0 andH|Sg×(0,1) : Sg×(0, 1) →M3\B0

are homeomorphisms.

Figure 4: Action of the homeomorphism H in the case m = 2.

Let J(z) = ρ0((H|Sg×{0})
−1(H|Sg×{1}(ρ

−1
1 (z)))) (see Fig. 5).

Denote by [r] the integer part of the number r ∈ R. Define a continuous map
h : Sg × R →M3 by the formula h(z, r) = H(γ[r](z, r)).

Let the homeomorphism ξ : M3 →MJ be given by the formula ξ = p
J
(h−1(w)).

Set f ′ = ξfξ−1.
Let us prove that the homeomorphism f ′ satisfies all 5 conditions of the class

H. Since M3 is orientable and homeomorphic to MJ , it follows that J preserves

18



Figure 5: Homeomorphism J : Sg → Sg.

the orientation of Sg and condition 1 is satisfied. Since f preserves the orienta-
tion of M3, it follows that f ′ preserves the orientation of MJ and condition 2 is
satisfied. Since ξ(NW (f)) = NW (f ′) and h−1(NW (f)) = Sg × Tnk, it follows
that NW (f ′) = pJ(h

−1(NW (f))) = pJ(Sg × Tnk) = B0 ∪ · · · ∪ B2m−1. Therefore,
condition 3 is satisfied. Since for any Bi (i ∈ {0, . . . , 2m − 1}) there is a natural
number ki such that fki(Bi) = Bi, f k̃i(Bi) ̸= Bi for any natural k̃i < ki and the
map fki |Bi

preserves the orientation of Bi, it follows that the same is true for the
connected component Bi of the non-wandering set NW (f ′), that is, condition 4
is satisfied. The connected components of the non-wandering set NW (f) of the
homeomorphism f are numbered in such a way that if Bi is the connected compo-
nent of an attractor of the homeomorphism f , then Bi+1 (mod 2m) is the connected
component of a repeller of the homeomorphism f . Therefore, f(Bi) = Bj, where
i, j ∈ {0, . . . , 2m − 1} are either even or odd at the same time. Since ξ(Bi) = Bi

(i ∈ {0, . . . , 2m − 1}), it follows that f ′(Bi) = Bj, where i, j ∈ {0, . . . , 2m − 1}
are simultaneously either even or odd, that is, condition 5 is satisfied. Thus,
f ′ ∈ H.

Everywhere below in this section we mean by f̄ , fr and n, k, l the lift of the
homeomorphism f ∈ H, the homeomorphism fr : Sg → Sg, r ∈ Tnk, and the
correct set of numbers n, k, l from Lemma 5.1.

Lemma 5.4. Let f ∈ H ∩ G. Then f0 is isotopic either to some periodic homeo-
morphism or to some pseudo-Anosov homeomorphism.

Proof. Let f ∈ H ∩ G.
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Let us prove that f0 is isotopic either to some periodic homeomorphism or to
some pseudo-Anosov homeomorphism.

Since f̄ is a lift of a homeomorphism f , it follows that

pJ f̄ = fpJ . (15)

Therefore,
f(w) = pJ(f̄(p

−1
J (w))). (16)

For r ∈ Tnk denote by ϕr : Sg → Sg the homeomorphism given by the formula

ϕr = J lf
r+

(k−1)l
k

· · · fr+ l
k
fr. (17)

Then it is readily verified that

γl(f̄k|Sg×Tnk
(z, r)) = (ϕr(z), r), where r ∈ Tnk. (18)

Therefore,
ϕr = ρrγ

lf̄kρ−1
r . (19)

Thus, fk|B0(w)
(16)
= pJ(f̄

k(p−1
J (w)))

(10)
= pJ(γ

l(f̄k(p−1
J (w))))

(18)
=

pJ,0(γ
l(f̄k(p−1

J,0(w))))
(19)
=

pJ,0(ρ
−1
0 (ϕ0(ρ0(p

−1
J,0(w))))), that is,

fk|B0 = pJ,0ρ
−1
0 ϕ0ρ0p

−1
J,0. (20)

Therefore, the homeomorphism ϕ0 is topologically conjugate to the homeomor-
phism fk|B0 via the map pJ,0ρ−1

0 . Since the homeomorphism fk|B0 is topologically
conjugate to the pseudo-Anosov homeomorphism, it follows that the homeomor-
phism ϕ0 is also a pseudo-Anosov map (see Statement 2.4).

Eq. (14) implies that (J(fr(z)), r +
l
k
− 1) = (fr−1(J(z)), r − 1 + l

k
) and

Jfr = fr−1J for any r ∈ Tnk. (21)
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Therefore, f0J l = J lfl. Then f0(J lf (k−1)l
k

· · · f l
k
f0) = (J lflf (k−1)l

k

· · · f l
k
)f0, that is,

ϕ0 = f−1
0 ϕ l

k
f0. (22)

It follows from Eq. (22) and Statement 2.4 that ϕ l
k

is also a pseudo-Anosov
homeomorphism.

Since fr is isotopic to f0 for any r ∈ Tnk by Lemma 5.2, it follows that
J lf (k−1)l

k

· · · f l
k
f0 is isotopic to J lflf (k−1)l

k

· · · f l
k
, that is, ϕ0 is isotopic to ϕ l

k
. Then,

according to Statement 2.3, there exists an isotopic to the identity homeomorphism
h : Sg → Sg such that

ϕ0 = hϕ l
k
h−1. (23)

Putting Eq. (23) in Eq. (22), we obtain that ϕ0 = f−1
0 (h−1ϕ0h)f0, that is,

(hf0)ϕ0 = ϕ0(hf0).
Since ϕ0 ∈ P and hf0 ∈ Z(ϕ0), it follows that the homeomorphism hf0 is

either periodic or pseudo-Anosov by Theorem 1. Isotopicity to the identity of
h implies that f0 is isotopic either to some periodic homeomorphism or to some
pseudo-Anosov homeomorphism.

Lemma 5.5. Let f ∈ H∩G and f0 be isotopic to some periodic homeomorphism.
Then there exists a homeomorphism f ′ ∈ H such that f ′ is topologically conjugate
to f and f ′

0 is isotopic to some pseudo-Anosov homeomorphism.

Proof. Let f : MJ → MJ be a homeomorphism from the class H ∩ G with non-
wandering set consisting of 2nk connected components of period k, and f0 is iso-
topic to some periodic homeomorphism.

Let us show that k ̸= 1. Assume the converse. Then l = 0 and the homeo-
morphism ϕ0 has the form ϕ0 = f0 (see Eq. (17)). According to Eq. (20), the
homeomorphism ϕ0 is topologically conjugate to the pseudo-Anosov homeomor-
phism fk|B0 . We come to contradiction with the fact that k = 1. Therefore,
k > 1.

Define the homeomorphisms h̄, γ′ : Sg ×R → Sg ×R by the formulas h̄(z, r) =
(z,−r), γ′(z, r) = (J−1(z), r − 1). Recall that γ(z, r) = (J(z), r − 1). Since
(J(z),−(r − 1)) = (J(z), (−r) + 1), it follows that h̄γ = (γ′)−1h̄. Therefore,
the homeomorphism h̄ projects into the homeomorphism h : MJ → MJ−1 (see
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Statement 2.8), given by the formula h = pJ−1(h̄(p−1
J (w))), where pJ−1 : Sg ×R →

MJ−1 is a natural projection.
Set f ′ = hfh−1. Recall that for a homeomorphism f ∈ H there is a unique lift

f̄ : Sg × R → Sg × R such that f̄Sg×Tnk
(z, r) = (fr(z), r +

l
k
), where n, k, l is the

correct set of numbers. Consider the lift f̄ ′ of the homeomorphism f ′ given by the
formula f̄ ′ = γ−1h̄f̄ h̄−1. Then for any r ∈ Tnk we have f̄ ′(z, r) = (J(fr(z)), r+

k−l
k
).

Since k ̸= 1, it follows that l ∈ {1, . . . , k − 1}. Therefore, (k − l) ∈ {1, . . . , k − 1}
and coprime to k. Thus, n, k, (k − l) is the correct set of numbers and f ′

r = Jfr.
Let us prove that the homeomorphism f ′

0 is isotopic to some pseudo-Anosov
homeomorphism. By Lemma 5.4 the homeomorphism f ′

0 is isotopic either to some
periodic map or to some pseudo-Anosov map. Suppose that the homeomorphism
f ′
0 = Jf0 is isotopic to a periodic homeomorphism. Then the homeomorphism
J = f ′

0f
−1
0 is also isotopic to a periodic homeomorphism. Since J and f0 are

isotopic to periodic homeomorphisms and, according to Lemma 5.2, f0 is isotopic
to fr for any r ∈ Tnk, it follows tha the homeomorphism ϕ0 = J lf (k−1)l

k

· · · f l
k
f0 is

also isotopic to periodic homeomorphism. We come to contradiction with the fact
that ϕ0 is topologically conjugate to the pseudo-Anosov homeomorphism fk|B0 (see
Eq. (20)). Consequently, the homeomorphism f ′

0 is isotopic to the pseudo-Anosov
homeomorphism. Thus, f ′ ∈ H is topologically conjugate to f and f ′

0 is isotopic
to some pseudo-Anosov homeomorphism.

Lemma 5.6. Let f ∈ H ∩ G and f0 be isotopic to some pseudo-Anosov homeo-
morphism P . Then there is a homeomorphism f ′ : MJ ′ → MJ ′ from the class H
such that f ′ is topologically conjugate to f , J ′P = PJ ′ and f ′

0 is isotopic to P .

Proof. Let f : MJ → MJ be a homeomorphism from the class H ∩ G and P be a
pseudo-Anosov homeomorphism of the surface Sg, isotopic to f0.

Let us construct a homeomorphism J ′ : Sg → Sg. Set

P ′ = J−1PJ. (24)

Denote by Ft the isotopy connecting the homeomorphisms F0 = f0 and F1 = P .
Then the family of maps J−1FtJ defines an isotopy connecting the maps J−1F0J =

J−1f0J = f1 and J−1F1J = J−1PJ = P ′. Since f0 is isotopic to f1 (see Lemma
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5.2) and to P , f1 is isotopic to P ′, it follows that P is isotopic to P ′. Homeomor-
phism P is topologically conjugate to the pseudo-Anosov homeomorphism P ′, P
is isotopic to P ′. Then by Statement 2.3 there exists an isotopic to the identity
homeomorphism ξ such that

P ′ = ξPξ−1. (25)

Set
J ′ = Jξ, γ′ = (J ′(z), r − 1). (26)

Note that J ′P
(26)
= JξP

(25)
= JP ′ξ

(24)
= PJξ

(26)
= PJ ′.

Let us construct a homeomorphism Y : MJ → MJ ′ . Denote by ξt the isotopy
connecting the homeomorphism ξ0 = ξ and the identity map ξ1 = id. Define the
homeomorphism yr : Sg → Sg by the formula

yr =

ξ6nk(1−r) for r ∈ [1− 1
6nk
, 1];

id for r ∈ [0.1− 1
6nk

].

Define the homeomorphism y : Sg × [0, 1] → Sg × [0, 1] by the formula y(z, r) =

(yr(z), r). Note that

y(z, 0) = (z, 0) and y
(
z,
l

k

)
=

(
z,
l

k

)
. (27)

Denote by [r] the integer part of the number r ∈ R. Define the homeomorphism
Ȳ : Sg × R → Sg × R by the formula

Ȳ (z, r) = (γ′)−[r](y(γ[r](z, r))). (28)

Since γ′Ȳ = Ȳ γ, it follows that the homeomorphism Ȳ projects into the home-
omorphism Y : MJ → MJ ′ (see Statement 2.8), given by the formula Y =

pJ ′(Ȳ (p−1
J (w))), where pJ : Sg × R → MJ , pJ ′ : Sg × R → MJ ′ are natural pro-

jections.
Set f ′ = Y fY −1 : MJ ′ →MJ ′ . By construction f ′ ∈ H. Let us prove that f ′

0 is
isotopic to P . Consider the lift

f̄ ′ = Ȳ f̄ Ȳ −1 (29)
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of the homeomorphism f . It is readily verified that f̄ ′(z, r) = (f ′
r(z), r+

l
k
), where

r ∈ Tnk and f ′
r is a homeomorphism of Sg. Let us show that f ′

0 = f0. Indeed,

f̄ ′(z, 0)
(29)
= Ȳ (f̄(Ȳ −1(z, 0)))

(28)
= Ȳ (f̄(y−1(z, 0)))

(27)
= Ȳ (f̄(z, 0)) = Ȳ (f0(z),

l
k
)

(28)
=

y l
k
(f0(z),

l
k
)

(27)
= (f0(z),

l
k
). Thus, f ′

0 is also isotopic to P .

Let us prove that any homeomorphism from the class G is ambiently Ω-
conjugate to a homeomorphism from the class Φ.

Proof. Let f ∈ G.
According to Lemma 5.3, wihout loss of generality, we may assume that f is

defined on MJ = Sg × R/Γ with natural projection pJ : Sg × R →MJ , where J is
a orientation-preserving homeomorphism of the surface Sg and Γ = {γi|i ∈ Z} is a
group of degrees of the homeomorphism γ : Sg ×R → Sg ×R given by the formula
γ(z, r) = (J(z), r − 1). It follows from Lemma 5.1 that the non-wandering set of
the homeomorphism f consists of 2nk connected components B0, . . . ,B2nk−1 and
there is a lift f̄ of the homeomorphism f such that f̄(z, r) = (fr(z), r+

l
k
) for any

r ∈ Tnk, where fr : Sg → Sg is an orientation preserving homeomorphism of the
surface and n, k, l is the correct set of numbers.

According to Lemmas 5.2,5.4,5.5,5.6, without loss of generality we may assume
that fr is isotopic to some orientation-preserving pseudo-Anosov homeomorphism
P for any r ∈ Tnk and J ∈ Z(P ). Since J preserves the orientation of Sg, it follows
that the homeomorphism J lP k also preserves the orientation of Sg.

Let us prove that the homeomorphism J lP k is a pseudo-Anosov homeomor-
phism. Using Eqs. (18) and (19), we obtain

fk|pJ (Sg×{r}) = pJ,rρ
−1
r ϕrρrp

−1
J,r, r ∈ Tnk, (30)

that is, the homeomorphism ϕr (r ∈ Tnk) is topologically conjugate to the
pseudo-Anosov homeomorphism fk|pJ (Sg×{r}). Since by Lemma 5.2 the homeo-
morphism fr for any r ∈ Tnk is isotopic to P , it follows that the homeomorphism
ϕr = J lf

r+
(k−1)l

k

· · · fr+ l
k
fr is isotopic to J lP k, that is, the homeomorphism J lP k

is isotopic to the pseudo-Anosov homeomorphism. According to Theorem 1, we
obtain that the homeomorphism J lP k is a pseudo-Anosov map.
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Note that homeomorphisms J lP k and ϕr are isotopic for any r ∈ Tnk and are
pseudo-Anosov homeomorphisms. Then, according to Statement 2.3, maps ϕr and
J lP k are topologically conjugate for any r ∈ T via some isotopic to the identity
homeomorphism. Denote such a homeomorphism by hr. Then for any r ∈ Tnk we
obtain that

J lP k = hr(ϕr)h
−1
r . (31)

Thus, each homeomorphism f ∈ G corresponds to the correct set of numbers
n, k, l and orientation-preserving homeomorphisms P : Sg → Sg, J : Sg → Sg such
that the homeomorphisms P , J lP k are pseudo-Anosov and J ∈ Z(P ). Therefore,
there is correctly defined model map φP,J,n,k,l ∈ Φ.

Let us prove that the homeomorphism f is ambiently Ω-conjugate to φP,J,n,k,l.
We construct a homeomorphism f ′ : MJ → MJ , topologically conjugate to
f and coinciding with the homeomorphism φP,J,n,k,l on the non-wandering set
(f ′|NW (f ′) = φP,J,n,k,l|NW (φP,J,n,k,l)).

We divide the construction into steps.
Step 1. Construct a homeomorphism x : Sg × U → Sg × U , where U =⋃

j∈{0,...,k−1}
Uj, Uj = [− 1

4nk
− j l

k
, 1
k
− 1

4nk
− j l

k
).

Let T = {0, 1
2nk
, . . . , 2n−1

2nk
}. Note that T = Tnk ∩ U0 and r ∈ Tnk ∩ Uj has

the form r = i − j l
k
, where j ∈ {0, . . . , k − 1} and the number i ∈ T is uniquely

determined. For i ∈ T and j ∈ {0, . . . , k − 1} we define the homeomorphism
ξi,j : Sg → Sg by the formula

ξi,j = P−jhi fi−j l
k
+(j−1) l

k
· · · fi−j l

k︸ ︷︷ ︸
j maps

. (32)

Since the homeomorphism fi−j l
k
+(j−1) l

k
· · · fi−j l

k
+ l

k
fi−j l

k
is isotopic to P j for j ∈

{1, . . . , k − 1} and the homeomorphism hi is isotopic to the identity, it follows
that the homeomorphism ξi,j is isotopic to the identity for any j ∈ {0, . . . , k− 1}.
Let ξi,j,t denote the isotopy connecting the homeomorphism ξi,j,0 = ξi,j and the
identity map ξi,j,1 = id.
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For r ∈ U we define the homeomorphism xr : Sg → Sg by the formula

xr =

ξi,j,6nk|r−(i−j l
k
)| for |r − (i− j l

k
)| ≤ 1

6nk
;

id for others r ∈ U.

Define the homeomorphism x : Sg × U → Sg × U by the formula

x(z, r) = (xr(z), r).

Note that
x
(
z, i− j

l

k

)
=

(
ξi,j(z), i− j

l

k

)
. (33)

Step 2. Let us extend the homeomorphism x : Sg × U → Sg × U to the
homeomorphism X̄ : Sg × R → Sg × R.

Let us prove that for any point r ∈ R there is a unique integer m ∈ Z such
that (r −m) ∈ U .

Divide the half-interval [− 1
4nk
, 1− 1

4nk
) into k half-intervals: [− 1

4nk
, 1− 1

4nk
) =

[− 1
4nk
, 1
k
− 1

4nk
)∪ [− 1

4nk
+ 1

k
, 2
k
− 1

4nk
)∪· · ·∪ [− 1

4nk
+ k−1

k
, 1− 1

4nk
). Obviously, for any

r ∈ R there is a unique number a ∈ Z such that r−a ∈ [− 1
4nk
, 1− 1

4nk
). Let r−a ∈

[− 1
4nk

+ j
k
, j+1

k
− 1

4nk
), where j ∈ {0, . . . , k− 1}. Since j runs through the complete

system of residues {0, 1, . . . , k − 1} modulo k and l is coprime with k, it follows
that (−jl) also runs through a complete system of residues {0,−l, . . . ,−l(k − 1)}
modulo k [10, page 46]. Consequently, there are integers i ∈ {0,−l, . . . ,−l(k−1)}
and b such that j + bk = i. Then (r − a + b) ∈ [− 1

4nk
+ j+bk

k
, j+1+bk

k
− 1

4nk
) =

[− 1
4nk

+ i
k
, 1
k
+ i

k
− 1

4nk
) ⊂ U . Thus, m = a − b is the required integer such that

(r −m) ∈ U .
Let ϱ(r) denotes an integer ϱ(r) ∈ Z such that (r − ϱ(r)) ∈ U . Define the

map X̄ : Sg × R → Sg × R by the formula X̄(z, r) = γ−ϱ(r)(x(γϱ(r)(z, r))) for
(z, r) ∈ Sg × R. Then X̄γ = γX̄.

Step 3. Construct a homeomorphism f ′ : MJ →MJ .
Let us set f̄ ′ = X̄f̄X̄−1. Since X̄γ = γX̄ and f̄γ = γf̄ , it follows that f̄ ′γ = γf̄ ′

and homeomorphisms X̄ and f̄ ′ project into homeomorphisms f ′ : MJ → MJ ,
X : MJ → MJ (see Statement 2.8), given by the formulas f ′ = pJ(f̄ ′(p−1

J (w))),
X = pJ(X̄(p−1

J ((w))) and f ′ = XfX−1.
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Let us prove that f̄ ′|Sg×Tnk
= φ̄P,J,n,k,l|Sg×Tnk

. Since X̄(Sg × {r}) = Sg × {r}
and f̄(Sg × {r}) = Sg × {r + l

k
} for any r ∈ Tnk, it follows that f̄ ′(Sg × {r}) =

X̄(f̄(X̄−1(Sg ×{r}))) = Sg ×{r+ l
k
}. Then for any r ∈ Tnk the homeomorphisms

f ′
r : Sg → Sg, Xr : Sg → Sg are correctly defined by f ′

r = ρr+ l
k
f̄ ′ρ−1

r , Xr =

ρr+ l
k
X̄ρ−1

r and
f ′

r = Xr+ l
k
frX

−1
r . (34)

Then
Xr = J−m(r)xrJ

m(r). (35)

By construction, φ̄P,J,n,k,l(z, r) = (P (z), r+ l
k
) and f̄ ′(z, r) = (f ′

r(z), r+
l
k
) for

any r ∈ Tnk.
Let us prove that f ′

r = P for any r ∈ Tnk. Let us represent r ∈ Tnk in the form
r = i− j l

k
+m, where i ∈ T , j ∈ {0, . . . , k − 1} and m ∈ Z.

Let k = 1. Then f ′
r = f ′

i+m

(34)
= Xi+mfi+mX

−1
i+m

(35)
=

J−mxiJ
mfi+mJ

−mx−1
i Jm (33)

=

J−mξi,0J
mfi+mJ

−mξ−1
i,0 J

m (21)
= J−mξi,0fiξ

−1
i,0 J

m (32)
= J−mhifih

−1
i Jm (17)

=

J−mhiϕih
−1
i Jm (31)

=

J−mPJm = P .
Let k > 1. We consider the cases 1) j ≥ 1 and 2) j = 0 separately.
1) If j ≥ 1, then j − 1 ∈ {0, . . . , k − 2} and the homeomorphism ξi,j−1 is cor-

rectly defined. We obtain that f ′
r = f ′

i−j l
k
+m

(34)
= Xi−(j−1) l

k
+mfi−j l

k
+mX

−1

i−j l
k
+m

(35)
=

J−mxi−(j−1) l
k
Jmfi−j l

k
+mJ

−mx−1

i−j l
k

Jm

(33)
= J−mξi,j−1J

mfi−j l
k
+mJ

−mξ−1
i,j J

m (21)
= J−mξi,j−1fi−j l

k
ξ−1
i,j J

m (32)
=

J−mP−j+1hifi−(j−1) l
k
+(j−2) l

k
. . . fi−(j−1) l

k
fi−j l

k
f−1

i−j l
k

. . . f−1

i−j l
k
+(j−1) l

k

h−1
i P jJm =

J−mP−j+1hih
−1
i P jJm = P .

2) If j = 0, then r + l
k
= i + l

k
+m = i− (k − 1) l

k
+ (m + l). We obtain that

f ′
r = f ′

i+m

(34)
= Xi−(k−1) l

k
+(m+l)fi+mX

−1
i+m

(35)
= J−m−lξi,k−1J

m+lfi+mJ
−mξ−1

i,0 J
m (21)

=

J−m−lξi,k−1J
lfiξ

−1
i,0 J

m (32)
=

J−m−lP−k+1hifi−(k−1) l
k
+(k−2) l

k
. . . fi−(k−1) l

k
J lfih

−1
i Jm

(21)
= J−m−lP−k+1hiJ

lfi+(k−1) l
k
. . . fi− l

k
fih

−1
i Jm (17)

= J−m−lP−k+1hiϕih
−1
i Jm

(31)
= J−m−lP−k+1J lP kJm = P .
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We obtain that f̄ ′(p−1
J (NW (f ′)) = φ̄P,J,n,k,l(p

−1
J (φP,J,n,k,l).

Consequently, f ′|NW (f ′) = φP,J,n,k,l|NW (φP,J,n,k,l) and the homeomorphism f is
ambiently Ω-conjugate to the homeomorphism φP,J,n,k,l via the map X.
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