
Hybrid acceleration techniques for the

physics-informed neural networks: a comparative

analysis

Fedor Buzaev, Jiexing Gao*, Ivan Chuprov, Evgeniy Kazakov

Moscow Research Center, 2012 Labs, Huawei Technologies Co., Ltd.,
Smolenskaya square 7-9, Moscow, 119121, Russia.

*Corresponding author(s). E-mail(s): gaojiexing@huawei.com;

Abstract

Physics-informed neural networks (PINN) has emerged as a promising approach
for solving partial differential equations (PDEs). However, the training process
for PINN can be computationally expensive, limiting its practical applications.
To address this issue, we investigate several acceleration techniques for PINN that
combine Fourier neural operators, separable PINN, and first-order PINN. We also
propose novel acceleration techniques based on second-order PINN and Koopman
neural operators. We evaluate the efficiency of these techniques on various PDEs,
and our results show that the hybrid models can provide much more accurate
results than classical PINN under time constraints for the training, making PINN
a more viable option for practical applications. The proposed methodology in the
manuscript is generic and can be extended on a larger set of problems including
inverse problems

Keywords: Physics-informed neural networks, sinusoidal learning space, Fourier
neural operators, Koopman neural operators

1 Introduction

Physics-informed neural networks (PINNs) belong to universal function approximators
that are trained by taking into account the underlying physical laws during the
learning process, and in this way, provide us a robust framework to make predictions
bounded by the physical laws [1]. The main application of PINN is to solve partial

1



differential equations (PDEs) [2]. In this regard PINNs are often considered as a mesh-
free alternative to traditional numerical PDE solvers [3]. Essentially, PINN is able
to solve a PDE in the weak formulation, i.e. by minimizing the loss function which
indicates how well the neural network satisfies the PDE. Usually the loss function is
taken as the residual of the PDE and its boundary conditions. The minimization is
performed by tuning the weights of the neural network. In order to compute the PDE
residual, the partial derivatives of the neural network have to be computed, which
can be done by using the automatic differentiation technique. The PINN methodology
was rediscovered in [4] and after that was applied in a wide range of mathematical
physics problems including computational fluid dynamics [5], electrical engineering
[6], radiative transfer [7], nano-optics [8], heat transfer [9] etc. An extensive list of
references describing PINN applications for solving PDEs can be found in [10]. Due
to the growing interest to this topic, several frameworks dedicated to PINN have been
introduced (there are over 400 projects related to physics-informed machine learning
on Github), including that from NVIDIA [11] and Microsoft [12]. However, there are
some concerns about the mathematical justification of this approach. In particular,
minimization of the loss function in PINN is a highly non-convex optimization problem,
wherein convergence to the global minimum cannot be guaranteed [13]. The structure
of the neural network has to be adjusted to a PDE (and possibly, to parameters of a
PDE). Sometimes, the efficiency of PINN does not depend smoothly on the number
of layers, neurons and other characteristics of the neural network structure. That
complicates the design of the optimal PINN structure for a given problem.

The main practical question is whether PINNs can be more effective than
traditional solvers, such as the finite element method (FEM). Potentially, PINN can
be faster and more efficient than FEM in some cases, because PINN can learn to
approximate the solution to a PDE directly, without the need for discretization or
mesh generation, which can be time-consuming and computationally intensive steps
in the FEM process. In the recent work of Grossmann et al [14] it was shown that
in terms of solution time and accuracy, PINNs were not able to outperform FEM.
A similar conclusion was done in [3]. It was shown that low-frequency components
of the solution converged quickly, while in contrast, an accurate solution of the high
frequencies required an exceedingly long time. Such feature of PINN can be regarded as
an implication of the F-principle in deep learning [15], that says that neural networks
tend to fit the data by a low-frequency function. The main argument in defense of
PINN is that, unlike traditional solvers, PINNs can invoke free parameters of the PDEs
as extra inputs and in this way to be trained for a class of PDEs rather than for a
single PDE. For instance, such an approach was applied to the nonlinear Schrödinger
equation [16]. The launch power of the signal is embedded in PINN as a parametric
feature, which makes PINN learn the signal transmissions under different powers
simultaneously. There are dedicated frameworks based on PINN which are specifically
designed to incorporate a large amount of parametric features, e.g. PI-DeepONet
[17]. Since the training of PINN is performed offline and the resulting network is
computationally very fast, the long training time is not an issue. The second argument
in favor of PINN is based on the so-called transfer learning approach [18–20], wherein

2



a formerly trained PINN is reused as a starting point in a training procedure for a
novel problem thereby accelerating the convergence.

In practice, the PINN training is a time-consuming procedure. In this regard,
new methods for accelerating the PINN training are required. Recently several
concepts involving novel architectures and approaches were proposed to improve
the performance and efficiency of PINNs. Moreover, in some papers authors showed
the cases where the classical PINN did not converge at all, while using proposed
modifications it was possible to get an accurate solution [21].

Usually the acceleration methods for PINN are studied in isolation of each other
and compared only against PINN based on a fully-connected neural network. The goal
of this paper is to analyze the efficiency of the combined use of several acceleration
techniques.

2 Overview of PINNs

PINNs approximate PDE solutions using a deep neural network. The basic features
of PINN can be summarized as follows. Consider a PDE in the following form:

F(U(x)) = 0 for x ∈ D, (1)

where F is the differential operator, U is the solution to the PDE, while x =
{x1, ..., xn} ∈ D is n-dimensional vector of coordinates belonging to the domain D.
Operator F may involve high-order partial derivatives of U over xi. The domain D
is bounded by Γ. Function U is a subject to boundary conditions (here we do not
distinguish boundary and initial conditions),

B(U(x)) = 0 for x ∈ Γ, (2)

where B is the boundary operator. Our goal is to find the vector b incorporating
the parameters of the neural network, so that PINN satisfies Eqs. (1) and (2). The
problem is formulated in a weak form:

b = argmin
b

[Lpde + Lbc] , (3)

where

Lpde =

N∑
i=1

[F(PINN(xi, b))]
2

for xi ∈ D, (4)

Lbc =

M∑
i=1

[B(PINN(xi, b))]
2

for xi ∈ Γ, (5)

while N and M are the number of sampling points within D and at Γ, respectively.
The partial derivatives of PINN with respect to the elements of x in Eq. (4) can
be computed on the basis of automatic differentiation tools implemented in machine
learning libraries.

The schematic of PINN is shown in Figure 1.

3



Fig. 1 Schematic of PINN, where the loss function of PINN comprises a mismatch in the boundary
and initial conditions, as well as the residual for the PDE on a set of points in the chosen domain

The performance of PINN is strongly affected by the topology/architecture of the
neural network, including the number of layers, the number of neurons in each layer,
and the connections between neurons. In general, a more complex topology with more
layers and more neurons can potentially improve the performance of PINN, but it also
requires more training time and so, provide less accurate results under training time
constraints.

3 Acceleration methods

Due to the large number of parameters that can be changed in the PINN model, such
as the number of layers, number of neurons, optimizer, etc., the accurate analysis of
acceleration methods for PINN is a challenging task. We have therefore chosen methods
that we believe to be fundamentally different, but which nevertheless show high
efficiency when applied individually. For the purpose of our analysis, we identify two
groups of acceleration methods. The first group are techniques that are a modification
of the way the data is taken from the deep learning block. From this group we consider
separable PINN (SPINN), FO-PINN and SO-PINN. In addition, we implement first-
order SPINN (FO-SPINN) and second-order SPINN (SO-SPINN) as hybrid models
alongside them. The second group of methods can be attributed to the functional
spaces. Essentially, it deals with what inside the deep learning block. From this group
we consider PINN with sinusoidal activation function, PINN with Fourier neural
operators (FNOs), PINN with U-Net architecture and, as a hybrid model, PINN with
the sinusoidal activation function and FNO blocks. Subsequently, several hybrid PINN
models are considered by implementing pairwise methods from two groups. Below is a
brief discussion of each of these methods. Note that the distinction between two groups
of methods is not strict, and some methods can be attributed to both categories. In
our classification, we have mostly relied on the context of papers where these methods
were originally described.

4



Fig. 2 Schematic of Separable PINN (SPINN), wherein the solution is decomposed into a product
of functions that depend only on a single variable

3.1 Separable PINN

SPINNs [22] are a type of PINN that use a separable representation of the solution,
where the solution is decomposed into a product of functions that depend only on
a single variable. This approach can significantly reduce the computational cost of
solving PDEs and can also improve the accuracy of the solution. SPINNs have been
shown to be particularly effective for solving PDEs with separable solutions, such as
certain types of elliptic and parabolic PDEs. In this regard, SPINN can be partially
thought of as a representative of the second group methods. The schematic of the
SPINN architecture is shown in Figure 2.

In particular, for an output function depending on n variables, SPINN consists of
n sub-networks, each of them depends on a single coordinate. The final output is taken
as a dot product of the corresponding outputs of the sub-networks. This approach
reduces the number of propagation across the network during the learning process,
while the complexity of the problem scales linearly of the number of dimensions unlike
classical architectures with exponential scaling.

3.2 First-order PINN

It was observed that computation of partial derivative terms in the PINN loss functions
via automatic differentiation during training are computationally expensive. In this
regard, several methods were proposed in order to reduce the use of automatic
differentiation. In particular, in the so-called FO-PINN [23] the neural network has
additional outputs which approximate the partial derivatives, while in [24] derivatives
are estimated by using meshless radial basis function-finite differences.

While in the classical PINN, the output of the neural network approximates the
PDE solution and the loss function is estimated w.r.t. the function to be found, in FO-
PINN or in FO-SPINN there are additional outputs (PINNd(xi)) to approximate the
first-order partial derivatives. Consequently, the loss function incorporates an extra

5



Fig. 3 Schematic of First-order PINN (FO-PINN) and first-order-separable PINN (FOS-PINN)

term Ld showing how accurate the approximation of derivatives as compared to those
computed by using the automatic differentiation:

Note that the first-order PINN can be implemented for SPINN architectures. Such
hybrid schemes are also analysed in this paper.

Ld =

N∑
i=1

[PINNd(xi)− autograd(PINN(xi),xi)]
2
. (6)

The ideas of FO-PINN and FOS-PINN are illustrated in Figure 3. Note that the
first-order PINN can be implemented for SPINN architectures. Such hybrid schemes
are also analysed in this paper.

3.3 Second-order PINN

SO-PINN is a logical extension of FO-PINN. In our approach, we integrate an
additional neural network that generates both first and second order derivatives. This
means we have two neural networks operating concurrently. They are both trained

6



Fig. 4 Schematic of second-order PINN (SO-PINN)

with the same data batches, while the loss function to be minimized incorporates the
loss terms of both networks. Importantly, we merge the two neural networks into a
single graph, allowing for backpropagation through the entire network.

The architecture is illustrated in Figure 4. The first-order derivative loss term is
the residual between the output for the first derivative of the second neural network
and the output of the first neural network followed by automatic differentiation. In
SO-PINN, the second-order derivative loss term is calculated as a residual between
the corresponding outputs of the second neural network and the automatically
differentiated output of the second neural network corresponding to the first-order
derivative. In this paper, we adopt the following configuration of SO-PINN: 6 linear
layers with layer shape is equal [ninputs, 200, 500, 500, 200, noutputs], where ninputs is
a number of input coordinates shape,noutputs is a number of output derivatives shape.
We used GELU non-linearity as function of the activation.

3.4 Fourier Neural Operator and Koopman Neural Operator

FNO were introduced in [25] and designed to perform a mapping between infinite-
dimensional function spaces [26]. Initially, FNO was designed to parametrize a set
of PDE solutions using the training dataset. Mathematical properties of such neural
operators are considered in [27]. Essentially, a neural operator can be represented as
a neural network consisting of a stack of L layers:

G = Q ◦ (WL +KL) ◦ ... ◦ σ(W1 +K1) ◦ P, (7)

where G is a neural operator, σ is the activation function, Wi is the point-wise linear
operator, Ki is the integral kernel operator, while P and Q are the pointwise neural
networks that encode the lower dimension function into higher dimensional space and
decode the higher dimensional space into the lower dimensional space, respectively. In
FNO, Ki is taken as a convolution operator, and the fast Fourier transform F is used
to compute Ki. Thus,

7



Fig. 5 Schematic of FNO

Fig. 6 Schematic of the Koopman neural operator (KNO)

(Kv)(x) = F−1(r(Fv))(x), (8)

where r represents the parameter to be learned. Its schematic representation is
depicted in Figure 5. The use of FNO in PINN is described in [28] and [27]. The
corresponding model is referred to as physics-informed neural operators (PINO). In
[27] PINO was up to 2 orders of magnitude faster as compared to the classical solvers.
However, the PINO error level could not be reduced below 1 % (or only perhaps at
the cost of drastic increase of the training time). In the meantime, the classical solvers
have no problem to achieve higher level of accuracy.

Koopman Neural Operator (KNO) was introduced in [29]. As the FNO, KNO was
initially designed to parametrize a set of PDE solutions using the training dataset.
Specifically, KNO takes as input a set of measurements or observations of the system at
different times, and produces as output a set of predictions of the system’s behaviour
at future times. As described in [29], KNO is expressed as a composition of simpler
operators that can be more easily approximated by a neural network, e.g. as a
composition of nonlinear observables of the system, followed by a linear operator that
maps the observables to their future values. KNO includes the following elements:
an encoder of the input data, Fourier transform (similar to FNO), a linear layer
(corresponding to a Hankel matrix), and inverse Fourier transform. On top of that,
a convolutional layer is applied to the output of the encoder in order to extract
high-frequency components of the solution. Then the outputs of the inverse Fourier
transform and high frequency components are summed up, and the decoder is applied
to the sum. A scheme of KNO is given in Figure 6.

Similar to FNO, KNO can also be integrated into the PINN framework. However,
incorporating FNO and KNO into PINN is not a straight-forward process. Instead of
treating a group of points as a single sample for training, in PINN each point can be
treated as a separate sample. This fact raises the crucial question of which quantity

8



Fig. 7 Schematic of a U-Net with FNO/KNO layers

the Fourier transform should be applied to. To solve this obstacle, and to work with
mesh-free data, input data should fit to the convolution layers. For that purpose, we
artificially increase the data dimension and perform embeddings through two linear
layers to transform the data dimension from [npoints, ndim] to [npoints,width,width],
where ndim is a dimension of input data. For outputs we use two linear layers for
inverse transformation from [npoints,width,width] to [npoints, ndim]. That approach
helps to find additional patterns in the mesh-free data.

3.5 U-Net

U-Net is a type of neural network architecture that was originally developed for the
task of image segmentation [30], which involves identifying and separating different
objects within an image. The name U-Net comes from the shape of the network,
which resembles the letter U. The U-Net architecture is characterized by a series of
convolutional layers that gradually reduce the spatial resolution of the input image,
followed by a series of upsampling layers that gradually restore the resolution back to
the original size. The network also includes skip connections, which allow information
from earlier layers to be passed directly to later layers, bypassing the intermediate
layers. This helps the network to better capture both low-level and high-level features
of the image, which is particularly important for image segmentation tasks.

To solve partial differential equations, the authors propose to use FNO layers
instead of usual convolution layers [31]. We have also complemented this architecture
with KNO layers. Its schematic representation of U-Net with FNO layers (or KNO
layers) is shown in Figure 7.

3.6 Sinusoidal activation function

In [32] it was shown that PINNs have the so-called spectral bias that prevents them
from learning high-frequency functions. There it was also proposed to add to neural
network special blocks which mimic the solution features in the Fourier space. A
similar idea was also discussed in [33]. In [34] it was proposed to use as the sinusoidal
activation function for the output of the first layer, which looks as follows:

9



σ(x) = sin(2π(x+ b)), (9)
where b is the bias. The argument in favor of this approach takes into account the
process of the PINN convergence. Namely, it was shown that whenever the activation
function is relatively flat (e.g. ReLU or tanh), PINN tends to provide a solution that
can be very close to satisfying many PDEs and falling into a local minimum of the
PINN loss that only minimizes PDE residuals. As a consequence, it takes more time
for optimizers to minimize also other terms of the loss function thereby increasing
the total training time. It was also shown empirically that the sinusoidal mapping of
inputs prevents the loss function to reach a local minimum and be ’trapped’ there
instead of converging to a global minimum.

4 Simulations

All simulations are performed on Nvidia V100 GPU with 16GB memory. To make
comparison consistent, we limit the training time by 10 minutes. The default
configuration of PINN consists of 8 residual linear layers with 300 neurons in each
layer. FNO consists of 3 blocks incorporating 4 linear layers and taking 32 modes
followed by the GELU activation functions. We consider two models based on SPINN.
The first model of SPINN has 4 linear layers with 300 neurons in each layer followed by
the tahnshrink activation functions. The second model of SPINN consists of 4 linear
layers with 32 neurons in each layer followed by FNO. The models of FO-PINN and
FO-SPINN have the same configuration like models of PINN and SPINN. The GELU
activation functions are employed in this case. We use AdamW optimizer to train for
10 minutes with an initial learning rate of 0.001. The ReduceLROnPlateau scheduler
multiplies the learning rate by 0.9 if the loss is not decreased after 50 consecutive
epochs. The weights of the network are initialized by using the Xavier method [35].
The ensure consistency, a total of 2500 sampling points are chosen for all cases. These
points are randomly and uniformly distributed across the domain, and remain fixed
throughout the training process without any changes.

4.1 Poisson equation

The Poisson equation is a type of elliptic partial differential equation that is widely
used in theoretical physics. The solution of the Poisson equation is the potential
field caused by a given charge density distribution. Under a known potential field, an
electrostatic field can be calculated.(

∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y), (10)

where u is the unknown function, and f is the source function that reads as follows:

f(x, y) = (1− x2)(2y3 − 3y2 + 1). (11)

Results of experiments are shown in Table 1. The best result is marked in bold.
Almost all cases of training with sinusoidal activation the final mean squared error
will be smaller than without the use of the sinusoidal activation function.

10



Table 1 MSE for the Poisson equation

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

3.1e-01 1.2e-01 4.6e-05 3.7e-05 5.0e-05 1.5e-05
FO 1.9e-02 9.2e-05 2.3e-05 4.5e-06 2.7e-05 5.6e-06
SO 1.2e-03 5.9e-05 1.0e-04 6.1e-05 7.3e-05 7.2e-05

Separable 7.5e-01 1.5e-01 5.6e-06 6.8e-07 1.6e-06 5.5e-07
Separable+FO 9.0e-02 1.0e-01 9.9e-02 2.2e-01 9.6e-02 2.2e-01
Separable+SO 1.6e-04 1.5e-04 7.1e-05 4.8e-05 8.5e-05 6.4e-05

U-Net - - 5.5e-04 9.1e-05 4.2e-04 1.4e-04
U-Net+FO - - 2.3e-04 1.6e-04 1.0e-03 7.0e-05
U-Net+SO - - 8.8e-05 2.7e-04 2.0e-04 1.3e-04

Separable+U-Net - - 1.3e-03 1.0e-04 2.3e-04 7.4e-05
Separable+U-Net+FO - - 7.5e-02 1.0e-01 8.2e-02 1.3e-01
Separable+U-Net+SO - - 1.0e-03 4.9e-04 1.4e-03 3.2e-04

Table 2 MSE for PINN solutions of the reaction-diffusion equation

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

6.1e-01 4.1e-01 3.9e-01 3.8e-01 1.3e-04 1.3e-04
FO 3.9e-01 1.1e-03 3.6e-04 2.8e-04 4.0e-04 2.6e-04
SO 4.8e-01 4.5e-01 3.3e-01 2.7e-01 3.3e-03 2.1e-02

Separable 2.3e+00 4.0e-01 1.5e-04 1.4e-04 1.4e-04 1.3e-04
Separable+FO 2.6e+00 4.0e-01 4.1e-01 4.1e-01 4.1e-01 4.1e-01
Separable+SO 1.7e+01 1.5e+00 1.3e-03 6.8e-02 5.5e-04 3.9e-03

U-Net - - 4.2e-04 3.3e-01 6.7e-05 2.0e-04
U-Net+FO - - 3.8e-01 4.6e-04 3.7e-01 3.0e-01
U-Net+SO - - 2.9e-02 9.3e-02 1.0e-01 3.8e-02

Separable+U-Net - - 5.1e-04 3.1e-04 2.8e-01 2.5e-03
Separable+U-Net+FO - - 4.5e+00 3.9e-01 2.1e+00 3.9e-01
Separable+U-Net+SO - - 6.4e-02 1.9e-01 6.4e-02 8.5e-02

4.2 Reaction-diffusion equation

The reaction-diffusion equation is a mathematical equation describing how two
chemicals might react to each other as they diffuse through a medium together.

∂u

∂t
+ ν

∂2u

∂x2
= ρu(1− u), (12)

where ρ = 5, ν = 3 and u are the PDE parameters and the source function,
respectively.

The results are shown in Table 2 . The best result is marked in bold. The combined
use of SPINN with the first- or second-order modifications reduced the accuracy as
compared to the classic PINN. The best configuration is the U-Net with KNO blocks.
The classic PINN involving KNO blocks also shows good results outperforming the
classic PINN and other methods implemented separately. FNO without the use of
additional techniques converges to the minimum best.

11



4.3 Helmholtz equation

The Helmholtz equation is one of the varieties of PDE. That equation represents
time-independent form of source’s wave in time-independent domain.

∇2u = −k2f. (13)

For our tests, we consider

−uxx − uyy − k20u = f(x, y), (14)

where k and f are the wave number and source of elliptic PDE that is widely used
in theoretical physics. The solution of the Helmholtz is the potential field caused by a
given charge density distribution. Under a known potential field, an electrostatic field
can be calculated.

The corresponding source functions are given by

f(x, y) = sin(k0x) sin(k0y) (15)

in the domain Ω = [0, 1]2, with the Dirichlet boundary conditions u(x, y) = 0, (x, y) ∈
∂Ω. The value of k0 can be 4π, 16π or 24π. The distribution with different k0 is shown
in Figure 8. As k0 increases, the solution becomes more complex in shape. That causes
difficulties for neural networks according to the F-principle [15], that says that neural
networks tend to fit the data by a low-frequency function.

The MSE values for all cases are shown in Tables 3, 4 and 5. The best result is
marked in bold. The best configuration for k0 = 4π appeared to be SPINN with the
first-order modification including FNO blocks and the sinusoidal activation function.
The separate use of these options, as well as KNO blocks leads to less accurate
results as those from the classic PINN. For k0 = 16π the accuracy of the classic
PINN decreases, while the configurations involving KNO blocks become accurate.
In particular, SPINN with the first-order modification, KNO blocks and sinusoidal
activation function shows the best performance. Finally, for k0 = 24π SPINN with
the second-order modification, KNO blocks and sinusoidal activation function is the
winner outperforming by far other the rest configurations. As modifications of PINN
introduce additional overhead and the training time is limited by 10 minutes, different
configurations, different configurations manage to go through a different number of
learning epochs. Note that the overhead changes with k0. For instance, for k0 = 4π the
classic PINN is the fastest, while for k0 = 16π and k0 = 24π PINN with the second-
order modification and that with KNO blocks and sinusoidal activation function,
respectively, are the fastest ones. The separate use of SPINN does not improve the
results as compared to the classic PINN.

4.4 Burgers’ equation

Burgers’ equation arises in various areas of applied mathematics, including fluid
mechanics, nonlinear acoustics and gas dynamics. It is a fundamental PDE which

12



Fig. 8 Examples of Helmholtz equation with the source terms given by Eq. (15) with k0 = 4π(left),
k0 = 16π (middle) and k0 = 24π (right)

Table 3 MSE for the Helmholtz equation with k0 = 4π

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

1.0e-04 1.2e-02 5.9e-02 8.9e-02 1.0e-01 1.0e-01
FO 6.2e-02 7.1e-02 6.4e-03 1.3e-04 5.7e-02 1.0e-01
SO 2.3e-02 4.4e-02 4.9e-03 2.7e-02 5.0e-02 4.6e-02

Separable 2.1e-01 3.7e-02 2.2e-02 7.1e-02 1.1e-01 1.0e-01
Separable+FO 1.8e-01 8.6e-04 7.3e-04 3.5e-05 1.8e-04 7.8e-04
Separable+SO 2.2e-01 1.3e-02 2.3e-01 8.5e-03 1.5e-02 4.4e-02

U-Net - - 1.5e-01 1.1e-01 1.0e-01 1.0e-01
U-Net+FO - - 6.2e-02 7.7e-02 6.4e-02 7.7e-02
U-Net+SO - - 1.7e-03 3.3e-04 3.2e-03 9.0e-03

Separable+U-Net - - 1.0e-01 9.7e-02 1.0e-01 9.8e-02
Separable+U-Net+FO - - 1.7e-01 8.0e-04 4.1e-02 1.1e-03
Separable+U-Net+SO - - 1.0e-03 2.1e-04 1.5e-03 7.5e-04

Table 4 The same as in Table 3, but for k0 = 16π

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

1.4e-01 1.9e-02 2.1e-01 1.1e-01 1.8e-01 1.4e-01
FO 7.4e-02 2.0e-02 2.0e-01 5.1e-02 1.3e-01 3.4e-02
SO 1.5e-01 2.2e-02 1.5e-01 4.4e-02 1.5e-01 4.0e-02

Separable 2.5e-01 2.5e-01 2.4e-01 1.8e-01 1.1e-01 1.0e-01
Separable+FO 2.5e-01 2.5e-01 2.4e-01 3.4e-04 6.5e-02 3.5e-05
Separable+SO 3.5e-01 2.6e-01 2.4e-01 4.1e-04 2.2e-03 4.2e-05

U-Net - - 2.4e-01 1.4e-01 2.1e-01 1.5e-01
U-Net+FO - - 7.3e-02 3.0e-02 6.6e-02 2.4e-02
U-Net+SO - - 1.1e-01 2.0e-02 2.0e-01 5.4e-02

Separable+U-Net - - 2.4e-01 1.0e-01 2.4e-01 1.0e-01
Separable+U-Net+FO - - 2.8e-01 2.4e-01 2.4e-01 2.4e-01
Separable+U-Net+SO - - 2.4e-01 3.9e-03 2.4e-01 2.4e-01

describes the dynamics of viscous fluids or gases. It is a simplified version of the Navier-
Stokes equation and can be derived from it by dropping the pressure gradient term.
For our tests, we consider the following equation:

ut + uux = (0.01/π)uxx (16)

13



Table 5 The same as in Table 3, but for k0 = 24π

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

2.6e-01 1.6e-01 2.4e-01 2.1e-01 2.2e-01 2.6e-01
FO 2.4e-01 1.7e-01 2.6e-01 1.8e-01 2.4e-01 1.9e-01
SO 2.6e-01 1.8e-01 2.5e-01 1.4e-01 2.6e-01 2.1e-01

Separable 2.6e-01 2.7e-01 2.4e-01 2.4e-01 1.9e-01 1.0e-01
Separable+FO 2.6e-01 2.6e-01 2.4e-01 2.1e-01 5.4e-02 3.7e-04
Separable+SO 2.8e-01 2.6e-01 2.4e-01 2.8e-04 1.5e-01 1.2e-04

U-Net - - 2.3e-01 2.0e-01 2.1e-01 1.9e-01
U-Net+FO - - 2.7e-01 1.4e-01 2.6e-01 1.8e-01
U-Net+SO - - 2.4e-01 1.2e-01 2.0e-01 1.3e-01

Separable+U-Net - - 2.4e-01 1.1e-01 2.4e-01 1.0e-01
Separable+U-Net+FO - - 2.4e-01 2.8e-01 2.5e-01 2.5e-01
Separable+U-Net+SO - - 1.2e-01 4.6e-03 2.4e-01 3.0e-03

Table 6 MSE of Burgers’ equation solution

Classic +sin +FNO +FNO+sin +KNO +KNO+sin

1.1e-01 9.3e-02 2.7e-02 2.1e-02 8.1e-03 2.9e-02
FO 9.3e-02 8.0e-02 1.5e-01 9.7e-02 4.3e-02 3.0e-02
SO 1.5e-01 2.9e-01 1.6e-01 9.0e-02 8.6e-02 8.6e-02

Separable 1.7e-01 2.7e-01 1.9e-01 1.0e-01 6.0e-02 2.9e-02
Separable+FO 3.7e-01 3.7e-01 2.8e-01 2.3e-01 3.7e-01 3.7e-01
Separable+SO 1.2e-01 1.1e-01 1.3e-01 1.1e-01 9.0e-02 8.4e-02

U-Net - - 4.4e-02 2.3e-01 1.1e-01 3.3e-02
U-Net+FO - - 9.5e-02 8.1e-02 9.5e-02 8.0e-02
U-Net+SO - - 1.0e-01 1.0e-01 1.0e-01 1.0e-01

Separable+U-Net - - 4.0e-02 3.3e-02 3.6e-02 3.2e-02
Separable+U-Net+FO - - 3.8e-01 3.7e-01 3.7e-01 3.7e-01
Separable+U-Net+SO - - 1.3e-01 1.3e-01 1.2e-01 1.3e-01

in domain x ∈ [0, 1]2, t ∈ [0, 1]2with initial conditions u(0, x) = − sin(πx), and
Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0.

The MSE values are summarized in Table 6. The best result is marked in bold. The
configuration with KNO blocks appears to be the best one, while in combination with
SPINN the second-order modification is more accurate than that with the first-order
modification. An application of SPINN leads to worse results than those provided by
the classic PINN.

5 Discussion

We tested several configurations of PINN and found that there was no clear winner
in the comparison. For example, in the case of the Poisson equation, SPINN equipped
with KNO and sinusoidal activation function performed the best, while using FO-
PINN led to significantly worse results. However, this configuration was outperformed
by the U-Net PINN with KNO blocks in the case of the reaction-diffusion equation. In
fact, none of the options that were considered consistently resulted in an enhancement
of PINN. Furthermore, we could not formulate explicitly the causes behind the success
or failure of each individual option. The amount of overhead associated with utilizing

14



Table 7 MSE of Burgers’ equation solution

Equation Mesh Solution time, s MSE

Reaction-Diffusion 50x50 0.2 1e-4
Poisson 50x50 0.03 1e-7

Helmholtz, k = 4π 50x50 1.2 3e-11
Helmholtz, k = 16π 50x50 1.2 1e-6
Helmholtz, k = 24π 50x50 1.2 1
Helmholtz, k = 24π 2500x2500 1080 (18 min) 3e-6

various PINN options varies among different problems. This fact adds complexity to
the examination of PINN configurations and the process of finding the optimal PINN
configuration.

PINN is considered as a possible competitor of traditional solvers, such as FEM.
For this reason, we apply FEM to aforementioned problems. We use DOLFINx [36]
framework on python. DOLFINx framework uses combination of a Krylov subspace
method[37] and a preconditioner from PETSc package [38]. In all simulations, the LU
preconditioner with 1e-6 absolute and relative tolerances is used. Computations are
performed on 1 core of Intel Xeon Gold 6151 3.0 GHz CPU. The results are summarized
in Table 7. The corresponding MSE values are computed with respect to the analytical
solutions. For considered cases, FEM provides stable results with MSE below 10−4

taking the same number of grid points, as PINN, namely 2500. The accuracy of PINN
solutions becomes significantly worse when the number of sampling points in PINN is
decreased. Let us recall that PINN takes 10 minutes on GPU. From this perspective
and taking into account that our PINNs have around 105 trainable parameters against
103 unknowns in FEM, using piecewise linear functions as basic functions in FEM
appears more effective than representing the solution of PDE through neural networks.

As the wavenumber in the Helmholtz equation gets higher, the number of required
grid points in FEM also increases significantly. For example, when k = 24π , the
number of points needs to be increased by a factor of 103. In this scenario, the
performance of both FEM and PINN (in their most optimal configurations) can be
deemed comparable, with a slight advantage leaning towards FEM. In this context, it is
reasonable to assume that using PINN as a PDE solver is effective for cases that require
fine discretization. However, for other cases, FEM appears to be a better option, as
the solution can be obtained using fewer grid points (finite elements). This conclusion
is only valid when considering a solution to a single PDE. In the case of complex
problems like weather forecasting, it is reasonable to anticipate that PINN would offer
significantly faster result predictions than numerical methods, with an accuracy that
surpasses that of the numerical approach [39]. Moreover, in [40] it is suggested that the
efficiency of PINN approaches increase with the dimension of the problem, whereas in
FEM the complexity increases exponentially with increasing dimensions.

We finalize this section by mentioning that although this paper does not cover
extensive numerical experiments necessary for comparing PINN and FEM, we present
illustrative examples to provide readers with a sense of how these two methods compare
to each other

15



6 Summary

In this paper, we explored several acceleration techniques for PINNs including noval
PINN archtectures based on Koopman neural operators and the second-order PINNs.
in order to improve their performance and efficiency. We have considered several types
of methods, including those based on advanced network architectures, calculating
derivatives by neural networks instead of solely use of automatic differentiation
approach, and learning in functional spaces. These approaches have been implemented
in a common framework aiming to streamline the process of developing and fine-
tuning PINN models and provide an all-in-one solution for efficient PINN research.
The best configuration for a specific problem can be found by performing tests across
all available architectures.

In majority of considered cases SPINN architecture with sinusoidal activation
function perform well and robust. To reduce the overhead due to automatic
differentiation, FO-PINNs have been considered. We extended this method to include
the second-order derivatives. Our results showed that the efficiency of SO-PINN was
almost as good as FO-PINN in most cases. Nevertheless, SO-PINN performed better
in the problems with high oscillatory solutions, such as the Helmholtz equation. We
explored the use of functional spaces, including sinusoidal activation functions and
FNO. In addition, we implemented PINNs based on KNO. Through our simulations,
the combined use of neural operators together with the sinusoidal activation function
may improve the accuracy of PINN. In most experiments, KNOs were more efficient
than FNOs. The optimized configurations of PINN provided results with the error by
3-4 orders of magnitude less than the original PINN based on fully-connected layers.

Overall, our results suggest that the optimal configuration of PINN depends
on the specific physics problem being addressed, and there is no single approach
that works best for all cases. Nevertheless, it was shown that the combined use of
several performance enhancement techniques can significantly improve PINN results.
In particular, the SPINN configuration with sinusoidal activation function and KNO
blocks seems to be a configuration to be tested. Our study highlights the potential
benefits of combining multiple techniques to achieve the best results.

The most efficient configurations of PINN found in this study could not over-
perform FEM. For instance, while PINN required minutes of training on GPU to
obtain an accurate solution, FEM was capable to achieve accurate results in several
seconds. Our experiments with the Helmholtz equation revealed that the performance
gap between PINN and FEM diminishes as problem complexity increases. In our study,
we specifically refer to the highly oscillatory nature of the solution as the complexity
factor. Previous research suggests that a similar trend may be observed as the problem
dimension increases. In our future work we aim to explore the potential of PINNs in
solving complex problems that traditional solvers may struggle with. Specifically, we
will focus on high-dimensional problems and parametric PDEs with free parameters.

7 Declarations

Jiexing Gao supervised the project. Fedor Buzaev and Jiexing Gao conceived
the original idea. Fedor Buzaev and Ivan Chuprov designed the model and the

16



computational framework and analysed the data. Evgeniy proposed the FEM
experiment in discussions.

All authors declare that they have no conflicts of interest.
Funding - Not applicable
Ethics approval - Not applicable
Code availability - Not applicable
Consent to participate - Not applicable
Consent for publication - Not applicable
Availability of data and material - Not applicable

References

[1] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Physics-informed
neural networks. In: Deep Learning in Computational Mechanics vol. 977, pp.
55–84. Springer, (2021). https://doi.org/10.1007/978-3-030-76587-3 5

[2] Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial
differential equations in complex geometries (2017) https://doi.org/10.1016/j.
neucom.2018.06.056 arXiv:1711.06464

[3] Markidis, S.: The old and the new: Can physics-informed deep-learning replace
traditional linear solvers? Frontiers in Big Data 4 (2021) https://doi.org/10.3389/
fdata.2021.669097

[4] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics 378,
686–707 (2019)

[5] Wu, P., Pan, K., Ji, L., Gong, S., Feng, W., Yuan, W., Pain, C.: Navier–stokes
generative adversarial network: a physics-informed deep learning model for fluid
flow generation. Neural Computing and Applications 34(14), 11539–11552 (2022)
https://doi.org/10.1007/s00521-022-07042-6

[6] Xu, Z., Guo, Y., Saleh, J.H.: A physics-informed dynamic deep autoencoder for
accurate state-of-health prediction of lithium-ion battery. Neural Computing
and Applications 34(18), 15997–16017 (2022) https://doi.org/10.1007/
s00521-022-07291-5

[7] Mishra, S., Molinaro, R.: Physics informed neural networks for simulating
radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer
270, 107705 (2021) https://doi.org/10.1016/j.jqsrt.2021.107705

[8] Chen, Y., Lu, L., Karniadakis, G.E., Negro, L.D.: Physics-informed neural
networks for inverse problems in nano-optics and metamaterials (2019)
arXiv:1912.01085 [physics.comp-ph]

17

https://doi.org/10.1007/978-3-030-76587-3_5
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.neucom.2018.06.056
https://arxiv.org/abs/arXiv:1711.06464
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.1007/s00521-022-07042-6
https://doi.org/10.1007/s00521-022-07291-5
https://doi.org/10.1007/s00521-022-07291-5
https://doi.org/10.1016/j.jqsrt.2021.107705
https://arxiv.org/abs/1912.01085


[9] Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E.: Physics-informed
neural networks for heat transfer problems. Journal of Heat Transfer 143(6)
(2021) https://doi.org/10.1115/1.4050542

[10] Ryck, T.D., Jagtap, A.D., Mishra, S.: Error estimates for physics informed neural
networks approximating the Navier-Stokes equations (2022)

[11] Hennigh, O., Narasimhan, S., Nabian, M.A., Subramaniam, A., Tangsali,
K., Fang, Z., Rietmann, M., Byeon, W., Choudhry, S.: NVIDIA SimNet�:
An AI-accelerated multi-physics simulation framework. In: Computational
Science – ICCS 2021, pp. 447–461. Springer (2021). https://doi.org/10.1007/
978-3-030-77977-1 36

[12] Gupta, J.K., Brandstetter, J.: Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616 (2022)

[13] Basir, S., Senocak, I.: Critical investigation of failure modes in physics-informed
neural networks (2022) https://doi.org/10.2514/6.2022-2353 arXiv:2206.09961

[14] Grossmann, T.G., Komorowska, U.J., Latz, J., Schönlieb, C.-B.: Can Physics-
Informed Neural Networks beat the Finite Element Method? arXiv (2023). https:
//doi.org/10.48550/ARXIV.2302.04107 . https://arxiv.org/abs/2302.04107

[15] Xu, Z.-Q.J.: Frequency Principle in Deep Learning with General Loss Functions
and Its Potential Application. arXiv (2018). https://doi.org/10.48550/ARXIV.
1811.10146 . https://arxiv.org/abs/1811.10146

[16] Jiang, X., Wang, D., Chen, X., Zhang, M.: Physics-informed neural network
for optical fiber parameter estimation from the nonlinear schrödinger equation.
Journal of Lightwave Technology, 1–11 (2022) https://doi.org/10.1109/jlt.2022.
3199782

[17] Goswami, S., Bora, A., Yu, Y., Karniadakis, G.E.: Physics-Informed Deep Neural
Operator Networks (2022)

[18] Goswami, S., Anitescu, C., Chakraborty, S., Rabczuk, T.: Transfer learning
enhanced physics informed neural network for phase-field modeling of fracture.
Theoretical and Applied Fracture Mechanics 106, 102447 (2020) https://doi.org/
10.1016/j.tafmec.2019.102447

[19] Chen, X., Gong, C., Wan, Q., Deng, L., Wan, Y., Liu, Y., Chen, B.,
Liu, J.: Transfer learning for deep neural network-based partial differential
equations solving. Advances in Aerodynamics 3(1) (2021) https://doi.org/10.
1186/s42774-021-00094-7

[20] Tang, H., Yang, H., Liao, Y., Xie, L.: A transfer learning enhanced the physics-
informed neural network model for vortex-induced vibration. arXiv (2021). https:

18

https://doi.org/10.1115/1.4050542
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.2514/6.2022-2353
https://arxiv.org/abs/arXiv:2206.09961
https://doi.org/10.48550/ARXIV.2302.04107
https://doi.org/10.48550/ARXIV.2302.04107
https://arxiv.org/abs/2302.04107
https://doi.org/10.48550/ARXIV.1811.10146
https://doi.org/10.48550/ARXIV.1811.10146
https://arxiv.org/abs/1811.10146
https://doi.org/10.1109/jlt.2022.3199782
https://doi.org/10.1109/jlt.2022.3199782
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/10.1186/s42774-021-00094-7
https://doi.org/10.1186/s42774-021-00094-7
https://doi.org/10.48550/ARXIV.2112.14448
https://doi.org/10.48550/ARXIV.2112.14448


//doi.org/10.48550/ARXIV.2112.14448 . https://arxiv.org/abs/2112.14448

[21] Wight, C.L., Zhao, J.: Solving Allen-Cahn and Cahn-Hilliard Equations using the
Adaptive Physics Informed Neural Networks (2020)

[22] Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., Park, E.: Separable PINN:
Mitigating the curse of dimensionality in physics-informed neural networks (2022)
arXiv:2211.08761 [cs.LG]

[23] Gladstone, R.J., Nabian, M.A., Meidani, H.: FO-PINNs: A First-Order
formulation for Physics Informed Neural Networks (2022)

[24] Sharma, R., Shankar, V.: Accelerated Training of Physics-Informed Neural
Networks (PINNs) using Meshless Discretizations. arXiv (2022). https://doi.org/
10.48550/ARXIV.2205.09332 . https://arxiv.org/abs/2205.09332

[25] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.,
Anandkumar, A.: Fourier Neural Operator for Parametric Partial Differential
Equations. arXiv (2020). https://doi.org/10.48550/ARXIV.2010.08895 . https:
//arxiv.org/abs/2010.08895

[26] Lu, L., Jin, P., Karniadakis, G.E.: Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of
operators (2019) https://doi.org/10.1038/s42256-021-00302-5 arXiv:1910.03193

[27] Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli,
K., Anandkumar, A.: Physics-Informed Neural Operator for Learning Partial
Differential Equations (2021)

[28] Konuk, T., Shragge, J.: Physics-guided deep learning using fourier neural
operators for solving the acoustic VTI wave equation. In: 82nd EAGE Annual
Conference Exhibition. European Association of Geoscientists & Engineers
(2021). https://doi.org/10.3997/2214-4609.202113304 . https://doi.org/10.3997/
2214-4609.202113304

[29] Xiong, W., Huang, X., Zhang, Z., Deng, R., Sun, P., Tian, Y.: Koopman neural
operator as a mesh-free solver of non-linear partial differential equations (2023)

[30] Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for
Biomedical Image Segmentation (2015)

[31] Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., Benson, S.M.: U-FNO –
An enhanced Fourier neural operator-based deep-learning model for multiphase
flow (2021)

[32] Wang, S., Wang, H., Perdikaris, P.: On the eigenvector bias of Fourier feature
networks: From regression to solving multi-scale PDEs with physics-informed

19

https://doi.org/10.48550/ARXIV.2112.14448
https://doi.org/10.48550/ARXIV.2112.14448
https://arxiv.org/abs/2112.14448
https://arxiv.org/abs/2211.08761
https://doi.org/10.48550/ARXIV.2205.09332
https://doi.org/10.48550/ARXIV.2205.09332
https://arxiv.org/abs/2205.09332
https://doi.org/10.48550/ARXIV.2010.08895
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2010.08895
https://doi.org/10.1038/s42256-021-00302-5
https://arxiv.org/abs/arXiv:1910.03193
https://doi.org/10.3997/2214-4609.202113304
https://doi.org/10.3997/2214-4609.202113304
https://doi.org/10.3997/2214-4609.202113304


neural networks. Computer Methods in Applied Mechanics and Engineering 384,
113938 (2021) https://doi.org/10.1016/j.cma.2021.113938

[33] Huang, X., Alkhalifah, T., Song, C.: A modified physics-informed neural
network with positional encoding. In: First International Meeting for Applied
Geoscience: Energy Expanded Abstracts. Society of Exploration Geophysicists,
(2021). https://doi.org/10.1190/segam2021-3584127.1 . https://doi.org/10.1190/
segam2021-3584127.1

[34] Wong, J.C., Ooi, C., Gupta, A., Ong, Y.-S.: Learning in sinusoidal spaces with
physics-informed neural networks. IEEE Transactions on Artificial Intelligence,
1–15 (2022) https://doi.org/10.1109/tai.2022.3192362

[35] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR,
Chia Laguna Resort, Sardinia, Italy (2010). https://proceedings.mlr.press/v9/
glorot10a.html

[36] DOLFINx. https://github.com/FEniCS/dolfinx. accessed: 12.11.2022 (2017)

[37] Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, Cambridge; New York (2003). https://www.worldcat.org/
title/iterative-krylov-methods-for-large-linear-systems/oclc/50717963&referer=
brief results

[38] Balay, S.: PETSc users manual: Revision 3.10. Technical report (September 2018).
https://doi.org/10.2172/1483828 . https://doi.org/10.2172/1483828

[39] Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A.,
Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh,
P., Kashinath, K., Anandkumar, A.: FourCastNet: A Global Data-driven High-
resolution Weather Model using Adaptive Fourier Neural Operators (2022)

[40] Weinan, Yu, B.: The deep Ritz method: A deep learning-based numerical
algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12
(2018) https://doi.org/10.1007/s40304-018-0127-z

20

https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1190/segam2021-3584127.1
https://doi.org/10.1190/segam2021-3584127.1
https://doi.org/10.1190/segam2021-3584127.1
https://doi.org/10.1109/tai.2022.3192362
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://www.worldcat.org/title/iterative-krylov-methods-for-large-linear-systems/oclc/50717963&referer=brief_results
https://www.worldcat.org/title/iterative-krylov-methods-for-large-linear-systems/oclc/50717963&referer=brief_results
https://www.worldcat.org/title/iterative-krylov-methods-for-large-linear-systems/oclc/50717963&referer=brief_results
https://doi.org/10.2172/1483828
https://doi.org/10.2172/1483828
https://doi.org/10.1007/s40304-018-0127-z

	Introduction
	Overview of PINNs
	Acceleration methods
	Separable PINN
	First-order PINN
	Second-order PINN
	Fourier Neural Operator and Koopman Neural Operator
	U-Net
	Sinusoidal activation function 

	Simulations
	Poisson equation
	Reaction-diffusion equation
	Helmholtz equation
	Burgers' equation

	Discussion
	Summary
	Declarations
	References

