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Abstract: The imminent threat of Mongolian montane forests facing extinction due to climate change
emphasizes the pressing need to study these ecosystems for sustainable development. Leveraging
multispectral remote sensing data from Landsat 8 OLI TIRS (2013–2021), we apply Tsallis non-
extensive thermodynamics to assess spatiotemporal fluctuations in the absorbed solar energy budget
(exergy, bound energy, internal energy increment) and organizational parameters (entropy, infor-
mation increment, q-index) within the mountain taiga–meadow landscape. Using the principal
component method, we discern three functional subsystems: evapotranspiration, heat dissipation,
and a structural-informational component linked to bioproductivity. The interplay among these
subsystems delineates distinct landscape cover states. By categorizing ecosystems (pixels) based
on these processes, discrete states and transitional areas (boundaries and potential disturbances)
emerge. Examining the temporal dynamics of ecosystems (pixels) within this three-dimensional
coordinate space facilitates predictions of future landscape states. Our findings indicate that northern
Mongolian montane forests utilize a smaller proportion of received energy for productivity compared
to alpine meadows, which results in their heightened vulnerability to climate change. This approach
deepens our understanding of ecosystem functioning and landscape dynamics, serving as a basis for
evaluating their resilience amid ongoing climate challenges.

Keywords: ecosystem; exergy; q-index; Tsallis non-extensive thermodynamics; order and control
parameters; Landsat 8

1. Introduction

The exploration of living systems through the lens of thermodynamics and statistical
mechanics traces its roots back to Alfred J. Lotka’s pioneering works [1,2]. Over time, the
study of the environment, including biota, has bifurcated into two primary trajectories:
climatic and ecosystem (except at the level of individual organisms). Thus, we owe the
modern understanding of energy transformation at various levels to physicists, meteo-
rologists, and climatologists and biologists, ecologists, and mathematicians. The climatic
approach, originating in the simple entropy model of climate system performance in the
late 1970s [3–6], contrasts with the ecosystemic perspective, based on biophysical studies
by Harold Morowitz [7,8], ecological modelers, like Yuri Svirezhev [9–11] and Sven Jør-
gensen [12,13], and ecological theorists, like Robert Ulanowicz [14,15]. Consequently, the
energy balance of ecosystems within the thermodynamic framework was explored through
these distinct paradigms, namely climatic modelling and ecological modelling.
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Ecologists have prioritized the development of community structure and organization
in energy conversion processes. Concurrently, the concept of energy quality emerged,
emphasizing its ability to perform useful work and sustain living matter’s structure. In
the late 1980s, terms, such as emergy [16,17] and subsequently exergy [18–20], found their
way into environmental modelling. While emergy faced limited recognition due to its
economic orientation [21], exergy analysis firmly established its position in studying various
organizational levels of living matter, from local communities to the entire biosphere. The
fundamental principles of this approach are most comprehensively described in the works
of Sven Jørgensen and his co-authors [22–24]. A thorough examination of the practical
applications of the exergy method in the modelling of energy within ecosystems is available
in the comprehensive review authored by Nielsen and colleagues [24]. The thermodynamic
basics of the functioning of living matter were elucidated by Axel Kleidon and Ralph
Lopez in their seminal paper “Non-equilibrium thermodynamics and the production of
entropy: Life, Earth, and beyond” [25]. Subsequently, Axel Kleidon made substantial
contributions to the understanding of the role of vegetation in climate systems, particularly
from the point of view of entropy [26–28]. With advances in the measurement of biophysical
parameters of vegetation cover through certain methods, like eddy covariance, projects
dedicated to assessing entropy production and self-organization in specific ecosystems have
emerged [29,30]. In summary, the current state-of-the-art of ecosystem thermodynamics
is marked by the predominance of meteorological and ecosystem-focused approaches.
Notably, a review of key publications from both perspectives [23] vs. [25] indicates that
researchers tend to embrace one approach while largely neglecting the other, possibly
due to differences in research objectives. Nonetheless, the division between the strategies
employed by physicists and ecologists in assessing the thermodynamics of ecosystems
appears noticeable. We believe that this division will inevitably be bridged as a result of
the accumulation of valid eddy covariance field data, the expanding repository of remote
sensing data, and the continued development of modelling methodologies.

With the expansion of the biophysical measurement network, particularly eddy covari-
ance, through initiatives, like Fluxnet [31], researchers now face challenges demanding a
nuanced understanding of ecology and adeptness in modelling community structures. Con-
sequently, a third approach has gained traction, emphasizing the evaluation of landscape
effects as a complex of ecosystems in terms of energy fluxes [32–35]. Such studies are al-
ready being conducted in line with the influence of the structure of landscape cover as a set
of ecosystems on energy flows, meaning that they meet the tasks of landscape ecology. In
turn, in landscape ecology in recent years, there has also been an obvious increase in interest
in describing the spatial structure of the landscape through thermodynamics, for exam-
ple, in the works of Samuel Cushman [36,37], Peichao Gao, and Hong Zhang et al. [38–41].
However, the widespread installation of eddy covariance measurement stations is hin-
dered by their substantial temporal and financial investments, limiting their applicability
to specific areas and local conditions. Thus, similar data should be judiciously applied,
tailored either to specific ecosystem functioning or regional generalizations, integrating
various scales of additional data into models. Remote sensing assumes a pivotal role,
offering unique insights into vegetation cover properties, including albedo, vegetation
indices, and gross primary production. A highly detailed review of the use of remote
sensing in estimating energy balance components can be found in the work of Masudur
Rahman and Wanchang Zhang [42]. Nevertheless, assessing entropy flows and the useful
work of vegetation cover, especially in the thermal (IR) range, encounters challenges due
to the incomplete radiation spectrum, infrequent high-quality satellite images caused by
unfavorable weather conditions, and the lack of a methodological foundation enabling
direct multispectral measurements for an ecosystem’s work parameters calculations.

When using multi- and hyperspectral information, the radiation emitted by objects
serves as a repository of data, with the energy spectrum corresponding to satellite spectral
bands [43]. Information about the physical and biochemical processes occurring within
ecosystems, upon which all indices are based, is encoded in the reflected energy ratios
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across different spectral bands [44]. By comparing incoming and outgoing radiation val-
ues precisely at the moment of capture, the absorbed solar radiation in each band can be
estimated. This systematic structure, akin to a “solar receiver”, can be described using
information measures. Specifically, emitted solar radiation, entropy flux, and the Kullback
information increment (Kullback–Leibler divergence/relative entropy) can be calculated
through the reflection–absorption ratio in various spectral bands. These measure char-
acterize the non-equilibrium between the reflected and incoming spectra of solar energy
(solar constant). Consequently, based on these measures, the components of absorbed
solar energy can be evaluated, including Gibbs free energy (exergy), bound energy, and
the increment of internal energy. This approach was founded by Yury Svirezhev in the
early 2000s [45,46], with subsequent practical implementation by Yury Puzachenko and
colleagues using various multispectral [47,48] and hyperspectral [49] remote sensing sys-
tems. However, it is important to note that the estimates derived from this approach are
relative, despite being measured in standard energy units (W/m2) from multispectral re-
flectance. Multispectral reflective variables do not cover the entire incoming solar radiation
spectrum as they are measured in relatively narrow spectral bands. Consequently, the
results obtained using this approach cannot be directly compared with eddy covariance
measurements from field studies.

The advancement of this approach was linked to expanding the standards of the
Boltzmann–Gibbs–Shannon (BGS) entropy model to non-equilibrium statistical mechanics
(NSM) [50,51]. Constantino Tsallis [50] admitted that the strong interaction in thermo-
dynamically abnormal systems changes the picture so much that it leads to completely
new, independent degrees of freedom, and to a completely different statistical physics
of the non-Boltzmann type. Thus, NSM, in contrast to BGS, incorporates nonlinear inter-
actions between system components and is particularly suited for living systems due to
their non-equilibrium state and complex nonlinear interactions. Tsallis [50] introduced
the q-index (power coefficient of deformation) into the entropy equation. The q-index
characterizes the scale of correlations between the system’s components and usually resides
between −1 and 2, where 1 is an equivalent of Boltzmann–Gibbs entropy. Additivity is
described by q as follows: for q > 0, the q-entropy, like the BGS entropy, is greater, resulting
in a smaller difference in the logarithms of the probabilities of neighboring energy levels
(neighboring classes) in the rank distribution, while for q < 0, the opposite is true. In other
words, a change in the parameter q also reflects the presence of stable positive correlations
between elements in the system. The power-law form of interaction between elements
leads to the fact that there is a region of states of the variable y in which it is practically
insensitive to changes in x and vice versa. As a result, any element can simultaneously
interact with many others without actually distinguishing between their states [51]. If we
add a time coordinate to space, then power relations create the basis for “memory”, since
over a certain time interval the magnitudes of interactions will change slightly. Accordingly,
a q-index exceeding one indicates greater internal correlations and higher organization
within the system. Conversely, a q-index below one suggests a non-organized system. One
of the fundamental characteristics of Tsallis entropy is its non-additivity (unlike Renyi
entropy, for example), implying that the system’s entropy does not equal the sum of its
subsystems’ entropies.

We obtain the parameter q based on a comparison of the maximum possible entropy
at each point (i.e., complete chaos of the system) and the lowest entropy achieved at one
of the values of q—i.e., with the greatest sensitivity of the index to the amount of order
in the system. Thus, in this case, taking into account the general interpretation of q as
a measure of additivity in the system, it can be assumed that the value of q giving the
lowest entropy reflects the degree of interdependence of elements within a particular
display of landscape cover through reflected solar radiation. Thus, the assessment of
landscape cover functioning parameters based on NSM emphasizes the non-equilibrium
regions of space. System order parameters (invariants) lag in adapting to the influence
of control parameters. Examples of such regions include boundaries between different
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ecosystems, areas undergoing active conversion due to exogenous factors, and artificial
ecosystems. Our preliminary experiments on real ecosystems [52,53] demonstrate the
validity of computations performed with thermodynamic variables of landscape cover
calculated from multispectral data within the framework of NSM.

This paper illustrates the assessment of thermodynamic parameters via NSM in moun-
tain forest ecosystems in Northern Mongolia. Forest landscapes occupy approximately
7% of the entire Mongolian area. About 80% of this area is covered by mountain forests
that are located in the north of the country. Under the extreme/ sharp continental cli-
mate conditions there, these landscapes are often characterized by permafrost. Therefore,
they play a key role as a factor maintaining permafrost cover for the surrounding area,
respectively, a significant amount of carbon is conserved by mountain forests working
together with soils. Mountain forest ecosystems importance rises because of the acceler-
ated rate of global warming/changing and with regional area aridification simultaneously.
Specifically, such ecosystems perform a buffer function restraining desertification and,
according to some estimates, can accumulate about 50% of Mongolia’s greenhouse gas
emissions [54]. Mongolian mountain forests are experiencing intense/severe pressure
caused by grazing, logging, and fires [55]. Mountain forests, characterized by diverse relief,
varying steepness, slope orientation, and abundant vegetation species composition, pose
significant research challenges. Despite methodological and logistical hurdles, the integra-
tion of remote sensing data, digital elevation models, and field data offers unprecedented
insights into these ecosystems’ energy dynamics. The Tsallis model, applied in this context,
delves into the intricacies of NSM and self-organization, enhancing our understanding of
biosphere operations at the landscape cover level. This integration not only enables the
calculation of energy metrics for mountain forests but also transforms our comprehension
of their structure and organization. The strongly continental climate of the study area
contributes to the regular accumulation of remotely sensed information, which, in com-
bination with expeditionary research (the Joint Russian–Mongolian Complex Biological
Expedition of the Russian Academy of Sciences and the Mongolian Academy of Sciences),
creates a unique opportunity to expand our understanding of land cover as a complex
self-organizing system.

2. Materials and Methods
2.1. Study Area

The study area is situated within the Horidoli Saridag Strictly Protected Area (50◦90′ N,
99◦88′ E), along the ridge that separates Lake Khövsgöl and the Darkhad Valley (Figure 1).
This region falls under the Ulaan Taiga Specially Protected Areas designation, including
three additional areas: Ulaan Taiga Strictly Protected Area and Tengis–Shishged National
Park [56]. These regions are located in the northernmost aimag (province) of Khövsgöl in
Mongolia. Elevations within this study area range from 1600 m in the Darkhad depression
to 3000 m above sea level at the Khuern Uul mountain. The predominant geological
composition of this region consists of limestone carbonates from the Cambrian period.
Geologically, the area underwent at least two glaciations during the late Pleistocene [57].

The study area experiences an extremely continental climate characterized by brief,
humid summers and prolonged, dry winters. Mongolia’s landlocked southern position,
numerous internal and adjacent mountain ranges, and the Siberian anticyclone influence
these climate patterns. The Siberian high amplifies atmospheric pressure, leading to calm,
sunny weather, lower temperatures, and reduced precipitation. The combination of low
atmospheric humidity in spring, winter freezing of moisture in upper soil horizons, and
windy conditions slows down soil warming during the anticyclone dissolution period [58].
Based on data from the nearest weather station located in Renchinlhumbe somon (1573 m
above sea level), situated 30 km from the research site and spanning from 1975 to 2015, the
average annual temperature is recorded at 6.9 ◦C. Annual precipitation averages 263 mm
(±0.1 SE) and exhibits considerable variation, occasionally reaching up to 400 mm/yr. The
summer period from July to August witnesses the highest precipitation, accounting for
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up to 80% of the total. Vegetation cover [59,60] on the lower and middle slopes primarily
comprises montane taiga forests, dominated by larch (Larix sibirica) or cedar–larch (L. sibirica,
Pinus sibirica) communities. These forests grow over organic soil exhibiting permafrost
characteristics. As elevation increases, alpine meadows dominated by Carex amgunensis
and Festuca altaica emerge on mineral soils, eventually transitioning to barren rocky peaks
at higher altitudes.
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Figure 1. Study area (red square): (a) geographical position (World Street Map). (b) Digital elevation
model SRTM (30 × 30 resolution) of the study area region.

2.2. Calculation of Thermodynamic Variables

The conversion of solar energy within ecosystems was comprehensively examined by
analyzing various thermodynamic parameters. Data for these parameters were extracted
from the multispectral Landsat 8 OLI (Operational Land Imager) TIRS (Thermal Infrared
Sensor), manufactured by NASA Goddard Space Flight Center (Gilbert, US) collections,
providing a spatial resolution of 30 m. Twenty-three cloudless scenes captured between
2013 and 2021 were meticulously scrutinized. Detailed information, including average
values of incoming solar radiation, albedo, and surface temperature for the research area, is
presented in Table 1.

The initial values of reflection brightness registered by the multispectral scanner
were meticulously transformed into reflected solar radiation within the landscape. These
conversions adhered to standard calibration coefficients unique to each measurement
system and band. Initially, solar radiation reflected by Earth and detected by the Landsat
satellite in each band was calculated using calibration coefficients [61]. Subsequently, the
incoming radiation to Earth’s surface in each band was estimated. This involved correcting
the extraterrestrial solar irradiation (ESUN) for each band, considering the “Earth–Sun”
distance and the Sun’s position during imaging. The assessment of reflected and emitted
radiation by Earth (in W/m2) for each spectral range was then obtained. These values were
multiplied by the average value or the corresponding range (in µm) to determine incoming
and Earth-reflected solar radiation. The overall energy flux equaled the sum of flux in each
spectral range. The energy absorbed by the Earth’s surface was computed as the difference
between incoming and reflected energy. The conversion of the thermal infrared band into
energy units indicated the heat flux from the Earth’s surface, which was further calculated
into surface temperature values using calibration coefficients.
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Table 1. Parameters of the used Landsat 8 OLI TIRS data.

Month Day Year Day of Year
(DOY) Albedo * Temperature,

◦C *

January 4 2018 4 0.46 −16.1
12 2015 12 0.38 −10.1

February

5 2018 36 0.43 −9.6
14 2018 45 0.42 −9.1
16 2016 47 0.43 −7.5
24 2019 55 0.34 −2.3

March 10 2021 69 0.39 2.6
May 28 2018 148 0.16 29.6
June 30 2015 181 0.13 34.6

July 13 2014 194 0.12 34.6
20 2020 202 0.11 29.6

August 28 2019 240 0.11 28.7
29 2017 241 0.11 26.7

September
15 2014 258 0.12 20.2
22 2020 266 0.20 17.9
27 2016 271 0.15 15.2

October
11 2015 284 0.25 13.5
27 2021 300 0.40 6.9

November
5 2015 309 0.43 −6.0
17 2017 321 0.40 −9.3

December
6 2018 340 0.46 −16.1
24 2015 358 0.38 −10.1
30 2018 364 0.43 −9.6

* Measured on Landsat bands.

The energy balance of components was calculated utilizing the method proposed by Yury
Puzachenko and co-authors [47,48]. Following the principles of standard Boltzmann–Gibbs’
thermodynamics, the system’s energy balance, absorbing energy, consisted of free energy
(potential for performing useful work in the system, or exergy), bound energy (energy
incapable of doing work), and internal system energy increments, as follows:

B = Ex + STW + U (1)

where B represents the balance of absorbed energy, Ex is exergy, SW represents bound
energy, and U signifies internal energy. Exergy is the energy that can be converted into
useful work. Regarding ecosystems, exergy closely relates to the maintenance of the water
cycle. According to the founders of the idea, Jorgensen and Svirezhev [22], exergy also
includes energy expenditure for photosynthesis; however, in our studies based on large
field material, the exergy that is calculated using Landsat multispectral channels does not
correlate with biological productivity, but rather the opposite (we have shown that exergy
is almost entirely at its maximum for climax forests with minimal production). Bound
energy is the energy that is dispersed into the environment together with heat flux and
entropy. In fact, this is a flow of “waste” energy incapable of performing work useful for the
system. Internal energy increment means energy accumulation by organics, like peat, and
carbon itself in the soil. This energy is spent on maintaining chemical bonds, interspecies
interaction, and “friction” between the elements of the system [22]. The proposed approach
to converting multispectral measurements differs from the approach that relies on the
use of various classical semi-empirical vegetation indices (for example, the Normalized
Difference Vegetation Index, NDVI, which we also use here as a generally accepted tool
for assessing vegetation productivity, since it is closely related to net primary productivity,
NPP [62], which we, of course, also consider in this work).

In open non-equilibrium systems, Gibbs free energy is equivalent to exergy, which
is the energy that can be extracted from the system while maintaining a balance with the
environment. The non-equilibrium of solar energy conversion in the system was estimated
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by the deviation of the reflected solar energy spectrum from the hypothetical equilibrium
spectrum. This was assessed using the Kullback information increment (Kullback–Leibler
divergence, Kullback information). The Kullback information was evaluated for multispec-
tral imaging as follows:

K =
n

∑
n=1

pout
v ln

pout
v

pin
v

(2)

where pin
v = ein

v /Ein is the ratio of incoming energy (ein
v ) in the spectral band (v) and the

total incoming energy (solar constant) in all bands is (Ein), and pout
v = eout

v /Eout is the ratio
of outgoing (at-sensor reflected radiation) energy (eout

v ) in the spectral band (v) and the total
incoming energy (Eout).

The Kullback information is zero if the outgoing radiation spectrum is similar to the
incoming one. If it is greater than zero, it indicates that information has increased in the
receiver (in this case, the vegetation cover), and the reflection surface is non-balanced
concerning the solar radiation spectrum. Thus, the absorbed solar energy possesses the
potential to perform useful work, i.e., exergy. Exergy (Ex), calculated through the increment
of information, is determined as follows:

Ex = Eout(K + lnA) + B (3)

where A = Ein/Eout is the albedo, B = Ein − Eout represents ecosystem energy balance (energy
absorbed by the ecosystem). Useful work in an ecosystem is commonly interpreted as the
energy cost to maintain the local water cycle (evapotranspiration) and ensure biological
output production. Our studies analyzing spatial–temporal variations in exergy have
indicated that exergy measured on multispectral data is loosely linked to ecosystem pro-
ductivity and primarily governs the moisture pathway from soil to the atmosphere [47,48].
Meanwhile, Kullback information is closely associated with biological productivity and
can be evaluated through Landsat vegetation indexes, such as NDVI.

Another parameter describing the non-equilibrium system is the reflected solar ir-
radiance entropy (Sout). This measure demonstrates the variety in the reflected radiation
spectrum and indicates the system’s organization in energy conversion. Entropy is esti-
mated as follows:

Sout = −
n

∑
n=1

pout
v lnpout

v (4)

Bound energy (STW) represents the dissipated environmental energy incapable of
useful work and is determined by the product of the reflected solar irradiance entropy
(Sout) and heat flux (TW), as follows:

STW = Sout × TW. (5)

The final step in achieving balance is computing the internal system energy growth
(U). This energy is typically associated with processes accumulating energy in the system,
predominantly in the form of organic matter (e.g., peat accumulation, humus formation),
as follows:

DU = B − Ex − STW (6)

The thermodynamic parameters above profile solar energy conversion by the ecosys-
tem within the framework of classical Boltzmann statistical mechanics for non-equilibrium
systems. In these systems, components have linear interactions at the microscopic level,
as follows:

dy/dx = a, y = a + x (7)

and, respectively, the inverse is true, i.e., x = a − y
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where x and y are abstract components of the system. So, for example, we can consider the
spectral bands of reflected solar radiation as a reflection of the components of the system.
Then, if the photosynthetic system carried out linear interactions, then one could count
on an additive effect when one of the components is changed. In nonlinear components
(which include landscapes), changes can have a non-additive effect.

However, in systems far from equilibrium, including complex and non-stationary
ones, components may engage nonlinearly, particularly exponentially. In such cases, the
transition of the system state at the macroscopic level can be described as follows:

dy/dx = y, y = ex and relatively, the reverse is true x = lny, (8)

Equations (7) and (8) show that y(x) = 1 if x = 0.
Both functions can be generalized through the power function proposed by Con-

stantino Tsallis [50]:

dy/dx = yq, y =

[
1 + (1− q)x]

1
(1−q) ≡ ex

q , ex
q=1 = ex (9)

and the opposite:

y =
x1−q − 1

1− q
≡ lnqx, ln1x = lnx , where x > 0 (10)

In a similar system, entropy is referred to as Tsallis entropy and defined as follows:

Sq =
1−∑n

i=1 pq
i

q− 1
(11)

where pi represents a discrete set of probabilities i, Smax
q = lnqn is the entropy maximum at

pi = 1/n, and n is the class number. q is the deformation parameter (q = 1 − 1/r, where r > 0
is a correlation coefficient). A higher q signifies greater internal correlations and a more
organized system. The q-parameter provides information about the different contribution
ratios of the components in the energy balance of the ecosystem. Deviation from stationarity
indicates incomplete transformations related to species interactions and irregular effects of
external factors (control parameters). Hence, the q-parameter can be considered a measure
of stationarity. When q deviates from unity, the system either exhibits signs of degradation
(at q < 1 q < 1) or demonstrates non-stationary processes typical of the active development of
“living systems” [63]. Accordingly, landscape cover functioning parameters based on non-
extensive Tsallis thermodynamics should encourage the assessment of the heterogeneity
factor space. Moreover, they should identify active zones highlighting where specific
processes differ from the main stationery in the work of invariants. Examples of such zones
include boundaries between different ecosystems, territories undergoing active changes
associated with exogenous factors, and artificial ecosystems.

The Kullback information increment assesses the distance between a stable and non-
stable system in the Tsallis system, as follows [64]:

Kq =
k

∑
i=1

pi

[
pout

i /pin
i ]q−1 − 1

q− 1
(12)

The exergy of solar radiation and another balance components in the Tsallis system
(Exq) is calculated based on the Kullback information increment (Kq) as well as the classical
thermodynamics model (BGC).
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2.3. Order Parameters and Control Parameters of the Thermodynamic System

The spatial–temporal variation in these thermodynamic parameters was analyzed us-
ing the concepts of invariants and order parameters. This approach enables the description
of the system state through a limited number of factors.

The concept of order parameters, as proposed by Hermann Haken in 1983 [65], gained
prominence in the scientific literature through the work “Principles of Brain Function-
ing” [66]. Here, the identification of order parameters via principal component analysis
(PCA) was established. Yury Puzachenko later equated H. Haken’s “order parameter” with
Victor Sochava’s (1978) “landscape invariant” [67]. Identification of these invariants was
based on multispectral remote sensing data, which were further employed to identify stable
spatial structures of thermodynamic or reflectance systems [68,69]. Spatial–temporal fluctu-
ations in variables were generalized using PCA and the varimax normalization method
for each variable (23 terms). They were then classified into seasonal (winter, spring, etc.)
invariants of the thermodynamic system.

In theoretical terms, changes in order parameters are determined by control parameters
in thermodynamic systems. These control parameters, often termed external factors, include
climate, weather conditions, relief, and the state of vegetation cover. In this study, a set of
vegetation properties acquired through fieldwork, along with morphometric characteristics
of the terrain at different hierarchical organization levels, were considered as control
parameters. According to the hierarchy paradigm, ecosystems can be perceived as a
complex of subsystems at varying scales with distinct properties. These hierarchical levels
of relief organization were differentiated through spectral analysis of the open-access digital
surface model SRTM [70] with a spatial resolution of 30× 30 m (see Figure 2). This approach
was proposed by Donald Turcotte [71]. Linear dimensions were used to best characterize
the identified relief at 150, 570, 1110, 1380, 1890, and 3000 m. Standard morphometric
characteristics reflecting the relief’s influence on heat and moisture management, such
as steepness, aspect, minimum and maximum curvatures, and concave (negative) and
convex (positive) curvatures, as well as plan (horizontal), profile (vertical), and general
(total) curvatures, were evaluated within each hierarchical level.
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Figure 2. Sample plot area: (a) Landsat 8 OLI TIRS image 20 July 2020 on the digital elevation model
(red line—transect). (b) Transect with 20 m sampling step (BSA—basal stand area of all live trees in a
stand, meters per hectare, range for transect 0–37 m).

The impact of terrain on energy conversion was assessed by employing multiple
regression analysis on the invariants obtained from morphometric characteristics. Field
measurements of ecosystems properties were conducted using the transect-line method.
A 1-kilometer-long transect with control sites every 2 m was established along the steep
southern slope, ranging from 2000 to 2380 m asl (Figure 2). Comprehensive descriptions of
the soil and vegetation were recorded for almost all sites. Field characteristics, including
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stand basal area and canopy percentage projection to calculate the leaf area index (LAI),
were estimated. Furthermore, fresh phytomass was sampled from a 25 × 25 cm surface
square at each site in triplicate, and the dry phytomass weight was determined. The transect
spanned cedar-dominated forest communities at the base and middle parts of the slope
(2000–2200 m asl) and extended to alpine meadows (2200–2350 m asl) before transitioning
into barren rocky peaks at higher altitudes.

3. Results
3.1. Order Parameters of Thermodynamic Variables

Upon employing PCA, three distinct order parameters emerged for each thermody-
namic variable. The initial parameter delineates the winter “mode” (October–March)
of ecosystems in the examined region, the second characterizes the summer “mode”
(June–September), and the third embodies the transitional “mode” (April–October). It
is noteworthy that the method used did not identify a transition “mode” for the heat field
of the ecosystem. Table 2 presents the explained variance ratio (EVR in %) of absorbed
solar energy and energy balance components, as described by PCA factors. It is essential
to note that the EVR distribution between factors depends on the number of scenes for a
specific season. Consequently, the primary variance ratio (65–70%) for all variables, except
internal energy increments, is attributed to the cold (winter) period. In contrast, the summer
invariant accounts for 13–16%, and the transition invariant represents 5–6%.

Table 2. Order parameters for thermodynamic variables (23 terms) obtained by PCA. Explained
variance ratio.

Thermodynamical
Variables

Parameter 1 Parameter 2 Parameter 3 Total
Winter

(November–March)
Summer

(June–September)
Mid-Season

(May, October)

Albedo 67.39 13.78 5.62 86.79
Absorbed radiation 66.84 14.96 5.88 87.05

Exergy 65.29 16.71 5.37 87.37
Bound energy 70.65 13.73 5.59 89.97

Internal energy increment 54.07 25.52 4.80 84.39
Temperature (heat flux) 67.10 17.66 - 84.76

NDVI 69.87 16.59 5.42 91.88
Kullback information increment 50.43 25.35 7.62 83.40

Entropy of solar outcoming radiation 64.28 15.65 5.69 85.62
q-index 40.65 22.10 9.00 71.75

Significantly, the ratio of internal energy increments is significantly determined by the
winter invariant (54%) and the summer invariant (25%). Together, these three seasonal order
parameters collectively elucidate approximately 85–90% of the variations in energy balance
components, including NDVI, surface temperature, and the entropy of reflected solar
radiation. Furthermore, the EVR for information implementation and q-index, explained by
the summer invariant, exceeds that of other variables, standing at 25% and 22%, respectively.
This places the EVR for these parameters in close proximity to the EVR for the internal
information increment. Additionally, the EVR of informational–thermodynamic parameters
described by these three invariants is slightly lower than that for balance components. This
observation implies that ecosystems primarily exist in two stable states and one transitional
mode when surface temperature approaches zero. The winter “mode” of ecosystems is
characterized by minimal vegetation cover performance, acting as the primary converter
of solar energy. Henceforth, the active state of vegetation cover will be the focal point
of consideration.

Figure 3 illustrates the territory’s differentiation based on the degree of vegetation
cover development. Exergy, information increment, and q-index are minimal on open
grounds/surfaces. In contrast, the fluctuation of bound energy follows a complex pattern
contingent on landscape/relief. The summer order parameters obtained (detailed in Table 2
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for 10 variables) underwent PCA to delineate subsystems within the thermodynamic
system responsible for various processes.
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Throughout the growing season, three order parameters of the thermodynamic system,
depicting its state, were identified. Despite the description of seasonal order parameters,
some fluctuations in initial variables remained unaccounted for. Therefore, a comprehensive
analysis of all initial thermodynamic variables throughout the growing season (10 variables
for each of the 9 periods) was conducted. Similar results were obtained: three order
parameters explained 78% of variations in thermodynamic variables. The first parameter
accounted for 43.6%, the second for 26.7%, and the third for 8.1%, respectively.

These highlighted order parameters of the thermodynamic system are determined
by variables from three functional subsystems: “absorbed energy and energy costs to
evapotranspiration”, “temperature, bound energy and entropy”, and “structural and
productional (the increment of information, q-index, and NDVI)”. These subsystems
elucidate three distinct processes governing solar energy conversion by the landscape of
the area, as follows:
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• The evapotranspiration process: this determines the absorption of solar energy by
vegetation cover and the transfer of moisture from the soil into the atmosphere;

• Energy dissipation: this occurs in the atmosphere and is reflected in the heat field.
This can be detected through heat surface capacity, level of lighting/exposition, and
atmospheric stratification, as assumed;

• The production process: this is linked to the non-stationarity of vegetation cover and
identified through non-stationarity and degree of self-organization in vegetation cover.

3.2. Relief as a Control Parameter of the Thermodynamic System

Relief emerges as a pivotal factor steering the intricate functioning of landscape cover.
Through meticulous regression analysis, we explored the interconnection between summer
order parameters for each thermodynamic variable and morphometric landscape features,
reflecting heat and moisture distribution across varying scales (hierarchical levels). The
outcomes, meticulously compiled in Table 3, spotlight a coefficient of determination ranging
from 30% to 40% for albedo, absorbed solar radiation, and its balance components. Notably,
surface temperature exhibited the strongest correlation (R2—0.63), followed closely by the
information increment (R2—0.51) and exergy (R2—0.48). However, relief’s influence on the
spatial variation in reflected solar radiation entropy was nearly negligible (R2—0.1).

Table 3. Contribution of morphometric characteristics of relief to the description of summer order
parameter of thermodynamic variables. (R2—coefficient of determination of multiple regression,
in cells—sign of correlation and linear dimensions of hierarchical levels. Red—positive relation,
blue—negative relation.

Order Parameters of
Thermodynamic Variables

(Vegetation Period)
R2

Relief Morphometrically Parameters
Absolute
Elevation

Slope Curvature Shaded Relief
Minimal Maximal South East

Albedo 0.33 + 1 −1890, 570 −570 1110
Absorbed radiation 0.31 – 570

Exergy 0.48 – 570
Bound energy 0.33 −570, −1380 570 1380

Internal energy increment 0.51 + −1890 150
Temperature (heat flux) 0.63 – 1110 1110

NDVI 0.37 – −1110 570
Kullback information increment 0.30 – −1890, 570 150

Entropy of solar outcoming radiation 0.09 −570 570 1890
q-index 0.31 + 150 570 −570

1 Sign of correlation.

The substantial impact of relief surfaced predominantly in structures spanning 570–1380 m
in linear size, roughly corresponding to the average slope length. The first parameter
to heighten as luminosity increased was bound energy, indicating the dissipation of en-
ergy into the atmosphere. Figure 4 illustrates the summer order parameter values for
solar radiation exergy predicted via morphometric features, along with the corresponding
model residuals.

The contribution of morphometric characteristics to the thermodynamic system’s
order parameters was likewise scrutinized. The analysis delved into three sets of order
parameters, each dissecting distinct facets: the total absorption of solar energy and exergy,
bound energy (a product of heat flux and entropy), biological productivity, and structural
variables encompassing the increment of information and q-index.

The regression model sheds light on 48% of the explained variance ratio of the first
set (Figure 4a). Notably, the cumulative EVR of the components of the first set for relief
structures around 580 m in linear size diminished with decreasing height above sea level
and intensified with heightened curvature, a characteristic often found in concave slopes
within our research area. Additionally, the steepness of slopes measuring more than
1890 m influenced the total absorption of solar energy and exergy. Figure 4b,c depicts
the predicted values of total absorption of solar energy and exergy through relief. These
values reveal that solar energy absorption and exergy peak in the valleys and plains of the
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north-western area, whereas they dip significantly on the convex surfaces of ridges. The
model exhibited reliability, as evident from the normal distribution of residuals (Figure 4c).
Positive residuals on concave and gentle slopes indicate overestimation of absorption and
exergy by relief, while negative residuals on steep southern slopes point to underestimation.
Residuals hovering around zero (yellow colour) correspond to valleys.
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Morphometric characteristics accounted for 54% of the explained variance ratio of
the second set (Figure 4d). Sunlight from the south positively impacted the bound energy
of relief structures measuring around 580 m and 1110 m in linear size. Unlike the first
set, the bound energy of structures measuring 570 m decreased with increased curvature.
Consequently, the terrain-based model underrated warming on western slopes and over-
rated cooling on northern slopes. The model illuminated 33% of the explained variance
ratio of the third set using morphometric characteristics (Figure 4g). The parameter values
dwindled with ascending altitude and heightened with southward and eastward solar
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irradiance. These trends were particularly noticeable for relief structures measuring 570 m
in linear size. Consequently, relief prognosticated elevated values of biological productivity
and structural variables in the valleys and plains, while lower values corresponded to ridge
surfaces (Figure 4h). The distribution of residues mirrored the distribution of the third set
itself (Figure 4g), with predicted parameter values surpassing actual values on flat plains.

In summary, the intricate topography of the Arctic landscape significantly influences
the absorption, distribution, and utilization of energy within these ecosystems. Valleys
and plains exhibit distinct energy dynamics compared to ridges, highlighting the nuanced
interplay between relief and the delicate balance of energy in these Arctic regions.

3.3. Vegetation as a Control Parameter of the Thermodynamic System

The Pearson correlation coefficient (r) was employed to analyze the relationship be-
tween summer invariants of thermodynamic variables and the characteristics of vegetation
and soil cover, as detailed in Table 4. These characteristics were meticulously measured at
various points along the transect, with a focus on the most robust correlations. Primarily,
the mass of vegetation, particularly wood mass, amplifies solar energy absorption and
elevates evapotranspiration costs. Consequently, this vegetation parameter diminishes
bound energy and the increment of internal energy. These deductions are applicable to
vegetation mass computed from field data, including basal stand area (BSA), leaf area
index (LAI), stand canopy density, and phytomass. Among these variables, only LAI
demonstrates a direct association with vegetation productivity (NDVI); higher LAI values
correspond to elevated NDVI levels. Simultaneously, an increase in woody vegetation
mass augments the information increment while reducing entropy and the q-index. Surface
temperature exhibits a negative correlation with the projective cover of the moss–lichen
layer, subsequently correlating with stand canopy density and phytomass. Additionally,
higher soil pH levels correlate with increased absorption of solar energy, evaporation costs,
and NDVI. Consequently, the bound energy, increment of internal energy, entropy, and
q-index decrease with rising soil pH levels. The influence of organic layer thickness on
thermodynamic parameters is relatively weak (r = 0.3), akin to the impact of BSA and LAI.

Table 4. Correlations (r) between summer order parameters for each variable and the main ecosystem
properties measured on a transect (20 m sampling step, 54 points, Figure 2). Red—positive relation,
blue—negative relation.

Order Parameters of
Thermodynamic Variables

(Vegetation Period)

Ecosystem Properties
Basal Stand

Area
(BSA)

Leaf Area
Index (LAI)

Stand Canopy
Density

Grass-Shrub
Layer Cover

Dry
Biomass pH

Organic
Horizon

Thickness

Albedo −0.81 −0.49 −0.72 −0.13 −0.44 −0.48 −0.30
Absorbed radiation 0.83 0.50 0.72 0.11 0.42 0.49 0.30

Exergy 0.85 0.51 0.73 0.08 0.39 0.50 0.31
Bound energy −0.85 −0.48 −0.67 0.32 0.05 −0.56 −0.18

Internal energy increment −0.85 −0.47 −0.76 −0.15 −0.37 −0.51 −0.33
Temperature (heat flux) 0.07 0.26 −0.28 −0.59 −0.32 0.25 −0.28

NDVI 0.18 0.50 0.08 0.20 0.22 0.41 0.03
Kullback information increment 0.81 0.63 0.53 −0.20 0.06 0.59 0.16

Entropy of solar outcoming
radiation −0.79 −0.29 −0.78 0.07 −0.09 −0.51 −0.28

q-index −0.85 −0.61 −0.64 0.11 −0.11 −0.58 −0.21

It is logical to posit that fluctuations in thermodynamic variables uncontrolled by relief
are influenced by vegetation properties. Consequently, the interaction between vegetation
and the order parameters of the thermodynamic system, as well as with residuals based on
relief, is explored through Pearson correlation coefficients (r) in Table 5.

While the correlation between ecosystem properties and order parameters is compara-
tively weaker than the correlation of individual variables with ecosystem properties, their
interaction pattern remains consistent. Notably, wood vegetation mass enhances solar en-
ergy absorption, exergy, and productivity, while diminishing bound energy. Moreover, the



Entropy 2023, 25, 1653 15 of 23

correlation between residuals and solar energy absorption values surpasses that between
residuals and field data in general. Field data correlations with their respective values
are stronger than those between model residuals and other parameters. These intricate
relationships between order parameters and key measured vegetation properties, such as
SBA and stand canopy density, are graphically represented in Figure 5.

Table 5. Correlations (r) between the summer order parameters of the landcover thermodynamic sys-
tem and main ecosystem properties measured on a transect (20 m sampling step, 54 points, Figure 2).
Value—order parameter meanings, residuals—regression residuals from relief. Red—positive rela-
tion, blue—negative relation.

Ecosystem Properties
Order Parameters of the Thermodynamic System

1 2 3
Value Residuals Value Residuals Value Residuals

Basal stand area (BSA) 0.86 0.89 −0.82 −0.87 0.89 0.84
Leaf area index (LAI) 0.47 0.52 −0.33 −0.42 0.54 0.58
Stand canopy density 0.77 0.78 −0.78 −0.74 0.72 0.54

Grass-shrub layer cover −0.16 −0.12 0.27 0.20 −0.15 −0.09
Dry biomass 0.38 0.32 −0.28 −0.2 0.17 −0.01

pH −0.32 −0.26 0.29 0.15 −0.11 0.1
Organic horizon thickness 0.33 0.31 −0.30 −0.23 0.24 0.13
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Figure 5. Order parameters of thermodynamic system (nondimensional) and vegetation cover prop-
erties: (a) order parameter 1—absorbed solar radiation and exergy; (b) order parameter 2—energy 
dissipation (heat flux and entropy); (c) order parameter 3—biological production. 
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Figure 5. Order parameters of thermodynamic system (nondimensional) and vegetation cover prop-
erties: (a) order parameter 1—absorbed solar radiation and exergy; (b) order parameter 2—energy
dissipation (heat flux and entropy); (c) order parameter 3—biological production.
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3.4. Types of Thermodynamic Systems

The conversion of solar energy is intricately linked to the distribution of order pa-
rameters at each point (a pixel in our case) within a system. Consequently, the study area
underwent a dichotomous classification based on the ratio of three order parameters, result-
ing in diverse ecosystems and land cover classes (Figure 6a). This led to the identification
of six primary types of thermodynamic systems: larch forest, cedar forest, meadow steppe,
alpine meadow, colluvial material, and rock formation. Types are presented in accordance
with the “Vegetation map of Mongolian People’s Republic” [59] and the “Ecosystems of
Mongolia. Atlas” [60] and interpreted based on our field geobotanical descriptions and
visual interpretation of medium-resolution satellite images. Subdividing these into more
detailed subtypes proved challenging, as it necessitated a deeper understanding of the
territory for accurate interpretation, and, thus, was not pursued. The types of thermo-
dynamic systems, determined by the distribution of order parameters, are illustrated in
Figure 6b. Rock formations and colluvial materials exhibit minimum values for all pa-
rameters. Forests, on the other hand, display maximal values of exergy and absorption,
while their dissipation of energy through heat flux and entropy into the atmosphere is
minimal (second parameter). Meadow steppe and alpine meadows are characterized by
low absorption and exergy values, counterbalanced by maximum energy dissipation. An
important observable result is a clean separation of manifolds describing different types of
landscape projected on the basis of order parameters’ space.
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Figure 6. Types of thermodynamic systems: 1, larch forests; 2, cedar forests; 3, meadow steppe;
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Figure 7 presents the seasonal patterns of key thermodynamic parameters: exergy, active
surface temperature, vegetation productivity index (NDVI), and q-index. The seasonal trends
of exergy (Figure 7a) and incoming solar radiation, along with the active surface temperature
(Figure 7b), closely mirror each other. Throughout the year, alpine meadows and rocks
consistently exhibit the highest temperatures. Forest types demonstrate peak exergy and
minimal temperatures year-round. Meadow steppe experiences a surge in exergy during
summer, aligning with forest types due to the growing season. Seasonal variations in NDVI
(Figure 7c) and q-index indicate an active vegetation period lasting from early June to mid-
September, approximately a hundred days. The q-index serves as a vital quantitative indicator,
delineating the commencement (q > 1) and conclusion (q < 1) of the active period in the
ecosystem. Meadow steppes exhibit peak productivity between June and September. Alpine
meadows and cedar forests display similar productivity dynamics, whereas larch forests
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exhibit relatively low annual productivity. Meadow steppes and alpine meadows (Figure 7d)
demonstrate the highest levels of self-organization (maximum q-index) from late June to the
end of September. Forest types exhibit lower self-organization, with a more prolonged period
of non-equilibrium states. Intriguingly, self-organization in larch forests drops below 1 in
mid-summer. A preliminary hypothesis attributing this to excess heat supply (Figure 7b) and
moisture deficiency is proposed. However, this hypothesis requires refinement and validation
through comparison with weather conditions.
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Figure 7. Seasonal dynamic of main thermodynamic variables for types of thermodynamic systems:
(a) exergy; (b) temperature; (c) NDVI; (d) q-index; (e) Kullback information increment; (f) entropy of
solar outcoming radiation. Type numbers detailed in Figure 6 description.
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Figure 7e shows the seasonal variation in the Kullback information increment. It clearly
demonstrates the imbalance between cedar forests in winter and larch forests in summer.
This is due, firstly, to the fact that larch forests remain bare in winter, while cedar forests
retain their needles. At the same time, cedar forests are confined to the southern slopes,
and this is probably due to their high disequilibrium and vulnerable state in the autumn.
At the same time, in summer, their level of disequilibrium is not high, which correlates
with their low level of productivity (Figure 7c). Meadows and steppes, as expected, have
a minimum disequilibrium in winter and a maximum in the snow-free period. Figure 7f
shows the seasonal dynamics of the entropy of reflected solar radiation. Maximum entropy
is characteristic of surfaces with poorly developed vegetation and decreases as the mass of
woody vegetation increases. Thus, we obtain the following picture: pine and larch forests
maintain maximum exergy throughout the year with minimal entropy, average levels of
organization, disequilibrium, and q-index, and a low level of productivity. Meadows and
steppes with maximum entropy have high productivity and disequilibrium during the
period of active work. Thus, different strategies for using solar energy are obvious: high
exergy with low self-organization and disequilibrium and productivity in forests and low
exergy with high disequilibrium and self-organization in meadows, but in a short time.
In general, the larger the q-index, the lower the exergy and entropy, but the greater the
Kullback information. From the perspective of the theory of self-organization, we find
that as the organization grows, the “useful” work of the system (exergy) decreases. Thus,
it can be assumed that for the class of systems under consideration, self-organization,
described by the growth of the q-index, increases the efficiency of the system in that it
reduces energy costs for supporting processes, such as the transport of moisture from
the soil to the atmosphere, and increases the work associated with energy costs for the
formation of biological production.

4. Discussion

Let us compare our results with the results of other boreal forests, namely with the
results of a similar analysis of the boreal ecosystems of the European plain (56◦30′ N,
32◦53 E Central Forest Reserve, CFR) [52] and the boreal forests of the north-eastern Baikal
region (55.35′ N, 109.81 E Baikal region, BR) [72]. These ecosystems form a gradient along
the absolute height and degree of continentality. The CFR has an altitude of 250 m above
sea level, and has a temperate continental climate, flat topography, and, therefore, excess
moisture most of the year, while the BR is located in an area of sharp continental climate,
moderated by the influence of Lake Baikal in the summer, with elevations of 480–1240 m
above sea level, compared to 1600–3000 m above sea level in Khoridoli Saridag (HS). The
areas of the analyzed regions are comparable. It is also worth noting that the calculations
for BR were carried out within the framework of the BGS model, without estimating the
q-index, while calculations for CFR were carried out in two systems [53,73], and it was
shown that the relationship between spatiotemporal variation in energy balance variables
is generally similar between NSM and BGC. However, the variance in the variables within
the NSM is greater, indicating a potentially greater sensitivity to diversity. Puzachenko and
co-authors proposed converting the differences between the variables in the BGS and NSM
systems to additional variables characterizing the “efficiency of self-organization” [52,53]
and using extensive field material shows the promise of this approach. Our case located,
in a territory different from the aforementioned, demonstrates that heat consumption for
transpiration (exergy) generally has a seasonal course, strictly determined by the incoming
solar radiation for all ecosystems, and that this pattern is universal; however, there are
significant differences for different types of ecosystems. It is noteworthy that during the
period of maximum vegetation activity for HS, meadow steppes, on average, have a level
of evapotranspiration almost at the level of forests. Analysis according to the proposed
scheme has always demonstrated a significant excess of exergy for forested areas over the
exergy of treeless areas, including the monsoon deciduous forests of South Vietnam [74].
At this stage of research, we can only assume that this unusual situation is explained by a
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decrease in exergy in forests due to the summer minimum of precipitation. The behaviour
of meadow systems as a whole is very typical and coincides in all regions. The differences
in the dynamics of self-organization and the increment of information between larch and
cedar forests HS have no analogs for other territories. It is noteworthy that, in summer,
larch forests have greater non-equilibrium and productivity (Figure 7c,d) and cedar forests
have greater self-organization (Figure 7f). This clearly indicates different mechanisms of
self-regulation. Since cedar forests are confined to the southern slopes, and accordingly
experience a greater lack of moisture in the summer, the mechanism shown for CFR of
adaptation of ecosystems to hot weather through increased self-organization and reduced
evaporation costs in the pair “cedar forests–larch forests” does not work. Apparently,
there are other mechanisms at work here that are not yet known to us. Notably, only
relationships within structural informational parameters (entropy, q-index, and information
increment) diverge. In the southern taiga ecosystems, an observed pattern emerges: when
the information increment increases, the entropy of reflected solar radiation decreases.
Additionally, a robust positive linear correlation between informational increment and
NDVI is evident: higher values of the former correspond to higher values of the latter.
However, such connections do not manifest in mountain taiga ecosystems. Comparing the
values of summer order parameters reveals disparities in their performance.

The interconnections between thermodynamic variables and vegetation properties
within the Khövsgöl study area mirror patterns observed in other research areas. For
instance, an increase in woody vegetation mass amplifies evapotranspiration costs. In-
terestingly, this increase has minimal impact on active surface temperature. Notably, the
increments of information and productivity in flat landscapes tend to decrease with rising
tree biomass. However, the reverse processes are observed in the Khövsgöl study area.
A negative linear correlation between q-index and woody vegetation mass is noted: as
q-index rises, woody vegetation mass diminishes in the Khövsgöl area, aligning with higher
q-index values in meadows and lower values in the climax spruce forests of the European
plain [53]. Considering the factor structure analysis (allocation of summer order parameters
based on the invariants of all variables), it becomes apparent that q-index, the increment of
information, and productivity index are determined by a singular order parameter. This
parameter is linked to the variables on which the order parameter was calculated. Thus,
higher NDVI and information increment values correspond to larger order parameters.
Importantly, this relationship inversely impacts the q-index. Therefore, it can be asserted
that the q-index, the increment of information, and the productivity index describe distinct
mechanisms of vegetation feedback on changing weather conditions. Indeed, nearly all
variables in the region exhibit high sensitivity to weather fluctuations, especially precipita-
tion (humidity). Given the significant influence of q-index and information increment in
classifying thermodynamic ecosystem types, these parameters potentially hold practical im-
portance in identifying ecosystems with varying self-regulation scales, thereby contributing
to landscape sustainability assessments.

Consequently, based on the results of the spatial–temporal analysis of thermody-
namic variable changes in the Khövsgöl study area, several conclusions can be drawn.
Firstly, the thermodynamic system operates in three stable states: summer, winter, and
transitional. Secondly, three primary processes govern the system: “evapotranspiration”,
“non-stationarity–productivity”, and “heat dissipation”. Thirdly, the coefficient of deter-
mination (R2) between relief and thermodynamic parameters is approximately 30–40%,
with the most significant effect observed for structures around 570 m in linear size. Finally,
system productivity increases with the rising Leaf Area Index (LAI) in the summer season
and with the growth of stand basal area during the transitional period.

Two primary processes, “heat dissipation–evapotranspiration” and “non-stationarity–
productivity”, were identified in ecosystems from CFR and the Baikal region. In contrast,
three sets of processes, namely “evapotranspiration”, “non-stationarity–productivity”, and
“heat dissipation”, were discerned in the Khövsgöl region. In summary, a hypothesis
emerges: the temperature regime in the Khövsgöl region is notably less influenced by
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incoming solar radiation than other biomes, being primarily shaped by prevailing air
masses. To test this hypothesis, relief contributions to the thermodynamic invariant of the
summer heat field for both the Baikal and Khövsgöl regions were analyzed. The results
revealed a coefficient of determination (R2) of 0.63 in both cases. In 2022, five temperature
loggers were strategically placed along a 1 km transect to assess the impact of thermal
regimes on solar radiation conversion. We anticipate obtaining results in 2024. It is evident
that air humidity and precipitation play pivotal roles in the solar energy conversion process.
Unfortunately, securing financial support for instrumental assessments of their long-term
dynamics remains an ongoing challenge.

5. Conclusions

The research presents an intriguing prospect as it delves into the analysis of ther-
modynamic characteristics within the highly continental climate of the Khövsgöl region.
Surprisingly, the results diverge from our previous findings, raising questions about the
singular functioning of the Khövsgöl mountain ecosystem. This discrepancy leads to the
formulation of a hypothesis, suggesting that these distinctive features may be attributed
to a combination of factors, including weather conditions, orography, and climate. The
research holds promise due to its potential to assess long-term variable dynamics in the
future. The remarkably continental climate has enabled the accumulation of abundant
cloudless Landsat scenes 4, 5, and 7 spanning from 1986 to 2011 (62 scenes). Our upcom-
ing endeavors involve establishing correlations between thermodynamic variables and
weather conditions using data obtained from the nearest weather station. Temperature data
collected from loggers placed across the slope (in 2022) will be instrumental in validating
and comparing meteorological data from the station situated in the basin. It is noteworthy
that remote sensing temperature measurements often align well with data from weather
stations, especially in flat southern taiga landscapes [68].

The applied information–thermodynamic approach to interpreting remote sensing
data enables the quantification of thermodynamic variables within ecosystems. These
calculated parameters hold practical significance in identifying ecosystems with varying
degrees of self-regulation. For instance, the exergy of solar radiation provides an estimation
of heat costs for evaporation, closely related to phytomass growth. Simultaneously, the
q-index unveils the ecosystem’s capacity for self-organization. The information increment,
often associated with NDVI, serves to detect the system’s non-stationarity and to assess
potential ecosystem productivity. Ultimately, specific combinations of thermodynamic
variables are intricately linked to ecosystem structure, governed by factors, such as vegeta-
tion cover, soil properties, and the hydrothermal regime. These thermodynamic variables
prove invaluable in bridging the gap between field-obtained descriptions and instrumental
measurements of ecosystem properties at specific points along the slope and across the
entire area. This innovative approach facilitates the creation of maps with known error
margins and limitations.

Employing this approach to assess complex, self-organizing ecosystems in diverse
landscape and climatic conditions will enable a comprehensive understanding of their
functioning within a unified measurement system. The ecosystems of Mongolia serve as
representative models for numerous regions in Central Asia. Therefore, this study stands
as a valuable contribution from both methodological and practical perspectives, offering
insights into the intricate dynamics of ecosystems in this region. Since the warming rates
in Mongolia exceed the global average, the issue of the stability of forest ecosystems is
particularly pressing. Austrian researchers demonstrated through modelling [75] that
topographic complexity enhances the stability of boreal forest ecosystems during warming.
We believe that our research assessing the impact of various factors on the functioning of
mountain landscapes will further enhance our understanding of the mechanisms of their
regulation and, consequently, their stability.
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