
Dynamic Bank Capital Regulation in

the Presence of Shadow Banks∗

Arsenii Mishin†

HSE University

September 28, 2023

Abstract

Regulated banks expand relative to shadow banks in recessions and when credit
spreads are high, while regulated banks shrink relative to shadow banks in expansions
and when credit spreads are low. Motivated by these facts, I build a quantitative general
equilibrium model with endogenous risk taking to study how competitive interactions
between regulated banks and shadow banks affect optimal dynamic capital requirements.
Limited liability and deposit insurance can lead regulated banks to provide socially
inefficient risky loans when the returns on safer loans decline. Competition for scarcer
funding can further lower the net returns on safe loans, making it more attractive for
regulated banks to exploit the shield of limited liability with risky loans. Higher capital
requirements can reduce inefficient risk at the cost of lower liquidity provision and
some migration of credit from regulated banks to shadow banks. Accounting for the
interactions of regulated and shadow banks can change the magnitude and direction of
the optimal response of capital requirements to shocks that drive the business cycle.
Moreover, Basel-III style rules that differentiate between the type of bank loans are
much better at mimicking the Ramsey optimal capital requirements than standard rules
that aggregate loans. The performance of such dynamic rules can be further improved
once they are combined with a small static capital buffer.
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1 Introduction

The Basel III guidance proposes higher capital requirements in periods of excess aggregate

credit growth to build up a greater cushion against potential losses in periods of stress.1 These

measures are aimed at increasing the resilience of the financial system to macroeconomic

shocks. However, the financial system includes institutions that are not regulated as traditional

banks. Shadow banks – lenders that perform bank-like functions but do not face capital

requirements – have been expanding since the imposition of tighter bank regulatory standards

in the wake of the 2007-09 global financial crisis.2 This trend has raised concerns among

policymakers about the effectiveness of capital regulation as loans can migrate from now

more regulated traditional banks to unregulated shadow banks. How should prescriptions

for optimal capital requirements be affected once competitive interactions of regulated and

shadow banks are taken into account?

In this paper, based on data from the United States, I characterize three facts about

the relation between regulated and shadow banks on business-cycle frequencies. I associate

shadow banks with non-regulated intermediaries which provide liquidity services. I follow

the methodology of Pozsar et al. (2013) to estimate the size of each of the banking sectors.

First, shadow bank liabilities are significantly more volatile. Second, regulated banks expand

relative to shadow banks in recessions, while regulated banks shrink relative to shadow banks

in expansions. Third, higher credit spreads defined as average yields of corporate bonds

relative to government bonds of similar maturity lead to expansion of regulated banks relative

to shadow banks.

This paper develops and estimates a general equilibrium model with two types of financial

intermediaries, which can account for all three facts. In the model, regulated and shadow

banks borrow from households, issue equity and finance firms that undertake projects with

varying degrees of risk. Households have preferences for liquidity offered by deposits of

regulated and shadow banks. Each type of bank lends to two types of firms. Safe firms have a

production technology that is only exposed to aggregate shocks; while risky firms are subject

to both aggregate and idiosyncratic shocks. Idiosyncratic shocks have no influence on the

average expected output of a risky firm but increase its variance. Regulated banks incur a

cost to hide risky projects from regulators; while shadow banks do not have such penalty

on risky returns. This feature that leads to a relatively higher social price of taking risk by

1See Basel Committee on Banking Supervision (2010).
2According to the recent data from the Financial Stability Board, assets of the narrow measure of shadow

banking, which is estimated to pose the greatest financial stability risks, have increased by 75% globally since
the global financial crisis. The United States constitutes the biggest share of the sector, amounting to 29% or
$15 trillion; this number is comparable to the size of assets of regulated banks in the country.
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regulated banks reflects the availability of deposit insurance provided to regulated banks.

The losses of their failure are borne by taxpayers, so risky projects are socially inefficient.

Regulated banks take excessive risk by lending to risky firms. Unregulated shadow banks have

no access to deposit insurance and face endogenously determined balance sheet constraints.

Depending on the business cycle, banks find it privately optimal to either avoid idiosyncratic

risk or load on this undiversified risk to exploit the shield of limited liability. Higher capital

requirements can reduce or eliminate inefficient risk taking by forcing regulated banks to

keep more “skin in the game” at the expense of lower liquidity provision and some migration

of credit from regulated banks to shadow banks.

My contribution is threefold: First, I compute fully dynamic optimal capital requirements

using a Ramsey approach. The Ramsey optimal capital requirements are set at the lowest

level that prevents inefficient risk taking under the assumption that regulators can perfectly

observe different types of exogenous shocks and commit to policy responses conditioning on

shock realizations. I show that once we account for the interactions of regulated and shadow

banks, optimal capital requirements react more aggressively to technology shocks. Moreover,

introducing shadow banks changes the direction of the response of optimal capital require-

ments following capital quality shocks. In a model without shadow banks, optimal capital

requirements rise in response to expansionary capital quality shocks, whereas accounting for

shadow banks they contract.

Second, I provide an example in which an increase in capital requirements may lead to

migration of credit from shadow to regulated banks as a result of a better designed capital

regulation policy. It may occur when current capital requirements are set at suboptimally

low levels, leading to socially inefficient lending. The optimal increase in capital requirements

may drive the regulated bank deposit rate down due to higher convenience yield, decreasing

the costs of providing loans and thus increasing lending of regulated banks.

Third, I explore how a bank regulator could implement optimal dynamic capital require-

ments in practice. I evaluate the so-called Basel III rule under which capital requirements

respond to loan-to-output ratio. I find that a simple rule that differentiates between the two

types of loans provided by each of the banking sectors does much better job at mimicking

the response of the Ramsey optimal policy compared to a rule that conditions on aggregate

loans. I consider both statistical measures, such as the R-squared, and welfare metrics, such

as the consumption equivalent variation, that is computed by solving the model non-linearly.

Although the rule that differentiates bank loans has a good fit with the Ramsey optimal

policy, it leads to a number of consecutive inefficient risk-taking episodes. The reason is that

the Ramsey policy completely switches off risk taking on the equilibrium path but the rule

cannot always do that because of the informational requirements. This fact motivates me to
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study how a slightly elevated static capital requirement (capital buffers) can be combined

with the considered simple rules. I find that combining the dynamic Basel-III style rules with

capital buffers is welfare improving compared to using static buffers only, and the rule that

aggregates loans now results in a smaller welfare loss.

Some general intuition regarding the model’s main mechanisms can help shed light on

all three contributions. Consider an example of a technology shock that reduces the returns

on loans. There are two forces that are responsible for triggering a socially inefficient (or

an excessive) risk-taking episode. One takes place independently of the presence of shadow

banks, while another shows up due to the interactions of the two types of banks. First,

lower loan returns decrease bank capital. Limited liability bounds possible further losses but

does not affect potential gains. This asymmetry motivates bank managers to gamble for

redemption by taking a flier on risky firms. In turn, deposit insurance acts as a subsidy for

taking the risk because regulated banks do not internalize the probability of their default

on the cost of borrowing. This combination of limited liability and deposit insurance allows

regulated banks to pursue socially inefficient risk taking. Second, the model reflects the fact

that regulated banks are less leveraged than shadow banks.3 Accordingly, the returns on

equity of regulated banks decline more modestly, inducing households to re-balance their

equity portfolios. Households’ equity holdings shift from shadow to regulated banks until the

expected returns on the two types of equity are equalized. With binding capital requirements,

this infusion of equity into regulated banks induces them to also attract more deposits to

help fund an expansion of lending activity.4 In the process, regulated banks drive up their

deposit rate, which compresses the net returns on loans and thus boosts their risk-taking

incentives. This interaction between bank and shadow banks magnifies the response of capital

requirements.

To understand the reasons why accounting for the interaction between regulated and

shadow banks could reverse the sign of optimal capital requirements, it is useful to separate

the substitution and wealth effects of different shocks. For an expansionary productivity

or capital quality shock, the wealth effect expands consumption, whereas the substitution

effect expands investment. Depending on the balance between these two effects, the capital

requirement could move in one direction or the other. Crucially, the substitution effect is

stronger for technology shocks than for capital quality shocks regardless of whether shadow

banks are in the model, but accounting for shadow banks increases the substitution effect.

3I follow Ferrante (2018) who estimates the leverage ratio of broker-dealers, expressed as assets to equity,
to be between 20 and 40 compared to a value of 10 for regulated banks. Section 2 describes the shadow
banking sector in more detail and further justifies this modeling feature.

4I derive formally that capital requirements always bind in the model. This result reflects households’
preferences for bank debt, making debt a cheaper source of bank funding than equity.
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In particular, the higher leverage of shadow banks implies that the returns on their equity

are going to increase relatively more than the returns on regulated banks. This force allows

them to attract additional funds from households reducing the financing costs for investment.

For capital quality shocks, the substitution effect gets a boost sufficient to tilt the balance

between the wealth and substitution effects. In response to an expansionary capital quality

shock, shadow banks render the substitution effect so strong as to push up the price of

installed capital, generating capital gains (the price of installed capital would have fallen in

their absence). These capital gains also increase the returns on safe projects for regulated

banks, and thus capital requirements can decline.

It may seem that a higher leverage of shadow banks drives the results. However, the

interaction between regulated and shadow banks determines an additional transmission

channel through household deposits. I estimate two key parameters that influence this

transmission channel: the elasticity of substitution across the two types of deposits and the

interest elasticity of total liquidity. A greater elasticity of substitution across the two types

of deposits results in a smaller boost in capital requirements. In fact, regulated banks find

it relatively cheaper to raise more debt with this greater elasticity of substitution because

households require a smaller increase in the deposit rate for their switch away from shadow

bank deposits. Moreover, a higher interest elasticity of total liquidity calls for a larger boost

in capital requirements. In fact, when the supply of total liquidity is more elastic, a negative

shock leads to a larger drop in total deposits. Since banks finance their loans from deposits,

there is also a larger fall in loans. These greater contractionary effects result in a greater

negative spillover of shadow banks on the net worth of regulated banks. The net worth of

regulated banks decreases by more, leading to a greater response of capital requirements

needed to combat the financing of inefficient loans.

This paper belongs to a growing literature on the design of optimal capital requirements in

a quantitative general equilibrium framework (see, e.g., Van den Heuvel (2008); Collard et al.

(2017); Mendicino et al. (2018); Davydiuk (2018); Begenau (2020); Malherbe (2020); Faria-

e-Castro (2020); Canzoneri et al. (2020); Zhang (2020); Elenev et al. (2021); Begenau and

Landvoigt (2021)). My main contribution is to evaluate the impact of the interactions between

regulated and shadow banks on optimal capital requirements when banks endogenously choose

the riskiness of their loan portfolios depending on the business cycle. Zhang (2020) also

studies time-varying capital requirements in the presence of shadow banks. The author

introduces a regulatory quadratic cost to model a capital requirement in an environment

that features a costly state verification friction. I explicitly model moral hazard arising from

limited liability and deposit insurance, incorporating it into a general equilibrium model with

endogenous risk taking and aggregate uncertainty. I also contribute to the literature that
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studies Basel III prescriptions for setting the countercyclical capital buffer. My work stands

out from this literature because I explicitly take into account the influence of shadow banks

on devising Basel-III style rules.

The paper follows a tradition of the recent work on occasionally binding constraints as a

source of non-linearity in financial crises such as Mendoza (2010), He and Krishnamurthy

(2012), and Brunnermeier and Sannikov (2014). My model is in the vein of Boissay et al.

(2016) and Gertler et al. (2020) that capture banking crises as rare events. I associate periods

of excessive risk taking with regime shifts to model these rare episodes. In my framework, a

low level of bank failures is linked to capital requirements being nearly optimal. Bank crises

occur as a result of shocks that make socially inefficient lending attractive to banks, moving

the economy into periods of excessive risk taking. These periods of inefficient lending are

regime shifts. Optimal capital requirements respond to avoid these inefficient regime shifts.

To model the risk-taking incentives of the banking sector, I follow Van den Heuvel (2008)

who shows how to exploit the shield of limited liability and deposit insurance to consider

the financing choice, on the part of banks, of risky and safe projects. Van den Heuvel (2008)

focuses on a setup that excludes aggregate risk. In this paper, I extend it to include aggregate

risk, which enables me to study how risk-taking incentives vary over the business cycle. I

model endogenously determined balance sheet constraints of shadow banks in the spirit of

the work by Gertler and Karadi (2011), to which I add the possibility of default.

I model liquidity services provided by bank deposits through the utility function to

capture the empirical evidence that deposits generate convenience yield (see, e.g., Gorton

et al. (2012); Krishnamurthy and Vissing-Jorgensen (2012); Nagel (2016)).5 Convenience yield

is a non-pecuniary premium of holding safe and liquid assets that can perform money-like

functions.6 This modeling feature makes capital requirements always bind.7

To justify the difference in the returns from risky technologies across regulated and shadow

banks, I relate to the literature that differentiates the expertise on the asset side of the two

types of banks, such that regulated banks, protected by deposit insurance, have less incentives

5Feenstra (1986) shows that models with money-in-the-utility are functionally equivalent to models with
transaction costs. Quadrini (2017) provides theoretical foundations for the bank liabilities channel that
generates lower deposit interest rates paid by banks.

6In reality, shadow banks issue REPOs, commercial paper, MMMFs, and other short-term instruments in
the money market to fund their assets. The recent empirical papers by Pozsar et al. (2013), Chernenko and
Sunderam (2014), and Sunderam (2015) also find the importance of shadow banks for liquidity creation. To
capture those benefits in the model, I put shadow bank deposits in the utility function. It also corresponds to
the approach taken in Begenau and Landvoigt (2021).

7This paper belongs to the current stance of quantitative macro-banking research in general equilibrium
which involves binding capital requirements. It is on a research agenda to construct quantitative models
being consistent with reality that capital requirements do not bind all the time. For example, Begenau et al.
(2020) develop a theory to capture several empirical facts, including unconstrained book and market leverage.
At the same time, their model is partial equilibrium.
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to develop a better screening system for selecting more creditworthy risky firms.8

It is common in the macro-banking literature to introduce a moral hazard problem into

an environment that makes equity more expensive than debt due to either a tax distortion of

bank profits or liquidity benefit of deposits. The moral hazard problem, which is associated

with the presence of deposit insurance and limited liability, gives a non-negligible role for

bank capital regulation. In this vein, Collard et al. (2017) examine jointly optimal prudential

and monetary policies, which, unlike my setup, make excessive risk taking an off-equilibrium

outcome. Davydiuk (2018) studies time-varying capital requirements within the Ramsey

framework where banks take risks linked to the volume of credit. Here I consider how banks

risk-shift by choosing projects of different quality. Begenau (2020) introduces the government

subsidy of a particular functional form. One of the key elements that distinguish my work

is that I explicitly derive the government subsidy associated with the provision of deposit

insurance to banks and a share of non-defaulted shadow bank deposits. Canzoneri et al. (2020)

compare simple implementable rules against the dynamic policy prescribed by a Ramsey

planner in a model with endogenous risk taking. They find that a small static buffer performs

as well as simple policy rules, including the prescription of Basel III. A common feature of

those papers is that they abstract from shadow banks in their analyses.

Only few attempts have been made to differentiate between regulated and shadow banks

in a general-equilibrium framework. The approach that the literature usually takes is to

introduce the run-like behavior on shadow banks in the crisis time when banks are forced to

liquidate assets at firesale prices. This environment amplifies the shocks and captures the

highly non-linear nature of collapse. The papers that share these features include Gertler et al.

(2016), Begenau and Landvoigt (2021), Ferrante (2018), Gertler et al. (2019), and Gertler

et al. (2020). Begenau and Landvoigt (2021) find that a general equilibrium mechanism

reduces the funding costs of banks following tighter capital requirements, and thus shadow

banks expand their scale without becoming more risky as long as households care more

about the overall liquidity than its composition. Unlike my work, they focus on static capital

requirements and make no distinction between the technologies or expertise on the asset side

of the two types of banks. Gertler et al. (2016) introduce a wholesale market where shadow

banks borrow from retail banks and then characterize runs as self-fulfilling rollover crises in

an infinite horizon endowment economy. Gertler et al. (2019) extend that framework to a

conventional macroeconomic model, in which the banking sector is aggregated to include both

investment banks and some large regulated banks. A pecuniary externality related to bank’s

8For example, Buchak et al. (2018) show that shadow banks (represented by fintech lenders) serve
more creditworthy borrowers. To mention more work that considers emergence of shadow banks based on
differences in production technology of financial services, refer to Gertler et al. (2016), Ordoñez (2018), and
Martinez-Miera and Repullo (2019), among others.
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partial internalization of the effect of its leverage on the probability of a run for the whole

banking system leads to a non-negligible role for capital regulation. The authors address

the role of macroprudential policy in their companion paper Gertler et al. (2020) in which

they relate credit growth to financial crises. Ferrante (2018) builds a model on Gertler et al.

(2016) and introduces an informational friction that allows him to capture securitization and

endogenous loan quality. He also considers the reintermediation of credit, but there is no

direct link between his policies and capital requirements. Although I do not explicitly explore

bank runs in my framework, I follow a complementary perspective and emphasize the role of

shadow bank liquidity for capital requirements in a non-linear environment.

2 Stylized Facts

The definition of shadow banks has been evolving over the years and depends on the

context. Before the global financial crisis, the term was meant to capture mainly those

companies such as broker-dealers, mortgage finance firms, asset-backed regulated paper

(ABCP) conduits, and money market mutual funds (MMMF) that participate in wholesale-

funded, securitization-based lending process. Nowadays, many companies that used to

be very different from banks have started getting involved in activities earlier associated

with conventional banks. They include fintech lenders, insurance companies, private equity

funds, hedge funds, and many others, all of which provide a significant source of credit

to the economy. Since I focus on the liquidity provision function of financial institutions

which society values in my framework, I measure the shadow banking sector by considering

unregulated intermediaries the main function of which is to provide liquidity services.

I follow the methodology described by Pozsar et al. (2013) to estimate the size of regulated

banks (RBs) and shadow banks (SBs) in the United States. I use quarterly data from the

Flow of Funds for the period 1990 Q1 – 2022 Q1. This choice is governed by the fact that

the shadow banking sector was relatively small before 1990, so its interactions with regulated

banks were less relevant. Moreover, Basel I, which introduced capital requirements on banks,

was issued in 1988 after the period of deregulation during 1980s.

To get a measure of shadow banks, I sum all the liabilities that relate to activities that

are not backstopped by public guarantees such as asset-backed securities (ABS), repurchase

agreements, security brokers and dealers, money market mutual funds, finance companies

and commercial paper.9 I do not consider GSE-backed mortgage pools because I would like

to concentrate on the parts of shadow banks without explicit government sponsorship.10 I

9See Appendix I.1 for more detail.
10Ferrante (2018) follows a similar approach.
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use total liabilities of private depository institutions to estimate the size of regulated banks.

I divide my measures by the implicit price deflator for GDP to convert the numbers into real

terms.

I document three facts on the relation between the two types of banks and economic

activity against which I will evaluate my modeling framework. Since I am interested in

business-cycle frequencies, I measure shadow bank real liabilities, regulated bank real liabilities

and real GDP as corresponding deviations from their HP trends.11

The first fact is that shadow bank liabilities are significantly more volatile; on average,

they fall considerably more than regulated bank liabilities if output is below its trend, and

they rise significantly more if output is above its trend. Table 1 summarizes the main results.

It shows that the standard deviation of SB real liabilities is more than two times greater than

the standard deviation of RB real liabilities when computed on business-cycle frequencies.

Conditional on positive (negative) cyclical deviations of real GDP from its trend, SB real

liabilities increase (decrease), on average, about nine times more than RB real liabilities

increase (decrease).

Table 1: Summary Statistics

Statistics
Bank’s Type: Real Liabilities

Regulated Banks Shadow Banks
Standard Deviation 1.811 % 4.387%
Mean(·|GDP > 0) 0.173% 1.544%
Mean(·|GDP < 0) -0.158% -1.408%

Correlation with real GDP -0.123 0.266

Note: All statistics are computed for HP-filtered shadow bank real liabilities, regulated bank real
liabilities and real GDP measured as deviations from their HP trends. Mean(·|GDP > 0) calculates
the mean of bank real liabilities conditional on positive deviations of real GDP from its HP trend.
Mean(·|GDP < 0) calculates the mean of bank real liabilities conditional on negative deviations of
real GDP from its HP trend.

The second fact links the measures of bank size with economic activity. Previous studies

provide evidence that a considerable amount of debt migrated from the shadow banking

system to the regulated banking sector during the Great Recession.12 I show that this finding

may not only be applied to particular episodes but it may also be generalized to the whole

business cycle. To the best of my knowledge, this analysis has not been performed before in

the literature.

11I select standard business cycle frequencies of 1,600 used for quarterly data. The results are also robust
to the alternative choices of filters such as the bandpass filter.

12For example, He et al. (2010).
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Figure 1. Bank Liabilities and Output

Note: The left (right) panel of the scatter plot shows the relationship between real GDP, expressed
as a deviation from its HP trend, and regulated (shadow) bank real liabilities, expressed as a
deviation from its HP trend.

Figure 1 shows that regulated bank liabilities are counter-cyclical, while shadow bank

liabilities are pro-cyclical.13 The size of RBs relative SBs falls with real GDP. As shown

in Figure 2, the correlation between the difference in RB and SB real liabilities and real

GDP is negative. RBs expand relative to SBs in recessions, while RBs shrink relative to

SBs in expansions. I dub it the reintermediation channel that will be key to my risk-taking

mechanism in the theoretical model.

The third fact highlights the relation between bank size and financial conditions. I link

financial conditions to credit spreads defined as average yields of corporate bonds relative to

13It is interesting that the correlation coefficient of RB liabilities with GDP is negative because RBs, on
average, expand when output increases and contract when output falls as indicated in Table 1. The negative
correlation can be explained by the presence of large positive changes in RB liabilities when GDP is below
its trend. Positive deviations of RB are more common but they are much smaller. They also concentrate
around the center when GDP is above its trend. To lessen the influence of a choice of the filter on results, I
repeat the procedure, applying the bandpass filter. The bandpass filter supports much stronger negative
correlation of -0.3 for RB liabilities with GDP. This negative correlation is also robust to alternative choices
of the sample period.
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Figure 2. Output and Relative Size of Regulated Banks

Note: The scatter plot shows the empirical relationship between real GDP, expressed as a deviation
from its HP trend, and the difference between RB and SB real liabilities, both measured as deviations
from their HP trends.

government bonds of similar maturity. There are several measures proposed by the literature.

As shown in the literature, high credit spreads are associated with times of elevated financial

stress. I choose the monthly GZ credit spread index constructed by Gilchrist and Zakraǰsek

(2012). As demonstrated by the authors, it has the edge over widely used default-risk

indicators such as the standard Baa–Aaa corporate bond credit spread in predicting future

economic activity. I convert it to quarterly credit spreads. Figure 3 plots the dependence

of RBs relative to SBs on the calculated credit spread.14 This relationship is positive. The

higher the spread (i.e., the tighter credit conditions), the more RBs expand relative to SBs.

14Since credit spreads are fast-moving variables, I measure real RB and SB liabilities as year-ahead
deviations from their corresponding HP trends. This one-year shift is dictated by visually inspecting the time
between the peaks and troughs of the credit spread and real RB and SB liabilities. A one-year ahead shift in
real output is also used in Akinci and Queralto (2022) to relate real GDP to credit spreads. Since I do not
use lags to link bank sizes with real output, I practically follow the same approach described in Akinci and
Queralto (2022).
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Figure 3. Credit Spread and Relative Size of Regulated Banks

Note: The scatter plot shows the empirical relationship between the credit spread, borrowed from
Gilchrist and Zakraǰsek (2012), and the year-ahead difference between RB and SB real liabilities,
both measured as deviations from their HP trends.

3 Setup

The core framework is a standard RBC model extended to include regulated and unregu-

lated banks that both have limited liability but only regulated banks enjoy deposit insurance.

There are six types of agents in the model: households, shadow banks, regulated banks,

production firms, capital producers, and a government that provides deposit insurance. To

model shadow banks, I introduce the idiosyncratic shock and the possibility of default into

the set up with the agency friction developed by Gertler and Karadi (2011). The description

of regulated banks follows Canzoneri et al. (2020). As I show, the addition of shadow banks

and consideration of their interactions with regulated banks have a substantial effect on

model dynamics and policy implications.
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3.1 Households

There is a continuum of infinitely lived households of mass one. Each household consumes,

saves and supplies labor. Households consist of two types of members: workers and bankers.

Each banker manages either a regulated bank or a shadow bank. Workers and shadow bankers

can switch occupations each period. In particular, a shadow banker continues operating in

the shadow banking sector next period with probability θ. The corresponding equal measure

of workers randomly become shadow bankers. Upon exiting, shadow bankers return any

earnings back to the household. There is perfect consumption insurance within the family.

Households solve the following problem:

max
Ct,DR

t ,DS
t ,E

R
s,t,E

R
r,t,E

S
t

E

∞∑
t=0

βt

[
C1−σc

t − 1

1− σc

+ σ0Ψ
(
DR

t , D
S
t

)]
, (1)

subject to

Ct +DR
t +DS

t + ER
s,t + ER

r,t + ES
H,t =

WtH +RdR
t−1D

R
t−1 +RdS

t D⋆S
t +ΠS

t +ReR
s,tE

R
s,t−1 +ReR

r,tE
R
r,t−1 +ReS

t ES
H,t−1 − Tt,

D⋆S
t = x⋆

tD
S
t−1,

ER
s,t ≥ 0,

ER
r,t ≥ 0.

(2)

The representative household values consumption, Ct, and a mix of two types of deposits,

DR
t and DS

t , where the superscript stands for the type of bank: a regulated (R) or a shadow

(S) bank. Preferences for consumption are iso-elastic with σc > 0 governing the inverse of the

intertemporal elasticity of substitution for consumption. The specification of derived utility

from deposits is

Ψ
(
DR

t , D
S
t

)
=

(
α1

(
DR

t

)σd + (1− α1)
(
DS

t

)σd
) 1−ζ

σd

1− ζ
, (3)

where α1 ∈ [0, 1] is the weight on regulated bank liquidity, 1
1−σd

> 0 is the elasticity of

substitution between regulated and shadow bank debt, and ζ > 0 is the measure of the

elasticity of households supply of total deposits with respect to changes in the interest rate.

Workers supply labor, H, to firms inelastically for a wage, Wt. Households can acquire

three types of bank equity, ER
s,t, E

R
r,t, and ES

H,t. R
eS
t , ReR

s,t , and ReR
r,t with the corresponding

gross returns ReS
t+1, R

eR
s,t+1, and ReR

r,t+1 next period. Banks differ by the riskiness of their

investments.15 Households invest into shadow bank equity and deposits through two funds,

15Banks can choose any level of risk (volatility) in a range from σ to σ̄. I will show below that three types
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which collect and distribute all the returns to the household family members. In particular,

the equity fund supplies equal amount of equity to all existing shadow bankers. This feature

ensures that both entering (“new”) and existing (“old”) shadow bankers start with the same

(“shared”) amount of equity, which makes them all ex-ante identical.16 The deposit fund

holds deposits in the shadow banks that it does not own. In the next period, the deposit fund

receives the returns on non-defaulted deposits and distributes them equally to depositors.

Regulated bank deposits are risk-free due to complete deposit insurance. In period t, they

pay a non-contingent gross return RdR
t−1. Shadow bank deposits pay a gross return RdS

t on

non-defaulted deposits D⋆S
t . The variable x⋆

t denotes a non-defaulted share of shadow bank

deposits and ΠS
t is the value that households receive after liquidating the assets of defaulted

shadow banks. Households pay lump-sum taxes, Tt, collected by the government to provide

deposit insurance.

Appendix H derives the first-order conditions of the household’s problem. There are

two features that make them different from the standard RBC equations. First, there is an

additional benefit from holding deposits. This fact becomes relevant in what follows. Second,

the state-contingent required rates of return on the three types of equity play an important

role for allocation of capital across firms’ technologies in equilibrium.

3.2 Banking Sector

There is a continuum of measure one of each type of bank, i = R, S, indexed by j ∈ [0, 1].

Banks lend to a mix of two types of production firms. One type is subject to aggregate shocks

only (safe firms, for short). Safe loans earn Rl
t+1 next period. Another type is subject to

both aggregate and idiosyncratic shocks (risky firms, for short). Banks finance these loans by

raising deposits and equity from households. Risky loans yield Rl
t+1 +

εij,t+1

Qt
where Qt is the

price of capital and εij,t+1 is the idiosyncratic shock that has no influence on average expected

output but increases its variance. Equipped with limited liability, banks have incentives to

increase exposure to the idiosyncratic shocks. Regulated banks lose, on average, ξR from

financing risky firms because it is relatively costly for them to hide risky projects from the

regulator. Moreover, each type of bank has its own variance of the idiosyncratic process,

reflecting the difference in available technologies. A banker j of type i creates a loan portfolio

with riskiness σi
j,t and earns total returns Rl

t+1 + σi
j,t

εij,t+1

Qt
by directing a fraction σi

j,t of loans

of equity span all possible equilibrium risk choices for banks.
16It goes beyond the scope of this paper to consider a heterogeneous-agent framework in which the

distribution of shadow bank equity holdings also plays a role.
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to a risky firm and the remaining share 1− σi
j,t to a safe firm.17,18

3.2.1 Shadow Banks

In period t, a shadow bank j receives eSj,t units of equity from the equity fund, demands

dSj,t+1 units of deposits from the deposit fund and lends lSj,t to firms. At time t+ 1, the bank’s

net cash flow, ωS
j,t+1, is the difference between earnings on loans and payments on deposits:

ωS
j,t+1 = max

[(
Rl

t+1 + σS
j,t

εSj,t+1

Qt

)
lSj,t −RdS

t+1d
S
j,t+1, 0

]
. (4)

If the net cash flow is positive, the bank pays it out to households in dividends. If the net

cash flow is negative, limited liability protects the bank from making any losses, so the bank

gets zero and liquidates its assets to partially reimburse depositors.

Since households have preferences for the bank debt, shadow banks find it cheaper to

finance their assets by issuing deposits only. To motivate shadow banks to accumulate

equity, I consider a costly enforcement problem in the spirit of Gertler and Karadi (2011).

In particular, at the start of each period, the shadow banker can choose to transfer the

share λ of loans back to the household. If the banker opts for the transfer, the deposit fund

that represents the interests of the depositors of another household can force the banker to

liquidate the remaining fraction 1− λ of the assets. In effect, depositors provide funds to the

shadow bank if the following incentive-compatibility constraint holds:

V S
j,t ≥ λlSj,t, (5)

where V S
j,t is the value of the bank measured by the expected terminal wealth.

Let Êt denote expectation taken over the joint distribution of εRj,t+1 and Rl
t+1, subject to

information known at time t. The objective of the bank is to maximize its value:

V S
j,t = max

lSj,t+i,σ
S
j,t+i

Êt

{
∞∑
i=0

(1− θ) θiΛt,t+1+iω
S
j,t+1+i

}
, (6)

17The firm section describes the production functions of each type of firm, from which I derive the returns
to loans and show how they compose the portfolio returns postulated here.

18The statement that a regulated bank only deals with one safe and one risky firm comes at no loss
of generality since diversification is useless given constant returns to scale technology of safe firms and
detrimental for loans to risky firms. You can consult Collard et al. (2017) for a more formal exposition.
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subject to

V S
j,t ≥ λlSj,t,

ωS
j,t+1+i = max

[(
Rl

t+1+i + σS
j,t+i

εSj,t+1+i

Qt+i

−RdS
t+1+i

)
lSj,t+i +RdS

t+1+ie
S
t+i, 0

]
,

σS ≤ σj,t ≤ σ̄S,

(7)

where Λt,t+i = βi λct+i

λct
is the stochastic discount factor applied to earnings at t+ i.

I make the following assumptions:

Assumptions (Shadow Banks):

1. At least a positive fraction σS of the value of total loans will go to risky firms and at

least a positive fraction 1− σ̄S of the value of total loans will go to safe firms.

2. εSj,t+1 follows a Normal distribution with mean zero and variance τ 2S.

3. The amount of equity that the shadow banker receives from the equity fund is the same

across all shadow banks, i.e. eSj,t = ES
t for all j ∈ [0, 1] .

4. Shadow banker exits with i.i.d. probability 1− θ next period.

The first assumption takes the form of the minimum scale condition for the allocation of

capital across two production functions. It ensures that the returns to both safe and risky loans

are always defined. The second assumption makes it possible to represent the expectation

operator Êt as an expectation taken over the aggregate shock, nesting expectations taken

with respect to the idiosyncratic shock. The unbounded support of the distribution does not

require any restrictions on the parameter values when measuring the impact of aggregate

shocks. The third assumption allows me to model the shadow banking sector within a

representative agent framework. The final assumption is used to limit the ability of shadow

banks to get rid of the financial friction.

3.2.2 Regulated Banks

A regulated banker j enters period t+ 1 with lRj,t units of loans, financed by issuing dRj,t

units of deposits and eRj,t units of equity. The balance sheet condition is

lRj,t = eRj,t + dRj,t. (8)

15



The net worth, eRj,t, available to banks at the end of period t (going into period t+ 1) evolves

according to:

eRj,t+1 = max

[(
Rl

t+1 + σR
j,t

εRj,t+1

Qt

−RdR
t

)
lRj,t +RdR

t eRj,t, 0

]
− zj,t+1 (9)

where zj,t+1 is the net payout to the bank’s shareholders in t+ 1 after the realization of the

shocks in t.

The banker’s objective is to maximize the expected discounted sum of equity payouts:

V R
j,t = max

lRj,t+i,e
R
j,t+i,σ

R
j,t+i

Êt

{
zj,t +

∞∑
i=0

Λt,t+1+izj,t+1+i

}
, (10)

subject to

eRj,t+i ≥ γt+il
R
j,t+i,

zj,t+1+i = max

[(
Rl

t+1+i + σR
j,t+i

εRj,t+1+i

Qt+i

−RdR
t+i

)
lRj,t+i +RdR

t+ie
R
j,t+i, 0

]
− eRj,t+i,

lRj,t+i ≥ 0,

σR ≤ σR
j,t+i ≤ σ̄R.

(11)

The capital requirement stipulates that equity needs be at least the fraction γt of total loans

for the bank to operate in each period. The non-negativity constraint on the amount of loans

excludes the possibilities of short-selling.19

I make the following assumptions:

Assumptions (Regulated Banks):

1. At least a positive fraction σR of the value of total loans will go to risky firms.

2. The bank supervisory authority will prevent risky loans in excess of financing a share

σ̄R of total loans where σR < σ̄R < 1.

3. The CDF of εRj,t+1 denoted by G is Normal with mean −ξR < 0 and variance τ 2R.

The first assumption is needed for the same reasons as discussed in the shadow banking

section. The second assumption states that the regulator observes excessive risk taking

imperfectly. The threshold for the share of risky loans from which the authority starts

detecting excessive risk is described by σ̄R. The interpretation is that the regulator has power

19The reasons for no short-selling constraint come from the fact that bank’s objective function is convex in
risk. Section 4 clarifies this point.
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to penalize banks significantly enough to make them never find it optimal to finance the

fraction of risky firms greater than σ̄R. The third assumption formalizes inefficient risk taking

by making the expected return on a loan portfolio decrease in risk.

3.3 Production Firms

Competitive firms are owned by households and produce goods using capital and labor

as inputs. There are two classes of firms, safe and risky, each having measure one. Firms

borrow from banks to purchase capital. Next period they collect income from production

activity and the sale of undepreciated capital. They distribute the resulting payoff to workers

and the banks that they serve. Banks perfectly observe firms’ output and realizations of the

idiosyncratic shock, so they can enforce the full payment of firms’ payoffs.

The production function of safe firms is

Y s
j,t = AtK

α
j,tH

1−α
j,t , (12)

where At is the aggregate technology shock.

The production function of risky firms is

Y r
j,t = AtK

α
j,tH

1−α
j,t + εj,tKj,t, (13)

where εj,t is the idiosyncratic shock specific to firm j. It corresponds to the idiosyncratic

shock that was introduced in Section 3.2.

Let πj,t+1 denote the revenue of firm j in period t+ 1 net of expenses.

πj,t+1 = Yj,t+1 + (1− δ)QtKj,t+1 −Wt+1Hj,t+1 −Rl
j,t+1lj,t. (14)

The term Yj,t+1 is output in period t+ 1, Qt is the price of capital in terms of the final good,

δ is the depreciation rate, Hj,t+1 is the labor input in production, Wt+1 is compensation for

labor, and Rl
j,t+1 is the borrowing rate. Firms maximize expected profits, knowing that they

will be able to choose the optimal quantity of labor Hj,t+1 next period:

max
lt+i,Kj,t+i+1

Et

{
∞∑
i=0

Λt,t+i max
Hj,t+i+1

πj,t+i+1

}
, (15)

subject to

Qt+iKj,t+i+1 = lj,t+i. (16)

Appendix F derives the first-order conditions and shows that individual firms can be aggregated
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into representative firms with the same capital-to-labor ratio. It finds that

Rl
t ≡ Rl

j,t =
αAt

Qt−1

(
Kt

Ht

)α−1

+ (1− δ)
Qt

Qt−1

, (17)

Rrl
j,t = Rl

t +
εj,t
Qt−1

. (18)

Equation (17) defines the returns on safe loans composing the rental rate on capital and

capital gains from re-selling undepreciated capital. Equation (18) expresses the returns

on risky loans as the sum of the returns on safe loans and the extra return/loss from the

realization of the idiosyncratic shock normalized by the price of capital.

3.4 Capital Producing Firms

At the beginning of period t, after realization of the shocks, competitive capital producing

firms buy capital from production firms, repair depreciated capital and build new capital.

They sell both the new and re-furbished capital at the end of period t. The cost of replacing

worn out capital is unity. There is a common market for capital for safe and risky firms. The

value of a unit of new capital is Qt.

Let Igt denote aggregate gross investment expenditures. There are quadratic adjustment

costs measured in units of investment. Aggregate investment expenditures of size Igt yield

net investment of size Int such that

Int =

[
1− ϕ

2

(
Igt
Igt−1

− 1

)2
]
Igt , (19)

where ϕ is a parameter that governs adjustment costs. The functional form is based on

Christiano et al. (2005). The aggregate capital stock evolves according to:

Kt+1 = Int + (1− δ)Kt, (20)

where Kt+1 is the total capital allocated to the representative firms.

Capital producing firms solve:

max
Igt+i

Et

∞∑
i=0

Λt,t+i

[
Qt+i

[
1− ϕ

2

(
Igt+i

Igt+i−1

− 1

)2
]
Igt+i − Igt+i

]
, (21)

where Qt is given and Λt,t+i = βi λct+i

λct
is the stochastic discount factor of households.
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3.5 The Government

Deposit insurance requires the government to raise taxes. Given the Ricardian nature

of the model, positing the availability of lump sum taxes Tt implies that the government

budget can be balanced period by period without loss of generality. Appendix G shows the

equilibrium tax necessary to support the insurance scheme.

4 Analytical Results

In this section, I derive some analytical results that will be used to solve the model

numerically. I apply the results from the Appendix to characterize the problem of each type

of bank and the model’s equilibrium. I also discuss the mechanism that generates socially

inefficient risk taking which can be curbed by capital requirements.

4.1 Shadow Banks: Characterization

Appendix D finds that the objective function is increasing in σS
t , so each shadow banker

opts for financing the maximum share of risky projects. It also establishes that there is a

representative shadow banker.

The value of the representative shadow bank can be separated into a component that

depends on loans, υt, and a component that depends on net worth, ηt, shown in the Appendix:

V S
t = υtl

S
t + ηte

S
t . (22)

The financial friction endogenously restricts lending by the amount of equity. Even though

shadow banks do not choose equity on their own, they still have incentives to accumulate

equity in order to limit the effect of the financial friction. These incentives are shared with

the equity fund that represents their interests perfectly. In fact, the equity fund redistributes

existing equity and receives additional equity that is optimally supplied by the household.

To make the financial friction relevant, consider 0 < υt < λ where the bank equates the

benefit from diverting funds with its cost and thus the incentive constraint binds. Then

lSt =
ηt

λ− υt
eSt = ϕS

t e
S
t , (23)

where ϕS
t =

lSt
eSt

is the leverage of the banker.
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4.2 Regulated Banks: Characterization

Appendix E.1 derives the first-order conditions of regulated banks on their choices of

loans, deposits and equity. Appendix E.3 proves that

Proposition 1. In equilibrium, capital requirements always bind, i.e. eRj,t = γtl
R
j,t.

This proposition formalizes the argument that additional benefit from holding deposits

makes debt a cheaper source of bank funding than equity. So regulated banks will issue as

much deposits as is allowed by the capital regulation.

4.3 Equilibrium Characterization

I consider a competitive equilibrium in which agents take aggregate prices as given.

Appendix E.2 proves that

Proposition 2. A regulated bank j optimally considers only two values for its choice of risk,

i.e. σR
j,t = σR or σR

j,t = σ̄R in equilibrium.

Note that this proposition does not state that each bank chooses the same amount of risk.

It is possible that some positive fraction of regulated banks finance the maximum share of

risky projects, while the remaining fraction of regulated banks choose the minimum share of

risky projects in equilibrium.

Formally, let µt be a share of regulated banks that finance the fraction σ̄ of risky projects.

Following the notation from the households’ section, µt also corresponds to the share of

household’s equity invested into risky banks out of the total equity allocated to regulated

banks, i.e.

µt =
ER

r,t

ER
r,t + ER

s,t

. (24)

Three types of equilibria are possible:

1. Safe equilibrium: µt = 0.

2. Risky equilibrium: µt = 1.

3. Mixed equilibrium: 0 < µt < 1.

If short-selling were allowed, and regulated banks were in the safe equilibrium, risky loans

would be overpriced over safe loans because expected returns on risky loans are lower in the

safe equilibrium. Hence, each bank would want to short sell risky loans (which means that

it would acquire a negative amount of risky loans), leading to an arbitrage opportunity. A
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similar reasoning applies to the risky equilibrium, in which shorting safe loans would result

in arbitrage profits. Thus, the condition that loans cannot be negative is needed to exclude

any arbitrage opportunities. In the mixed equilibrium, the expected dividends of risky and

safe banks are equal, so a positive measure of regulated banks (call them risky banks) choose

to finance the maximum share, σ̄R, of risky projects and a positive measure of regulated

bankers (call them safe banks) opt for financing the minimum share, σR, of risky projects.

Since each bank within a group (safe or risky) is alike and receives an aliquot share of

financing, the bank-specific terms and aggregate terms are related as follows:

ER
r,t =

µtˆ

0

eRj,tdj, (25)

ER
s,t =

1ˆ

µt

eRj,tdj. (26)

Appendix E.4 establishes that the value function of regulated banks is linear in loans. It

implies that there is a representative regulated bank of type i = s, r that finances the fraction

σR of risky projects when i = s and finances the share σ̄R of risky projects when i = r.

4.4 Discussion of the Excessive Risk-Taking Mechanism

There are two forces that trigger an excessive risk-taking episode. The first one comes

from the direct effects of shocks on a loan portfolio of regulated banks. The second force is a

result of the interactions of regulated and shadow banks. I will discuss each of them in turn.

The Appendix decomposes the expected dividends of regulated banks into two components:

Ω
(
µt, σ

R
t ; l

R
t

)
= Et

{
Λt,t+1l

R
t [ω1 + ω2 − (1− γt)]

}
, (27)

where I omit the index of regulated bank and

ω1 =
(
Rl

t+1 −RdR
t (1− γt)− ξRσ

R
t

) (
1−G(ε∗t+1)

)
, (28)

ω2 = σR
t

τR√
2π

e
−
(

ε∗t+1+ξR

τR
√
2

)2

. (29)

The cutoff point ε∗t+1 below which the bank’s net worth is negative is defined byRdR
t (1− γt)Qt−

Rl
t+1Qt = σR

t ε
∗
t+1.

The first component, ω1, is the expected net income on loans: the bank receives Rl
t+1 −

RdR
t (1− γt)− ξRσ

R
t if it does not use the deposit insurance which happens with probability
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1−G(ε∗t+1); it gets zero otherwise. The term ξRσ
R
t is the average reduction of the returns

for financing risky firms. The second component, ω2, accounts for the benefits from limited

liability. It captures the additional effect of volatility on the risky returns. The bank views

projects as a call option, and thus ω2 is increasing in τR.

Risk-taking incentives depend on the net returns on loans. When they decrease, regulated

banks find it more attractive to use limited liability that shields them from downside risk. So

banks are tempted to take a flier on risky loans.

How do shadow banks affect the risk-taking incentives of regulated banks? Shadow banks

are more leveraged, and thus their net worth is more negatively affected than the net worth

of regulated banks after a negative shock on the returns on loans. Therefore, with constant

prices, the equity of regulated banks becomes relatively more attractive, inducing households

to invest in regulated banks. With binding capital requirements, regulated banks start issuing

more debt. In general equilibrium, this leads to higher deposit rates, which increase the

relative costs of regulated banks, pushing down their net worth. Lower net worth amplifies

excessive risk-taking incentives beyond those which do not consider the interactions with

shadow banks. I quantify the relevance of this channel in the numerical part.

Capital requirements affect risk taking through a change in ε∗t+1. When γt increases, ε
∗
t+1

falls. The value of limited liability decreases, forcing banks to keep more “skin in the game”.

5 Calibration, Estimation, and Numerical Methods

I map the structural parameters to quarterly US data from 1990 Q1 to 2022 Q1 using a

combination of calibration and estimation. Table 2 shows the parameter values.

I divide the calibrated parameters into two groups. The first group comprises the

parameters that are unrelated to the macro data that the model aims to explain. I assign

standard values to them. The parameters in the second group are set to match the first

moments of the data with the first moments of selected variables in the steady state of the

model.

I use a SMM (simulated method of moments) procedure to pin down the values of the

parameters that are sensitive to the second moments. I simulate the economy for 2,000 periods

and match empirical moments from HP-filtered data with analogous simulated moments from

the model (also HP-filtered). I impose the Ramsey policy for capital requirements in the

model.20 I consider the optimal weighting matrix that minimizes the asymptotic variance of

20This assumption is practical for speeding up the SMM procedure. An alternative is to run it through
the model with occasionally binding constraints and a constant capital requirement. However, under that
approach the algorithm would have to simulate the non-linear model with excessive risk shifting for each
proposed combination of values of the estimated parameters, considerably decreasing the computation speed.
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the estimates.

5.1 Calibrated Parameters

I choose conventional values for the discount factor β, the capital share α, the inter-

temporal elasticity of substitution for consumption σc, and the depreciation rate δ. The

remaining parameters are specific to my framework.

Table 2: Parameters

Value Description

Conventional

β 0.99 Discount rate

α 0.3 Capital share in production

σc 1.1 Elasticity of substitution for consumption

δ 0.025 Depreciation rate

Calibrated (first-order moments matching with steady-state conditions) Target

τR 3.4052 Standard deviation of R-bank idiosyncratic shock (%) Debt
EBITDA = 7

ξR 0.01 Minus mean of idiosyncratic shock for R-banks (%) Cap. requirement= 8%

σ0 0.39 Relative weight on liquidity in the utility function Real prime rate 2.43% (ann.)

fR 0.657 Linear Costs of Regulated Banking (%) Rl −RdR = 3% (ann.)

fS 0.3081 Linear Costs of Shadow Banking (%) RdS −RdR = 0.15% (ann.)

τS 1.8853 Standard deviation of S-bank idiosyncratic shock (%) Corp. bond default= 1.44% (ann.)

α1 0.5646 Weight on S-bank deposits in the liquidity function Share of SB assets= 45%

θ 0.9 S-banker’s survival probability 10% dividend payout of SB

λ 0.2295 Fraction of capital that can be diverted by S-banks Shadow bank leverage= 25

σR 0.01 Minimum risk that R-banks can take numerical solution method

σ̄R 0.99 Maximum risk that R-banks can take numerical solution method

σS 0.01 Minimum risk that S-banks can take numerical solution method

σ̄S 0.99 Maximum risk that S-banks can take numerical solution method

Estimated (SMM procedure)

σd -2.1975 Substitution elasticity b/w R- and S-bank liquidity, 1
1−σd

ζ 1.3374 Interest rate elasticity of supply of total liquidity, 1
ζ

ϕ 6.1126 Investment adjustment costs

εA 0.9887 Standard deviation of TFP shock (%)

ει 0.8872 Standard deviation of capital quality shock (%)

ρA 0.98 Persistence of TFP shock (%)

ρι 0.4865 Persistence of capital quality shock (%)

Note: See Section 5 for the strategy of mapping the model to the data.

The model is constructed to trace the effects of shocks on optimal capital requirements,

and it is not suitable for computing the optimal steady-state value. Basel III stipulates

that regulated banks maintain at least 7% of Tier 1 equity relative to risk-weighted assets

To test the significance of my assumption, I calculate the model moments in the model with risk shifting
using the estimated parameter values computed for the Ramsey policy. I find that the model moments are
close to each other across the alternative procedures. This result supports my assumption.
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starting from 2019.21 Regulated banks usually hold a buffer over this threshold. I calculate

the sample period average of the ratio of Tier 1 equity to total assets from the table of

assets and liabilities of FDIC-insured commercial banks and savings institutions. It results

in the value of 8% over the sample period. I set the steady-state capital requirement at

the minimum level to support the safe equilibrium and match it with 8%. This procedure

finds the pseudo-optimal static capital requirement such that a small decrease in capital

requirements makes banks finance socially sub-optimal projects, while a small increase results

in liquidity losses without changing the risk-taking profile.

Two parameters, τR and ξR, which enter the idiosyncratic process of the risky technology,

support a wide range of steady-state capital requirements. I associate the standard deviation

of the idiosyncratic shock τR with leveraged lending.22 It is related to financing corporations

with high leverage – defined as those with a debt-to-EBITDA ratio greater than 6. To

motivate this number, I refer to guidance on the threshold of total debt to EBITDA that the

U.S. regulators use for high risk lending to raise supervisory concerns.23 Conditional on τR, I

choose ξR, which is interpreted as the average loss from financing risky projects, to hit a 8%

level of the capital requirement in the steady state.

To match the data on interest rate spreads, I introduce costs of banking. These costs

include operating expenses which can be associated with the provision of loans. In particular,

each period the bank of type i = R, S pays F i
t = f ilit from its current profits.24 The Appendix

provides the details of the effects of these banking costs on the expressions of portfolio returns.

The data counterparts for the regulated bank deposit rate and the shadow bank money

market borrowing rate are the national rate on non-jumbo deposits and the 3-month financial

regulated paper interest rate, respectively. I calibrate σ0 to hit the real bank prime rate

which I use as a measure of the return on safe loans.

I set τS to match the default rate on corporate bonds that I borrow from Begenau and

Landvoigt (2021). I map the utility weight on shadow bank deposits, α1, to target the share

of shadow bank assets. I use the estimates of the size of the U.S. shadow banking sector

from the Financial Stability Board and divide it by the total bank assets from the Board of

Governors of the Federal Reserve System. I set θ = 0.9 that implies a shadow bank dividend

payout of 10% that is considered in Ferrante (2018). I calibrate λ, the fraction of capital that

can be diverted by shadow banks, to hit the shadow bank leverage of 25 which is in line with

the leveraged ratios of broker-dealers reported in the literature. The ratio of the leverage of

21The ratio was 6% before 2019.
22Appendix I describes in detail the choice of τR.
23See Financial Stability Report (2019).
24Introduction of the cost of banking improves the model’s fit in the steady state. But it does not affect

the main mechanism that I explore in the model.
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the two types of banks corresponds to the empirical estimates that the leverage of the shadow

banking system is about three times as large as the one of depository institutions obtained

from the Flow of Funds by Ferrante (2018).25 Finally, I consider the share of risky projects

within a broad range of [0.01, 0.99] for both types of banks. This choice makes the minimum

scale assumption technical, and thus it does not contaminate the model’s main mechanisms.

5.2 Estimated Parameters

I estimate the remaining parameters, namely, the elasticity of substitution between

regulated and shadow bank liabilities, σd, the interest rate elasticity of supply of total

liquidity, ζ, the investment adjustment cost, ϕ, and the parameters governing AR(1) processes

of technology and capital quality shocks that drive the economy in my model. The target

moments are second moments (variances, correlations, and auto-correlations) of HP-filtered

natural logarithms of real output, investment price, real RB liabilities, and real SB liabilities

multiplied by 100.

The curvature parameters σd and ζ in the utility function determine how much RB and

SB liabilities can vary in the model. For this reason, I target the second moments of the

two types of liabilities in the data. The investment adjustment cost parameter governs

the dynamics of investment price. The parameters capturing the shock processes restrict

the behavior of real GDP and investment price. Their values are governed by the second

moments of these variables together with the correlations with other variables selected for

the moment-matching exercise.

Table 3 shows that the model moments are close to the data moments. Importantly,

the variances of real RB and SB liabilities are matched very well. The signs of correlation

coefficients of RB and SB liabilities with output are in line with the stylized facts outlined in

Section 2. At the same time, the model overestimates the correlation of SB liabilities with

GDP.26 The model also over-predicts the variance of investment price. The model does a

good job at matching auto-correlations.

5.2.1 Discussion of Calibrated Parameters

The value of the investment adjustment cost, ϕ, is important for the volatility of investment

price that is overestimated by my model relative to the data. Smaller values of ϕ would make

25This choice contrasts with Jiang et al. (2020) who find that shadow banks are less leveraged than regulated
banks in the mortgage origination business using call report data. I focus on excessive risk and have in mind
opaque practices which are usually associated with non-regulated participants. The market of leveraged loans
is a case in point.

26I find that if we truncate our sample period to 2019 Q4 (to the period before the Covid shock), then the
empirical correlation coefficient goes up to 0.5, making it closer to the corresponding theoretical moment.
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Table 3: Matching Moments

Data Model

Var(GDP) 1.89 1.95
Corr(GDP, Investment Price) 0.11 0.74
Corr(GDP, RB Liabilities) -0.14 -0.09
Corr(GDP, SB Liabilities) 0.26 0.84
Var(Investment Price) 0.66 1.62
Corr(Investment Price, RB Liabilities) 0.31 -0.36
Corr(Investment Price, SB Liabilities) 0.40 0.79
Var(RB Liabilities) 3.16 3.28
Corr(RB Liabilities, SB Liabilities) 0.41 -0.07
Var(SB Liabilities) 19.19 19.19
Autocorr(GDP) 0.63 0.74
Autocorr(Investment Price) 0.72 0.57
Autocorr(RB Liabilities) 0.76 0.59
Autocorr(SB Liabilities) 0.91 0.69

Loss 2.0181

Note: This table reports the variance, correlation, and auto-correlation of variables in the model
and in the data. All these variables are used in the SMM estimation. The data and model-
simulated time series are logged, then HP filtered, and multiplied by 100. Let M denote moments
and W denote the optimal weighting matrix that minimizes the variance of the estimates. Then
Loss = (Mmodel(θ)−Mdata)

′W (Mmodel(θ)−Mdata), where θ is a vector of estimated parameters.

the model moments associated with investment price closer to their empirical counterparts

keeping the values of all other estimated parameters unchanged.27 However, smaller values of

ϕ would significantly affect the volatility of RB and SB liabilities as well as their correlations

with real GDP, making them inconsistent with the stylized facts described in Section 2. Since

I construct my model to explain the behavior of regulated and shadow banks, I find it more

expedient to focus on the performance of the model moments associated with the banking

side of the economy. The estimated value of ϕ delivers reasonable results on this domain.

Table 4 reports the performance of the model regarding some other key variables that

I do not target in the SMM estimation. The idea is to evaluate how my model can speak

about other important features of the data that are not explicitly taken into account when

estimating the parameters of the model.

Without being moment-matching targets, the model captures the correlation of investment

with other considered variables well. Investment is chosen on the grounds of being related to

investment price. While the model overestimates the negative correlation between the size

27These model moments include volatility of investment price and cross-correlations of investment price
with other variables selected in the moment-matching exercise.
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of RB relative to SB liabilities and real GDP and underestimates the positive correlation

between the size of RB relative to SB liabilities and the credit spread, it captures the signs

of both correlations correctly. These results indicate that the model’s mechanisms implied

by the calibrated values do not contradict the second and third stylized facts presented in

Section 2.

Table 4: Untargeted Correlations

Data Model

Corr(Investment, GDP) 0.83 0.69
Corr(Investment, Investment Price) 0.13 0.23
Corr(Investment, RB Liabilities) 0.05 0.01
Corr(Investment, SB Liabilities) 0.26 0.19
Autocorr(Investment) 0.82 0.93
Corr(Difference b/w RB and SB Liabilities, GDP) -0.35 -0.79
Corr(Difference b/w RB and SB Liabilities, Credit Spread)∗ 0.3 0.09

Note: This table reports the correlation and auto-correlation of variables in the model and in the
data. The data and model-simulated time series are logged, then HP filtered and multiplied by 100.
∗Real RB and SB liabilities are measured by year-ahead deviations from their corresponding HP
trends to be consistent with the procedure used in Section 2. The credit spread in the model is
calculated by Et(R

l
t+1)−RdR.

5.3 Numerical Methods

In Section 6.1, I solve the model using local perturbation methods. Sections 6.2 and 7

require nonlinear methods to account for the endogenous transition between the regimes

of different risk-taking depending on the state vector. I solve the model by applying the

OccBin toolkit developed in Guerrieri and Iacoviello (2015). OccBin modifies a first-order

perturbation method and employs a guess-and-verify approach to obtain a piecewise linear

solution under perfect foresight.28 The algorithm has advantages over nonlinear projection

methods because it is computationally fast and applies to nonlinear models with a large

number of state variables. Appendix J.2 describes the adaptation of my framework to Occbin.

6 Numerical Results

In this section, I conduct a quantitative analysis to estimate the impact of shadow banks on

the design of optimal policies. Section 6.1 shows that the interactions of regulated and shadow

28The reader should also be aware that OccBin solution does not capture precautionary behavior linked to
the possibility of moving away from the reference regime in the future.
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banks can change the magnitude and direction of optimal responses of capital requirements

to standard business-cycle shocks. Section 6.2 evaluates how tighter capital regulation affects

the economy that starts at suboptimally low capital requirements. A better designed policy

that calls for relatively higher capital requirements can lead to the migration of credit from

shadow banks to regulated banks.

6.1 Impact of Shadow Banks on Optimal Dynamic Policies

I quantify the relevance of the interaction of regulated and shadow banks by comparing

the optimal response of capital requirements to shocks in two models: the baseline model

with shadow banks and the model with regulated banks only. I propose a framework with

regulated banks only which follows the presentation of the model economy but excludes

shadow banks. In this regard, the regulated banking sector intermediates all the assets, and

the weight on regulated bank liquidity α1 is one. Thus, the liquidity preferences transform

into

Ψ2

(
DR

t

)
=

((
DR

t

)σd
) 1−ζ

σd

1− ζ
=

(
DR

t

)1−ζ

1− ζ
(30)

in the model with regulated banks only. All other structural parameters are unchanged. The

steady-state capital requirements and the interest rates are not affected. The only difference

is the absence of the reintermediation channel.

To compute optimal capital requirements, I consider the Ramsey problem in which the

planner chooses the path of capital requirements to maximize the conditional expectation

of the household’s utility as of time zero subject to the restrictions of the decentralized

equilibrium. Appendix J.1 shows that the solution to this program is to set the optimal

capital requirement at the lowest level that prevents excessive risk taking in every period

following each shock. In the language of the model, it is the minimum capital requirement

that supports the safe equilibrium. Intuitively, any capital requirement above this level would

result in liquidity losses, while any level below this level would be suboptimal due to financing

socially inefficient risky projects.

Figure 4 summarizes the results on the response of optimal capital requirements to

business-cycle shocks. It plots the peak in the increase or trough in the decrease of optimal

capital requirements for a given initial change in either technology or capital quality. It

compares the responses to these shocks for the full model with shadow banks (the solid

line) to a restricted model with only regulated banks (the dashed line). The values on the

horizontal axis denote the corresponding change in output. For TFP shocks, the two lines

slope downwards but the slope of the solid line is larger, meaning that the optimal capital
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requirement reacts more aggressively once shadow banks are taken into account. For capital

quality shocks, the two lines have different slopes, meaning that capital quality shocks call

for a different direction of a change in the optimal capital requirement once shadow banks

are considered. The next two subsections illustrate the mechanisms of the optimal response

of capital requirements to each of these two shocks.
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(b) Capital Quality Shock

Figure 4. Accounting for Shadow Banks Affects (a) the Magnitude and (b) the
Direction of the Optimal Reaction of Capital Requirements.

Note: This figure plots the maximum responses (in absolute value) of optimal capital requirements
to (a) a TFP shock and (b) an unexpected improvement in the productivity of installed capital – a
capital quality shock à la Gertler and Karadi (2011) – for two models. The solid line shows the
responses of the baseline model that takes into account the interactions between regulated banks
and shadow banks. The dashed line represents what would happen in the model without such
interactions (regulated banks only). The vector of shock sizes is the same for each of the two models.
The values on the abscissae denote the corresponding change in output.

6.1.1 TFP Shock: Magnification of the Response of Capital Requirements

Figure 5 shows the effects of a contractionary TFP shock. The shock decreases At by one

standard deviation and follows an AR(1) process with the estimated persistence parameter.

The solid lines represent the responses of the economy to the shock under the optimal capital

requirements set in the baseline model that includes both regulated and shadow banks. The
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Figure 5. A Contractionary TFP Shock: The Optimal Capital Requirement
Responds More Aggressively Once Shadow Banks are Taken Into Account.

Note: This figure plots the responses of the model’s variables (in deviation from the steady state) to
a one s.d. fall in At under optimal capital requirement (set at the minimum level to prevent excessive
risk taking in every period following the shock) for two models. The shock follows the estimated
AR(1) process. The solid line shows the responses of the baseline model with shadow banks. The
dashed line represents what would happen in the model without shadow banks (regulated banks
only). SB and RB stand for shadow and regulated banks, respectively. SS means steady state.
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dashed lines show the responses of the economy to the same shock under the optimal capital

requirements set in the model that includes regulated banks only.

Panel 1 in Figure 5 illustrates that optimal capital requirements react more strongly to

the TFP shock once shadow banks are taken into account. The same panel shows that the

optimal capital requirement is, on impact, around 0.02 percentage point greater than it is

under the optimal policy that disregards shadow banks. This difference amounts to about 30

percent of the total increase in optimal capital requirements.

What are the mechanisms? The TFP shock reduces the returns on loan portfolios of banks.

This fall decreases the net worth and launches the familiar financial accelerator mechanism

described by conventional models of financial frictions: a drop in the net worth of banks

increases agency costs, forcing banks to sell their assets, thus depressing asset prices and

further worsening their balance sheet conditions.

There is one element that stands out. Unless there are shadow banks, regulated banks

decrease their demand for loans as capital becomes less productive, so their loans fall (the

dashed line in Panel 3). By contrast, the loans migrate from shadow banks (the solid line in

Panel 3) into regulated banks (the solid line in Panel 2) in the model with shadow banks.

In fact, the returns on regulated bank equity are relatively less negatively affected than the

corresponding returns of more leveraged shadow banks. This feature makes the equity of

regulated banks relatively more attractive for households. Consequently, with binding capital

requirements, regulated banks start demanding more loans and deposits. Since the two

types of deposits are imperfect substitutes, households require a higher deposit rate (Panel

8) to substitute regulated bank deposits for shadow bank deposits. This reintermediation

further decreases the loan returns of regulated banks (Panel 7), making risk more attractive.

Although the higher capital requirement pushes down profitability of regulated bank equity,

it eliminates socially inefficient risk and thus makes the business-cycle variables, such as

output (Panel 4), consumption (Panel 5), and total capital (Panel 6) less affected by the

negative shock.

The takeaway is that shadow banks magnify the impact of shocks, such as TFP shocks that

have been found to be important drivers of business cycles, on optimal capital requirements.29

6.1.2 Capital Quality Shock: A Change in the Direction of Capital

Requirements

Here I consider an alternative business cycle shock which is commonly used in the literature

on financial frictions. Let ιt denote the quality of capital. At the beginning of each period,

one unit of capital transforms into ιt units of effective capital used in production. Appendix

29See Gaĺı (1999) for the empirical evidence on the effects of technology shocks.
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K specifies the details on the inclusion of the capital quality shock into the problems of banks

and firms. The quality of capital now provides additional variation in the returns on safe and

risky loans, affecting the risk-taking incentives of banks.

I hit the economy with a positive capital quality shock that follows the estimated AR(1)

process. I fix the size of the shock so that it leads to the same percentage change (in absolute

value) of output, on impact, as for the TFP shock. The results are reported in Figure 6. As

before, in each panel, the solid line represents the responses of the baseline model, while the

dashed line shows what the optimal capital requirements would be in the absence of shadow

banks.

Panel 1 shows that the optimal capital requirement falls in the model with shadow banks,

while it rises in the model with regulated banks only. The positive capital quality shock

pushes up the returns on safe loans. It makes households richer, so the wealth effect expands

consumption. The substitution effect makes investment more attractive by taking advantage

of the positive shock before it dissipates. The balance between these two effects determines

the direction of the response of capital requirements.

Panel 7 illustrates that the safe returns increase by more in the model with shadow banks.

In fact, the higher leverage ratio of shadow banks magnifies the effects of the positive shock on

their equity returns, making shadow bank equity more attractive in expectation.30 This force

allows shadow banks to attract additional funds from households and finance more investment

by issuing more loans (Panel 2) which are also partially coming from loans of regulated banks

(Panel 3). The substitution effect gets a boost. In the presence of adjustment costs, the

higher demand for investment pushes up the price of installed capital (Panel 9), increasing

capital gains. This force becomes so strong as it increases the returns on safe projects for

regulated banks, and thus safe projects become more attractive. Capital requirements fall.

This reallocation of equity increases the intermediation of loans by shadow banks (Panel

2) also coming from regulated banks (the solid line in Panel 3). Shadow banks are able

to attract more funds from households, increasing the relevance of the substitution effect.

Thus, the demand for investment increases in the model with shadow banks, so the price of

capital rises more (Panel 9), making capital gains larger. Higher loan returns lead to a fall in

risk-taking incentives and thus provide some leeway for the economy to benefit from greater

liquidity if the capital requirement falls depicted by the solid line in Panel 1. As the shock

dissipates and the capital stock remains elevated, the marginal product of capital decreases,

and thus safe projects become less attractive.

30The described dividend payout policy of shadow banks, which is inherited from their constant exit rate,
weakens the initial effect of the positive shock on shadow bank equity. Moreover, it will be shown that the
capital requirement falls, so the equity of regulated banks becomes attractive, ensuring some initial inflow
into regulated bank equity, on impact.
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Figure 6. An Expansionary Capital Quality Shock: The Optimal Capital Require-
ment Changes its Direction Once Shadow Banks are Taken Into Account.

Note: This figure plots the responses of the model’s variables (in deviation from the steady state)
to a rise in the capital quality, ιt, under optimal capital requirement (set at the minimum level to
prevent excessive risk taking in every period following the shock) for two models. The shock follows
the estimated AR(1) process. The shock is sized to lead to the same percentage change of output,
on impact, as in the case of the TFP shock. The solid line shows the responses of the baseline model
with shadow banks. The dashed line represents what would happen in the model without shadow
banks (regulated banks only). SB and RB stand for shadow and regulated banks, respectively. SS
means steady state.
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By contrast, the expansionary capital quality shock increases the risk-taking incentives

of regulated banks in the model without shadow banks. In fact, the investment adjustment

costs curb the substitution effect, making the wealth effect relatively stronger. Investment

falls (Panel 6) and total output (Panel 4) increases by less in the model that disregards

shadow banks. Consumption expands by more (Panel 5) because of smaller investment.

There is a boost to the profits that comes from the increase in the capital quality but since

investment goes down, the price of installed capital is decreasing. Thus, smaller capital gains

make the safe returns relatively lower, supporting the result that the substitution effect is

weaker. The shock increases the capital stock. As the shock dissipates and the capital stock

remains elevated, the marginal product of capital falls, and thus safe projects become less

attractive, justifying higher capital requirements in the environment where, in fact, lower

capital requirements are needed.

6.2 Effects of Higher Capital Requirements: Tighter Regulation

Can Lead to Greater Intermediation of Credit by RB

To evaluate the post-crisis measures on strengthening the balance sheets of regulated

banks, I compare the impact of tighter regulation on the economy depending on the magnitude

of a rise in capital requirements. I use exactly the same values of all structural parameters

as in Section 5. I consider an increase in capital requirements starting from a suboptimally

low level of 6% in the non-stochastic steady state. This level leads to excessive risk taking

that is associated with inefficient lending.31 Then I measure the effects of two policies that

persistently increase the capital requirement but differ in the magnitude of its change.

Figure 7 plots the results of this experiment. The solid lines show the dynamic responses

of the economy under the policy that achieves the optimal level of the capital requirement

that is just enough to overturn the financing of socially inefficient projects.32 The dashed

lines represent the dynamic responses of the economy in which there is an insufficient increase

(by 1%) in the capital requirement. There are several observations.

First, the benefits from higher capital requirements depend on the magnitude of the

change. Panel 2 in Figure 7 shows that the insufficient increase in the capital requirement

does not move the economy away from financing socially inefficient risky projects compared

to its optimal increase. This fact leads to the differences in the responses of consumption,

31Increasing capital requirements from the optimal level would have a different result but it would be
mixing up the fact that this would be a suboptimal increase. I am interested in characterizing an optimal
increase.

32Pushing capital requirements above this optimal level does not affect risk taking but it reduces households’
welfare by making banks less reliant on deposits, which are valued by households for their liquidity.
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Figure 7. An Increase in the Capital Requirement Starting From a Suboptimally
Low Level: The Better Policy Leads to Greater Reintermediation of Credit by
Regulated Banks.

Note: This figure plots the responses of the model’s variables (in deviation from the steady state)
to an increase in the capital requirement starting from the suboptimally low steady-state level of
the capital requirement at 6% (risky equilibrium). The solid line shows the dynamic responses of
the economy that achieves the optimal level of the capital requirement. The dashed line represents
the dynamic responses of the economy in which there is an insufficient increase in the capital
requirement. The shocks follow the same AR(1) process with an autoregressive coefficient of 0.9999.
SB and RB stand for shadow and regulated banks, respectively. SS means steady state.
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output, total capital and loans.

Second, higher capital requirements make regulated bank deposits scarce. Liquidity

becomes relatively more expensive, so households prefer to substitute away from liquidity

services to consumption. Therefore, in contrast to the mechanism described so far that pushes

up the deposit rates, here migration of credit does not result in higher borrowing costs of

regulated banks. Panel 9 shows that the deposit rate falls. Moreover, since intermediation

becomes more costly, banks lend less, so both capital and investment drop. The fall in capital

stock raises the marginal product of capital. This force also makes the safe projects more

attractive.

Third, although tighter capital requirements make regulated banks less profitable, this

fact does not necessarily cause contraction of credit of regulated banks and expansion of loans

of shadow banks. Panels 7 and 8 show that the optimal increase in the capital requirement

leads to migration of credit from shadow banks to regulated banks, while the suboptimal

increase in the capital requirement has the opposite effect on it. In fact, the deposit rate of

regulated banks falls more for the optimal rise in the capital requirement, which is higher,

because deposits are relatively more scarce (the convenience yield is higher). A lower deposit

rate decreases the costs of providing loans by regulated banks. This mechanism increases

lending of regulated banks.33 In contrast, the suboptimal increase in the capital requirements

is not enough for fully activating this mechanism, so it makes regulated banks relatively less

profitable and thus causes expansion in shadow banking.

Finally, the suboptimal increase in capital requirements can do more harm rather than

good. In fact, total capital is decreasing (the dashed line in Panel 6), and output is falling

(the dashed line in Panel 4). Panel 5 illustrates that consumption is hump-shaped: initially,

it is increasing but then starts falling. In contrast, the optimal rise in capital requirements

enables the economy to benefit from the more efficient technology. Consumption increases by

more (the solid line in Panel 5) and output goes up (the solid line in Panel 4), leading to

higher welfare (Panel 3).

The takeaway is that higher capital requirements can lead to the migration of credit from

shadow banks to regulated banks as a result of a better designed capital regulation policy.

33Begenau (2020) also finds that higher capital requirements can decrease the cost of banking. My model
extends this result to the environment with both regulated and unregulated banks where the migration of
credit is possible across the two types of banks.
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7 Implementing the Optimal Dynamic Capital

Requirements

It seems unrealistic to expect that bank regulators can distinguish a TFP shock from a

capital quality shock in real time, and therefore formulate and enforce a change in capital

requirements tailored to the type of shock. In practice, policymakers can devise implementable

rules. I study the ability of simple rules to mimic the response of the Ramsey optimal policy.

I choose a rule in which capital requirements respond to changes in the loan-to-output

ratio, in line with the Basel III regulation. I use data generated by the simulations for 500

periods. I regress the Ramsey capital requirement on a constant and the logarithm of the

loan-to-output ratio. I consider two specifications.

Cap Reqt = b0 + bR log

(
RB Loanst

GDPt

)
+ bS log

(
SB Loanst
GDPt

)
, (31)

Cap Reqt = b′0 + b′tot log

(
Total Loanst

GDPt

)
. (32)

In the first specification (eq. (31)), I differentiate between two types of loans provided

by each of the two banking sectors. I call it the proposed rule. In the second specification

(eq. (32)) that relates to the Basel III guidance, I consider total loans (Total Loanst =

RB Loanst + SB Loanst). I dub it the Basel rule. I then compare the results against various

performance measures. One measure is an R-squared of the regression. It indicates how

closely a rule tracks the Ramsey setting.

Table 5 reports the results. The proposed rule delivers the R-squared of 0.725. The

capital requirement responds positively to the ratio of RB loans to GDP but negatively to the

ratio of SB loans to GDP. Intuitively, policymakers impose tighter capital regulation when

a) excessive risk taking is accumulating due to the fact that RBs intermediate more credit

and b) loans are migrating from SBs to RBs. The latter activates the risk-taking mechanism

coming from the interactions of the two types of banks. The reaction of the optimal capital

requirement to the ratio of RB loans to GDP is about one order of magnitude larger than its

response to the ratio of SB loans to GDP. The implication is that the capital requirement

changes more aggressively to the developments in regulated banks, i.e. the sector for which

the instrument is specifically designed.

To interpret the regression numbers, I calculate the standard deviations of the simulated

data on the loan-to-output ratios and plug them into the regression for the proposed rule. In

particular, a one standard deviation increase in the RB credit-to-GDP gap calls for a 0.1%

rise in capital requirements, while a one standard deviation increase in the SB credit-to-GDP
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Table 5: Basel-III Style Simple Rules

Proposed Rule (eq. (31)) Basel Rule (eq. (32))

(Intercept)
0.0611∗∗∗ 0.0749∗∗∗

(0.0006) (0.0007)

log
(

RB Loanst
GDPt

) 0.004∗∗∗

(0.0001)

log
(

SB Loanst
GDPt

) -0.0007∗∗∗

(0.0001)

log
(

Total Loanst
GDPt

) 0.0005∗∗∗

(0.0001)
R-squared: 0.725 0.0724
Loss of annual consumption (∆): 0.091% 0.1585%
Share of periods with

39.4% 57.9%
excessive risk taking:

Note:∗p<0.10,∗∗p<0.05,∗∗∗p<0.01 This table reports the results on the regression of the Ramsey
optimal capital requirement on the logarithm of the loan-to-output ratio for two specifications. The
data is generated by simulating the model with the Ramsey optimal capital requirement in place for
500 periods. The specification with the proposed rule differentiates between RB and SB loans. The
specification with the Basel rule aggregates loans across the two banking sectors. The welfare loss,
∆, is consumption equivalent cost of the suboptimal economies relative to the Ramsey economy
under the unconditional welfare metric.

gap leads to a 0.03% fall in capital requirements.

In contrast, the Basel rule does not work well; its R-squared is 0.0724. The capital

requirement responds positively to the ratio of total loans to GDP. But this ratio is not

informative to guide policymakers about capital requirements. It does not use information

about the composition of credit that determines excessive risk taking through the interactions

of banks. Several related papers that place no role for shadow banks in their frameworks also

find a low R-squared of the Basel rule in a similar regression analysis.34

7.1 Welfare Measure

I solve the model under each of the proposed rules using Occbin. I simulate the economy 4

times for 500 periods, and I calculate average values of different statistics on the performance

of the rules over the simulations.

I measure welfare loss under the proposed and Basel rules relative to the Ramsey optimal

policy. I consider unconditional welfare as a metric. I compute consumption-equivalent

34For example, the R-squared of the Basel rule equals 0.016 in Canzoneri et al. (2020). Davydiuk (2018)
finds a value of 0.08.
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welfare losses by sizing the permanent tax in annual consumption in the Ramsey optimal

economy, ∆, required to make the household as well off as in the economy with the proposed

policy rules. Specifically,

E

∞∑
t=0

βt

[
((1−∆)Copt,t)

1−σc − 1

1− σc

+ σ0Ψ
(
DR

opt,t, D
S
opt,t

)]
=

E
∞∑
t=0

βt

[
C1−σc

rule,t − 1

1− σc

+ σ0Ψ
(
DR

rulej ,t
, DS

rulej ,t

)]
,

(33)

where the subscript “opt” denotes the Ramsey optimal policy and the subscript “rule”

indicates one of the rules depending on j = {Proposed, Basel}. The Appendix shows the

derivation of ∆.

Table 5 shows the computed values of ∆ for each of the rules. The proposed rule is

about twice less costly in terms of the permanent consumption than the Basel rule. This

result further supports the better performance of the rule that differentiates loans across the

banking sectors.

7.2 Capital Buffers

I consider the share of periods with excessive risk taking to explore the power of the

rules to offset inefficient lending. Although the proposed rule mimics the Ramsey optimal

capital requirements rather well in the R-squared metric, it leads to excessive risk taking in

about 40% of time. The Basel rule performs worse, amounting to around 60% of periods of

inefficient lending.

A relatively high share of excessive risk-taking episodes resulted from the rule that mimics

the Ramsey policy well in the R-squared metric can be explained as follows. While the

R-squared is high, the proposed rule does not perfectly match the Ramsey policy. So it still

makes possible a situation in which the rule does not prevent excessive risk taking. The

Ramsey policy is constructed to always offset inefficient lending, so excessive risk taking

occurs off its equilibrium path. Thus, the rule that mimics the Ramsey policy under the

conditions that excessive risk taking is impossible does not necessarily work well once the

economy moves into excessive risk taking. For example, it may not react sufficiently enough

to return the economy back to the safe equilibrium. In fact, the inspection of the simulated

series confirms this possibility. There is usually a sequence of successive risk-taking episodes.

Some of these sequences can last for more than 30 consecutive periods. A larger increase in

the capital requirement could immediately prevent excessive risk taking but this information

is not available to the rule. Another possibility is to require banks to hold extra capital in
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the form of buffers.

This analysis motivates the study of combining simple rules and static capital buffers. A

buffer is extra capital that increases static capital requirements. I consider different values for

the buffer, while keeping all structural parameters unchanged. In this regard, capital buffers

provide some cushion against potential losses from shocks that could move the economy into

excessive risk taking. However, they are costly in the steady state because they are imposed

above the optimal level of the steady-state capital requirement.

Figure 8 shows how jointly combining the capital buffer with each of the rules affects

the consumption equivalent loss, ∆. It plots the loss over different parameter values of the

capital buffer. The red dashed and green solid lines represent the Basel and proposed rule

from the specifications in Table 5, respectively. I also compare their performance against

imposing the buffer only (the blue dotted line).

First, the blue dotted line lies above the red dashed and green solid lines. So combining

capital buffers and the rules welfare dominates imposing the buffers only. The policy

implication is that devising simple rules can be useful.

Second, the lines of Figure 8 have a convex shape. The losses are falling for relatively

small values of the buffer but then they start increasing. Intuitively, smaller values of the

buffer are not enough to prevent excessive risk taking, while larger buffers are inefficient

because they decrease liquidity services without affecting risk taking. So it is possible to find

the global minimum for each of the lines.

Third, the proposed rule performs relatively better for smaller buffers. Adding around 18

basis points to its specification minimizes the consumption equivalent loss. Intuitively, this

small buffer solves the mentioned possibility of being stuck in the excessive risk-taking regime

for many consecutive periods, and it still applies knowledge about the optimal dynamic

response due to its relatively high R-squared. However, the Basel rule that includes a capital

buffer of about 27 basis points works even better. It achieves the smallest loss.

The result of a better performance of the rule with a low R-squared may sound counter-

intuitive. It can be explained as follows. The Basel rule with a buffer works worse than

the proposed rule for smaller values of buffers because they are not enough to counteract

excessive risk taking. Larger buffers can completely shut down the inefficient lending channel

that comes from the interaction of banks. It makes the differentiation between the types of

loans relatively less useful and sometimes harmful. For example, when the loan-to-GDP ratio

falls, the buffer can become excessive relative to the risk-taking incentives that the economy

is currently facing. In fact, the efficiency calls for a decrease in the buffer. However, the

proposed rule puts significantly more weight on the developments in the RB sector, so it

misses the possibility that a fall in the loan-to-output ratio comes from a decrease in SB
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loans rather than a decrease in RB loans. In fact, the proposed rule can even increase the

buffer if there is the migration of credit from shadow banks towards regulated banks. But

it is suboptimal given the already relatively excessive value of the capital buffer. The more

general Basel rule equipped with capital buffers does not fall into trap of this possibility. It

decreases the buffer, making it closer to the Ramsey optimal level.

10 15 20 25 30 35 40 45 50

Capital Buffer, Basis Point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

n
s
u

m
p

ti
o

n
 E

q
u

iv
a

le
n

t 
L

o
s
s
, 

B
a

s
is

 P
o

in
t

The Basel Rule

The Proposed Rule

No Rule: Only Buffer

Figure 8. Welfare Losses From Capital Buffers With/Without Basel-III Style
Rules

Note: This figure plots the consumption equivalent loss, ∆, depending on the size of the imposed
capital buffer. The red dashed line depicts the performance of the Basel rule with the imposed
capital buffer on the horizontal axis. The green solid line depicts the performance of the proposed
rule with the imposed capital buffer on the horizontal axis. The blue dotted line depicts the
performance of the static buffer only. The rules follow specifications in Table 5. The welfare loss, ∆,
is consumption equivalent cost of the suboptimal economies relative to the Ramsey economy under
the unconditional welfare metric.

8 Discussion

This section discusses two additional results which are not in the primary focus of the

paper but may be still useful for understanding the role of the interactions of the two types of

banks for policy in my framework. These results, derived from the effects of sectoral shocks,
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provide further support for the significance of the reintermediation channel for optimal capital

requirements.

First, capital requirements can counter the disturbances arising purely in the shadow

banking sector, for which policymakers lament the absence of relevant policy tools. For

example, these disturbances include a rise in subprime defaults (which set the global financial

crisis in motion) or possible losses from holding the portfolios of firms with high debt-to-

EBITDA ratio in the market of syndicated loans. The Appendix considers a positive shock

to the idiosyncratic standard deviation of risky returns of shadow banks τSt . This sectoral

shock increases the quarterly default rate of shadow bank loans. I show that optimal capital

requirements rise by about 15 basis points, on impact. The reason for such an increase is the

same reintermediation of credit from shadow banks to regulated banks, making regulated

banks be affected by the shock. So capital requirements on regulated banks can be used to

react to purely sectoral shocks that occur in the shadow banking sector.

Second, not all shocks lead to the reintermediation of credit and thus have implications

for capital requirements arising from the interactions of banks. The Appendix considers a

positive shock to the idiosyncratic standard deviation of risky returns of regulated banks τRt .

The shock increases the deposit-insurance subsidy and calls for a large rise in the optimal

capital requirement by nearly 1.5 percentage points, on impact. However, it does not activate

the reintermediation channel. The shock has no first-order effect on shadow banks. Higher

capital requirements attain both objectives: they eliminate risk-taking incentives and fully

stabilize the impact of the shock on aggregate variables.

9 Conclusion

Both academics and policymakers have been calling for greater understanding of the

spillover of risk across regulated financial intermediaries and shadow banks, and the impli-

cations of such spillovers for capital regulation policies. I consider how the interaction of

regulated and shadow banks can affect the optimal path of capital requirements in a quanti-

tative environment with endogenous risk taking. To this end, I estimate a macroeconomic

model with the financial sector that includes both regulated and shadow banks. The shield

of limited liability and deposit insurance can make socially inefficient projects attractive to

banks. Higher capital requirements decrease the benefits from limited liability, counteracting

excessive risk taking at the cost of lower liquidity provision.

Three main results stress the importance of tracking both shadow bank and regulated

bank lending for the design of optimal capital requirements. First, competition of the two

types of banks for funding their loans triggers an endogenous migration of loans and debt,
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following shocks that depress the safe returns. I find that this channel calls for an additional

increase in optimal capital requirements. I provide examples of shocks for which the difference

in the optimal response of capital requirements is both in magnitude and in sign.

Second, I discuss the rising concerns of policymakers about migration of risk and loans

from regulated banks to shadow banks. I find that optimal tightening of capital requirements

can lead to migration of credit from shadow banks to regulated banks because it can decrease

costs of providing loans by regulated banks through general equilibrium effects. An insufficient

increase in capital requirements can do more harm than good, such as decrease output.

Third, I study how the optimal capital requirement can be implemented in practice. I

consider two specifications of Basel-III style rules that relate capital requirements to the

loan-to-output ratio. A rule that differentiates loans across the banking sectors outperforms

a standard Basel rule that conditions on total loans. While the simple rule that differen-

tiates between loan types can mimic the optimal Ramsey rule much better, it still fails to

avoid excessive risk-taking episodes. I show that slightly elevating the steady-state capital

requirements in conjunction with the use of these simple rules comes closer to mimicking the

performance of the Ramsey optimal rule.

However, both rules fall into risk-taking trap because they do not use the same amount of

information available to a Ramsey planner. They generally fail to sufficiently increase capital

requirements once the economy enters risk-taking episodes. I show that implementing the

considered rules jointly with slightly elevated static capital requirements leads to smaller

welfare losses compared to using static buffers only.

These results have clear implications for how regulatory framework could be improved to

account for the interactions of regulated and shadow banks. The paper focuses on the role of

unregulated shadow banks for the transmission mechanism of capital requirements, and so it

abstracts from regulation of shadow banks. An interesting avenue of future research would

be to evaluate proposals regarding the regulation of shadow banks featured in the so-called

Minneapolis plan.35 Moreover, exploring the influence of shadow banks on the jointly optimal

conduct of monetary and macroprudential policy would be a fruitful area of future research.

35See Minneapolis Plan (2017).
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I omit the index and the type of bank in the expressions when it is evident from the

context which bank I refer to.

A Expression of Net Cash Flow

Calculating the integral from the expression of net cash flows (suppressing the index i):

Et


∞̂

ε∗t+1

((
Rl

t+1 + σt
εt+1

Qt

−Rd
t+1

)
lt +Rd

t+1et

)
dG(εt+1)

 ,

where
(
Rl

t+1 + σt
ε∗t+1

Qt
−Rd

t+1

)
lt +Rd

t+1et = 0.

Break calculation of the integral into two parts.

1.
´∞
ε∗t+1

εt+1 dG(εt+1),

2.
´∞
ε∗t+1

dG(εt+1).

Working on the first part:

∞̂

ε∗t+1

εt+1 dG(εt+1) =

∞̂

(
Rd
t+1−Rl

t+1
σt

−
Rd
t+1et

σtlt

)
Qt

εt+1
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1 =

Introduce a change in variables to recast the integral in terms of the Standard Normal

distribution. Use v = εt+1+ξ√
2τ

, or equivalently εt+1 = v
√
2τ − ξ, and remember that for

the change x = φ(t), the integral
´ φ(b)
φ(a)

f(x)dx becomes
´ b
a
f(φ(t))φ′(t)dt. Since dv = dεt+1√

2τ
,

multiply dv by
√
2τ to express dεt+1 in terms of dv. Moreover, to transform the lower limit

of the integral, add ξ to the current expression of the lower bound of the integral and divide

1



the result by
√
2τ .

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

(
v
√
2τ − ξ

) √
2τ√
2πτ 2

e−v2 dv =

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

(
v
√
2τ − ξ

) 1√
π
e−v2 dv =

√
2τ√
π

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

ve−v2 dv − ξ√
π

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

e−v2 dv =

−
√
2τ

2
√
π
e−v2

∣∣∣∣∣
∞

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

− ξ√
π


∞̂

0

e−v2 dv −

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τˆ

0

e−v2 dv

 =

0 + lt
τ√
2π

e
−
(
(Rl

t+1−Rd
t+1)ltQt+Rd

t+1etQt−ξσtlt

σtlt
√
2τ

)2

−

ξ√
π

[√
π

2
erf(∞)−

√
π

2
erf

((
Rl

t+1 −Rd
t+1

)
ltQt +Rd

t+1etQt − ξσtlt

σtlt
√
2τ

)]
=

τ√
2π

e
−
(
(Rl

t+1−Rd
t+1)ltQt+Rd

t+1etQt−ξσtlt

σtlt
√
2τ

)2

− ξ

2

[
1 + erf

((
Rl

t+1 −Rd
t+1

)
ltQt +Rd

t+1etQt − ξσtlt

σtlt
√
2τ

)]
,

where I use that erf(∞) = 1 and erf(−x) = −erf(x).

Working on the second part: Again, use the transformation v = εt+1+ξ√
2τ

, so εt+1 = v
√
2τ−ξ

∞̂

ε∗t+1

dG(εt+1) =

∞̂

ε∗t+1

(
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2

)
=

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√
2τ

√
2τ√
2πτ 2

e−v2 dv =
1√
π

∞̂

(Rd
t+1−Rl

t+1)ltQt−Rd
t+1etQt+ξσtlt

σtlt
√

2τ

e−v2 dv =

1

2

[
1 + erf

((
Rl

t+1 −Rd
t+1

)
ltQt +Rd

t+1etQt − ξσtlt

σtlt
√
2τ

)]
.

2



Combining both parts, find

Et


∞̂

ε∗t+1

((
Rl

t+1 + σtεt+1 −Rd
t+1

)
lt +Rd

t+1et
)
dG(εt+1)

 =

Et

σtlt
τ

Qt

√
2π

e
−
(
(Rl

t+1−Rd
t+1)ltQt+Rd

t+1etQt−ξσtlt

σtlt
√
2τ

)2

+

((
Rl

t+1 −Rd
t+1

)
lt +Rd

t+1et −
ξ
Qt

)
2

[
1 + erf

((
Rl

t+1 −Rd
t+1

)
ltQt +Rd

t+1etQt − ξσtlt

σtlt
√
2τ

)] .

B Share of Non-Defaulted Deposits

First, the bank defaults on its deposit obligation whenever the idiosyncratic shock, εt+1,

is below a cutoff level ε∗t+1, defined by:

ε∗t = −
(
Rl

t −Rd
t

)
lt−1Qt−1 +Rd

t et−1Qt−1

σt−1lt−1

.

Second, let’s express 1 + erf

(
(Rl

t−Rd
t )lt−1Qt−1+Rd

t et−1Qt−1−ξσt−1lt−1

σt−1lt−1

√
2τ

)
= 1− erf

(
ε∗t+ξ

τ
√
2

)
in terms

of the CDF of the normal distribution. By definition,

G(εt) =
1

2

[
1 + erf

(
εt + ξ

τ
√
2

)]
=⇒ erf

(
εt + ξ

τ
√
2

)
= 2G(εt)− 1.

Therefore,

1 + erf

((
Rl

t −Rd
t

)
lt−1Qt−1 +Rd

t et−1Qt−1 − ξσt−1lt−1

σt−1lt−1

√
2τ

)
= 1− (2G(ε∗t )− 1) = 2 (1−G(ε∗t )) .

Thus, the share of defaulted loans is given by

1−G(ε∗t ) =
1

2

(
1 + erf

((
Rl

t −Rd
t

)
lt−1Qt−1 +Rd

t et−1Qt−1 − ξσt−1lt−1

σt−1lt−1

√
2τ

))
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C Choice of Risk

Theorem. The expected dividends function of banks, Etωt+1, is convex in the risk parameter

σt. Moreover, if ξ = 0, then it is also increasing in σt.

Proof. I generalize the proof taken from Van den Heuvel (2008) to the case with aggregate

uncertainty. The proof applies to an arbitrary distribution of the idiosyncratic shock, εt+1,

so a Normal distribution considered in the analysis is not a special case chosen to drive the

results.

Assumption. ε has a cumulative distribution function Gε with support [ε, ε̄], with ε < 0 < ε̄.

The mean of ε is equal to −ξ. ε is independent of the aggregate shock. The aggregate shock

does not depend on the choice of σt.

Note that I do not restrict the analysis to the bounded support36, so ε and ε̄ can take

−∞ and +∞, respectively. Note that Gε need not be continuous.

Let ε̂(σt, R
l
t+1) ≡

Rd
t dtQt

σtlt
− Rl

t+1Qt

σt
, so

(
Rl

t+1 + σt
ε̂(σt)
Qt

)
lt −Rd

t dt = 0.

Let π(σt, R
l
t+1) = Eε

[((
Rl

t+1 + σt
ε
Qt

)
lt −Rd

t dt

)+]
be a function of expected dividends

(taken over the idiosyncratic shock only) under some realization of Rl
t+1 which is considered

to be fixed in this function. To account for the aggregate uncertainty, Rl
t+1 needs to be a

random variable. Therefore, the expected dividends are given by (taking into account both

idiosyncratic and aggregate) uncertainty:

Π(σt) =

ˆ
Ω

π
(
σt, R

l
t+1(ω)

)
P (dω) = Et

[ˆ ε̄

ε̂(σt, Rl
t+1)

((
Rl

t+1 + σt
ε

Qt

)
lt −Rd

t dt

)
dGε

]
=

Et

 ε̄ˆ

ε

((
Rl

t+1 + σt
ε

Qt

)
lt −Rd

t dt

)
dGε

− Et

[ˆ ε̂(σt, Rl
t+1)

ε

((
Rl

t+1 + σt
ε

Qt

)
lt −Rd

t dt

)
dGε

]
=

EtR
l
t+1lt −Rd

t dt − σt
ξ

Qt

lt −
σtlt
Qt

Et

[ˆ ε̂(σt, Rl
t+1)

ε

(
ε− ε̂(σt, R

l
t+1)

)
dGε

]
=

EtR
l
t+1lt −Rd

t dt +
lt
Qt

(
σtEt

[ˆ ε̂(σt, Rl
t+1)

ε

(
ε̂(σt, R

l
t+1)− ε

)
dGε

]
− σtξ

)
.

Note that
(
Rl

t+1 + σt
ε
Qt

)
lt − Rd

t dt is expressed in terms of ε̂(σt, R
l
t+1) and ε using the

definition of ε̂(σt, R
l
t+1).

The proof below shows that Π(σt) is convex in σt. Since the expression of Π(σt) involves

the term which is linear in σt and
lt
Qt

≥ 0, the sufficient condition for Π(σt) to be convex in

36Unbounded support is more relevant for aggregate shocks
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σt is that

H(σt) ≡ Et

[ˆ ε̂(σt)

ε
(ε̂(σt)− ε) dGε

]
σt

is convex in σt,.

Claim. H(σt) ≡ Et

[´ ε̂(σt)

ε
(
ε̂(σt, R

l
t+1)− ε

)
dGε

]
σt is convex σt. It is also increasing in σt

when ξ = 0.

Proof. Steps of the proof:

1. Define h(σt, R
l
t+1) ≡ σt

[´ ε̂(σt, Rl
t+1)

ε
(
ε̂(σt, R

l
t+1)− ε

)
dGε

]
and consider 3 cases:

(a) Realization of Rl
t+1 is such that ε̂

(
σt, R

l
t+1

)
=

Rd
t dtQt

σtlt
− Rl

t+1Qt

σt
> 0,

(b) Realization of Rl
t+1 is such that ε̂

(
σt, R

l
t+1

)
=

Rd
t dtQt

σtlt
− Rl

t+1Qt

σt
< 0,

(c) Realization of Rl
t+1 is such that ε̂

(
σt, R

l
t+1

)
=

Rd
t dtQt

σtlt
− Rl

t+1Qt

σt
= 0,

Show that h(σt, R
l
t+1) is convex and increasing in σt in cases 1a and 1b and h(σt, R

l
t+1)

is linear and increasing in σt in case 1c.

2. Employ the argument that convexity and monotonicity are preserved under non-negative

scaling and addition (guaranteed by the expectation operator over the aggregate

uncertainty) to find that H(σt) is convex and increasing.

Here I show each step of the proof formally

1. Let σ1t < σ2t and, for λ ∈ (0, 1), define σλt = λσ1t + (1− λ)σ2t. Let ε̂i = ε̂(σit, R
l
t+1) ≡

Rd
t dtQt

σtlt
− Rl

t+1Qt

σt
, for i = 1, 2, λ.

(a) ε̂
(
σt, R

l
t+1

)
> 0 implies that 0 < ε̂2 < ε̂λ < ε̂1,

5



Claim. h(σt) is convex in σt.

h(σλt) = (λσ1t + (1− λ)σ2t)

{ˆ ε̂(σλt)

ε
(ε̂(σλt)− ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂λ − ε) dGε −

ˆ ε̂1

ε̂λ

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂λ − ε) dGε +

ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂1

ε̂λ

(ε− ε̂λ) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂λ

ε̂2

(ε̂λ − ε) dGε

}
≤

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂1

ε̂λ

(ε̂1 − ε̂λ) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂λ

ε̂2

(ε̂λ − ε̂2) dGε

}
,

as
´ ε̂1
ε̂λ

(ε− ε̂λ) dGε ≤
´ ε̂1
ε̂λ

(ε̂1 − ε̂λ) dGε and
´ ε̂λ
ε̂2

(ε̂λ − ε) dGε ≤
´ ε̂λ
ε̂2

(ε̂λ − ε̂2) dGε. Using

h(σ1t) = σ1t

´ ε̂1
ε (ε̂1 − ε) dGε and h(σ2t) = σ2t

´ ε̂2
ε (ε̂2 − ε) dGε, one can get:

h(σλt) ≤ λh(σ1t) + (1− λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)}+ (1− λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} =

λh(σ1t) + (1− λ)h(σ2t) +Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2)) =

λh(σ1t) + (1− λ)h(σ2t),

where the last equality follows from σ1tε̂1 =
Rd

t dtQt

lt
−Rl

t+1Qt = σ2tε̂2 = σλtε̂λ. So

λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2) =

ε̂λ (λσ1t + (1− λ)σ2t)−
(
Rd

t dtQt

lt
−Rl

t+1Qt

)
(λ+ (1− λ)) =

σλtε̂λ −
(
Rd

t dtQt

lt
−Rl

t+1Qt

)
= 0.
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Claim. If ξ = 0, then h(σt) is increasing in σt.

h(σ2t)− h(σ1t) = σ2t

ˆ ε̂2

ε
(ε̂2 − ε) dGε − σ1t

ˆ ε̂1

ε
(ε̂1 − ε) dGε =

σ2t

ˆ ε̂2

ε
(ε̂2 − ε) dGε − σ1t

ˆ ε̂2

ε
(ε̂1 − ε) dGε − σ1t

ˆ ε̂1

ε̂2

(ε̂1 − ε) dGε =

ˆ ε̂2

ε
(ε̂2σ2t − εσ2t − ε̂1σ1t + εσ1t) dGε − σ1t

ˆ ε̂1

ε̂2

(ε̂1 − ε) dGε =

− σ2t

ˆ ε̂2

ε
εdGε − σ1t

(ˆ ε̂1

ε̂2

(ε̂1 − ε) dGε −
ˆ ε̂2

ε
εdGε

)
=

− σ2t

ˆ ε̂2

ε
εdGε − σ1t

(ˆ ε̂1

ε̂2

ε̂1dGε −
ˆ ε̂1

ε
εdGε

)
=

− σ2t

(
0−
ˆ ε̄

ε̂2

εdGε

)
− σ1t

ˆ ε̂1

ε̂2

ε̂1dGε + σ1t

(
0−
ˆ ε̄

ε̂1

εdGε

)
=

σ2t

ˆ ε̂1

ε̂2

εdGε + σ2t

ˆ ε̄

ε̂1

εdGε − σ1t

ˆ ε̂1

ε̂2

ε̂1dGε − σ1t

ˆ ε̄

ε̂1

εdGε >

(σ2t − σ1t)

ˆ ε̄

ε̂1

εdGε + σ2t

ˆ ε̂1

ε̂2

ε̂2dGε − σ1t

ˆ ε̂1

ε̂2

ε̂1dGε = (σ2t − σ1t)

ˆ ε̄

ε̂1

εdGε > 0

(b) ε̂
(
σt, R

l
t+1

)
< 0 implies that ε̂1 < ε̂λ < ε̂2 < 0

Claim. h(σt) is convex in σt.

h(σλt) = (λσ1t + (1− λ)σ2t)

{ˆ ε̂(σλt)

ε
(ε̂(σλt)− ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂λ − ε) dGε +

ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂λ − ε) dGε −

ˆ ε̂2

ε̂λ

(ε̂λ − ε) dGε

}
=

λσ1t

{ˆ ε̂1

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂λ

ε̂1

(ε̂λ − ε) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂2

ε̂λ

(ε− ε̂λ) dGε

}
≤

λσ1t

{ˆ ε̂1

ε
(ε̂1 − ε) dGε + (ε̂λ − ε̂1)Gε(ε̂1) +

ˆ ε̂λ

ε̂1

(ε̂λ − ε̂1) dGε

}
+

(1− λ)σ2t

{ˆ ε̂2

ε
(ε̂2 − ε) dGε + (ε̂λ − ε̂2)Gε(ε̂2) +

ˆ ε̂2

ε̂λ

(ε̂2 − ε̂λ) dGε

}
,

7



as
´ ε̂λ
ε̂1

(ε̂λ − ε) dGε ≤
´ ε̂λ
ε̂1

(ε̂λ − ε̂1) dGε and
´ ε̂2
ε̂λ

(ε− ε̂λ) dGε ≤
´ ε̂2
ε̂λ

(ε̂2 − ε̂λ) dGε. Using

h(σ1t) = σ1t

´ ε̂1
ε (ε̂1 − ε) dGε and h(σ2t) = σ2t

´ ε̂2
ε (ε̂2 − ε) dGε, one can get:

h(σλt) ≤ λh(σ1t) + (1− λ)h(σ2t) + λσ1t {(ε̂λ − ε̂1)Gε(ε̂λ)}+ (1− λ)σ2t {(ε̂λ − ε̂2)Gε(ε̂λ)} =

λh(σ1t) + (1− λ)h(σ2t) +Gε(ε̂λ) (λσ1t (ε̂λ − ε̂1) + (1− λ)σ2t (ε̂λ − ε̂2)) =

λh(σ1t) + (1− λ)h(σ2t),

where the last equality applies the similar reasoning used for the previous case. Therefore,

h(σt) is convex in σt for R
l
t+1 > Rd

t (1− γ).

Claim. h(σt) is increasing in σt.

h(σ2t)− h(σ1t) = σ2t

ˆ ε̂2

ε
(ε̂2 − ε) dGε − σ1t

ˆ ε̂1

ε
(ε̂1 − ε) dGε =

σ2t

ˆ ε̂1

ε
(ε̂2 − ε) dGε + σ2t

ˆ ε̂2

ε̂1

(ε̂2 − ε) dGε − σ1t

ˆ ε̂1

ε
(ε̂1 − ε) dGε =

ˆ ε̂1

ε
(ε̂2σ2t − εσ2t − ε̂1σ1t + εσ1t) dGε + σ2t

ˆ ε̂2

ε̂1

(ε̂2 − ε) dGε =

σ1t

ˆ ε̂1

ε
εdGε + σ2t

(ˆ ε̂2

ε̂1

(ε̂2 − ε) dGε −
ˆ ε̂1

ε
εdGε

)
=

σ1t

ˆ ε̂1

ε
εdGε + σ2t

(ˆ ε̂2

ε̂1

ε̂2dGε −
ˆ ε̂2

ε
εdGε

)
=

(σ1t − σ2t)

ˆ ε̂1

ε
εdGε + σ2t

(ˆ ε̂2

ε̂1

ε̂2dGε −
ˆ ε̂2

ε̂1

εdGε

)
=

(σ1t − σ2t)

ˆ ε̂1

ε
εdGε + σ2t

(ˆ ε̂2

ε̂1

(ε̂2 − ε) dGε

)
> 0

because σ1t − σ2t < 0,
´ ε̂1
ε εdGε < 0 and

´ ε̂2
ε̂1

(ε̂2 − ε) dGε > 0

(c) ε̂
(
σt, R

l
t+1

)
= 0 implies h(σt) = σt

[´ 0
ε (0− ε) dGε

]
is linear and increasing in σt.

2. Consider P (ω) ≥ 0 for each Rl
t+1(ω) ∈ R. Then the following function37:

ˆ
Ω

h
(
σt, R

l
t+1(ω)

)
P (dω) = Eth(σt, R

l
t+1) ≡ H(σt)

is convex in σt and increasing in σt when ξ = 0. It follows directly from the linearity of

the expectation operator which puts a non-negative weight on every realization of Rl
t+1

37Linearity in σt for one particular value of Rl
t+1 can be considered as a weakly convex function, so it does

not change the nature of the argument
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and the fact that the sum of convex functions is a convex function. Therefore,

Π(σt) = Rl
t+1lt −Rd

t dt +
lt
Qt

H(σt)

is convex and also increasing in σt when ξ = 0 as lt
Qt

> 0. □

D The Shadow Bank’s Problem

D.1 Value function

Substituting ξ = 0 into the expression of net cash flow to write the value of the bank:

V S
j,t = Et


∞∑
i=0

(1− θ) θiΛt,t+1+i

σS
j,t+il

S
j,t+i

τ

Qt+i

√
2π

e
−
(
(Rl

t+1+i−RdS
t+1+i)Qt+i

σS
j,t+i

√
2τ

+
RdS
t+1+ie

S
j,t+iQt+i

σS
j,t+i

lS
j,t+i

√
2τ

)2

+

((
Rl

t+1+i −RdS
t+1+i

)
lSj,t+i +RdS

t+1+ie
S
j,t+i

)
2

[
1 + erf

((
Rl

t+1+i −RdS
t+1+i

)
Qt+i

σS
j,t+i

√
2τ

+
RdS

t+1+ie
S
j,t+iQt+i

σS
j,t+il

S
j,t+i

√
2τ

)]]}
.

Define

νj,t = Et


∞∑
i=0

(1− θ) θiΛt,t+1+i


σS

j,t+i

τ

Qt+i

√
2π

e
−
(
(Rl

t+1+i−RdS
t+1+i)Qt+i

σS
j,t+i

√
2τ

+
RdS
t+1+ie

S
j,t+iQt+i

σS
j,t+i

lS
j,t+i

√
2τ

)2

+

(
Rl

t+1+i −RdS
t+1+i

)
2

[
1 + erf

((
Rl

t+1+i −RdS
t+1+i

)
Qt+i

σS
j,t+i

√
2τ

+
RdS

t+1+ie
S
j,t+iQt+i

σS
j,t+il

S
j,t+i

√
2τ

)])
lSj,t+i

lSj,t

]}
,

ηj,t = Et

∞∑
i=0

(1− θ) θiΛt,t+1+i

[ (
RdS

t+1+i

)
2

[
1 + erf

((
Rl

t+1+i −RdS
t+1+i

)
Qt+i

σS
j,t+i

√
2τ

+
RdS

t+1+ie
S
j,t+iQt+i

σS
j,t+il

S
j,t+i

√
2τ

)]
eSj,t+i

eSj,t

]]
.
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So V S
j,t = υj,tl

S
j,t + ηj,te

S
j,t. Write it recursively. Pulling out the first term in each summation:

νj,t = Et

(1− θ) Λt,t+1


σS

j,t

τ

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σS
j,t

√
2τ

+
RdS
t+1e

S
j,tQt

σS
j,t

lS
j,t

√
2τ

)2

+

(
Rl

t+1 −RdS
t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)])
lSj,t
lSj,t

]}
+

Et


∞∑
i=1

(1− θ) θiΛt,t+1+i


σS

j,t+i

τ

Qt+i

√
2π

e
−
(
(Rl

t+1+i−RdS
t+1+i)Qt+i

σS
j,t+i

√
2τ

+
RdS
t+1+ie

S
j,t+iQt+i

σS
j,t+i

lS
j,t+i

√
2τ

)2

+

(
Rl

t+1+i −RdS
t+1+i

)
2

[
1 + erf

((
Rl

t+1+i −RdS
t+1+i

)
Qt+i

σS
j,t+i

√
2τ

+
RdS

t+1+ie
S
j,t+iQt+i

σS
j,t+il

S
j,t+i

√
2τ

)])
lSj,t+i

lSj,t

]}
.

Transform the summations, so that they start from zero

νj,t = Et

(1− θ) Λt,t+1


σS

j,t

τ

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σS
j,t

√
2τ

+
RdS
t+1e

S
j,tQt

σS
j,t

lS
j,t

√
2τ

)2

+

(
Rl

t+1 −RdS
t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)])]}
+

Et

θ

∞∑
i=0

(1− θ) θiΛt,t+2+i


σS

j,t+1+i

τ

Qt+1+i

√
2π

e
−
(
(Rl

t+2+i−RdS
t+2+i)Qt+1+i

σS
j,t+1+i

√
2τ

+
RdS
t+2+ie

S
j,t+1+iQt+1+i

σS
j,t+1+i

lS
j,t+1+i

√
2τ

)2

+

((
Rl

t+2+i −RdS
t+2+i

))
2

[
1 + erf

((
Rl

t+2+i −RdS
t+2+i

)
Qt+1+i

σS
j,t+1+i

√
2τ

+
RdS

t+2+ie
S
j,t+1+iQt+1+i

σS
j,t+1+il

S
j,t+1+i

√
2τ

)])
lSj,t+1+i

lSj,t

]}
.

Remember that Λt,t+2+i = Λt,t+1Λt+1,t+2+i. Plugging this into the last expressions

νj,t = Et

(1− θ) Λt,t+1


σS

j,t

τ

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σS
j,t

√
2τ

+
RdS
t+1e

S
j,tQt

σS
j,t

lS
j,t

√
2τ

)2

+

(
Rl

t+1 −RdS
t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)])]}
+
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Et

θΛt,t+1

lSj,t+1

lSj,t

∞∑
i=0

(1− θ) θiΛt+1,t+2+i


σS

j,t+1+i

Qt+1+i

τ√
2π

e
−
(
(Rl

t+2+i−RdS
t+2+i)Qt+1+i

σS
j,t+1+i

√
2τ

+
RdS
t+2+ie

S
j,t+1+iQt+1+i

σS
j,t+1+i

lS
j,t+1+i

√
2τ

)2

+

((
Rl

t+2+i −RdS
t+2+i

))
2

[
1 + erf

((
Rl

t+2+i −RdS
t+2+i

)
Qt+1+i

σS
j,t+1+i

√
2τ

+
RdS

t+2+ie
S
j,t+1+iQt+1+i

σS
j,t+1+il

S
j,t+1+i

√
2τ

)])
lSj,t+1+i

lSj,t+1

]}
.

Therefore,

νj,t =Et

(1− θ) Λt,t+1

σS
j,t

τ

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σS
j,t

√
2τ

+
RdS
t+1e

S
j,tQt

σS
j,t

lS
j,t

√
2τ

)2

+

(
Rl

t+1 −RdS
t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)]]
+ θΛt,t+1

lSj,t+1

lSj,t
νj,t+1

}
,

ηj,t =Et

{
(1− θ) Λt,t+1

[ (
RdS

t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)]
+ θΛt,t+1

eSj,t+1

eSj,t
ηj,t+1

]}
.

D.2 Risk Choice

Denoting ΓS
j,t as expected dividends:

ΓS
j,t = Et

(1− θ) Λt,t+1


σS

j,tl
S
j,t

τ

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σS
j,t

√
2τ

+
RdS
t+1e

S
j,tQt

σS
j,t

lS
j,t

√
2τ

)2

+

(
Rl

t+1l
S
j,t −RdS

t+1l
S
j,t +RdS

t+1e
S
j,t

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σS
j,t

√
2τ

+
RdS

t+1e
S
j,tQt

σS
j,tl

S
j,t

√
2τ

)])]}
.

The value function of the shadow bank can be written as:

V S
j,t = ΓS

j,t + θEt

{
Λt,t+1V

S
j,t+1

}
= Et

∞∑
i=0

θiΛt,t+iΓ
S
j,t+i.

In Appendix C I show that ΓS
j,t is increasing in σt. Accordingly, each term in the summation

above is increasing in σt. Then, after applying the law of iterative expectations, it is easy to

see that V S
j,t is also increasing in σt.

D.3 Aggregating Shadow Banks

V S
j,t = max

lSj,t+i

Êt

{
∞∑
i=0

(1− θ) θiΛt,t+1+iω
S
j,t+1+i

}

11



subject to

υj,tl
S
j,t + ηj,te

S
t ≥ λlSj,t,

ωS
j,t+1+i = max

[(
Rl

t+1+i + σ̄S
εSj,t+1+i

Qt+i

−RdS
t+1+i

)
lSj,t+i +RdS

t+1+ie
S
t+i, 0

]
.

Note that the value function depends on one variable only. Thus each banker faces the

same problem and chooses the same amount of loans, i.e. lSj,t = lSt . The sufficient condition

for generating this result is that starting amount of equity is the same across all shadow

bankers. Otherwise, depending on the realization of the idiosyncratic shock, each banker will

be subject to the financial friction of different strength. In fact, those bankers who receive a

relatively large favorable idiosyncratic shock and continue operating in the shadow banking

sector have more “skin in the game” and thus can borrow more cheaply. The equity fund

that shares equity across all bankers is key to justify my analysis within the representative

agent framework.

Moreover, dSj,t+1 = lSj,t − eSj,t = lSt − eSt = dSt+1. It implies that there is a representative

shadow banker.

Define:

νt = Et

(1− θ) Λt,t+1

σ̄S τS

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σ̄S
√
2τS

+
RdS
t+1Qt

ϕSt σ̄S
√
2τS

)2

+

((
Rl

t+1 −RdS
t+1

))
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σ̄S
√
2τS

+
RdS

t+1Qt

ϕS
t σ̄

S
√
2τS

)]]
+ θΛt,t+1

lSt+1

lSt
νt+1

}

and

ηt = Et

{
(1− θ) Λt,t+1

[(
RdS

t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σ̄S
√
2τS

+
RdS

t+1Qt

ϕS
t σ̄

S
√
2τS

)]
+

θΛt,t+1

eSt+1

eSt
ηt+1

]}
.

Therefore, the incentive constraint can be written as

lSt =
ηt

λ− υt
eSt = ϕS

t e
S
t .
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The terms described in νt and ηt evolve according to:

zt+1 ≡
eSt+1

eSt
=

σ̄SϕS
t

τS

Qt

√
2π

e
−
(
(Rl

t+1−RdS
t+1)Qt

σ̄S
√
2τS

+
RdS
t+1Qt

ϕSt σ̄S
√
2τS

)2

+

(
Rl

t+1ϕ
S
t −RdS

t+1ϕ
S
t +RdS

t+1

)
2

[
1 + erf

((
Rl

t+1 −RdS
t+1

)
Qt

σ̄S
√
2τS

+
RdS

t+1Qt

ϕS
t σ̄

S
√
2τS

)]]
,

xt+1 ≡
lSt+1

lSt
=

ϕS
t+1e

S
t+1

ϕS
t e

S
t

.

E The Regulated Bank’s Problem

E.1 First-Order Conditions

The objective function can be written recursively

V R
j,t = max

lRj,t,e
R
j,t,σ

R
j,t

{
zj,t + Êt

{
Λt,t+1V

R
j,t+1

}}
,

subject to

eRj,t ≥ γR
t l

R
j,t,

zj,t = max

[(
Rl

t + σR
j,t−1

εRj,t
Qt−1

−RdR
t−1

)
lRj,t−1 +RdR

t−1e
R
j,t−1, 0

]
− ej,t,

lRj,t ≥ 0,

σR ≤ σR
j,t ≤ σ̄R.

Define

J (St−1) = max
lRj,t,d

R
j,t,e

R
j,t,σ

R
j,t

{
−ej,t + Êt

[
Λt,t+1V

R
j,t+1 (lj,t, ej,t, σj,t, St)

]}
,

where St is the aggregate state of the economy. Then

V R
j,t (lj,t−1, ej,t−1, σj,t−1, St−1) = max

[(
Rl

t + σR
j,t−1

εRj,t
Qt−1

−RdR
t−1

)
lRj,t−1 +RdR

t−1e
R
j,t−1, 0

]
+ J (St) .

Since the first term in the summation on the right hand side is taken as given and {εj,t}
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is i.i.d. sequence of random variables, each banker faces the same maximization problem

J (St−1) = max
lt,et,σt

−et + Et

Λt,t+1

 ∞̂

ε∗t+1

((
Rl

t+1 + σt
εt+1

Qt

−Rd
t

)
lt +Rd

t et

)
dG (εt+1) + J (St)



 ,

et ≥ γtlt,(
Rl

t+1 + σt

ε∗t+1

Qt

−Rd
t

)
lt +Rd

t et = 0,

lt ≥ 0,

σ ≤ σt ≤ σ̄.

Append the Lagrange multiplier χ1t to the constraint et ≥ γlt and χ2t to the constraint

lt ≥ 0. Conditional on the optimal choice of σt, the first-order conditions are:

Et

Λt,t+1

=0︷ ︸︸ ︷((
Rl

t+1 + σt

ε∗t+1

Qt

)
lt −Rd

t (lt − et)

)
· ∂
∂lt

(
Rd

t (lt − et)Qt

σtlt
−

Rl
t+1Qt

σt

)− γχ1t + χ2t+

Et


∞̂

Rd
t (lt−et)Qt

σtlt
−

Rl
t+1Qt

σt

Λt,t+1
∂

∂lt

((
Rl

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)

)
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1

 = 0,

Et

Λt,t+1

=0︷ ︸︸ ︷((
Rl

t+1 + σt

ε∗t+1

Qt

)
lt −Rd

t (lt − et)

)
· ∂

∂et

(
Rd

t (lt − et)Qt

σtlt
−

Rl
t+1Qt

σt

)− 1 + χ1t+

Et


∞̂

Rd
t (lt−et)Qt

σtlt
−

Rl
t+1Qt

σt

Λt,t+1
∂

∂et

((
Rl

t+1 + σt
εt+1

Qt

)
lt −Rd

t (lt − et)

)
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1

 = 0,

respectively. I use the Leibniz integral rule above to find the partial derivatives. Note that

the first term is zero in the differentiation because the upper limit of the integral does not
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depend on any of the choice variables. Complementary slackness:

χ1t (et − γtlt) = 0,

χ2tlt = 0,

et − γtlt ≥ 0,

lt ≥ 0,

χ1t ≥ 0,

χ2t ≥ 0,

Envelope theorem:

J ′
l (lt−1, et−1, σt−1) = 0,

J ′
e (lt−1, et−1, σt−1) = 0.

Using the expressions of the integrals from Appendix A, the FOCs can be described by

χ2t + Et

β
λct+1

λct

 σt

Qt

τ√
2π

e
−
(

Rd
t (1− et

lt
)Qt−Rl

t+1Qt+ξσt

σt
√
2τ

)2

+

+

(
Rl

t+1 − σtξ −Rd
t

2

)1− erf

Rd
t

(
1− et

lt

)
Qt −Rl

t+1Qt + ξσt

σt

√
2τ

 = γχ1t,

Et

{
β
λct+1

λct

[
Rd

t

1

2

(
1− erf

(
Rd

t (lt − et)Qt −Rl
t+1ltQt + ξσtlt

σtlt
√
2τ

))]}
− 1 + χ1t = 0.

E.2 Risk Choice

Denoting ΓR
t as expected dividends:

ΓR
t = −et + Et

Λt,t+1


 σt

Qt

τ√
2π

e
−
(

Rd
t (1− et

lt
)Qt−Rl

t+1Qt+ξσt

σt
√

2τ

)2

+

(
Rl

t+1lt −Rd
t lt +Rd

t et
)

2

1 + erf

Rd
t

(
1− et

lt

)
Qt −Rl

t+1Qt + ξσt

σt

√
2τ

 .

15



The objective function of the regulated bank can be written as:

J (St−1) = ΓR
t + Et {Λt,t+1J (St)} = Et

∞∑
i=0

Λt,t+iΓ
S
j,t+i.

In Appendix C I show that ΓR
t is convex in σt. Accordingly, each term in the summation

above is convex in σt. Then, after applying the law of iterative expectations, it is easy to see

that J (St−1) is also convex in σt.

This result guarantees that all the intermediate values σ < σt < σ̄, which may result from

the first-order conditions with respect to σt, are not optimal.

E.3 Proof of Proposition 1

Equations (41) and (42) can be expressed as

βEt
λct+1

λct

Re
i,t+1 = 1− µi,t

λct

,

where i ∈ {s, r} denotes the type of equity. Using this expression, substitute for 1 in the

bank’s FOC with respect to et. Therefore,

Et

{
β
λct+1

λct

[
Rd

t

1

2

(
1− erf

(
Rd

t (lt − et)−Rl
t+1lt + ξσtlt

σtlt
√
2τ

))]
−Re

i,t+1

}
− µi,t

λct

+ χ1t = 0.

Since the range of the erf function is between −1 and 1, i.e.−1 ≤ erf(x) ≤ 1, I know that

the following expression is between Ψ∗
1 and Ψ∗

2:

Ψ∗
1 ≤ Et

{
β
λct+1

λct

[
Rd

t

1

2

(
1− erf

(
Rd

t (lt − et)−Rl
t+1lt + ξσtlt

σtlt
√
2τ

))
−Re

t+1

]}
≤ Ψ∗

2,

where

Ψ∗
1 = Et

{
β
λct+1

λct

[
0−Re

i,t+1

]}
,

Ψ∗
2 = Et

{
β
λct+1

λct

[
Rd

t −Re
i,t+1

]}
.

Summing up equation (38) with Etβλct+1R
e
i,t+1 + µi,t = λct that comes from the household’s

FOCs with respect to ei,t for each i ∈ {s, r}, one gets:

Et

{
βλct+1

[
Rd

t −Re
i,t+1

]}
= −σ0d

−σd
t + µi,t.
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The Lagrange multiplier on the households budget constraint, λct, is positive. It reflects the

fact that the budget constraint always binds given the standard assumptions on the preferences

(Inada conditions). Furthermore, σ0d
−σd
t > 0 under the usual (and mild) assumptions on the

preferences for liquidity. Dividing the latest expression by λct it can be transformed into:

Et

{
β
λct+1

λct

[
Rd

t −Re
i,t+1

]}
︸ ︷︷ ︸

=Ψ∗
2

−µi,t

λct

= −σ0d
−σd
t

λct

< 0.

Thus, Ψ∗
2 <

µi,t

λct
. Therefore,

Et

{
β
λct+1

λct

[
Rd

t

1

2

(
1− erf

(
Rd

t (lt − et)−Rl
t+1lt + ξσtlt

σtlt
√
2τ

))]
−Re

i,t+1

}
− µi,t

λct

+ χ1t =

0 < Ψ∗
2 −

µi,t

λct

+ χ1t <
µi,t

λct

− µi,t

λct

+ χ1t = χ1t.

Hence, χ1t > 0. □

E.4 Aggregation of Regulated Banks

The expected dividend that enters the value function of regulated bank j,

Ω (µt, σj,t; lj,t) = Et {Λt,t+1zj,t+1} =

− Et

{
Λt,t+1 (1− γt) l

R
j,t

}
+ Et

β
λct+1

λct

lRj,t

σR
j,t

τR

Qt

√
2π

e
−
(

RdR
t (1−γt)Qt−Rl

t+1Qt+ξRσR
j,t

σR
j,t

√
2τR

)2

+

1

2

(
Rl

t+1 − σR
j,tξR − (1− γt)R

dR
t

) [
1− erf

(
RdR

t (1− γt)Qt −Rl
t+1Qt + ξRσ

R
j,t

σR
j,t

√
2τR

)]]}
,

(34)

is linear in loans. This implies that the value function is also linear in loans.

F The Firm’s Problem

Within each class, firms are financed by two types of banks indexed by i = R, S. Without

loss of generality, I can index firms such that firm j financed by bank i, with j ∈ [0, νi
t ], is

risky; firm j financed by bank i, with j ∈ [νi
t , 1], is safe. Firms financed by regulated banks

and firms financed by shadow banks face the same maximization problems, so I omit the

index of the type of bank in the next equations.
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F.1 Safe firms

For i ∈ [νt, 1]:

The optimality condition on the choice of labor by the safe firm is:

Hi,t+1 = (1− α)
Yi,t+1

Wt+1

= (1− α)
At+1K

α
i,t+1H

1−α
i,t+1

Wt+1

. (35)

Accordingly, the safe firm’s Lagrangian is:

Lsafe =Et

{
β
λct+1

λct

[
At+1K

α
i,t+1H

1−α
i,t+1 + (1− δ)Qt+1Ki,t+1 −Wt+1Hi,t+1 −Rl

t+1li,t
]}

+ λs
HtEt

{
β
λct+1

λct

[
(1− α)

At+1K
α
i,t+1H

1−α
i,t+1

Wt+1

−Hi,t+1

]}
+ λs

lt (li,t −QtKi,t+1) .

Notice that there is no expectation operator on the Lagrange multipliers because those

constraints hold under every state of nature. The problem implies the following first-order

conditions

∂Lsafe

∂li,t
= −Et

{
β
λct+1

λct

Rl
i,t+1

}
+ λs

lt = 0,

∂Lsafe

∂Ki,t+1

= Et

{
β
λct+1

λct

[
α
Yi,t+1

Ki,t+1

+ (1− δ)Qt+1

]}
+

λs
Ht (1− α)αEt

{
β
λct+1

λct

Yi,t+1

Wt+1Ki,t+1

}
− λs

ltQt = 0,

∂Lsafe

∂Hi,t+1

= (1− α)
At+1K

α
i,t+1H

1−α
i,t+1

Wt+1

−Wt+1 + λs
Ht

[
(1− α)2

Yi,t+1

Hi,t+1Wt+1

− 1

]
= 0.

Combining ∂Lsafe

∂Hi,t+1
= 0 with equation (35) yields λs

Ht = 0. Plugging ∂Lsafe

∂li,t
= 0 into ∂Lsafe

∂Ki,t+1
for

λs
lt, I get

Et

{
β
λct+1

λct

Rl
i,t+1

}
Qt = Et

{
β
λct+1

λct

[
α
Yi,t+1

Ki,t+1

+ (1− δ)Qt+1

]}
.

Consider the zero-profit condition of the safe firm under all states of nature. Due to

equation (35) I have:

At+1K
α
i,t+1H

1−α
i,t+1 = αYi,t+1 +Wt+1Hi,t+1.

Substituting this result for Yi,t+1 into πi,t+1 = 0 and using QtKi,t+1 = li,t yield:

αEtAt+1

(
Ki,t+1

Hi,t+1

)α−1

Ki,t+1 + (1− δ)Qt+1Ki,t+1 −Rl
i,t+1QtKi,t+1 = 0.
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Thus, Rl
i,t+1Qt = αEtAt+1

(
Ki,t+1

Hi,t+1

)α−1

+(1−δ)Qt+1 under all states of nature. This condition

implies

Et

{
β
λct+1

λct

Rl
i,t+1

}
Qt = Et

{
β
λct+1

λct

[
α
Yi,t+1

Ki,t+1

+ (1− δ)Qt+1

]}
.

F.2 Risky Firms

For j ∈ [0, νt]:

The optimality condition on the choice of labor by the risky firm is:

Hj,t+1 =

(
(1− α)At+1

Wt+1

)1/α

Kj,t+1. (36)

Accordingly, the risky firm’s Lagrangian is:

Lrisky =Et

{
β
λct+1

λct

[
At+1K

α
j,t+1H

1−α
j,t+1 + εj,t+1Kj,t+1 + (1− δ)Qt+1Kj,t+1 −Wt+1Hj,t+1 −Rl

j,t+1lj,t
]}

+

λr
HtEt

{
β
λct+1

λct

[(
(1− α)At+1

Wt+1

)1/α

Kj,t+1 −Hj,t+1

]}
+ λr

lt (lj,t −QtKj,t+1) .

Notice that there is no expectation operator on the Lagrange multipliers because those

constraints hold under every state of nature. The problem implies the following first-order

conditions

∂Lrisky

∂lj,t
= −Et

{
β
λct+1

λct

Rl
j,t+1

}
+ λr

lt = 0,

∂Lrisky

∂Kj,t+1

= Et

{
β
λct+1

λct

[
αAt+1

(
Kj,t+1

Hj,t+1

)α−1

+ εj,t+1 + (1− δ)Qt+1

]}
+

λr
HtEt

{
β
λct+1

λct

(
(1− α)At+1

Wt+1

)1/α
}

− λr
ltQt = 0,

∂Lrisky

∂Hj,t+1

= (1− α)At+1

(
Kj,t+1

Hj,t+1

)α

−Wt+1 + λr
Ht [−1] = 0.

Combining ∂Lrisky

∂Hj,t+1
= 0 with equation (36) yields λr

Ht = 0. Plugging ∂Lrisky

∂lj,t
= 0 into ∂Lrisky

∂Kj,t+1
for

λr
lt, I get

Et

{
β
λct+1

λct

Rl
j,t+1

}
Qt = Et

{
β
λct+1

λct

[
αAt+1

(
Kj,t+1

Hj,t+1

)α−1

+ (1− δ)Qt+1 + εj,t+1

]}
.
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Combining equation (35) with equation (36) results in:

Ki,t+1

Hi,t+1

=
Kj,t+1

Hj,t+1

=
Kt+1

Ht+1

(37)

under all states of nature. But remember that

Et

{
β
λct+1

λct

Rl
i,t+1

}
Qt = Et

{
β
λct+1

λct

[
αAt+1

(
Ki,t+1

Hi,t+1

)α−1

+ (1− δ)Qt+1

]}
=

Et

{
β
λct+1

λct

[
αAt+1

(
Kt+1

Ht+1

)α−1

+ (1− δ)Qt+1

]}
= Et

{
β
λct+1

λct

Rl
t+1

}
Qt.

Therefore

Et

{
β
λct+1

λct

Rl
j,t+1

}
Qt = Et

{
β
λct+1

λct

[
Rl

t+1Qt + εj,t+1

]}
.

Consider the zero-profit condition of the risky firm under all states of nature. Due to

equation (36) I have:

At+1K
α
j,t+1H

1−α
j,t+1 = αAt+1

(
Kj,t+1

Hj,t+1

)α−1

Kj,t+1 +Wt+1Hj,t+1.

Substituting this result for Yj,t+1 into πj,t+1 = 0 , using QtKj,t+1 = lj,t and equation (37)

yield:

Rl
j,t+1QtKj,t+1 + εj,t+1Kj,t+1 −Rl

j,t+1QtKj,t+1 = 0.

Thus, Rl
j,t+1Qt = Rl

t+1Qt + εj,t+1 under all states of nature. This condition implies

Et

{
β
λct+1

λct

Rl
j,t+1

}
Qt = Et

{
β
λct+1

λct

[
Rl

t+1 + εj,t+1

]}
.

Therefore, at the time the bank j is making a loan to the safe firm, the bank expects to

receive the total returns on safe loans equal EtR
l
t+1l

s
j,t and the total returns on risky loans

equal EtR
l
j,t+1l

r
j,t = Et

(
Rl

t+1 +
εj,t+1

Qt

)
lrj,t. Summing them up yields

EtR
l
t+1l

s
j,t + EtR

l
j,t+1l

r
j,t =

EtR
l
t+1 (1− σj,t) lj,t + Et

(
Rl

t+1 +
εj,t+1

Qt

)
σj,tlj,t =

(
Rl

t+1 + σj,t
εj,t+1

Qt

)
lj,t,

where lj,t = lsj,t + lrj,t and lsj,t = (1− σj,t) lj,t. So, the returns in the bank’s maximization

problem are consistent with the firm’s problem.
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F.3 Aggregating Across Firms

Here I show that I can aggregate individual firms into two representative firms. Let denote

Kj
i,t the capital chosen by firm i that is financed by borrowing from bank j. In this notation,

the equation (37) is written as
Kj

i,t+1

Hj
i,t+1

=
Kt+1

Ht+1

,

for all j ∈ [0, 1] and i ∈ [0, 1].

Define the following objects: Let KS
S,t+1 =

´ 1
µt

´ 1
νt
Kj

i,t+1didj be the total capital allocated

to the safe technology and financed by borrowing from the banks that choose a fraction σ

of risky projects. Let KR
S,t+1 =

´ µt

0

´ 1
νt
Kj

i,t+1didj be the total capital allocated to the safe

technology and financed by borrowing from the banks that choose a fraction σ̄ of risky

projects. Thus,

KS,t+1 = KS
S,t+1 +KR

S,t+1,

where KS,t+1 is the total capital allocated to the safe technology.

Let KS
R,t+1 =

´ 1
µt

´ νt
0

Kj
i,t+1didj be the total capital allocated to the risky technology

and financed by borrowing from the banks that choose a fraction σ of risky projects. Let

KR
R,t+1 =

´ µt

0

´ νt
0

Kj
i,t+1didj be the total capital allocated to the safe technology and financed

by borrowing from the banks that choose a fraction σ̄ of risky projects. Thus,

KR,t+1 = KS
R,t+1 +KR

R,t+1,

where KR,t+1 is the total capital allocated to the risky technology. The same upper and lower

case notation applies to labor, i. e. HS
S,t+1 =

´ 1

µt

´ 1

νt
Hj

i,t+1didj; H
R
S,t+1 =

´ µt

0

´ 1
νt
Hj

i,t+1didj;

HS
R,t+1 =

´ 1
µt

´ νt
0

Hj
i,t+1didj; H

R
R,t+1 =

´ µt

0

´ νt
0

Hj
i,t+1didj.
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Safe representative firm:

Y S
t =

1ˆ

0

1ˆ

νt−1

F
(
Kj

i,t, H
j
i,t

)
didj =

1ˆ

0

1ˆ

νt−1

At

(
Kj

i,t

)α (
Hj

i,t

)1−α
didj =

1ˆ

0

1ˆ

νt−1

At

[
FKj

i,t

(
Kj

i,t, H
j
i,t

)
Kj

i,t + FHj
i,t

(
Kj

i,t, H
j
i,t

)
Hj

i,t

]
didj =

1ˆ

0

1ˆ

νt−1

At

[
fKj

i,t

(
Kj

i,t

Hj
i,t

)
Kj

i,t + fHj
i,t

(
Kj

i,t

Hj
i,t

)
Hj

i,t

]
didj =

1ˆ

0

1ˆ

νt−1

At

[
fKt

(
Kt

Ht

)
Kj

i,t + fHt

(
Kt

Ht

)
Hj

i,t

]
didj =

µt−1ˆ

0

1ˆ

νt−1

At

[
fKt

(
Kt

Ht

)
Kj

i,t + fHt

(
Kt

Ht

)
Hj

i,t

]
didj+

1ˆ

µt−1

1ˆ

νt−1

At

[
fKt

(
Kt

Ht

)
Kj

i,t + fHt

(
Kt

Ht

)
Hj

i,t

]
didj =

At

[
fKt

(
Kt

Ht

)
KR

S,t + fHt

(
Kt

Ht

)
HR

S,t

]
+ At

[
fKt

(
Kt

Ht

)
KS

S,t + fHt

(
Kt

Ht

)
HS

S,t

]
=

At

[
fKt

(
Kt

Ht

)(
KR

S,t +KS
S,t

)
+ fHt

(
Kt

Ht

)(
HR

S,t +HS
S,t

)]
=

At

[
fKt

(
Kt

Ht

)
KS,t + fHt

(
Kt

Ht

)
HS,t

]
= At (KS,t)

α (HS,t)
1−α ,

where KS,t =
´ 1
µt−1

(1− σ) lj,t−1dj +
´ µt−1

0
(1− σ̄) lj,t−1dj.

Risky representative firm:

Y R
t =

1ˆ

0

νt−1ˆ

0

[
F
(
Kj

i,t, H
j
i,t

)
+ εi,tK

j
i,t

]
didj = At (KR,t)

α (HR,t)
1−α +

1ˆ

0

νt−1ˆ

0

εi,tK
j
i,tdidj = At (KR,t)

α (HR,t)
1−α + (−ξ)KR,t = At (KR,t)

α (HR,t)
1−α − ξKR,t,

where KR,t =
´ 1
µt−1

σlj,t−1dj +
´ µt−1

0
σ̄lj,t−1dj.
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G The Government

The government levies the tax to fully compensate for the loss to the deposit insurance

fund due to rescue of defaulted banks.

Tt = −
ε∗tˆ

−∞

((
Rl

t +
σt−1εt
Qt−1

)
lt−1 −Rd

t−1dt−1

)
dG(εt) =

σt−1lt−1

Qt−1

τ√
2π

e
−
(

Rd
t−1(1−γt−1)Qt−1−Rl

tQt−1+ξσt−1

σt−1
√
2τ

)2

−

1

2

(
Rl

tlt−1 −
σt−1ξ

Qt−1

lt−1 −Rd
t−1dt−1

)[
1 + erf

(
Rd

t−1 (1− γt−1)Qt−1 −Rl
tQt−1 + ξσt−1

σt−1

√
2τ

)]
.

H Household

To express x⋆
t , substitute ξ = 0 into the expression derived in Appendix B. Thus,

x⋆
t =

1

2

[
1 + erf

((
Rl

t −RdS
t

)
Qt−1

σ̄S
√
2τS

+
RdS

t Qt−1

σ̄SϕS
t−1

√
2τS

)]
,

When a shadow bank defaults, it liquidates its assets to partially reimburse depositors.

In such situation, the deposit fund gets

ΠS
t = (1− x⋆

t )R
dS
t dSt +

ε∗tˆ

−∞

((
Rl

t + σ̄Sεt −RdS
t

)
lSt−1 +RdS

t eSt−1

)
dG(εt).

It comprises the earnings that the fund would get if the defaulted deposits would pay

in full plus the loss it makes due to non-repayment of the full deposit rate. Rewriting it as

follows:

ΠS
t = (1− x⋆

t )R
dS
t dSt +

(Rl
tl
S
t−1 −RdS

t dSt
)
−

∞̂

ε∗t

((
Rl

t + σ̄Sεt −RdS
t

)
lSt−1 +RdS

t eSt−1

)
dG(εt)

 =

(1− x⋆
t )R

dS
t dSt +Rl

tl
S
t−1 −RdS

t dSt − lSt−1σ̄
S τS

Qt−1

√
2π

e
−
(
(Rl

t−RdS
t )Qt−1

σ̄S
√
2τS

+
RdS
t Qt−1

ϕSt−1σ̄
S
√
2τS

)2

−

(
Rl

tl
S
t−1 −RdS

t dSt
)
x⋆
t = Rl

tl
S
t−1 (1− x⋆

t )− lSt−1σ̄
S τS

Qt−1

√
2π

e
−
(
(Rl

t−RdS
t )Qt−1

σ̄S
√
2τS

+
RdS
t Qt−1

ϕSt−1σ̄
S
√

2τS

)2

.
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The household’s first-order conditions are:

DR : σ0Ψ
′
DR

t

(
DR

t , D
S
t

)
− λct + βEtλct+1R

dR
t = 0, (38)

DS : σ0Ψ
′
DS

t

(
DR

t , D
S
t

)
− λct + βEt

{
λct+1x

⋆
t+1

}
RdS

t+1 = 0, (39)

R : C−σc
t − λct = 0, (40)

ER
s : −λct + βEt

{
λct+1R

eR
s,t+1

}
+ µR

s,t = 0, (41)

ER
r : −λct + βEt

{
λct+1R

eR
r,t+1

}
+ µR

r,t = 0, (42)

ES
H : −λct + βEt

{
λct+1R

eS
t+1

}
= 0, (43)

where λct, µ
R
s,t and µR

r,t are the Lagrangian multipliers for the budget constraint and the two

non-negativity equity constraints.

Equations (38) and (39) are the Euler equations for the consumption-deposit choice. The

term
∂Ψ(DR

t ,DS
t )

∂D
can be interpreted as a liquidity premium for holding each type of deposits.

Equation (40) expresses the marginal utility of consumption. Equations (41), (42) and (43)

determine the state-contingent required rates of return on three types of equity.

I Data and Calibration

I.1 Measuring the Sizes of the Banking Sectors

The measures of the banking sectors come from the Z.1 release of the Financial Accounts

of the United States (Flow of Funds) as of 2022:Q1. The nominal size of regulated banks is

estimated with FOF code ’FL704190005.Q’. The nominal measure of shadow banks sums the

following FOF codes: ’FL792150005.Q’, ’FL634090005.Q’, ’FL893169175.Q’, ’FL663070675.Q’,

’FL674122005.Q’ and ’FL614190005.Q’. To measure them in real terms, I divide my estimates

by GDP implicit price deflator from FRED (’USAGDPDEFQISMEI’).

I.2 Calibration

Accounting for the banking costs, the expressions of loan returns become:

ωS
t+1 = max

[(
Rl

t+1 + σS
t

εSt+1

Qt

− fS

)
lSt −RdS

t+1d
S
t+1, 0

]
,

ej,Rt+1 = max

[(
Rl

t+1 + σj,R
t

εRt+1

Qt

− fR

)
lj,Rt +RdR

t dj,Rt , 0

]
− zjt+1,

(44)

where j = s, r stands for the safe and risky representative regulated bank, respectively.
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To calibrate the variance of the idiosyncratic shock τ 2R, I link the production function

of the risky firm to the production function of the safe firm that has a preexisting debt.

Remember that the next period returns to safe and risky loans are given by

Rl
t+1 =

αAt+1

Qt

(
Kt+1

Ht+1

)α−1

+ (1− δ)
Qt+1

Qt

,

Rlr
t+1 = Rl

t+1 + σRF
εt+1

Qt

,

respectively. The parameter σRF captures the exposure to the idiosyncratic shock. The risky

bank that finances the maximum share of risky projects earns

Ωrisky
t+1 = Rlr

t+1QtK
r
t+1.

It comprises EBITDA and what the bank makes or loses by selling the capital to capital

producers. The safe bank with preexisting debt earns

Ωsafe
t+1 = Rl

t+1Qt (Kt+1 +Bt)−QtBtR
B
t =

(
Rl

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
QtKt+1,

where Bt is a predetermined debt, measured in units of capital, and RB
t is a predetermined

interest rate. I equate the conditional variances of the returns to loans

V art
(
Rlr

t+1

)
= V art

(
Rl

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
to find the variance of the idiosyncratic shock that matches Debt

EBITDA
= 7. Note that

V art
(
Rlr

t+1

)
= V art

(
Rl

t+1

)
+

(
σRF

Qt

)2

τ 2R,

V art

(
Rl

t+1

(
1 +

Bt

Kt+1

)
− Bt

Kt+1

RB
t

)
=

(
1 +

Bt

Kt+1

)2

V art
(
Rl

t+1

)
,

where Kt+1 is the steady-state level of capital of the safe firms that are financed by regulated

banks and Qt = 1.

The conditional variance of the returns on safe loans is given by

V art
(
Rl

t+1

)
= α2

(
Kt+1

Ht+1

)2α−2

V art (At+1) + (1− δ)2V art (Qt+1)+

2α

(
Kt+1

Ht+1

)α−1

(1− δ)Covt (At+1, Qt+1) .
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There is a way to calculate the conditional variance of Qt+1 by picking up its process

from the optimization problem of capital producers. However, my approach is meant to be

suggestive, and I consider that the conditional variance of Qt+1 is the same as the conditional

variance of the aggregate shock. The covariance term is expected to be positive but I drop it

in my calculations because the terms that multiply it are small. The model’s counterpart for

EBITDA is a total output net of compensation for labor. Thus

Debt

EBITDA
=

Bt

Y safe
t −WtH

safe
t

=
Bt

αY safe
t

.

The data analog of σRF is the share of leveraged loans held by regulated banks. I calibrate

σRF to 45% that comes from the Shared National Credit Report issued by the Fed, OCC,

and FDIC.

J Optimal Policies

J.1 Optimal Dynamic Capital Requirements

The Ramsey problem can be written in general terms as follows:

W0 = max
{x̃t,γt}∞t=0

E0

∞∑
t=0

βtU (x̃t−1, x̃t, ςt) ,

subject to

Etg (xt−1, xt, xt+1, ςt) = 0,

where xt is a vector of endogenous variables and ςt is a vector of exogenous variables. The

N × 1 vector xt is partitioned as xt = (x̃′
t, γt)

′. Given the sequence of the policy instrument

{γt}∞t=0, the remaining N − 1 endogenous variables need to satisfy the N − 1 structural

equilibrium conditions which are captured by the vector g.

I propose {γ∗
t }

∞
t=0 that is set at the lowest level that prevents regulated banks from

financing risky firms in every period following the shock. To understand how I choose it,

consider an alternative path
{
γA
t

}∞
t=0

in which γA
t = γ∗

t for t ̸= tk and γA
t = γ∗

t + ∆ for

t = tk where ∆ ̸= 0. When ∆ > 0,
{
γA
t

}∞
t=0

is welfare dominated by {γ∗
t }

∞
t=0 because a

higher capital requirement in period tk leads to welfare losses from the reduced amount of

liquidity services without altering risk-taking incentives. This holds for any tk (and any

combination of tk) and does not depend on the size of ∆ > 0. When ∆ < 0, regulated

banks switch into financing socially inefficient risky projects in period tk under
{
γA
t

}∞
t=0

. On
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the one hand, a decrease in the capital requirement involves a social loss of ξR for making

loans. On the other hand, it increases liquidity services that enter into the utility function of

households directly. The trade-off between these two considerations determines the impact

on welfare. For a relatively small decrease in capital requirements (i.e. ∆ is close to zero),

the former consideration is more important, and thus total welfare falls. In fact, there is an

inefficiency loss of approximately ξRQtl
R∗
tk

from a switch into financing risky loans (where lR∗
tk

is the amount of loans in period tk under the path {γ∗
t }

∞
t=0), while the effects on liquidity are

negligible or even negative due to the inefficiency that encompasses all loans after the switch.

For a larger decrease in capital requirements (i.e. for ∆ < ∆∗), the latter consideration starts

to dominate. In fact, since households value each unit of liquidity services relatively more

than the economy, on average, loses from making risky loans (i.e. ς0 > ξR in the calibration),

welfare is decreasing in ∆, and thus the benefits from liquidity services can outweigh the costs

of switching into financing risky projects. The gains from liquidity services are maximized

when γA
tk
= 0. Therefore, I need to compare conditional welfare under {γ∗

t }
∞
t=0 against the

alternatives that let the capital requirement fall to zero in some periods.

I use a similar numerical procedure developed in Canzoneri et al. (2020) to verify whether

corner conditions implying zero capital requirements that maximize the benefits from liquidity

provision are dominated by the policy described above. I find that the calculated capital

requirements are, in fact, welfare superior to that alternative for each of the shocks considered

in the text.

J.2 Adaptation to Occbin

To adapt my framework to OccBin, I break it into three different models. The constraints

that capture the signs of the Lagrange multipliers on the loan and equity constraints of

regulated banks control the switching from one model to another. Accordingly,

1. The Safe model describes the reference regime with µt = 0 in which χs
2,t = 0, χr

2,t > 0,

µR
s,t = 0, and µR

r,t > 0.

2. The Risky model describes the alternative regime with µt = 1 in which χs
2,t > 0, χr

2,t = 0,

µR
s,t > 0, and µR

r,t = 0.

3. The Mixed model describes the alternative regime with 0 < µt < 1 in which χs
2,t > 0,

χr
2,t > 0, µR

s,t > 0, and µR
r,t > 0.

27



K Capital Quality Shock

K.1 Firms – including capital quality shock

The safe production technology is given by

Y s
j,t = At (ιtKj,t)

αH1−α
j,t ,

for j ∈ [νt, 1] where At is a total factor productivity and ιt is the quality of capital (so that

ιtKj,t is the effective amount of capital). The risky production technology is given by

Y r
j,t = At (ιtKj,t)

αH1−α
j,t + εj,tιtKj,t,

for j ∈ [0, νt] and where εj,t is the same idiosyncratic shock described in the main text.

The maximization problem can be expressed as

max
lt,Kj,t+1

Et

{
β
λct+1

λct

max
Hj,t+1

(
Yj,t+1 + (1− δ)Qt+1ιt+1Kj,t+1 −Wt+1Hj,t+1 −Rl

j,t+1lj,t
)}

, (45)

subject to constraints of the production technology and financing QtKj,t+1 = lj,t. The solution

implies that:

Wt+1 = (1− α)At+1

(
ιt+1Kj,t+1

Hj,t+1

)α

. (46)

under all states of nature.

The Lagrangian of the risky firm is:

Lrisky =Et

{
β
λct+1

λct

[
At+1 (ιt+1Kj,t+1)

αH1−α
j,t+1 + εj,t+1ιt+1Kj,t+1 + (1− δ)Qt+1ιt+1Kj,t+1 −Wt+1Hj,t+1 −Rl

j,t+1lj,t
]}

+

λr
HtEt

{
β
λct+1

λct

[(
(1− α)At+1

Wt+1

)1/α

ιt+1Kj,t+1 −Hj,t+1

]}
+ λr

lt (lj,t −QtKj,t+1) .

Notice that there is no expectation operator on the Lagrangian multipliers because those

constraints hold under every state of nature. The problem implies the following first-order
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conditions

∂Lrisky

∂lj,t
= −Et

{
β
λct+1

λct

Rl
j,t+1

}
+ λr

lt = 0,

∂Lrisky

∂Kj,t+1

= Et

{
β
λct+1

λct

[
αAt+1ι

α
t+1

(
Kj,t+1

Hj,t+1

)α−1

+ ιt+1εj,t+1 + (1− δ)ιt+1Qt+1

]}
+

λr
HtEt

{
β
λct+1

λct

(
(1− α)At+1

Wt+1

)1/α

ιt+1

}
− λr

ltQt = 0,

∂Lrisky

∂Hj,t+1

= (1− α)At+1

(
ιt+1Kj,t+1

Hj,t+1

)α

−Wt+1 + λr
Ht [−1] = 0.

Combining ∂Lrisky

∂Hj,t+1
= 0 with equation (46) yields λr

Ht = 0. Then, plugging ∂Lrisky

∂lj,t
= 0 into

∂Lrisky

∂Kj,t+1
for λr

lt, we get

Et

{
β
λct+1

λct

Rl
j,t+1

}
Qt = Et

{
β
λct+1

λct

[
αAt+1ι

α
t+1

(
Kj,t+1

Hj,t+1

)α−1

+ (1− δ)ιt+1Qt+1 + ιt+1εj,t+1

]}
.

Applying equation (46) for both types of firms results in:

Ki,t+1

Hi,t+1

=
Kj,t+1

Hj,t+1

=
Kt+1

Ht+1

(47)

under all states of nature. But remember that

Et

{
β
λct+1

λct

Rl
i,t+1

}
Qt = Et

{
β
λct+1

λct

[
αAt+1ι

α
t+1

(
Ki,t+1

Hi,t+1

)α−1

+ (1− δ)ιt+1Qt+1

]}
=

Et

{
β
λct+1

λct

[
αAt+1ι

α
t+1

(
Kt+1

Ht+1

)α−1

+ (1− δ)ιt+1Qt+1

]}
= Et

{
β
λct+1

λct

Rl
t+1

}
Qt.

Therefore

Et

{
β
λct+1

λct

Rl
j,t+1

}
Qt = Et

{
β
λct+1

λct

[
Rl

t+1Qt + ιt+1εj,t+1

]}
.

The solution implies

Rl
t ≡ Rl

i,t =
αAtι

α
t

Qt−1

(
Kt

Ht

)α−1

+ (1− δ)ιt
Qt

Qt−1

=
αY s

i,t

Ki,tQt−1

+ (1− δ)ιt
Qt

Qt−1

,

Rl
j,t = Rl

t +
ιtεj,t
Qt−1

,

for all j ∈ [0, νt] and i ∈ [νt, 1].
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K.2 Banks – Including Capital Quality Shock

In case we include capital adjustment costs together with a capital quality shock, the

bank’s problem is described as follows:

max
lt,et,σt

Et

βλct+1

λct

∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

((
Rl

t+1 +
σtιt+1εt+1

Qt

)
lt −Rd

t (lt − et)

)
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1 − (1 + κ) et

 .

Expression of the integral:

Et

β
λct+1

λct

lt

σtιt+1

Qt

∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

εt+1
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1+

(
Rl

t+1 −Rd
t (1− γt)

) ∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1


 .

Break the calculation of the integral into two parts.

∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

εt+1
1√
2πτ 2

e−
(εt+1+ξ)2

2τ2 dεt+1 =

Introduce a change in variables to recast the integral in terms of the Standard Normal

distribution. Use v = εt+1+ξ√
2τ

, or equivalently εt+1 = v
√
2τ − ξ, and remember that for

the change x = φ(t), the integral
´ φ(b)
φ(a)

f(x)dx becomes
´ b
a
f(φ(t))φ′(t)dt. Here we use that

dv = dεt+1√
2τ

, so we need to multiply dv by
√
2τ to express dεt+1 in terms of dv. Moreover, we

need to transform the lower limit using v. So we need to add ξ to the lower limit of the

integral and divide the result by
√
2τ .

∞̂

(Rd
t (1−γt)−Rl

t+1)Qt+σtιt+1ξ

σtιt+1
√

2τ

(
v
√
2τ − ξ

) √
2τ√
2πτ 2

e−v2 dv =

∞̂

(Rd
t (1−γt)−Rl

t+1)Qt+σtιt+1ξ

σtιt+1
√
2τ

(
v
√
2τ − ξ

) 1√
π
e−v2 dv =
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τ√
2π

e
−
(
(Rd

t (1−γt)−Rl
t+1)Qt+σtιt+1ξ

σtιt+1
√
2τ

)2

− ξ

2

[
1− erf

((
Rd

t (1− γt)−Rl
t+1

)
Qt + σtιt+1ξ

σtιt+1

√
2τ

)]
.

Where we used that erf(x) = 2√
π

´ x
0
e−v2 .

Let’s express
´∞(

Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

1√
2πτ2

e−
(εt+1+ξ)2

2τ2 dεt+1 in terms of the error function.

Again, use the transformation v = εt+1+ξ√
2τ

or εt+1 = v
√
2τ − ξ

∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

√
2τ√
2πτ 2

e−v2 dv =
1√
π

∞̂

(
Rd
t (lt−et)

σtlt
−

Rl
t+1
σt

)
Qt

ιt+1

e−v2 dv =

1

2

(
1− erf

((
Rd

t (lt − et)

σtlt
−

Rl
t+1

σt

)
Qt

ιt+1

))
.

Therefore,

Ω(µt, σt; lt, dt, et) = Et

{
β
λct+1

λct

lt

[(
Rl

t+1 −Rd
t (1− γt)

)
2

[
1− erf

((
Rd

t (1− γt)−Rl
t+1

)
Qt + σtιt+1ξ

σtιt+1

√
2τ

)]
+

σtιt+1

Qt

 τ√
2π

e
−
(
(Rd

t (1−γt)−Rl
t+1)Qt+σtιt+1ξ

σtιt+1
√

2τ

)2

− ξ

2

[
1− erf

((
Rd

t (1− γt)−Rl
t+1

)
Qt + σtιt+1ξ

σtιt+1

√
2τ

)]

 .

L Derivation of ∆

E
∞∑
t=0

βt

[
(1−∆)C1−σc

opt,t − 1

1− σc

+ σ0Ψ
(
DR

opt,t, D
S
opt,t

)]
=

E
∞∑
t=0

βt

[
C1−σc

rule,t − 1

1− σc

+ σ0Ψ
(
DR

rulej ,t
, DS

rulej ,t

)]
,

E

∞∑
t=0

βt

[
C1−ϱc

t − 1

1− ϱc
+ ς0

D1−ςd
t − 1

1− ςd

]
Let Welf opt be the welfare level attained under the optimal policy and Welf rule be the

welfare level attained under a particular rule. For given paths of consumption and deposits,

we are interested in sizing a permanent tax ∆ applied to the consumption utility stream

under the optimal rule such that the level of welfare under the optimal policy with the tax is
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equal to the level of welfare under the suboptimal rule. Thus,

E

∞∑
t=0

βt

[
((1−∆)Copt,t)

1−σc − 1

1− σc

+ σ0Ψ
(
DR

opt,t, D
S
opt,t

)]
= Welf rule,

which can be rewritten as

E

∞∑
t=0

βt

[
(1−∆)1−σc (Copt,t)

1−σc − 1

1− σc

+ σ0Ψ
(
DR

opt,t, D
S
opt,t

)]
= Welf rule,

Taking out (1−∆)1−σc :

E

∞∑
t=0

βt

[
(1−∆)1−σc

(Copt,t)
1−σc − 1

1− σc

+ σ0Ψ
(
DR

opt,t, D
S
opt,t

)
+

(1−∆)1−σc − 1

1− σc

]
= Welf rule,

It can be further re-written as follows:

E
∞∑
t=0

βt

[(
(1−∆)1−σc − 1

) (Copt,t)
1−σc − 1

1− σc

+
(Copt,t)

1−σc − 1

1− σc

+

σ0Ψ
(
DR

opt,t, D
S
opt,t

)
+

(1−∆)1−σc − 1

1− σc

]
= Welf rule,

Let denote Welf opt
C = E

∞∑
t=0

βt (Copt,t)
1−σc−1

1−σc
the welfare from the consumption utility stream

attained under the optimal policy. Hence,

(
(1−∆)1−σc − 1

)
Welf opt

C +Welf opt +
(1−∆)1−σc − 1

(1− σc)(1− β)
= Welf rule,

where it is used that
∞∑
t=0

βt = 1
1−β

.

Deriving ∆:

∆ = 1−

1− Welf opt −Welf rule(
Welf opt

C + 1
(1−β)(1−σc)

)
 1

1−σc

.
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M Additional Results
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Figure 9. Responses to a Rise in Volatility of Risky Returns in the Shadow Bank-
ing Sector: Capital requirements can be still a useful instrument for responding
to the purely sectoral shock that occurs in the shadow banking.

Note: This figure plots the responses to a 60 basis point rise in τSt . The shock follows an AR(1)
process with an autoregressive coefficient of 0.9. The shock is sized to increase the quarterly default
rate of shadow bank loans by 1% on impact. The solid lines show the responses under the optimal
capital requirement that is set at the minimum level to prevent excessive risk taking in every period
following the shock. The dashed lines show what would happen if the capital requirement were
to be held constant at its steady state value. SB and RB stand for shadow and regulated banks,
respectively.
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Figure 10. Responses to a Rise in Volatility of Risky Returns in the Regulated
Banking Sector: No reintermediation channel.

Note: This figure plots the responses to a 60 basis point rise in τRt under the optimal capital
requirement (that is set at the minimum level to prevent excessive risk taking in every period
following the shock) for two models. The shock follows an AR(1) process with an autoregressive
coefficient of 0.9. The solid lines show the responses of the baseline model with shadow banks. The
dashed lines show what would happen in the model without shadow banks (i.e. regulated banks
only). SB and RB stand for shadow and regulated banks, respectively.
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N Additional Tables and Figures

Table 6: Comparison of Two Types of Banks.

Bank
Features

Deposit Insurance Risk-Taking

Regulated Full Endogenous: σR ≤ σt ≤ σ̄R

Shadow No Endogenous: σS ≤ σt ≤ σ̄S

Bank
Features

Regulation Life Span

Regulated Capital Requirement Infinitely-lived

Shadow No Finite horizon: continues with probability θ

Bank
Features

Modeling Frictions

Regulated Moral hazard associated with deposit insurance and limited liability

Shadow Moral hazard associated with limited liability and costly enforcement

Bank
Features

Loan portfolio

Regulated
Returns to Safe projects:

(
1− σR

t

)
Rl

t+1

Returns to Risky projects: σR
t

(
Rl

t+1 +
εRt+1

Qt

)
where εRt+1 ∼ N

(
−ξR, τ

2
R

)
for ξR > 0

Shadow
Returns to Safe projects:

(
1− σS

t

)
Rl

t+1

Returns to Risky projects: σS
t

(
Rl

t+1 +
εSt+1

Qt

)
where εSt+1 ∼ N

(
0, τ2S

)
Note: This table shows the main differences in the modeling approach of two types of banks.
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Figure 11. Overview of the Model.

Note: This figure plots the overview of the model.
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Figure 12. Timeline for Two Types of Bankers.

Note: This figure plots the timelines for two types of banks.
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