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Abstract

In this survey paper we present classical and recent results relating the auction design and
the optimal transportation theory.

1 Introduction
The optimal transportation theory attracts nowadays substantial attention of researchers in eco-
nomical science. Among other applications let us mention the problems of matching, equilibrium,
mechanism design, multidimensional screening, urban planning and financial mathematics. De-
tailed expositions are given in books Galichon [11], Santambrogio [22], but now they are far from
being complete, because the number of related articles is rapidly growing every year.

The auction theory is a modern branch in economics, several researchers in this field were
awarded with Nobel Prizes in the 21st century. The aim of this expository paper is to present
some classical and new result from the auction theory to a mathematically-minded reader, unfamil-
iar with economical applications. As the reader will realize, a deep understanding of the auction
design model requires a solid mathematical background, which include linear programming and
duality theory, PDE’s, variational calculus and functional analysis. The generally recognized math-
ematical approach to auctions was given in the celebrated paper of Myerson [20] from 1981, where
he completely solved the problem for the case of one good. But still very little is known in the gen-
eral case and the author hopes that this short survey could be useful for mathematicians interested
in economical applications.

The first part of this paper presents the description of the Myerson’s model and related classical
results. In is followed by a short introduction to the optimal transportation theory. Then we start
to discuss recent results. A remarkable relation between optimal transportation and auction theory
for the case of 1 bidder was discovered by Daskalakis, Deckelbaum and Tzamos in their celebrated
paper [9]. We present the result from [9] and consequent developments and extensions for many
bidders obtained in [14], then discuss some open problems and the perspectives.

The author thanks Ayrat Rezbaev and Konstantin Afonin for their help in preparation of this
manuscript.

Author acknowledges the support of RSF Grant №22-21-00566 https://rscf.ru/en/project/22-
21-00566/. The article was prepared within the framework of the HSE University Basic Research
Program.
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2 Auctions

2.1 The model: 1 bidder
The standard Bayesian auction design deals with the following model: we consider a set of m
bidders and n items of goods, n,m ∈ N. Items are supposed to be divisible and normalized in such
a way that the total amount every item is exactly one unit.

We attribute to every bidder its "private information" vector xj ∈ X = [0, 1]n, which specifies
the willingness of the bidder j to pay for each item. Thus, the utility for bidder j receiving a bundle
pj ∈ Rn+ of items for the price tj ∈ R can be computed as follows:

⟨pj , xj⟩ − tj .

Let us start with the case of m = 1 bidder. The private information is distributed according to
a given probability law

ρ(x)dx.

The auctioneer offers to the bidder

• Allocation function
P : X → X,

P = (P1, P2, · · · , Pn). Here Pi(x) is the amount of i-th item which auctioneer sells to the
bidder of type x.

• The price function T : X → R+. This is the amount of money the bidder pays for the bundle
P .

The map (P, T ) is called mechanism. The bidder is supposed to report his type x to the
auctioneer. In order to prevent the situation when the bidder reports the false value, the auctioneer
has to make some restrictions on the mechanism. More precisely, if the the bidder claims to have
type x′ instead of x, the bidder’s utility must decrease:

⟨x, P (x)⟩ − T (x) ≥ ⟨x, P (x′)⟩ − T (x′). (1)

Thus the mechanism must satisfy assumption (1), which is called "incentive compatibility assump-
tion".

Another natural assumption is assumption of "individual rationality": the utility has to be
nonnegative:

⟨x, P (x)⟩ − T (x) ≥ 0. (2)

The aim of the auctioneer is to maximize the total expected revenue:∫
X

Pρdx→ max

over all mechanisms (P, T ) satisfying assumptions (1), (2).
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2.2 The model : many bidders
Let us consider the case of m > 1 bidders. The types of bidders are supposed to be distributed
according to a probability law ρ(xj)dxj and, in addition, we assume that they are chosen indepen-
dently.

Thus we work with the model space
X = Xm

and use the following notations:

x ∈ X, x = (x1, · · · , xm), xj ∈ Rn, 1 ≤ j ≤ m

xj = (x1,j , x2,j , · · · , xn,j), xi,j ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The space X is equipped with the probability measure

ρdx =

m⊗
j=1

ρ(xj)dxj .

When we talk about distribution of a function f : X → R, we mean the distribution of f considered
as a random variable on the space (X, ρdx) equipped with the standard Borel sigma-algebra.

The auctioneer creates m mechanisms (Pj , Tj), where Pj is the bundle of items received by the
bidder j for the price Tj . for every bidder. Formally, a mechanism (auction) is a map

(P, T ) : Xm → Rn×m+ × Rm, (P, T ) = (Pj , Tj)1≤j≤m.

Pj = (P1,j , · · · , Pn,j) ∈ Rn+, Tj ∈ R.

In case of many bidders we have to add additional assumption of feasilibily: the mechanism is
feasible if for every item i

m∑
j=1

Pi,j(x) ≤ 1. (3)

This restriction means that the auctioneer has at most one unit of every item to sell.
As before, the auctioneer is looking for the maximum of the expected revenue:∫

X

( ∑
1≤j≤m

Tj
)
ρdx→ max . (4)

As in the case of 1 bidder the auctioneer has to solve the problem of preventing the misreport.
Informally, this can be done in the following way: the expected revenue of individual bidder under
condition that the other bidders report their true types to the auctioneer must decrease if the bidder
misreports his type.

Formally, we introduce the following marginals of the mechanism:

P j(xj) =

∫
Xm−1

Pj(x1, · · · , xm)
∏
i ̸=j

ρ(xi)dx1 · · · dxj−1dxj+1 · · · dxm. (5)

T j(xj) =

∫
Xm−1

Tj(x1, · · · , xm)
∏
i ̸=j

ρ(xi)dx1 · · · dxj−1dxj+1 · · · dxm. (6)
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We note that the mapping (P j , T j) (which is called reduced mechanism) is nothing else but
the conditional expectation of (Pj , Tj) with respect to the random vector xj . We write

(P j , T j) = Eρ
(
(Pj , Tj)|xj

)
.

The mechanism is called incentive-compatible if〈
P j(xj), xj

〉
− T j(xj) ≥ ⟨P j(x′j), xj⟩ − T j(x

′
j) (7)

and individually-rational if 〈
P j(xj), xj

〉
− T j(xj) ≥ 0 (8)

Finally, we are ready to formulate the general auctioneer’s problem: maximize the expected
revenue ∫

X

( ∑
1≤j≤m

Tj
)
ρdx

over all feasible (3), incentive-compatible (7) and individually-rational (8) mechanisms.

2.3 Some explicit solutions
The formulation of the auction design problem as stated above goes back to the celebrated paper
of Myerson [20]. In this work Myerson proved equivalence of different types of auctions. Moreover,
he proved that in the case of n = 1 item the auction problem admits an explicit solution.

Apart from the n = 1 case the explicit solutions are rare. The following example was given in
[15].

Example 1. Let n = 2, m = 1 and ρ be the Lebesgue measure on X = [0, 1]2. The square is divided
in four parts as shown on Figure 1 (the picture is taken from [14]). If the type of the bidder belongs
to Z, then the bidder receives no goods and pays nothing. In the region A the bidder receives the
first good and pays 2/3, in B the bidder receives the second good and pays 2/3. Finally, in the region
W the bidder receives both goods and pays (4−

√
2)/3.

This examples demonstrates, in particular, that even in apparently simple cases the solution
can not be reduced to one dimensional ones (the optimal mechanism neither sells goods together
nor separately). See in this respect [14], D.2.

Some other examples of explicit solutions can be found in [9].

2.4 The monopolist’s problem and Rochet representation
In the important particular case of m = 1 bidder the auctioneer’s problem can be reduced to a
maximization problem for functions (not to mechanisms). The problem turns out to be a particular
case of the so-called monopolist’s problem. This approach goes back to Rochet (see [21] and the
references therein). See also new results about the monopolist problem in [10], [17], [18], [3].

Let m = 1. Given a mechanism (P, T ) let us consider the utility function

u(x) = ⟨P (x), x⟩ − T (x)

(note that (P, T ) = (P , T )).
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Figure 1: Partition of the square for n = 2,m = 1 and the Lebesgue measure

Clearly, individually-rationality assumption is equivalent to u ≥ 0. The incentive compatibility
can be rewritten as follows:

u(x) = ⟨P (x), x⟩ − T (x) ≥ ⟨P (x′), x⟩ − T (x′) = u(x′) + ⟨P (x′), x− x′⟩.

Then it can be easily concluded that incentive compatibility is equivalent to convexity of u and, in
addition, one has:

P = ∇u

(more precisely, P ∈ ∂u, where ∂u is the subdifferential of u).
Thus the incentive compatible and individually-rational mechanism can be recovered from utility

u. Clearly, feasibility Pi ≤ 1 and nonnegativity Pi ≥ 0 is equivalent to condition:

0 ≤ uxi ≤ 1

for all i. We say that a function f on X is increasing, if xi → f(x) is an increasing function for
all fixed values xj , j ̸= i. Clearly, for a differentiable function f this is equivalent to assumption
fxi

≥ 0 for all i.
In what follows we denote by U the set of convex increasing functions satisfying u(0) = 0.
Thus we get the following:

Theorem 1. (Rochet) For m = 1 bidder the auctioneer’s problem is equivalent to the problem
of maximization of ∫

[0,1]n

(
⟨x,∇u(x)⟩ − u(x)

)
ρ(x)dx

over all convex nonnegative functions u on [0, 1]n satisfying 0 ≤ uxi ≤ 1 for all i.
Equivalently maximization can be taken over functions belonging to U .

Let us briefly describe another related problem: the so-called monopolist’s problem, going back
to Mussa–Rosen [19]. Similarly to the auctioneer’s problem the initial formulation was given in
terms of mechanisms and a reduction to optimization problem in certain class of utility functions
has been obtained in a seminal paper of Rochet and Choné [21].
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Monopolist’s problem: Given a function φ and a probability distribution ρ find maximum of

Φ(u) =

∫
[0,1]n

(
⟨x,∇u(x)⟩ − u(x)− φ(∇u)

)
ρ(x)dx

on the set of convex increasing nonegative functions.
Function φ is usually supposed to be convex and is interpreted as a cost of the (multidimensional)

product ∇u. In particular, choosing φ = δ[0,1]n , we get the auctioneer’s problem for one bidder.
Here indicator function δA is defined for a given set A as follows : δA(x) = 0 for x ∈ A and
δA(x) = +∞ for x /∈ A.

A systematic investigation of solutions to the monopolist’s problem was made in the seminal
paper [21]. We emphasize that despite of a classical form of the "energy" functional Φ, the convexity
and monotonicity constraints makes unable the classical variational approach to the analysis of the
monopolist problem. In general, any solution u to this problem splits X into three different regions:

• Indifference region
Ω0 = {u = 0}

• Bunching region Ω1: u ̸= 0, D2u is degenerated

• Ω2: u is strictly convex: D2u > 0 (nonbunching regions).

The word "bunching" refers to a situation where a group of agents having different types are
treated identically in the optimal solution. The standard technique of calculus of variation is
available only inside of Ω1, where we get that u solves the quasi-linear equation

div(∇φ(∇u))− 1− div(x · ρ) = 0.

Rochet and Choné suggested a hypothesis about explicit solution for φ(x) = 1
2 |x|

2 and n = 2.
However, their guess turns out to be wrong. Recently McCann and Zhang [18] gave a description
of the solution partially based on rigorous proofs and partially on numerical simulations. An
additional important ingredient is the proofs is a regularity result for solutions to monopolist’s
problem obtained in [7]. As we will see, despite of the fact that the solution can be described in
many details, it looks impossible to give a closed-form solution even in this model case.

More, precisely, McCann and Zhang studied the maximization problem∫
[a,a+1]2

(
⟨x,∇v(x)⟩ − v(x)− 1

2
|∇v(x)|2

)
dx→ max, v ∈ U . (9)

They proved that the solution v splits [a, a+ 1]2 into the following regions:

{∇v = 0} ⊂ Ω0 = {(x, y) ∈ [a, a+ 1]2 : x+ y < a+ y0},
{detD2v = 0, ∇v > 0} ⊂ Ω1 = Ω0

1 ∪ Ω±
1 , (10)

{detD2v > 0} ⊂ Ω2 = cl([a, a+ 1]2\(Ω0 ∪ Ω1)),

where

Ω0
1 = {(x, y) ∈ [a, a+ 1]2 : a+ y0 ≤ x+ y ≤ a+ y1},

Ω±
1 = {(x, y) ∈ Ω1\Ω0

1 : ± (x− y) ≥ 0}.

According to [7] every solution v to (9) belongs to C1. This information was used to construct
the solution v as follows:
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1.
v(x, y) = 0, (x, y) ∈ Ω0. (11)

2.
v(x, y) =

3

8
(x+ y)2 − a

2
(x+ y)− 1

2
ln(x+ y − 2a) + C0, (x, y) ∈ Ω0

1, (12)

for some C0, defined by property of regularity of v on ∂Ω0
1 ∩ ∂Ω±

1

3. Function v has the following form on Ω−
1 :

v(x, y) = v(z(r, θ)) = m(θ)r + b(θ), (x, y) ∈ Ω−
1 , (13)

where
z(r, θ) = (a, h(θ)) + r(cos θ, sin θ), θ ∈

(
−π
4
,
π

2

]
, r ∈ [0, R(θ)],

for some functions R : [−π
4 ,

π
2 ] → [0,

√
2) and m, b. Function v is symmetrically extended to

Ω±
1 .

4. 
∆v2(x, y) = 3, (x, y) ∈ IntΩ2;

⟨∇v2(x, y), n(x, y)⟩ = ⟨(x, y), n(x, y)⟩, (x, y) ∈ ∂Ω2 ∩ ∂X;

v2 = v|Ω1
, (x, y) ∈ ∂Ω1 ∩ ∂Ω2.

(14)

5. In addition, since v ∈ C1(X), one has to assume the Neumann boundary condition

⟨∇v2(x, y), n(x, y)⟩ = ⟨∇v1(x, y), n(x, y)⟩, (x, y) ∈ ∂Ω1 ∩ ∂Ω2, (15)

here v1 := v|Ω1
.

The main result of [18] is the following characterization.

Theorem 2. Assume that v ∈ U satisfies (11) – (15), and v, Ω2 are Lipschitz. Then v is the unique
solution to (9).

2.5 Stochastic domination and reduction to maximization problem for
functions

Does there exist a reduction in the spirit of Theorem 1 for many bidders? The answer is affirmative
and the approach heavily relies on the symmetry of mechanism. Let us start with the result of
Hart and Reny [13] for the case of n = 1 item. Some earlier results in this spirit were obtained by
Matthews [16] and Border [5].

It turns out that the marginals of a feasible mechanism can be characterized in terms if stochastic
dominance.

Let for simplicity n = 1. First, without loss of generality we can restrict ourselves to symmetric
mechanisms. If (P, T ) is not symmetric, we can symmetrize it :(
P symj (x1, · · · , xm), T symj (x1, · · · , xm)

)
=

1

m!

∑
σ

(
Pσ(j)(xσ(1), · · · , xσ(m)), Tσ(j)(xσ(1), · · · , xσ(m))

)
,
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where the sum is taken over all the permutations of the bidders.
Clearly, the symmetrized mechanism satisfies the same restrictions and gives the same value to

the revenue. At this step we use that all the bidders are independently and identically distributed.
Thus without loss of generality everywhere below we will talk about symmetric mechanisms.

Consider P defined by (5) and for a fixed α ∈ R+ set A = {x : P (x) > α} ⊂ X. Using symmetry
and feasibility of the mechanism one obtains:

m

∫
X

P (x)IA(x)ρdx =

∫
X

( m∑
j=1

Pj(xj)IA(xj)
)
ρdx

≤
∫
X

I∃j:xj∈A(x1, · · · , xm)ρdx = 1−
(∫

Ac

ρ(x)dx
)m

.

Put p =
∫
Ac ρdx. ∫

X

(
P − α

)
+
ρdx =

∫
A

Pdx− α(1− p) ≤ 1

m
− pm

m
− α(1− p)

≤ 1

m
− α+

m− 1

m
α

m
m−1 =

∫ 1

0

(tm−1 − α)+dt.

Since the convex hull of functions (x−α)+ are precisely convex increasing functions, we obtain the
following important property: ∫ 1

0

f(P )ρdx ≤
∫ 1

0

f(tm−1)dx

for every convex increasing function f , i.e. the distribution of P is stochastically dominated by
the distribution of ξm−1, where ξ is uniformly distributed on [0, 1]. In what follows we write:

P ⪯ ξm−1

It was shown by Hart and Reny that the converse is also true: of ν ⪯ ξm−1, then ν is a
distribution of P for some symmetric mechanism P .

The general result for many bidders and items unifying results of Rochet and Hart–Reny was
obtained in [14]. In the same way as for n = 1 we define for a feasible symmetric mechanism (P, T ),
satisfying (8) and (7):

u(x) = ⟨P 1(x), x⟩ − T 1(x).

Then we prove that u is convex, nonnegative and increasing ((7), (8)), see [14], Lemma 2. Moreover
we conclude that

P 1 = ∇u(x)

and, repeating the above arguments, we prove that the distribution of P 1,i is stochastically dom-
inated by the distribution of ξm−1. Conversely, using the Hart–Reny theorem we can show that
every u ∈ U satisfying uxi ⪯ ξm−1 defines feasible, individually rational, incentive compatible
mechanism on Xm with the same total revenue ([14], Lemma 3). Thus we get the following:

Theorem 3. The value of the general auctioneer’s problem coincides with the maximum of

m

∫
[0,1]n

(
⟨x,∇u(x)⟩ − u(x)

)
ρ(x)dx
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over all convex nonnegative increasing functions u on [0, 1]n satisfying uxi ⪯ ξm−1, where ξ is
uniformly distributed on [0, 1] for all i.

Remark 1. It is easy to check that without loss of generality one can assume that u(0) = 0. Thus
the functional in the auctioneer’s problem can be equivalently rewritten in the form

m

∫
[0,1]n

(
⟨x,∇u(x)⟩ − u(x)

)
ρ(x)dx+mu(0).

3 Mass transportation problem
In this section we briefly recall some facts about optimal transportation theory, which are important
for application to the auction design. A comprehensive presentation of the mathematical theory of
transportation can be found in the books by [22] and [23] and in survey [4].

3.1 General optimal transportation problem
Let µ and ν be probability measures on measurable spaces X and Y , and let c : X × Y → R be a
measurable function. The classical Kantorovich problem is the minimization problem∫

X×Y
c(x, y) dπ → inf

on the space Π(µ, ν) of probability measures on X × Y with fixed marginals πx = µ and πy = ν.
It is well-known that this problem is closely related to another linear programming problem,

which is called “dual transportation problem”∫
f dµ+

∫
g dν → sup .

The dual transportation problem is considered on the couples of integrable functions (f, g), satis-
fying f(x) + g(y) ≤ c(x, y) for all x ∈ X, y ∈ Y .

These problems are linear programming problems and under broad assumptions the values of
both problems coincide. Complementary slackness condition gives that

f(x) + g(y) = c(x, y)

for π-almost all (x, y).

3.2 L1-transportation problem
The case when X = Y = RN and c(x, y) = |x − y|, where | · | is a norm, is special. In this case
the solution (f, g) to the dual problem satisfies f = −g and, in addition, f is a 1-Lipschitz function
with respect to | · |: |f(x)− f(y)| ≤ |x− y|. Thus the value of the dual problem equals

W1(µ− ν) = max


∫
X

ud(µ− ν) : u ∈ Lip(X)

 .
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The functional W1 is a norm on the space of the signed finite measures.
The transport density σ is a measure related to the solution γ as follows:

σ(B) =

∫
X×Y

H1([x, y] ∩B)γ(dx dy),

where H1 is the one-dimensional Hausdorff measure, [x, y] is the segment joining x and y. The
transport density satisfies the following equation

µ− ν = −div(∇u · σ),

which is understood in the weak sense.
More generally, given a cost c(x, y) and a signed measure π on X = Y satisfying π(X) = 0, one

can consider optimal transshipment problem∫
X×Y

c(x, y)dγ → min,

where γ satisfies γx − γy = π. The dual problem takes the form∫
X

udπ → max

over functions satisfying u(x)− u(y) ≤ c(x, y).

3.3 Beckmann’s problem.
Beckmann’s problem was introduced in [2] to model commodity flows. Mathematically it can be
stated as follows: we are given a (convex) function φ and a measure π on RN with π(RN ) = 0.
Then

Beckφ,ρ(π) = inf

{∫
RN

φ(c(x))ρdx, −div(c · ρ) = π

}
,

where c is a vector field and divergence is understood in the weak sense∫
RN

⟨∇f, c⟩ dx =

∫
RN

fdπ,

for all sufficiently smooth f .
If φ is a norm on Rn, the Beckmann problem is equivalent to the L1-transportation problem

(see [22]).

3.4 Congested transport
Beckmann’s problem is equivalent to a Monge-Kantorovich-type problem called “congested optimal
transport”; see [22] for the detailed presentation and references. Let us describe the equivalence
informally for Beckmann’s problem with the weight ρ ≡ 1. Given a domain Ω of a Euclidean space,
an absolutely continuous supply-demand imbalance measure π on Ω satisfying π(Ω) = 0, and a
convex function Φ, the following identity holds:

inf
c: div[c]+π=0

∫
Φ(c) dx = inf

Q:Q1−Q0+π=0

∫
Ω

Φ(iQ) dx. (16)
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Here Q ranges over to the set of all probability measures on “curves”, i.e., continuous mappings
γ : [0, 1] → Ω, and Qt denotes the probability measure on Ω obtained as the image of Q under the
map γ → γ(t) ∈ Ω. The object iQ is the so-called traffic intensity function which is defined so that
the following identity holds for any test function φ:∫

Ω

φ(x)iQ(x) dx =

∫ (∫ 1

0

φ(γ(t))|γ′(t)|dt
)

dQ(γ)

Formula (16) can be seen as a Lagrangian formulation of Beckmann’s problem taking a form of
a “problem for measures on curves.” It is a quasi-dynamical formulation, a version of which is well
known for the Monge-Kantorovich transportation problem; see [23].

3.5 Weak transport
Let µ, ν be probability measures on X. Assume we are given a cost function

c : X × P(X) → R+,

where P(X) is the space of probability measures on X. Consider the following nonlinear optimiza-
tion problem

Kc(ν|µ) := inf
σ∈Π(µ,ν)

∫
X

c(x, σx)µ(dx), (17)

where σx are conditional distributions, i.e. identity∫
X×X

f(x, y)σ(dx dy) =

∫
X

∫
X

f(x, y)σx(dy)µ(dx)

holds for every bounded Borel f . This problem is called weak (nonlinear) mass transportation
problem.

An important particular case of this problem is given by c(x, y) = |x−
∫
ypx(dy)|, where | · | is

a norm. Then the dual problem takes the form

sup

{∫
X

φdµ−
∫
X

φdν

}
,

where the supremum is taken over all convex 1-Lipschitz functions (see [12]).
This problem attracts a lot of attention withing the last decade. We refer to the nice survey paper

[1], where refer can find a long list of applications (measure concentration, Schrödinger problem,
martingale optimal transport).

Let us mention, in particular, a nice proof by duality of the Strassen theorem about character-
ization of the marginals of martingales (see [12]). Apart from auctions, some applications of weak
transport in economics (labor theory) were found in [8].

4 Mass transportation in 1-bidder case
A remarkable relation of the 1-bidder problem to the mass transportation problem was discovered
by Daskalakis, Deckelbaum and Tzamos in [9]. The main idea of [9] was to rewrite the auctioneer’s
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functional using integration by parts. Indeed, assume that ρ is sufficiently regular (at least C1(X)).
Then

m

∫
[0,1]n

(
⟨x,∇u(x)⟩ − u(x)

)
ρ(x)dx+mu(0) =

m
(∫

∂[0,1]n
u⟨x, ν⟩ρdHn−1 −

∫
[0,1]n

(
⟨x,∇ρ(x)⟩+ (n+ 1)ρ(x)

)
udx+ u(0)

)
.

Here Hn−1 is the Hausdorff measure of dimension n − 1 and ν is the outer normal to ∂X. We
rewrite the auctioneer’s problem in the form∫

X

udµ→ max,

where u is convex and increasing and

µ = m
(
⟨x, ν⟩ρHn−1 − (n+ 1)ρdx− ⟨x,∇ρ(x)⟩dx+ δ0

)
is a signed measure with zero balance: µ(X) = 0. We will call µ transform measure.

Finally, we get the following reformulation of the auctioneer’s problem with 1 bidder: find

max
u∈U,u∈Lip1(X)

∫
udµ

on the set of convex increasing 1-Lipschitz functions.
In this form the problem looks quite similar to the dual transportation problem, especially to

the dual weak L1-transportation problem. Indeed, additional constraints on u lead naturally to a
variant of the weak transportation problem.

Theorem 4. (Daskalakis–Deckelbaum–Tzamos). The 1-bidder problem is equivalent to a weak
transportation problem. In particular, the following duality relation holds:

max
u∈U,u∈Lip1(X)

∫
udµ = min

γ∈Γ

∫
X2

∥x− y∥1γ(dxdy),

where Γ is the set of nonnegative measures on X2 satisfying Pr1γ ⪰ µ+, Pr2γ = µ−.

Remark 2. Moreover, another duality relation holds for the related weak transshipment problem:

max
u∈U,u∈Lip1(X)

∫
udµ = min

γ:π⪰µ

∫
X2

∥x− y∥1γ(dxdy),

where π = Pr1γ − Pr2γ.

The proof of Theorem 4 is based on the application of the so-called Fenchel–Rockafellar
duality. Given two convex functionals Θ,Ξ with values in R ∪ {+∞} on a normed space E one
has the following form of the minimax principle:

inf
z∈E

(
Θ(z) + Ξ(z)

)
= max
z∗∈E∗

(
−Θ(−z∗)− Ξ(z∗)

)
, (18)
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provided there exists a point z0 such that Θ(z0) < ∞,Ξ(z0) < ∞, and Θ is continuous at z0. The
latter conditions is needed for application of the Hahn-Banach separation theorem and establishing
the existence of the maximum point at the right-hand side of the duality. The proof can be found
in [23].

The direct application of the Fenchel–Rockafellar duality to the functionals

Θ(f) =

{
0, if f(x, y) ≥ −∥x− y∥1
+∞, in the opposite case

Ξ(f) =

{∫
ψdµ− −

∫
ϕdµ+, iff(x, y) = ψ(y)− ϕ(x),where ψ, ϕ ∈ U(X)

+∞, in the opposite case.

gives

min
Pr1γ⪰µ+,Pr2γ⪯µ−

∫
X2

∥x− y∥1γ(dxdy) = sup
ϕ,ψ∈U,ϕ(x)−ψ(y)≤∥x−y∥1

(∫
ϕdµ+ −

∫
ψdµ−

)
,

where γ is a measure on X2 with

γ+(X) = γ−(X) = µ+(X) = µ−(X).

The proof will be completed if we show that without loss of generality one can assume φ = ψ
and replace condition Pr1γ ⪰ µ+ with Pr1γ = µ+.

The first statement was proved in [9], Lemma 5. Given ϕ ∈ U define ψ(y) = supx(φ(x)−∥x−y∥1).
It is clear that ∫

ϕdµ+ −
∫
ψdµ− ≤

∫
ϕdµ+ −

∫
ψdµ−.

Then one can show that ψ ∈ U and, moreover, ψ = ϕ. Thus the replacement of (ϕ, ψ) with
(ϕ, ψ) = (ϕ, ϕ) will increase the value of the functional.

The second statement was proved in [1] Theorem 6.1. by the following argument: given γ with
Pr1γ ⪰ µ+, P r2γ ⪯ µ− let ξ, η be X-valued random variables satisfying

ξ1 ∼ µ+, η2 ∼ µ−, (ξ2, η1) ∼ γ.

and
ξ1 ≤ E(ξ2|ξ1), η1 ≤ E(η2|η1).

Such variables can be easily built with the help of Strassen theorem. We will prove the statement
if we show that there exists a variable Z satisfying Z ⪯ µ− and E∥ξ2 − η1∥1 ≥ E∥ξ1 − Z∥1. Define

Z = ξ1 + E(η1 − ξ2|ξ1).

Indeed,

Z ⪯ Z + E(ξ2 − ξ1|ξ1) = E(η1|ξ1) ⪯ η1 ⪯ η2 ∼ µ−.

Finally, by Jenssen’s inequality

E∥ξ2 − η1∥1 ≥ E∥E(ξ2 − η1|ξ1)∥1 = E∥ξ1 − Z∥1.

13



Let us revisit Example 1. The solution u and the majorizing measure π are given below (see
the details in [9]).

The optimal function u = uopt is given by

uopt(x, y) =


0 (x, y) ∈ Z
x− 2

3 (x, y) ∈ A
y − 2

3 (x, y) ∈ B
x+ y − 4−

√
2

3 (x, y) ∈ W.

(19)

The answers for the transform measure µ and for the optimal “imbalance” π = πopt majorizing
m are as follows:

µ = δ0 + λ1|[0,1]×{0} + λ1|{0}×[0,1] − 3λ2|[0,1]2 , (20)

πopt = λ1|[0,1]×{0} + λ1|{0}×[0,1] − 3λ2|[0,1]2\Z , (21)

where λ2, λ1 are the two- and one-dimensional Lebesgue measures, respectively.

5 Duality for n-bidder case
In this section we prove a duality statement for the n-bidder case. The results were obtained in [14].
We show, in particular, that the dual problem us naturally related to the Beckmann’s transportation
problem.

5.1 Duality in the monopolist’s problem
An important auxiliary result is the duality theorem in monopolist’s problem. Informally, the
duality relation looks as follows: given a convex function φ and a measure µ of finite variation
satisfying µ(X) = 0 one has:

sup
u∈U

(∫
X

udµ−
∫
X

φ(∇u)ρdx
)
= inf
c:−div(c·ρ)⪰µ

∫
X

φ∗(c)ρdx.

Here U is the set of convex increasing functions on X and divergence is a signed measure div(c · ρ).
We always understand it in the weak (integration by parts) sense: for a smooth function ψ on X
one has ∫

X

ψddiv(c · ρ) = −
∫
X

⟨∇ψ, c⟩ρdx.

As usual, inequality sup ≤ inf is easy to verify:∫
X

udµ−
∫
X

φ(∇u)ρdx ≤ −
∫
X

uddiv(c·ρ)−
∫
X

φ(∇u)ρdx =

∫
X

⟨∇u, c⟩ρdx−
∫
X

φ(∇u)ρdx ≤
∫
X

φ∗(c)ρdx.

By complementary slackness argument we conclude that in the absence of the duality gap the
extremizers u0, c0 must satisfy

c0 ∈ ∂φ(∇u0).

The rigorous proofs of different versions of this result can be found

14



1. In [14] Proposition 6,7. The proof relies on a version of minimax theorem (Sion’s theorem)
using compactness of one of the spaces. This leads to essential restrictions on φ.

2. In [18]. Function φ is assumed to be strictly convex. In the McCann–Zhang formulation
the assumption −div(c · ρ) ⪰ µ is replaced by another assumption, which does not presume any
regularity of the vector field c: ∫

X

udµ ≤
∫
X

⟨c,∇u⟩ρdx,

for all u ∈ U (see also Section 4 below). The proof is based on the Fenchel–Rockafellar duality and
some regularization of the problem.

3. Another relatively simple and general proof based on the use of the Fenchel–Rockafellar
duality as well was given in [3].

To understand informally the duality statement let us observe the following simple duality
relation: given a convex function φ and a distribution ρ let us define the energy functional:

Θ(u) =

{∫
X
φ(∇u)ρdx, u ∈W 1,1(X),

+∞, in the opposite case.
(22)

Here the standard notation W 1,1(X) is used for the classical Sobolev space.

Theorem 5. The Legendre transform

Θ∗(µ) = sup
u

(∫
udµ−Θ(u)

)
.

of the energy functional (22) coincides with the Beckmann transportation functional (23) for the
dual potential φ∗.

Θ∗(µ) =

{
+∞, if µ(X) ̸= 0,

infc:div(ρ·c)=−µ
∫
X
φ∗(c)ρdx, if µ(X) = 0.

(23)

As usual, it is easy to see that one functional dominates another: indeed, for all admissible
(u, µ, c) one has∫

udµ−Θ(u) = −
∫
uddiv(ρ · c)−Θ(u) =

∫
⟨∇u, c⟩ρdx−

∫
φ(∇u)ρdx ≤

∫
φ∗(c)ρdx.

Hence
inf

c:div(ρ·c)=−µ

∫
X

φ∗(c)ρdx ≥ sup
u

(∫
udµ−Θ(u)

)
.

The proof of the equality inf = sup can be found (in slightly different settings) in [6], [22], [3].

Theorem 6. Let φ be a convex lower semicontinuous function, finite on X = [0, 1]n and taking
+∞-value outside of X. Let µ ∈ M0, where M0 is the space of measures with finite variation
satisfying µ(X) = 0. Then the following duality relation holds:

max
u∈U(X)

Φ(u) = inf
π∈M0:µ⪯π

Beckρ,φ∗(π),

where

Φ(u) =

(∫
X

udµ−
∫
X

φ(∇u)ρdx
)
, Beckρ,φ∗(π) = inf

c : π+div(c·ρ)=0

∫
X

φ∗(c)ρdx.
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Remark 3. We warn the reader that it was mistakenly claimed in [3] that the infimum in the
duality relation can be always reached on some measure π of finite variation.

We give a proof of this result under assumption that φ is bounded on X and infinite on Rn \X.
Sketch of the proof of Theorem 6: We consider functionals Θ,Ξ on the space of continuous

functions E = C(X) equipped with the uniform norm and functionals Θ∗,Ξ∗ on the dual space
M(X) of signed measures with finite variation. We denote by E0 ⊂ E the subspace of functions
satisfying x(0) = 0 and by M0(X) the subset of M(X) satisfying µ(X) = 0.

Let us consider functional

Ξ(u) =

{
−
∫
X
udµ, u ∈ U

+∞, in the opposite case

It is easy to check that Ξ is convex and its Legendre transform satisfies

Ξ∗(ν) = sup
u∈E

(∫
X

udµ+

∫
X

udν

)
=

{
+∞, if ν(X) ̸= 0,

supu∈U
∫
X
ud(µ+ ν), if ν(X) = 0,

Note that
−max
u∈U0

(∫
X

udµ−
∫
X

φ(∇u)ρdx
)

= min
u∈E

(
Θ(u) + Ξ(u)

)
.

We apply the following duality to be proved later :

inf
u∈E

(
Θ(u) + Ξ(u)

)
= − inf

ν∈M(X)

(
Θ∗(−ν) + Ξ∗(ν))

)
. (24)

One has

max
u∈U

(∫
X

udµ−
∫
X

φ(∇u)ρdx
)

= inf
ν∈M(X)

(
Θ∗(−ν) + Ξ∗(ν))

)
= inf
ν∈M0,ν⪯−µ

Θ∗(−ν) = inf
ν∈M0,µ⪯ν

Θ∗(ν) = inf
ν∈M0,µ⪯ν

Beckρ,φ∗(ν).

Let us prove (24). Note that (18) is different from (24), because (24) does not claim that
mininum can be reached. We follow the proof of [23, Theorem 1.9]. Relation (24) is equivalent to
the following:

inf
u∈E

(
Θ(u) + Ξ(u)

)
= sup
ν∈E∗

inf
u,v∈E

(
Θ(u) + Ξ(v) +

∫
X

(u− v)dν

)
.

Taking u = v, one gets

inf
u∈E

(
Θ(u) + Ξ(u)

)
≥ sup
ν∈E∗

inf
u,v∈E

(
Θ(u) + Ξ(v) +

∫
X

(u− v)dν

)
.

It is sufficient to prove that there exists a sequence νn ∈ M such that

Θ(u) + Ξ(v) +

∫
X

(u− v)dνn +
1

n
≥ inf
u∈E

(
Θ(u) + Ξ(u)

)
∀u, v ∈ E.

16



Since Θ,Ξ a both invariant with respect to addition of a constant, the desired inequality is possible
if and only if νn ∈ M0. Thus from the very beginning we take u, v ∈ E0. Note that any functional
frоm E∗

0 can be identified with M0.
Thus the problem is reduced to the following: prove existence of νn ∈ M0 such that

Θ(u) + Ξ(v) +

∫
X

(u− v)dνn +
1

n
≥ inf
u∈E0

(
Θ(u) + Ξ(u)

)
∀u, v ∈ E0.

Let us define

Cn =
{
(u, t) ∈ E0 ×R; max

x∈X
φ(x) +

1

n
≥ t ≥ Θ(u) +

1

n

}
, K = {(v, s) ∈ E0 ×R; s ≤ min−Ξ(v)}.

Note that Cn and K don’t intersect. They are convex, K is closed and Cn is compact because φ
is bounded. By the Banach-Khan theorem there exists a separating functional (ωn, α), ωn ∈ E∗

0 =
M0, α ∈ R:

ωn(u) + αt ≥ ωn(v) + αs,

if N ≥ t ≥ Θ(u) + 1
n , s ≤ min−Ξ(v), u, v ∈ E0. It is possible only if α > 0. Set νn = ωn/α.

Dividing inequality by α, one gets∫
X

udνn +Θ(u) +
1

n
≥

∫
X

vdνn +min−Ξ(v).

The proof is complete.
We conclude this subsection with an important auxiliary result from [14] (stated here in a more

general form). This is a priori estimate which can be quite useful for studying maxima of the
monopolist’s functional.

Proposition 1. Then for every function u ∈ U , there exists a non-decreasing convex function ũ
with ũ(0) = 0 such that

⟨x,∇ũ(x)⟩ − ũ(x)− φ(∇ũ) ≥ max {⟨x,∇u(x)⟩ − u(x)− φ(∇u), 0} (25)

for all x ∈ X. In particular, this implies that for any function uopt ∈ U maximizing the functional
Φ(u) over u ∈ U , the inequality

⟨x,∇uopt(x)⟩ − uopt(x)− φ(∇uopt) ≥ 0 (26)

holds almost everywhere.

5.2 Beckmann’s problem and duality for n-bidder case
Several form of the duality for the multibidder cae have been established in [14]. The formal proof
is given by the following line on computations:
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max
u∈U(X),uxi

⪯ξm−1

∫
X

(
⟨x,∇u(x)⟩ − u(x)

)
ρdx = max

u∈U(X),uxi
⪯ξm−1

∫
X

udµ

= max
u∈U(X)

min
φi∈U([0,1])

(∫
X

udµ−
∫
X

∑
i

φi(uxi
)ρdx+

∑
i

∫ 1

0

φi(t
m−1)dt

)
= min
φi∈U([0,1])

max
u∈U(X)

(∫
X

udµ−
∫
X

∑
i

φi(uxi)ρdx+
∑
i

∫ 1

0

φi(t
m−1)dt

)
= inf
φi∈U([0,1]),µ⪯π

(
Beckρ,

∑
i φ

∗
i
(π) +

∑
i

∫ 1

0

φi(t
m−1)dt

)
.

Here we formally interchange min with max (minimax principle) and use the duality for the
monopolist’s problem. The rigorous proof is, however, tedious and applies various instruments from
functional analysis. We state the final result in the following theorem:

Theorem 7. In the auctioneer’s problem with m ≥ 1 bidders, n ≥ 1 items, and bidders’ types
distributed on X = [0, 1]n with positive density ρ, the optimal revenue coincides with

m · inf
(φi)i∈I ,
π ⪰ m

[(
Beckρ,

∑
i φ

∗
i
(π) +

n∑
i=1

∫ 1

0

φi
(
tm−1

)
dt

]
, (27)

where Φ is given by
∑n
i=1 φi(xi) and φi : R+ → R+ ∪ {+∞} are non-decreasing convex functions

with φi(0) = 0 for each item i ∈ I.

Another Theorem from [14] establishes a duality relation in the form max = min. To this end
let us consider the set Cmes of non-negative vector measures ς = (ςi)i∈I satisfying the following
condition ∫

X

(
⟨∇u(x), x⟩ − u(x)

)
· ρ(x) dx ≤

n∑
i=1

∫
X

∂u

∂xi
(x) dςi(x) (28)

for any u ∈ U . By the Lebesgue decomposition theorem, each ςi can be represented as the sum of
the component that is absolutely continuous with respect to ρ(x) dx and the singular one. We get

dςi = ci(x) · ρ(x) dx+ dςsingi (x). (29)

If the singular component is absent and c = (ci)i∈I is smooth, we can define π = −divρ[c] and see
that the condition (28) is equivalent to the familiar majorization condition −div(c · ρ) ⪰ m.

Theorem 8 (Extended dual). The optimal revenue in the auctioneer’s problem coincides with

m · min
φi ∈ U [0, 1],
ς ∈ Cmes

n∑
i=1

(
ςsingi (X) +

∫
X

φ∗
i

(
ci(x)

)
ρ(x) dx+

∫ 1

0

φi
(
tm−1

)
dt

)
(30)

and the minimum is attained.

18



Figure 2: The probability to receive the first item as a function of bidder’s values (x1, x2) in the
optimal 2-bidder 2-item auction with i.i.d. values uniform on [0, 1].

We conclude this section by presenting the result of numerical simulations for n = m = 2 and the
Lebesgue measure of [0, 1]2 ( figure 2 is taken from [14]). The detailed description of the algorithm
can be found in [14]. The simulations indicate a complicated structure of the optimal mechanism
and suggest that the optimal auction may not admit a closed-form solution even in this benchmark
setting.

5.3 Related questions, open problems
The above duality results raise many open question. We briefly list some of them.

1. Explicit solutions for dual problems.

The closed-form solutions can be obtained in the setting of Example 1 (see [14], D). Here is
a regular solution (for other examples, including singular solutions see [14]):

c(x, y) = (c1(x, y), c2(x, y)),

where
c2(x, y) = c1(y, x)

and

c1(x, y) =



0 (x, y) ∈ Z ∪ B
3x− 2 (x, y) ∈ A
3
2

(
x+ y − 4−

√
2

3

)
(x, y) ∈ W, x ≤ 2

3 , y ≤ 2
3

9
2 (1− x)

(
y − 2−

√
2

3

)
+3(x− 2

3 ) (x, y) ∈ W, 23 ≤ x ≤ 1, 2−
√
2

3 ≤ y ≤ 2
3

9
4

(
x− 2−

√
2

3

)2
(x, y) ∈ W, 2−

√
2

3 ≤ x ≤ 2
3 ,

2
3 ≤ y ≤ 1

1
2 + 3

2

(
x− 2

3

)
(x, y) ∈ W, 23 ≤ x ≤ 1, 23 ≤ y ≤ 1

Closed-form solutions are also available for the case of n = 1. It this case the optimal vector
field in the dual problem coincides with the Myersonian ironed virtual valuation.
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2. Can the dual auctioneer’s problem for many bidders be interpreted as an optimal
(weak) transportation problem?

We will discuss this question in the following section. Let us also note that any Beckmann’s
problem is always ([22], [6]) equivalent to an appropriate congested transport problem, which
is a transportation problem on the infinite-dimensional space of curves (and it is a finite-
dimensional transshipment problem only for the case when φi are indicators of a segment,
but this is not the case for m > 1). Thus, converting the Beckmann’s problem into the
congested transport problem, we get automatically a kind of infinite dimensional optimal
transport problem. But it is not clear, whether this interpretation has some applications. In
the other hand, we will see in the next section that functions φi can be expelled from the
dual formulation if we consider certain equivalent problem on X = Xm.

3. Does there always exist a measure π with finite variation giving minimum to the
dual monopolist’s problem in Theorem 6?

It was mistakenly claimed in [3] that such a measure always exists, but the proof contains a
gap (the separating functional obtained as a limit can be the zero functional). In fact, this
does not seem to be true for the general monopolist problem. But for the auctioneer’s problem
this might be true. In particular, for m = 1 bidder the majorising measure π has the same
variation as µ by Theorem 4.

The measure π always exists at least for sufficiently regular φ and ρ, since it has representation
π = −div(∇φ(∇u) · ρ) and this always makes sense, because φ and u are convex. However,
the variation of π can be a priori infinite. In the other hand, we remark that π has always
finite W 1

l∞ -norm for any φ, which is finite on X and infinite outside of X. Indeed, taking a
1-Lipschits (with respect to l∞-norm) function v one gets∫

X

vdπ =

∫
X

⟨∇v, c⟩ρdx ≤
∫
X

|c|l1ρdx.

But the right-hand side is finite, because
∫
X
φ∗(c)ρdx <∞. Thus we get that the supremum

of left-hand side is finite and by duality ∥π∥W 1
l∞

< ∞. This, however, does not mean that π
has finite variation.

4. Regularity questions

Does there always exist a regular vector field c giving minimum in (30)? Regularity means
that ςi = 0. We do not know the answer. Picture 3 from [14] shows that u does not look to
be continuously differentiable, but c and φi seem to be smooth. It would be interesting to
obtain any result on regularity of solutions in general case. Note that some regularity results
for solutions of the monopolist’s problem has been obtained in [7].

6 Mechanism as a solution to a Beckmann’s problem with
constraints

In this section we come back to the initial (unreduced) problem. Further we deal with the space

X = Xm = ([0, 1]n)m.
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Figure 3: The optimal solution to the dual problem: functions φ1 = φ2 (left) and a contour plot of
the first component of the vector field c = (c1, c2) from Beckmann’s problem (right).

We will realize that a natural interpretation of the auction problem in terms of optimal transporta-
tion/ Beckmann’s transportation/linear duality leads to a nm-dimensional formulation. For part
of the statements we omit the rigorous proofs but explain the main ideas.

6.1 Getting rid of functions φi

The dual functional suggested in Theorem 7 depends on vector field c and functions φi. We show
that functions φi can be excluded from the functional, because the optimal choice of φi is determined
by distribution of c. Indeed, by the duality Theorem 7 the total revenue equals

m · inf
c∈C

inf
(φi)1≤i≤n

∑
i∈I

(∫
X

φ∗
i (|ci|)ρ(x) dx+

∫ 1

0

φi
(
zm−1

)
dz

)
, (31)

where C is the set of vector fields satisfying∫
X

(
⟨x,∇u⟩ − u

)
ρdx ≤

∫
X

⟨∇u, c⟩ρdx,

for all u ∈ U .
For a fixed c and every i the value

inf
(φi)1≤i≤n

(∫
X

φ∗
i (|ci|)ρ(x) dx+

∫ 1

0

φi
(
zm−1

)
dz

)
=

inf
(φi)1≤i≤n

(∫
φ∗
i (xi)ϱi(xi) dxi +

1

m− 1

∫ 1

0

φi(yi)y
2−m
m−1

i dyi

)
,

is the value of the dual transportation problem on R with cost function xiyi and measures

ϱi(xi)dxi, νi,

where νi = 1
m−1y

2−m
m−1

i dyi and ϱi(xi)dxi is the distribution of |ci|, i.e. image of ρ under the mapping
|ci| : Rn → R+.
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Hence by the one-dimensional Brenier theorem the corresponding optimal mapping has the form
Ti = (φ∗

i )
′ and satisfies ∫ ti

0

ϱi dxi =
1

m− 1

∫ Ti(ti)

0

y
2−m
m−1

i dyi = T
1

m−1

i (ti)

and the value of the dual transportational functional equals
∫
xiTi(xi)ϱi dxi.

Let Fi(xi) =
∫ xi

−∞ ϱi(t)dt. Hence∫
xiTi(xi)ϱi dxi =

∫
xiF

m−1
i (xi)ϱi(xi) dxi =

1

m

∫
xiϱi(xi) dF

m
i (xi)

By the change of variables∫
xiF

m−1
i (xi)ϱi(xi) dxi =

∫
X

|ci|Fm−1
i (|ci|)ρdx

and we get the following result:

Proposition 2. The auctioneer’s problem is equivalent to the minimization problem∑
1≤i≤n

∫
X

|ci|Fm−1
i (|ci|)ρdx→ min, c ∈ C,

where Fi(t) =
∫
{x:|ci|(x)≤t} ρdx.

Next we note that ∫
xiF

m−1
i (xi)ϱi(xi) dxi =

1

m
E
[
max

1≤j≤m
xi,j

]
where xi,j ∈ X are independent random variables with distribution ϱi.

Thus we obtain the following result

Proposition 3. The value of the auctioneer’s problem is

inf
P

EP
∑

1≤i≤n

max(xi,1, xi,2, · · · , xi,m),

where for every fixed i the random variables xi,j , 1 ≤ j ≤ m are independent and have distribution
PriP . The infimum is taken over distributions on Rn satisfying the following property: there exists
a vector field c ∈ C with distribution PriP .

6.2 Beckmann’s problem on Xm with linear constraints
In this subsection we get an equivalent formulation of the dual auction design problem on the space
X = Xm.

In what follows we denote xj = (x1,j , · · · , xn,j). As before, we equip X with the product
measure

ρ(x)dx =

m⊗
j=1

ρ(xj)dxj
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and the suitable norm
|x|X =

∑
1≤i≤n

max(|xi,1|, |xi,2|, · · · , |xi,m|).

For every vector field
c = (c1, · · · , cn)

let us define the extended vector field

c(x1, · · · , xm) = (c(x1), · · · , c(xm)). (32)

Note that

divρc =

m∑
j=1

ρ(x1)dx1 × · · · × divρc(xj)× · · · ρ(xm)dxm.

These observation together with Proposition 3 leads to the following conclusion

Proposition 4. (Auction’s design problem as a Beckmann’s problem with linear con-
straints) The auction design problem is equivalent to the following minimization problem:

inf
π⪰µ,c

∫
X

|c|Xρ(x)dx,

where c satisfies

1.
divρc = −π,

π =

m∑
j=1

ρ(x1)dx1 × · · · × π(dxj)× · · · ρ(xm)dxm, (33)

2. c has the form (32).

6.3 Dual Beckmann’s problem with linear constraints
Let us consider a general Beckmann’s problem with linear constraints. Let φ be a convex function
on X with values in R ∪ {+∞} and L ⊂ L2(ρdx) be a linear space of vector fields with values in
Rmn. Let us denote by L⊥ the corresponding space of orthogonal ( in the L2(ρdx)-sense) vector
fields

c ∈ L⊥ ⇐⇒
∫
X

⟨c, F ⟩ρdx = 0 ∀F ∈ L.

Consider the maximization problem

sup
v∈C1

b (X),F∈L

(∫
X

vdπ −
∫
X

φ(∇v + F )ρdx
)
,

where C1
b (X) is the set of continuously differentiable functions on X and π is a measure with finite

variation satisfying π(X) = 0.
The following result is a generalization of Theorem 5. We omit the rigorous proof, but explain

its main idea.
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Theorem 9.

sup
v∈C1

b (X),F∈L

(∫
X

vdπ −
∫
X

φ(∇v + F )ρdx
)
= inf
c∈L⊥,−div(c·ρ)=π

∫
X

φ∗(c)ρdx.

Weak duality sup ≤ inf can be proved in the standard way:∫
X

vdπ −
∫
X

φ(∇v + F )ρdx = −
∫
X

vddiv(c · ρ)−
∫
X

φ(∇v + F )ρdx

=

∫
X

⟨∇v, c⟩ρdx−
∫
X

φ(∇v + F )ρdx =

∫
X

⟨∇v + F, c⟩ρdx−
∫
X

φ(∇v + F )ρdx

≤
∫
X

φ∗(c)ρdx.

Assuming that φ is sufficiently regular, by the standard variational arguments we obtain that the
maximum point (v0, F0), F0 ∈ L of

∫
X
vdπ −

∫
X
φ(∇v + F )ρdx satisfies

div(∇φ(∇v0 + F0)ρ) = −π, ∇φ(∇v0 + F0) ∈ L⊥.

Thus the field c0 = ∇φ(∇v0 + F0) is admissible for the dual problem. Hence∫
X

v0dπ −
∫
X

φ(∇v0 + F0)ρdx = −
∫
X

v0div(c0 · ρ)−
∫
X

φ(∇v0 + F0)ρdx

=

∫
X

⟨∇v0, c0⟩ρdx−
∫
X

φ(∇v0 + F0)ρdx

=

∫
X

⟨∇v0 + F0,∇φ(∇v0 + F0)⟩ρdx−
∫
X

φ(∇v0 + F0)ρdx

=

∫
X

φ∗(∇φ(∇v0 + F0))ρdx.

Thus we get a formal proof of the desired identity.
In particular, for

φ∗ = | · |X
and a linear space L of vector fields we consider the Beckmann’s problem∫

X

|c|Xρdx→ min

−divρc = π,

with constraint
∫
X
⟨c, F ⟩ρdx = 0, ∀F ∈ L for a linear space L. The dual problem takes the form

sup
v∈C1

b (X),F∈L

(∫
X

vdπ −
∫
X

φ(∇v + F )ρdx
)
,

where
φ(x) = δ∥x∥X◦≤1 = (∥ · ∥X)∗.
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Clearly, the problem is equivalent to the maximization problem

sup
v∈Lip(|·|X ,L)

∫
X

vdπ,

where Lip(| · |X , L) is the set of functions satisfying inequality |∇v + F |X◦ ≤ 1 for some F ∈ L.
The duality theorem takes the form:

Theorem 10.
sup

v∈Lip(|·|X ,L)

∫
X

vdπ = inf
c∈L⊥,−divρc=π

∫
X

|c|Xρdx

Our next aim is to relate the dual Beckmann’s problem with constraint to the optimal trans-
shipment problem.

Lemma 1. Let F be a continuous vector field. Set:

dF (x, y) = sup
v:|∇v+F |X◦≤1

(
v(x)− v(y)

)
.

Then for a differentiable function v the following properties are equivalent:

1. |∇v + F |X◦ ≤ 1

2. For all x, y one has:
v(x)− v(y) ≤ dF (x, y).

Equivalently −dF (y, x) ≤ v(x)− v(y) ≤ dF (x, y).

Proof. Clearly 1) =⇒ 2). Assume that v satisfies 2). Then any differentiable function w with
property |∇w(x) + F (x)|X◦ ≤ 1 satisfies the obvious inequality:

|w(y)− w(x) + ⟨F (x), y − x⟩| ≤ |y − x|X + o(|y − x|)

for all y form a small neighborhood of x. In particular, we get

dF (y, x) + ⟨F (x), y − x⟩ ≤ |y − x|X + o(|y − x|). (34)

Assume that at some point x0 one has |∇v(x0) + F (x0)|X◦ > 1. This means that for a vector e
with |e|X = 1, one has: ⟨e,∇v(x0) + F (x0)⟩ > 1. In particular, for small values of t

v(x0 + te)− v(x0) + ⟨F (x0), te⟩ = ⟨te,∇v(x0) + F (x0)⟩+ o(t) > t+ o(t) = |te|X + o(t).

Thus one has by 2)

dF (x0 + te, x0) + ⟨F (x0), te⟩ ≥ v(x0 + te)− v(x0) + ⟨F (x0), te⟩ ≥ |te|X + o(t).

Consequently, inequality (34) is false for x = x0, y = x0 + te and sufficiently small t. We get a
contradiction.
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Applying the well-known duality for the optimal transshipment problem we get the following

sup
v∈Lip(|·|X ,L)

∫
X

vdπ = sup
v,F∈L:|v+∇F |X◦≤1

∫
X

vdπ

= sup
F∈L

(
sup

v:v(x)−v(y)≤dF (x,y)

∫
X

vdπ
)

= sup
F∈L

(
inf

γ:Pr1γ−Pr2γ=π

∫
X×X

dF (x, y)dγ
)
.

Finally we obtain that the dual Beckmann’s problem with linear constraints is related to the trans-
shipment problem in the following way

Theorem 11. (Relation to the optimal transshipment problem)

inf
c∈L⊥,−divρc=π

∫
X

|c|Xρdx = sup
F∈L

(
inf

γ:Pr1γ−Pr2γ=π

∫
X×X

dF (x, y)dγ
)
.

6.4 Applications to symmetric mechanisms
In what follows

|x|X =
∑

1≤i≤n

max(|xi,1|, |xi,2|, · · · , |xi,m|),

| · |X◦ is the dual norm. We consider space of vector fields having the form

c(x1, · · · , xm) = (c(x1), · · · , c(xm)). (35)

Recall that a function f symmetric, if it is symmetric with respect to any permutation σ of
coordinates

Tσ(x1, · · · , xm) = (xσ(1), · · · , xσ(m)).

A field F : X → Rnm is called symmetric, if

F ◦ Tσ(x) = Tσ(F (x)).

This space of symmetric vector fields will be denoted by Lsym.
Let L be the space

L = L1 + L2,

where

• L1 is the space of fields
F : X → X,

F = (F1, F2, · · · , Fm), Fj = (F1j , · · · , Fnj),

such that for every k the conditional expectation of Fk with respect to xk vanishes

Eρ(Fk|xk) =
∫
∏

j ̸=k Xj

Fk
∏
j ̸=k

ρ(xi)dxj = 0
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•
L2 = {vector fields, L2(ρdx)-orthogonal to symmetric fields}

The following lemma in obvious.

Lemma 2. The space of fields satisfying (35) coincides with the space L⊥.

We get immediately from this Lemma and Proposition 4. the value of auctioneer’s problem
coincides with

inf
π⪰µ

sup
v∈Lip(|·|X ,L)

∫
X

vdπ,

where π is defined by (33). Note, however, that the space L is not the most convenient space to work
with, because it contains L2. In fact, we can do additional symmetrization, since π is symmetric
with respect to any Tσ. Let v0, F0 be a solution to maximization problem supv∈Lip(|·|X ,L)

∫
X
vdπ.

and vsym, F sym be obtained from v0, F0 by symmetrization:

vsym =
1

m!

∑
σ

v0 ◦ Tσ, F sym =
1

m!

∑
σ

Tσ(F0 ◦ Tσ).

Then by symmetry of π one has ∫
X

v0dπ =

∫
X

vsymdπ.

In addition, since ∇
(
v0 ◦Tσ

)
= Tσ(∇v ◦Tσ), one gets (∇v0)sym = (∇vsym). Using symmetry of | · |◦X

and its convexity, we get immediately that vsym, F sym satisfy the same constraint |vsym+F sym|X◦ ≤
1. Note that F sym ∈ L1 ∩ Lsym. Thus we obtain the following result:

Proposition 5. The value of auctioneer’s problem equals

sup
v∈Lipsym(|·|X ,L1∩Lsym)

∫
X

vdπ,

where Lipsym(| · |X , L1∩Lsym) is the set of symmetric functions satisfying |∇v+F |X◦ ≤ 1 for some
F ∈ L1 ∩ Lsym.

We get by Theorem 11:

Theorem 12. (Auctions with m > 1 bidders and transshipment problem) The value of
the auction design problem equals

sup
F∈L1∩Lsym

(
inf

γ:Pr1γ−Pr2γ=π,π⪰µ

∫
X×X

dF (x, y)dγ
)
.

Here
dF (x, y) = sup

v:|∇v+F |X◦≤1

(
v(x)− v(y)

)
,

where the supremum is taken over symmetric v and F ∈ L1 ∩ Lsym

We conclude this subsection with a theorem which relates symmetric optimal mechanisms to
the dual Beckmann’s problem.
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Theorem 13. (Symmetric mechanism as a solution to the dual Beckmann’s problem)
Let π, v0, F0 be a solution to optimization problem

inf
π⪰µ

sup
v∈Lipsym(|·|X ,L1∩Lsym)

∫
X

vdπ.

Then the couple (P0, T0), where

P0(x) = ∇v0(x) + F0(x),

(T0)j(x) = ⟨xj , (P0)j(x)⟩ − v0(x),

is a solution to the (unreduced) auctioneer’s problem, i.e. (P0, T0) is the optimal, symmetric, feasible
mechanism, satisfying (8), (7).

In particular, the total revenue equals
m∑
j=1

(T0)j(x) = ⟨x, P0(x)⟩ −mv0(x).

Taking conditional expectation of v0 we obtain a solution to the reduced problem:

Eρ(v0|xj) = u0(xj).

Applying conditional expectation with respect to xj to ((P0)j , (T0)j) and taking into account that
Eρ((F0)j |xj) = 0, we get the known relation for the reduced mechanism (P 0, T 0) on X:

P 0 = ∇u0

T 0(x) = ⟨x,∇u0(x)⟩ − u0(x).
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