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Abstract. Volatility modeling and forecasting is a topical problem both in scientific circles and 

in the practice. This paper develops an approach combining the GARCH model and fuzzy logic. 

The Takagi–Sugeno fuzzy inference scheme is adopted to fuzzify an original autoregression 

model (the conditional heteroskedasticity model). As a result, several different local GARCH 

models can be used in different input data domains with soft switching between them. This ap-

proach allows considering such phenomena as volatility clustering and asymmetric volatility 

(the properties of real financial markets). The proposed algorithm is applied to the historical 

values of the RTS Index and compared with the classical GARCH model. As demonstrated be-

low, in several cases, fuzzy models have advantages over traditional ones, namely, higher fore-

casting accuracy. Thus, the proposed method should be considered among others when model-

ing the volatility of the Russian financial market instruments: it demonstrates qualities superior 

to the conventional counterparts. 
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INTRODUCTION  

The translation of several well-known econometric 

models from the probabilistic to fuzzy formulation has 

recently attracted increasing attention; for example, 

see the papers [1–9]. This also applies to volatility 

modeling, an important problem from both scientific 

and applied points of view. Many models imply a sin-

gle dependence of output values on input data, but the 

factual dependence may vary in different domains of 

the input variables. Introducing fuzziness into the sys-

tem eliminates this drawback by using several local 

models and aggregating them through fuzzy member-

ship functions. 

Volatility modeling somewhat differs from other 

problems of financial econometrics:  unlike, e.g., the 

prices of financial instruments or interest rates, volatil-

ity is unobservable. Moreover, there is no consensus 

on what to call volatility. However, the capability to 

calculate the current volatility of an instrument or 

portfolio and forecast its future value correctly is cru-

cial for financial institutions: it underlies market risk 

assessment. In turn, a sufficiently accurate assessment 

of market risks improves the stability of a financial 

institution and allows avoiding fatal losses in turbulent 

markets. 

One of the most well-known and widespread 

methods for measuring volatility is the implied volatil-

ity within the Black–Scholes model [10, 11]. It is cal-

culated from the market prices of European options 

(financial derivatives giving the right to buy or sell an 

underlying asset, e.g., a stock, at a definite price on a 

definite date). This approach has several disad-

vantages. First of all, a liquid options market is need-

ed; otherwise, the option price with a high probability 

can be unfair, and the entire procedure will make no 

sense. In addition, the Black–Scholes model contains 

several strong assumptions, which are often not satis-

fied in reality. For example, we mention the assump-

tion of a time-constant risk-free interest rate to borrow 

and lend money, or the assumption of a time-constant 

volatility of the underlying asset price. Due to the lat-

ter assumption, implied volatility may vary for differ-

ent option exercise prices. For stocks, this effect is 

known as the volatility smile or volatility smirk. Thus, 

the method is somewhat contradictory and, in addition, 

it requires rather strict preconditions for application. 
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Another well-known approach is econometric 

modeling based on historical volatility values. As a 

rule, volatility here is understood as the rate of return 

of an asset. In this direction, we note GARCH (gener-

alized autoregressive conditional heteroskedasticity) 

[12, 13], a generally recognized model pioneered in 

[14] and based on the ARCH model. However, the 

classical GARCH model neglects an effect demon-

strated by modern financial markets. It consists in the 

skewed distribution of asset returns in the markets: 

negative external shocks cause a sharper fall and high-

er volatility, whereas positive external shocks cause 

less sharp growth and less high volatility. Different 

researchers proposed quite a wide range of modifica-

tions for the classical GARCH model to take asym-

metric volatility into account: NAGARCH (nonlinear 

asymmetric GARCH) [15], EGARCH (exponential 

GARCH) [13], QGARCH (quadratic GARCH) [16], 

GJR-GARCH (Glosten, Jagannathan, and Runkle 

GARCH) [17], TGARCH (threshold GARCH) [18], 

VSGARCH (volatility-switching GARCH) [19], and 

others. However, these approaches disregard, e.g., the 

presence of four volatility clusters. 

Due to some shortcomings of conventional meth-

ods, we propose a model incorporating elements of 

fuzzy logic. The fuzzy system used in this paper, the 

Takagi–Sugeno fuzzy inference scheme, stems from 

[20]. The authors [21] introduced the fuzzy model pa-

rameters estimation procedure via the least squares 

method. These two papers conditioned the wide appli-

cation of such models in various fields and the fuzzy 

formulation added to classical econometric models. 

Fuzzy systems were described, e.g., in [22, 23]. 

Fuzzy models are adopted to forecast stock index 

volatility as well. According to the works on this sub-

ject, there is a wide range of algorithms and input data. 

For example, the study [1] presented an asymmetric 

fuzzy GARCH model with a fuzzy inference scheme 

to determine the switching threshold. The paper 

demonstrated the effectiveness of the proposed meth-

od on the returns of several stock indices: NASDAQ 

(the USA), Nikkei 225 (Japan), the Taiwan Weighted 

Index, and the Hang Seng Index (Hong Kong). The 

original idea of [1] was further developed in [2]. The 

same asymmetric fuzzy GARCH model was used (as 

before, to determine the switching threshold), but 

fuzziness was also introduced into the characteristic 

function. (In the modified model, it can take any value 

in the interval [0, 1].) Three variants were proposed to 

fuzzify the characteristic function. The authors com-

pared the effectiveness of the presented methods with 

the GJR-GARCH model and the model [1]. The 

MOEX Russia Index (formerly the MICEX Index) and 

the RTS Index were studied as time series. 

The authors [3] proposed an adaptive fuzzy infer-

ence system (AdaFIS), which dynamically determines 

the required number of fuzzy rules and their parame-

ters. The model was applied to the Bovespa Index 

(Brazil’s main stock index), the BRL/USD exchange 

rate, and the Petrobras preferred stock prices. The pa-

per [4] described evolving participatory learning 

(ePL), a dynamic estimation method for model param-

eters. The researchers tested their method on historical 

values of the S&P 500 and Bovespa stock indices. 

Note that this method is an extension of the evolving 

Takagi–Sugeno (eTS) model [24]. The authors [5] 

continued studying the evolving fuzzy GARCH model 

in the paper [4], but they applied another fuzzy clus-

tering method (the eClustering algorithm). The values 

of the S&P 500 and Bovespa indices were taken as the 

real series as well. The fuzzy GARCH model was also 

presented in [6]. In the cited work, asymmetry was 

considered by using known returns as explanatory var-

iables: since the return (not its square) is employed in 

fuzzy clustering, the sign is taken into account. The 

authors applied the model to the Dow Jones Industrial 

Average Index. 

In this paper, we propose a model combining the 

standard GARCH model and fuzzy logic. The model 

can be briefly described as follows. The input data are 

divided into several fuzzy clusters, and a different lo-

cal GARCH model is applied within each cluster. The 

outputs of each local model are then aggregated into 

one via a pre-selected membership function. We con-

ducted the empirical part of this research on historical 

values of the RTS Index, one of the main stock indices 

of the Russian market. Two models (benchmarks) are 

used to compare the forecasting properties of the pro-

posed model: GARCH without recalculation and 

GARCH with recalculation. (The latter model will be 

defined below.) According to the calculation results, 

there exist fuzzy GARCH models with a higher fore-

casting accuracy than their classical counterparts. 

This paper is organized as follows. In Section 1, 

we describe theoretically the proposed model and the 

approach to input data clustering. Section 2 presents 

the initial data, the problem statement, and the results 

of the empirical study. The Conclusions section sum-

marizes the outcomes and outlines possible lines for 

further research. 
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1. METHODOLOGY 

1.1. The Fuzzy GARCH Model 

The classical GARCH model was described, e.g., 

in [13]. The proposed fuzzy model is based on the 

GARCH model but also includes soft switching be-

tween fuzzy rules. Each rule corresponds to a fuzzy 

cluster in the input data space. With C clusters, the 

fuzzy GARCH model can be represented as a set of C 

fuzzy IF-THEN rules: 
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The notations are as follows: k is the cluster number (k 

= 1,..., C); Fk denotes the kth fuzzy cluster; 
1( ,..., )n

t t tx x x   is the variable vector to determine the 

membership function at a time instant t. In addition, 

ty  gives the time series under consideration; ( )k

th  is 

the conditional variance corresponding to the kth fuzzy 

rule at a time instant t , and th  is the conditional vari-

ance at a time instant t (see below); αk0, αki, and βkj are 

the estimated model parameters. From this point on-

wards, the symbol '  means transposition. Generally 

speaking, the vector xt may have an arbitrary dimen-

sion n depending on t. The parameters αki and βkj will 

be called the consequent parameters. 

The expression xt ∈ Fk is understood in a fuzzy 

sense (the degree of membership of the vector xt to a 

cluster Fk, a real number from the interval [0, 1]). The 

degree of membership to a certain cluster may have 

different functional forms. In this paper, we use the 

Gaussian membership function, which analytically 

coincides with the density of the multivariate Gaussian 

distribution:  

11
( ) ( )

2
/2 1/2

1
( ) .

(2 ) (det( ))

t k t kk
x c x c

k t n
k

x e


  

 
 


 

Here, : n
k   is the membership function of a 

vector to the kth cluster, whereas 
n

kc   and 

* n
k   are the center and covariance matrix of the 

kth cluster. This paper considers diagonal positive def-

inite covariance matrices. The matrix Σk and the vector 

ck, the parameters of the kth cluster, completely define 

it. For all k together, they will be called the antecedent 

parameters. 

The degrees of membership are normalized so that 

at each point, their sum over all clusters is 1: 

*

1

( )
( ) .

( )

k t
k t C

k t

k

x
x

x



 


  

All variances ( ) , 1,...,k

th k C , are aggregated into a 

single value th  using the membership functions:  
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where ( )k

th  are given by (1). 

The value yt
2
 is forecasted. In this paper, the series 

yt consists of the returns on some financial instrument. 

The forecast has the form 

2ˆ .t ty h  

Let T be the number of elements in an aggregate 

sample (including training and test samples). The con-

sequent parameters are estimated using the least 

squares method: we choose the parameters αki and βkj 

by minimizing the sum 

2 2 2

1

ˆ( ) ,
T

t t
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where yt are known values from the sample. 

Hereinafter, yt describes the logarithmic return on 

some asset or index, expressed as a percentage. For a 

given series zt of some values (the prices of a financial 

instrument or index values), 

1

ln 100.t
t

t

z
y

z 

                           (2) 

In all calculations below, C = 4. 

 

1.2. Clustering and Antecedent Parameter Estimation 

In this study, we cluster the entire initial series of 

known returns yt at time instants t, i.e., xt = (y1,..., yt)′ 

∀ t. Within the proposed approach, the dimension n of 

the vector xt is a function of time: n = n(t) = t. Thus, 

we build a family of fuzzy systems: at each time in-

stant, when a new value of the return becomes known, 

the entire series is clustered again with this new value, 

generating a new fuzzy system. 

The input data are divided into two parts: training 

and test samples. 

There exist different approaches to data clustering, 

which essentially means estimating the antecedent pa-
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rameters. In this paper, the grid search method is used. 

A detailed description of the grid is provided in sub-

section 2.1. 

Let Ttrain and Ttest denote the sizes of the training 

and test samples, respectively. 

On the same training sample used for the fuzzy 

model, we construct the classical GARCH(p, q) model 

with the same values of the parameters p and q as in 

the fuzzy model. The forecasting accuracy of the clas-

sical model is estimated using two approaches as fol-

lows. The first approach is producing the usual model 

forecast for Ttest days ahead. The second approach con-

sists in reestimating the GARCH model parameters 

daily for Ttest days and obtaining the forecast for the 

next day only. (For convenience, the latter approach 

will be called GARCH with recalculation). Note that 

the recalculation procedure allows reducing the fore-

casting error; see the empirical results below (Tables 1 

and 2 in Section 2). For each approach mentioned, we 

find the mean square errors: MSEn/r for GARCH with-

out recalculation and MSEw/r for GARCH with recal-

culation. The two resulting errors are used as bench-

marks for the fuzzy model. For comparing the fuzzy 

model with the classical one, we introduce 

/ /
/ /and .w r n r

w r n r

fuzzy fuzzy

MSE MSE
ratio ratio

MSE MSE
   If 

1iratio  , the error of the fuzzy method is smaller 

than that of the classical ith method. (Here, i = “w/r” 

or i = “n/r”). In this case, the higher value tratio  

takes, the “better” the fuzzy model will be compared 

to the ith classical model. 

To define the fuzzy model, we use the set 

( ,..., ) n n C
C

       of possible values of the an-

tecedent parameters. Each 

 , | ,n n
k k k k kc c       represents all possi-

ble combinations of the values ck and Σk. The proce-

dure of estimating the antecedent parameters begins 

with constructing a particular fuzzy model for each 

element Θ and calculating the value MSEfuzzy. To find 

the best antecedent parameters ck and Σk, we maximize 

ratiow/r = ratiow/r(c1,..., cC, Σ1,..., ΣC). 

Thus, these steps yield the best set of antecedent 

parameters, i.e., the best fuzzy model compared to the 

classical GARCH model. 

2. EMPIRICAL STUDY 

2.1. The Set of Antecedent Parameters 

Let p = 1 and q = 1. Assume that the number of 

clusters  is  fixed:  C =  4.  The center  of  each  cluster  

n

kc   is a vector with the same components *

kc : 
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The covariance matrix is a diagonal real-valued 

matrix of dimensions n×n, with the same element 
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This element can be treated as the variance of the kth 

cluster. 

Let 
* * * * *

1 2 3 4( , , , )c c c c c  and 
* * * * *

1 2 3 4( , , , ).    

These four-dimensional vectors completely define all 

four clusters. We employ them to parameterize the 

admissible vector space instead of the vector Θ. 

In this paper, the set of centers is not varied but set 

expertly: in all calculations, c
*
 = (–7.5; –1.5; 1.5; 4). 

Intuitively, the centers c
*
 can be interpreted as follows: 

center 1.5 corresponds to small positive returns 

whereas center 4 to large returns; centers –1.5 and –

7.5 correspond to small and large negative returns, 

respectively (in absolute terms). The fact that |–7.5| > 

|4| reflects a characteristic feature of capital markets: 

the growth under positive external shocks is smoother 

than the drop under external negative shocks.  

The variances are estimated by the grid search 

method. The grid was constructed with the following 

ranges: for 
*
1 , from 4 to 12; for 

*
2  and 

*
3 , from 1 to 

6; for 
*
4 , from 2 to 10. The grid step was set equal to 

1 for all 
*
k . Thus, 2916 grid nodes were considered in 

total.  

 

2.2. Results 

The daily logarithmic returns of the RTS Index 

were used as the initial series. Figure 1 shows the clos-

ing index data for a long historical period.  

The beginning of the training sample coincides 

with the first trading day of 2014 (January 6, 2014). 

Figure 2 presents the values of the RTS Index for the 

historical period used in the calculations (the series zt), 

about 3 years from the beginning of the training sam-

ple. The corresponding logarithmic returns (the series 

yt (2)) are demonstrated in Fig. 3. 
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Fig. 1. Daily values of the RTS Index since 2001. 

 

 

 

 
Fig. 2. Daily values of the RTS Index: January 2014–December 2016. 



 

 
 

 

 
 

26 CONTROL SCIENCES  No. 6 ● 2022 

CONTROL IN SOCIAL AND ECONOMIC SYSTEMS 

 

 

 
Fig. 3. Daily logarithmic returns of the RTS Index: January 2014–December 2016.

 

 

The antecedent parameters (i.e., the variances un-

der fixed centers) were estimated using 100 elements 

in the training sample and 10 elements in the test sam-

ple. The best set of the variances was (7, 6, 3, 5). The 

model with these parameters was then applied to the 

samples of other sizes; see the corresponding results in 

Table 2. The sample sizes were selected from the fol-

lowing considerations: 252 is the approximate number 

of trading days in one year (504 in two years, 21 in 

one month, 42 in two months, and 63 in three months). 

The results of the empirical study are tabulated be-

low. Table 1 combines the characteristics of the sys-

tems with the best results compared to the classical 

model. Note that ratiow/r > 1 in all these models. The 

first row of this table contains information about the 

best fuzzy model. Next, Table 2 shows the results of 

applying the best system from Table 1 to the samples 

of other sizes. According to the calculations, these sys-

tems have a higher error than the classical model (ra-

tiow/r < 1). 

Good results were achieved for 100 elements in the 

training sample and 10 elements in the test sample. 

The quality of the fuzzy model gradually declines 

when increasing the size of either sample. This phe-

nomenon can be explained as follows: the antecedent 

parameters need to be reestimated on other sample 

sizes. (This was not done due to high computational 

costs.) Moreover, adding variability to the cluster cen-

ters may contribute to finding a model with higher 

accuracy.  

Thus, for sufficiently short time series, there exist 

fuzzy GARCH systems superior to the classical 

GARCH model in their forecasting properties. With 

increasing the time series length, the classical GARCH 

model becomes a “stronger” competitor. Most proba-

bly, the reason lies in the advantages of the maximum 

likelihood method, which show up with increasing the 

time series length. However, it seems that fuzzy 

GARCH systems superior to the classical GARCH 

model can be obtained even for longer time series us-

ing broader classes of membership functions. 
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Table 1 

The best models on the training and testing samples of 100 and 10 elements, respectively 

Ttrain Ttest *  MSEfuzzy MSEn/r MSEw/r ration/r ratiow/r 

100 10 [7, 6, 3, 5] 9.66 17.89 12.75 1.85 1.32 

100 10 [6, 4, 4, 6] 9.72 17.89 12.75 1.84 1.31 

100 10 [8, 6, 4, 6] 10.18 17.89 12.75 1.76 1.25 

100 10 [8, 1, 4, 6] 11.31 17.89 12.75 1.58 1.13 

 

 

Table 2 

The best model among the ones applied to the samples of other sizes 

Ttrain Ttest *  MSEfuzzy MSEn/r MSEw/r ration/r ratiow/r 

252 21 [7, 6, 3, 5] 353.14 273.58 189.09 0.77 0.51 

252 42 [7, 6, 3, 5] 251.84 201.34 137.60 0.80 0.55 

252 63 [7, 6, 3, 5] 190.30 141.74 99.21 0.74 0.52 

504 21 [7, 6, 3, 5] 542.75 382.64 300.49 0.70 0.55 

504 42 [7, 6, 3, 5] 290.84 203.56 160.35 0.70 0.55 

504 63 [7, 6, 3, 5] 202.47 143.12 112.76 0.70 0.56 

 

CONCLUSIONS 

In this paper, a fuzzy GARCH system has been ap-

plied to model volatility. The classical GARCH mod-

els with and without recalculation were considered as 

alternatives to the proposed model (benchmarks). The 

effectiveness of the fuzzy model has been tested on the 

main index of the Russian stock market (the RTS In-

dex). As shown above, there exist fuzzy systems pro-

ducing more accurate forecasts compared to traditional 

models. 

Nevertheless, the forecasting properties of the 

fuzzy system obviously tend to deteriorate (compared 

to the benchmark models) with increasing the sample 

size. This can be due to the parameter estimation 

methods used in the fuzzy model and in the classical 

GARCH model. 

A possible line for further research is practical 

methods for finding such fuzzy systems. Of particular 

interest are other forms of membership functions as 

well as more universal methods for estimating the an-

tecedent parameters. 

 
Acknowledgments. This research was supported in 

part through computational resources of HPC facilities at 

HSE University [25]. 

REFERENCES 

1. Hung, J.C., A Fuzzy Asymmetric GARCH Model Applied to 

Stock Markets, Information Sciences, 2009, vol. 179, no. 22, 

pp. 3930–3943. 

2. Lepskiy, A. and Suevalov, A., Application of Fuzzy Asymmet-

ric GARCH-Models to Forecasting of Volatility of Russian 

Stock Market, Advances in Intelligent Systems and Computing, 

2018, vol. 679, pp. 286–294.  

3. Luna, I. and Ballini, R., Adaptive Fuzzy System to Forecast 

Financial Time Series Volatility, Journal of Intelligent and 

Fuzzy Systems, 2012, vol. 23, pp. 27–38. DOI: 10.3233/IFS-

2012-0491. 

4. Maciel, L., Gomide, F., and Ballini, R., Enhanced Evolving 

Participatory Learning Fuzzy Modeling: An Application for 

Asset Returns Volatility Forecasting, Evolving Systems, 2013, 

vol. 5, pp. 1–14. DOI: 10.1007/s12530-013-9099-0. 

5. Maciel, L., Gomide, F., and Ballini, R., Evolving Fuzzy-

GARCH Approach for Financial Volatility Modeling and Fore-

casting, Computational Economics, 2016, vol. 48, no 3, pp. 

379–398. 

6. Popov, A.A. and Bykhanov, K.V., Modeling Volatility of Time 

Series Using Fuzzy GARCH Models, Proceedings of the 9th 

Russian-Korean International Symposium on Science and 

Technology (KORUS-2005), 2005, vol. 1, pp. 687–692. 

7. Tan, L., Wang, S., and Wang, K., A New Adaptive Network-

Based Fuzzy Inference System with Adaptive Adjustment 

Rules for Stock Market Volatility Forecasting, Information 

Processing Letters, 2017, vol. 127, pp. 32–36. DOI: 

10.1016/j.ipl.2017.06.012. 

8. Troiano, L., Mejuto, E., and Kriplani, P., An Alternative Esti-

mation of Market Volatility Based on Fuzzy Transform, Pro-

ceedings of the Joint 17th World Congress of the International 

Fuzzy Systems Association and 9th International Conference on 

Soft Computing and Intelligent Systems (IFSA-SCIS 2017), 

Otsu, 2017, pp. 1–6. DOI: 10.1109/IFSA-SCIS.2017.8023316. 

9. Thavaneswaran, A., Liang, Y., Zhu, Z., et al., Novel Data-

Driven Fuzzy Algorithmic Volatility Forecasting Models with 

Applications to Algorithmic Trading, Proceedings of the 2020 

IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), Glasgow, 2020, pp. 1–8. DOI: 

10.1109/FUZZ48607.2020.9177735. 



 

 
 

 

 
 

28 CONTROL SCIENCES  No. 6 ● 2022 

CONTROL IN SOCIAL AND ECONOMIC SYSTEMS 

10. Black, F. and Scholes, M., The Pricing of Options and Corpo-

rate Liabilities, Journal of Political Economy, 1973, vol. 81, no. 

3, pp. 637–657. 

11. Hull, J.C., Options, Futures, and Other Derivatives, 9th ed., 

London: Pearson, 2014. 

12. Bollerslev, T., Generalized Autoregressive Conditional Het-

eroskedasticity, Journal of Econometrics, 1986, vol. 31, no. 3, 

pp. 307–327. DOI: https://doi.org/10.1016/0304-

4076(86)90063-1. 

13. Tsay, R.S., Analysis of Financial Time Series, 3rd ed., Hobo-

ken: John Wiley & Sons, 2010. 

14. Engle, R.F., Autoregressive Conditional Heteroscedasticity 

with Estimates of the Variance of United Kingdom Inflation, 

Econometrica, 1982, vol. 50, no. 4, pp. 987–1007. 

15. Engle, R.F. and Ng, V.K., Measuring and Testing the Impact of 

News on Volatility, The Journal of Finance, 1993, vol. 48, no. 

5, pp. 1749–1778.  

16. Sentana, E., Quadratic ARCH Models, The Review of Economic 

Studies, 1995, vol. 62, no. 4, pp. 639–661.  

17. Jagannathan, R., Glosten, L., and Runkle, D., On the Relation 

between the Expected Value and the Volatility of the Nominal 

Excess Return on Stocks, Journal of Finance, 1993, vol. 48, pp. 

1779–1801.  

18. Zakoian, J.-M., Threshold Heteroskedastic Models, Journal of 

Economic Dynamics and Control, 1994, vol. 18, no. 5, pp. 931–

955. 

19. Fornari, F. and Mele, A., Modeling the Changing Asymmetry 

of Conditional Variances, Economics Letters, 1996, vol. 50, no. 

2, pp. 197–203. 

20. Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and 

Its Applications to Modeling and Control, IEEE Transactions 

on Systems, Man, and Cybernetics, 1985, vol. SMC-15, no. 1, 

pp. 116–132. DOI: 10.1109/TSMC.1985.6313399. 

21. Sugeno, M. and Kang, G.T., Structure Identification of Fuzzy 

Model, Fuzzy Sets and Systems, 1988, vol. 28, no. 1, pp. 15–33. 

22. Piegat, A., Fuzzy Modeling and Control, Physica Heidelberg, 

2001. 

23. Baczyński, M. and Jayaram, B., Fuzzy Implications, Berlin–

Heidelberg: Springer, 2008. 

24. Angelov, P.P. and Filev, D.P., An Approach to Online Identifi-

cation of Takagi–Sugeno Fuzzy Models, IEEE Transactions on 

Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 

vol. 34, no. 1, pp. 484–498. DOI: 

10.1109/TSMCB.2003.817053. 

25. Kostenetskiy, P.S., Chulkevich, R.A., and Kozyrev, V.I., HPC 

Resources of the Higher School of Economics, Journal of Phys-

ics: Conference Series, 2021, vol. 1740, no. 1, p. 012050. DOI: 

10.1088/1742-6596/1740/1/012050. 

 

This paper was recommended for publication  

by V.V. Klochkov, a member of the Editorial Board. 
 

Received June 10, 2022,  

and revised December 10, 2022. 

Accepted December 13, 2022  

 
Author information 

Sviyazov, Vladimir Andreevich. Postgraduate, National Research 

University Higher School of Economics, Moscow, Russia  

 v.sviyazov.96@gmail.com 

 

Cite this paper 

Sviyazov, V.A., Fuzzy Volatility Models with Application to the 

Russian Stock Market, Control Sciences 6, 21–28 (2022). 

http://doi.org/10.25728/cs.2022.6.3  

 

Original Russian Text © Sviyazov, V.A., 2022, published in Prob-
lemy Upravleniya, 2022, no. 6, pp. 26–34. 

Translated into English by Alexander Yu. Mazurov,  

Cand. Sci. (Phys.–Math.),  

Trapeznikov Institute of Control Sciences,  

Russian Academy of Sciences, Moscow, Russia 

 alexander.mazurov08@gmail.com  

 

https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/0304-4076(86)90063-1
http://doi.org/10.25728/cs.2022.6.3
mailto:%20alexander.mazurov08@gmail.com

