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ABSTRACT

Finite-size effects may significantly influence the collective dynamics of large populations of neurons. Recently, we have shown that in globally
coupled networks these effects can be interpreted as additional common noise term, the so-called shot noise, to the macroscopic dynamics
unfolding in the thermodynamic limit. Here, we continue to explore the role of the shot noise in the collective dynamics of globally coupled
neural networks. Namely, we study the noise-induced switching between different macroscopic regimes. We show that shot noise can turn
attractors of the infinitely large network into metastable states whose lifetimes smoothly depend on the system parameters. A surprising effect
is that the shot noise modifies the region where a certain macroscopic regime exists compared to the thermodynamic limit. This may be
interpreted as a constructive role of the shot noise since a certain macroscopic state appears in a parameter region where it does not exist in
an infinite network.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147409

The collective dynamics of large populations of active units in
certain cases can be reduced to low-dimensional dynamical sys-
tems for averaged variables. In the case of neural networks, such
reduced systems are called neural mass models. These models are
exact in the limit of infinitely large networks, while finite size
effects lead to deviations between the neural mass model and
the full system describing the microscopic dynamics. For globally
coupled networks, such deviations can be interpreted as the action
of a common noise signal. Since the origin of this random-like
signal is the discrete rather than continuous nature of the popu-
lation, we call it the “shot noise.” In the present paper, we show
that this noise can modify the regions of existence of dynamical
regimes of the network. As a consequence, certain macroscopic
states might appear in a parameter region where it does not exist
in the thermodynamic limit, which is interpreted as a constructive
role of the shot noise.

I. INTRODUCTION

The electrical activity of neuronal populations provides a
substrate for information processing and cognitive functions in

the central neural system. Many efforts have been made to
better understand the collective behavior of large-scale neu-
ral networks, and mathematical modeling has been a guide on
this way for several decades. Using models of coupled spik-
ing neurons, a number of important effects have been studied,
including synchronization of neural populations,1–6 asynchronous
states,7,8 periodic collective oscillations,9–11 microscopic chaos,12–14

collective irregular dynamics,15,16 working memory,17,18 and many
others.

A common way to describe the macroscopic dynamics of
large-scale neural networks is to deal with macroscopic observables
instead of microscopic variables. In some cases, it is possible to write
a closed set of equations for the macroscopic variables and to obtain
the so-called neural mass model. Such models can be postulated
heuristically19–21 or derived from the microscopic equations.22–30

Some of the methods to derive neural mass models involve using
Ott–Antonsen Ansatz31,32 or Lorentzian Ansatz.33 These techniques
are applicable to networks of θ-neurons34,35 or quadratic integrate-
and-fire (QIF) neurons33 and allow to obtain a low-dimensional set
of ODEs for macroscopic variables (or order parameters) of the
network. These systems are much simpler for both analytical and
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numerical studies than the microscopic models, which makes them
very popular in many contexts.36–44

It is known that Ott–Antonsen Ansatz and Lorentzian Ansatz
provide exact solutions for the microscopic dynamics in the thermo-
dynamic limit, i.e., when the number of elements is infinite. For large
but finite systems, these solutions become approximate, and devia-
tions between the neural mass model and the microscopic model
emerge. In our recent paper,45 we demonstrated that these devia-
tions can be modeled as stochastic fluctuations, which we called
“shot noise” in analogy to electronic systems. Adding this noise
(which is global in the case of globally coupled networks) to a neural
mass model transforms the latter into a set of stochastic differen-
tial equations capable of describing finite-size effects in the network.
Note that the shot noise appears only in the macroscopic dynamics
as an approximation, while the system describing the microscopic
dynamics is deterministic.

Adding noise to dynamical systems might result in many non-
trivial phenomena such as coherence and stochastic resonance,
noise-induced oscillations, stochastic synchronization, and noise-
induced phase transitions (see Ref. 46 for a review). Since shot noise
is inevitable in neural networks, it is important to understand its
role in their collective dynamics and to compare it with that of
a genuine noise derived from the microscopic level. Previously,45

we have demonstrated the emergence of pronounced noise-induced
collective oscillations due to resonance effects. In the present work,
we continue to investigate the shot noise and analyze its ability to
induce switching between macroscopic dynamical regimes of the
network.

Noise-induced switching in multistable dynamical systems is
a widely known phenomenon first studied in the classical paper of
Kramers47 and later observed in many other examples.48–54 Adding
noise to a multistable system turns its attractors into metastable
states whereby the system spends some time in vicinity of a state
before switching to another one. The lifetime of the metastable state
is the key measure of the switching behavior.

In the present paper, we study the switching dynamics due to
shot noise and associated lifetimes of metastable states in a finite-size
purely excitatory network of globally coupled quadratic integrate-
and-fire neurons with most of the neurons in the sub-threshold
regime. In the limit of infinitely many neurons, the network can
be exactly reduced to the deterministic neural mass model33 where
the only possible stable solutions are fixed points and show no
switching. In a certain parameter area, the network is bistable with
infinite lifetimes of both the macroscopic regimes. For finite net-
work size, these regimes might become metastable, and we study
their lifetimes depending on the network size and its macroscopic
parameters. We demonstrate that the lifetime shows a smooth tran-
sition from extremely large values when the regime is effectively
stable to very small values when the regime effectively vanishes. For
large networks, these transitions are abrupt and located near the
bifurcation points of the thermodynamic system. For smaller net-
works, the transitions become smoother and move away from the
bifurcation points. The most unexpected finding is that the transi-
tion boundaries can shift in such a way that the regime’s region of
stability expands with respect to that of the thermodynamic case. In
other words, shot noise not only smooths the bifurcation transition,
but also shifts it and creates a macroscopic state in the parameter

region where it does not exist in the deterministic case. This phe-
nomenon shows that the shot noise can play a constructive role in
the collective dynamics of neural networks.

II. EXACT SYSTEM AND THE NEURAL MASS MODEL

We consider a purely excitatory network of N quadratic
integrate-and-fire (QIF) neurons55,56 with most of the neurons being
sub-threshold,

V̇j = V2
j + ηj + Js(t) + I(t). (1)

Here, Vj is the membrane potential of the j-neuron, ηj is a heteroge-
neous bias current, I(t) is a common time-dependent external input
that we set to zero in the rest of the paper, J is the coupling strength,
and s(t) is the recurrent input,

s(t) =
1

N

N
∑

j=1

∑

k

δ(t − tk
j ). (2)

In (2), tk
j is the moment of the kth spike of the jth neuron, and δ(t)

describes the postsynaptic current after a single spike (note that we
assume infinitely short pulses which is important for further anal-
ysis since pulses of finite duration can induce collective oscillations
in the network57,58). Each neuron emits a spike when its potential Vj

reaches the threshold value Vp, after which it is reset to Vr. It is com-
mon to set Vp = −Vr = ∞ since Vj can reach infinity in finite time
due to quadratic nonlinearity in Eq. (1).

Montbrió, Pazó, and Roxin showed that in the thermodynamic
limit N → ∞ the collective behavior of the network can be reduced
to a neural mass model for macroscopic variables.33 The reduction
turns out to be especially effective when the bias currents ηj are
assumed to have Lorentzian distribution

g(η) =
1

π

1

12 + (η − ζ )2 , (3)

where ζ is the mean and 1 is the half-width. In this case, the network
dynamics is reduced to just two ODEs,

ṙ = 1/π + 2rv, (4a)

v̇ = v2 + ζ − π 2r2 + Jr, (4b)

where r is the mean firing rate of the neurons and v is the mean
membrane potential. System (4) is exact for infinitely large net-
works and also provides a reasonable approximation for large but
finite networks in many cases. The only possible stable solutions of
this system are fixed points, as shown in Ref. 33. It is important to
investigate the applicability conditions of this approximation and
find out when the finite-size effects lead to substantial deviations
between the dynamics of the neural network (1) and its neural mass
representation (4).

In our recent work, we have demonstrated that finite size effects
can be captured by adding a stochastic term to the neural mass
dynamics.45 The power spectrum of the shot noise might contain
pronounced peaks; therefore, it might cause notable oscillations
due to resonance effects. Another typical stochastic effect is noise-
induced switching between different attractors of the deterministic
system. Below we focus on the latter effect.
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FIG. 1. (a) Bifurcation diagram of the neural mass model (4) for 1 = 1. System is bistable within the region bounded by the curves of saddle-node bifurcations (solid lines).
(b) A typical phase portrait of the neural mass system inside the bistability area: two stable steady states OH and OL separated by the saddle OS. (c) Phase portrait of the
neural mass model for J = 20, ζ = −9.89 [red cross in (a)] and the trajectory of a finite-size network with N = 400 (blue line). (d) Filtered activity of the finite-size network
with N = 400. Blue line: running average with the window width 1t = 0.3, red line: neural mass model driven by the finite-size network, see Eq. (6). Horizontal dashed lines
correspond to steady states of the neural mass model.

Obviously, the likelihood of the dynamical system to switch
from one attractor to another under a stochastic perturbation
depends on the magnitude of this perturbation and the system’s
resilience. While the former scales inversely proportional to a
square root of the system size, the latter can be roughly esti-
mated as the distance from the system’s attractor to the bound-
ary of its attraction basin.59–61 The latter observation suggests that
noise-induced switching is likely to be observed near bifurcations
curves where the attractor collides with an unstable state and
vanishes.

In system (4), the only possible attractors are steady states,
and the bifurcation diagram of this system is depicted in Fig. 1(a).

It contains two saddle-node bifurcation curves, which converge in
the codimension-two cusp-point bifurcation point and form a bista-
bility region between the two curves. Inside the bistability area,
the system possesses three steady states: a stable node OL corre-
sponding to low activity (firing rate), another stable steady state
OH, typically a stable focus, corresponding to higher activity, and
a saddle OS separating these two states. A typical phase portrait
of the system inside the bistability area is shown in Fig. 1(b). On
the lower branch of the saddle-node bifurcation, the high activ-
ity state OH collides with the saddle and vanishes, while the upper
saddle-node branch corresponds to the vanishing of the low activity
state OL.
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III. NOISE-INDUCED ESCAPE FROM THE

HIGH-ACTIVITY STATE

Let us now concentrate on the dynamics of finite-size net-
work. For this case, the set of bias currents ηj is discrete and can be
described by the continuous distribution only approximately. Thus,
the particular realization of this set might influence the network
dynamics. In order to minimize the deviations caused by subsam-
pling and ensure the reproducibility of the results, we generated the
set ηj deterministically as it was done in Ref. 33,

ηj = ζ + 1tan
π(2j − N − 1)

2(N + 1)
, (5)

where j = 1, . . . , N.
As mentioned before, noise-induced switching should be

expected near the bifurcations of the deterministic system. Follow-
ing this conjecture, we took the parameters inside the bistability
region but close to its boundary. First, we take the parameters close
to the lower branch of the saddle-node bifurcation, at the point
shown by a red cross in Fig. 1(a). The phase portrait of the reduced
system for these parameters shown in Fig. 1(c) reveals that the high-
activity state OH is much closer to the saddle separatrix than the
low-activity one OL. Therefore, for a finite-size network, it is natural
to expect the noise-induced switching to the low-activity state.

We simulated the finite-size network of N = 400 neurons start-
ing from the high-activity steady state of the reduced system. The
dynamics of the network is illustrated in Figs. 1(c) and 1(d) and
indeed shows noise-induced switching. The system spends some
time near the high-activity state demonstrating quite pronounced
fluctuations of the activity and then switches to the low-activity state
where the fluctuations substantially decrease. The switching in the
opposite direction was never observed within a very long simulation
time (t ≤ 106).

Two points should be made regarding the results shown in
Fig. 1 before a systematic study of noise-induced switching can be
performed. First, the microscopic dynamics must be filtered with
an appropriate temporal filter in order to observe switching: other-
wise, the network activity appears as a series of individual spikes. In
Fig. 1(c), we used running average with the time window 1t = 0.3
selected empirically. Another option would be to use the nested con-
figuration suggested in Ref. 45, in which the finite-size network is
considered a part of the infinite one. All the neurons in the infinite
network receive input only from the finite network. Obviously, the
dynamics of the infinite network are governed by Eqs. (4) with (4b)
replaced by

v̇ = v2 + ζ − π 2r2 + Js(t), (6)

where s(t) is the output of the finite-size network obtained from
Eq. (2). Then, the fluctuations of the infinite network represent a
filtered version of the shot noise, and the mean-field (neural mass)
system represents a natural temporal filter for its observation as
illustrated in Fig. 1(d) where it is compared with the output of the
running average filter. Note that we further use this neural mass fil-
ter in order to avoid tuning of the time window for the running
average filter whose optimal width might depend on the system
parameters.

The second point which should be taken into account when
studying switching due to shot noise is that in the finite-size net-
work, a stable steady state of the neural mass model might not only
become metastable but also shift with respect to the one in the neural
mass model. This effect is clearly seen in Fig. 1(c) where the “cloud”
of the noisy trajectory is obviously centered not in the steady state of
the deterministic system but is shifted to the left of it. Similarly, in
Fig. 1(d), the high-activity metastable state of the finite size network
has an average firing rate lower than that of the high-activity state OH

of the neural mass model. This feature underlines the importance of
the proper choice of initial conditions for the study of metastable
states in the finite-size network. It might happen that the network
initialized to the higher-activity steady state of the neural mass sys-
tem switches to the low activity very fast, while a metastable state
with a much longer lifetime is shifted compared to the neural mass
model.

In order to resolve the problem of a potential shift of metastable
state, we performed the following procedure. We started from the
parameter values deep inside the bistability area where the system
is not prone to switching [green asterisk in Fig. 1(a)]. We initial-
ized the system in the high-activity state of the neural mass model
and then started to decrease adiabatically the mean bias current ζ

from the initial value ζ0 toward the saddle-node bifurcation until
the desired value is reached. Then, we simulated the system for a
long time looking for a possible switching to the low-activity state
(if it did not happen earlier during the parameter variation).

We considered an ensemble of 1000 networks of a certain size
N which allowed to obtain the dependence of the survival probabil-
ity on time which turned exponential, see Fig. 2(a). The decay rate
of the survival probability equals r = 1/L, where L is the (average)
lifetime. By taking different bias currents ζ , we obtained the depen-
dence of the lifetime of the high-activity state on this parameter. The
results presented in Fig. 2(b) for several network sizes N demonstrate
transitions from very long lifetimes (L > 104) when the high-activity
state is, in fact, stable to very short lifetimes (L < 50) when it effec-
tively vanishes. The transitions are smooth for small networks, while
for large networks they become sharper and approach the point of
the saddle-node bifurcation of the neural mass model.

Note that for all network sizes, the transition value of ζ is
located inside the bistability region of the neural mass model. Thus,
shot noise effectively reduces the region where the high-activity state
exists. It is also instructive to analyze the dependence of the lifetimes
vs the network size for the fixed bias current ζ , which is shown in
Fig. 2(c). The lifetimes grow exponentially when the network size
increases, which is quite natural since the shot noise gets weaker.

IV. NOISE-INDUCED ESCAPE FROM THE

LOW-ACTIVITY STATE

An analysis similar to the above one can be applied to the low-
activity state in order to study noise-induced switching from this
state to the high-activity state. To do so, we first took the param-
eters inside the bistability region of the neural mass model close
to the saddle-node bifurcation of the low-activity state [blue cir-
cle in Fig. 1(a)]. Surprisingly, we did not see the switching from
the low-activity to high-activity state even for N as small as 100.
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FIG. 2. (a) Blue circles: the survival probability of the high-activity state vs time
for N = 200 and ζ = −9.6. Note the logarithmic scale of the vertical axis. The
red line depicts the approximation P = e−t/L with L = 978. (b) The lifetime of the
high-activity state vs the mean bias current ζ for different network sizes. Solid
lines, right to left: N = 200, 400, 800, 1600, 3200, and 6400. The dashed verti-
cal line shows the bifurcation point of the neural mass model. (c) The lifetime vs
the network size for different values of ζ . Solid lines, top to bottom: ζ = −9.8,
ζ = −9.85, ζ = −9.9.

Then, we started from the parameter values deep inside the bista-
bility region, initialized the finite-size network near the low-activity
state and started to gradually increase the mean bias current. In this
setting, we observed the switching in the vicinity to the right branch

of the saddle-node bifurcation curve and measured the lifetimes L of
the low-activity state. The results presented in Fig. 3(a) again show a
continuous transition from a practically stable state with L > 104 to
a vanishing state with L < 50.

However, the shot noise-induced switching from the
low-activity state is drastically different from the switching from
the high-activity one. Surprisingly, the shot noise sifts the transition
outside of the bistability region of the neural mass model, which
implies expansion of the region where the low-activity state exists.
The average lifetimes of the low-activity state for different N in
Fig. 3(a) indicate that the transition shifts to larger ζ and becomes
more smooth as the system size decreases, i.e., as the shot noise
grows. To characterize the expansion of the low-activity state, we
calculated the parameter value ζN for which the network of the size
N has a lifetime L(ζN) = 1000. The distance from this point to the
bifurcation point ζ∞ of the neural mass model is plotted in Fig. 3(b)
vs the network size N in double logarithmic scale. The expansion
ζN − ζ∞ scales as the inverse square root of the network size, i.e., as
the strength of the shot noise. We also plotted the dependence of
the lifetime on the network size N for several fixed values of ζ in
Fig. 3(c) to show explicitly that increasing the network size destabi-
lizes the metastable state and decreases its lifetime. Comparing these
results with Fig. 2(c) one immediately sees that the effect of the shot
noise is opposite for the high-activity and the low-activity states.

In order to confirm that extension of the area where the low-
activity state exists can be interpreted as the constructive effect of
shot noise, we modeled the finite-size network using the stochas-
tic version of the neural mass model suggested in Ref. 45. This
model represents Montbrió–Pazó–Roxin system (4) with the second
Eq. (4b) replaced by

v̇ = v2 + ζ − π 2r2 + Jr + Jχ0(t)/
√

N, (7)

where χ0(t) is the so-called free shot noise. We simulated the
stochastic neural mass model near the bifurcation points for dif-
ferent network sizes N. For each network size, the free shot noise
was generated as a difference between the output of the (uncou-
pled) finite-size network and the infinite network receiving the same
(constant) input I0 = Jr0, where r0 corresponds to the firing rate
at the bifurcation point (see the Appendix for the details). The so
generated shot noise is a good approximation while the system is
close to the low-activity state. Therefore, it can serve for modeling
the escape process, although it becomes inadequate as soon as the
system reaches the high-activity state. The results for the stochastic
neural mass model are presented in Fig. 4(a) and show qualitative
similarity with the results for the microscopic system from Fig. 3(b):
as the network size N decreases, the transition border shifts to the
right and becomes sharper. Interestingly, white noise approximation
of the shot noise fails to reproduce this result: if χ0(t) is replaced by
the white Gaussian noise with the intensity r0, the transition bor-
der shifts in the opposite direction as the network size decreases, see
Fig. 4(b). This observation underlines the inadequacy of white noise
approximation for massively coupled networks, in contrast to sparse
coupling.

We have demonstrated that the role of the shot noise turns
out to be substantially different for the high-activity and low-
activity regimes of the network. Although in both cases it may
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FIG. 3. (a) The lifetime of the low-activity state vs ζ for different N. Solid lines,
right to left: N = 100, 200, 400, 800, 1600, 3200, and 6400. Vertical dashed
line: saddle-node bifurcation of the neural mass model. (b) Red circles: the dis-
tance between the point where the lifetime of the lower state equals 103 and the
bifurcation point of the neural mass model vs the network size. Note the double
logarithmic scale. Blue solid lines show the slope∼ N−1/2. (c) The lifetime vs the
network size for different values of ζ . Solid lines, top to bottom: ζ = −3.414,
ζ = −3.413, ζ = −3.412.

cause noise-induced switching and make the state metastable, it
also changes the regions where these states exist, and moreover
changes them in an opposite way: while the region of existence of the
high-activity state shrinks, the region of existence of the low-activity

FIG. 4. (a) The lifetime of the low-activity state vs ζ for differentN in the stochastic
neural mass model (7). Solid lines, right to left: N = 200, 400, 800, and 1600.
Vertical dashed line: saddle-node bifurcation of the neural mass model. (b) The
same with the shot noise replaced by the white noise. Solid lines, left to right:
N = 200, 400, 800, and 1600.

state expands. These two opposite effects are not restricted to certain
parameter values but observed generically along the entire branches
of the saddle-node bifurcations. Thus, for a finite-size network, the
boundary at which the high-activity state vanishes shifts inside the
bistability region of the neural mass model, while the boundary at
which the low-activity state vanishes moves outside of this region.
As a combination of these two effects, the whole bistability region of
the finite-size network shifts to higher values of the mean bias cur-
rent ζ with respect to the thermodynamic case, see Fig. 5(a). Note
that we have plotted the lines where the lifetimes of both the states
equal L = 50. Thus, inside the area limited by these lines the two
states coexist, being either metastable or stable.

It is interesting to take a look at the network dynamics near the
tip of the bistability area where it is natural to expect recurrent noise-
induced switching between the two metastable states. However, the
actual scenario is more complicated. When approaching the tip,
the two states get close to each other and can no longer be distin-
guished due to random-like fluctuations, which become larger than
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FIG. 5. (a) Borders of existence of the low-activity and high-activity metastable
states for the network of N = 400 (red lines) and N = 200 (blue line) neurons.
Dashed lines show the saddle-node bifurcations of the neural mass model. (b)
Phase portrait of the neural massmodel near the tip of the bistability region and the
trajectory of a finite-size network of N = 400 neurons (J = 7.803, ζ = −1.64).
(c) Filtered activity of the same network. Blue line: neural mass model driven by
the finite-size network, see Eq. (6). Red line: running average with the window
width 1t = 20.

the distance between the states. Recall that the deterministic system
undergoes a cusp bifurcation close to the tip which implies the exis-
tence of a neutrally stable central manifold. In the presence of shot
noise, the system travels along this manifold while the transversal
perturbations fade quickly. An example of such dynamics is illus-
trated in Figs. 5(b) and 5(c) where the switching-like behavior can
be seen only after implementing local time averaging of the network
activity over a long temporal window 1t = 20. Our observations
suggest that finite-size fluctuations are probably not enough in
order to cause recurrent switching between two well distinguishable
states and slow adaptation processes like neural plasticity should be
added.62,63

V. CONCLUSIONS

Our study shows that the impact of the shot noise due to
finite-size effects may be similar to the action of genuine noise on
dynamical systems. In particular, it can turn the attractors of an
infinite system into metastable states and induce switching between
them. The lifetimes of such metastable states depend smoothly on
the system parameters.

However, the shot noise may also play a constructive role
by extending the parameter area where certain dynamical regimes
exist. Here, this effect is observed for the low-activity state of the
network which in finite-size networks exits in a larger parameter
region than in the thermodynamic limit. It is yet to be understood
whether such constructive influence of the shot noise depends on
certain features of the macroscopic state or it is related to the effec-
tive shift of macroscopic parameters as can be conjectured from
Fig. 4(a).

It would also be interesting to compare the shot noise and
genuine noise introduced explicitly via stochastic terms on the
microscopic or macroscopic level and to find out whether the lat-
ter can play a constructive role as well. For example, it would be
instructive to compare the constructive effect of shot noise with the
effect of noise enhanced stability known for stochastic systems.64–66

In the context of neural networks, recently it was shown that additive
microscopic Gaussian noise can give rise to completely new dynam-
ical regimes in neural networks.67 It is yet to be established whether
the shot noise can play a constructive role in this sense as well. On
the other hand, the macroscopic shot noise can provide corrections
to neural mass models for networks with microscopic noise.68–70 The
interplay between these two types of noise is another topic worthy
of study.

The generality of our results is confined by the assumptions of
the model, namely, a network with global, purely excitatory synaptic
coupling and mostly sub-threshold dynamics of the single neu-
rons. An important problem following from our study is to attempt
to understand the possible constructive role of the shot noise in
other network configurations. Our preliminary results indicate sim-
ilar effects in a network of two populations, an excitatory and an
inhibitory ones (will be published elsewhere). However, the situation
may be different when a more realistic sparse coupling rather than
global coupling is considered. The key difference is that for global
connectivity, the neurons receive a common noise, while in sparse
networks there are weakly correlated microscopic fluctuations. It
is important to understand whether the common noise is indeed
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necessary for the effects observed in this study, or similar effects can
also be seen for uncorrelated local fluctuations.

ACKNOWLEDGMENTS

The study of the stochastic neural mass model was supported
by the International Laboratory of Dynamical Systems and Applica-
tions of National Research University Higher School of Economics,
Government of Russian Federation under Grant No. 075-15-
2022-1101. The numerical simulations of the finite-size networks
were supported by the Russian Science Foundation, Grant No.
19-72-10114. The authors thank the anonymous reviewers for useful
comments which helped to substantially improve the manuscript.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

V. V. Klinshov: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Funding acquisition (equal); Investiga-
tion (equal); Methodology (equal); Project administration (equal);
Resources (equal); Software (equal); Supervision (equal); Valida-
tion (equal); Visualization (equal); Writing – original draft (equal);
Writing – review & editing (equal). P. S. Smelov: Investigation
(equal); Software (equal). S. Yu. Kirillov: Investigation (equal);
Methodology (equal); Visualization (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: GENERATING A SAMPLE OF THE FREE

SHOT NOISE

Here, we describe how to generate a sample of the free shot
noise for the finite-size network receiving the constant input I0. By
definition,45 the free shot noise is the difference between the out-
puts of the (uncoupled) finite-size network and the infinite network
receiving the same input. In the finite-size network receiving the
input I0, the neurons with ηj + I0 < 0 are silent, while the neurons
with ηj + I0 > 0 generate pulses periodically with the frequencies
νj =

√

ηj + I0/π . Thus, we generate its output as a weighted sum
of Dirac combs with these frequencies,

s(t) =
1

N

∑

j

∞
∑

k=−∞

δ
(

t − k/νj + θj

)

,

where θj is a random phase. For the infinite network receiving the
input I0, the output equals

r =
1

√
2π

√

(ζ + I0) +
√

(ζ + I0)
2 + 12,

which readily follows from (4). Finally, we generate the free shot
noise as

χ0(t) =
√

N(s(t) − r).
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