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CLASSIFICATION OF MORSE–SMALE DIFFEOMORPHISMS

WITH A FINITE SET OF HETEROCLINIC ORBITS ON

SURFACES

A. MOROZOV AND O. POCHINKA

The article is dedicated to dear Yuliy Sergeevich Ilyashenko, a life guide and role model.

Abstract. In this paper, we consider orientation-preserving Morse-
Smale diffeomorphisms on orientable closed surfaces. Such diffeomor-
phisms can have infinitely many heteroclinic orbits, which makes their
topological classification very difficult. In fact, even in the case of a fi-
nite number of heteroclinic orbits, there are no exhaustive classification
results. The main problem is that for all currently known complete topo-
logical invariants of such systems, the implementation is not described.
In this paper, we present a complete topological classification of Morse-
Smale diffeomorphisms with a finite number of heteroclinic orbits on
surfaces, including a realization.
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1. Introduction and Formulation of Results

A discrete dynamical system (cascade) on an n-manifold Mn is the group of inte-
ger powers of some diffeomorphism f : Mn →Mn. Diffeomorphisms f : Mn →Mn,
f ′ : M ′n →M ′n are called topologically conjugate if there exists a homeomorphism
h : Mn →M ′n such that hf = f ′h.

It is clear that the direct verification of the topological conjugacy of two cascades
is an immense problem. An object or property of the system that is preserved un-
der topological conjugacy is called topological invariant of the diffeomorphism that
generates it. The search for topological invariants is a part of the topological clas-
sification of some set G of dynamical systems, which is understood as the solution
of the following problems:
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1) searching for topological invariants of dynamical systems from the class G;
2) proof of the completeness of the set of found invariants, that is, proof that

the coincidence of sets of topological invariants is a necessary and sufficient
condition for the topological conjugacy of two dynamical systems from G;

3) realization, that is, description of admissible abstract invariants and the
construction of a standard representative belonging to G according to the
given invariant.

In this paper, we consider orientation-preserving Morse–Smale diffeomorphisms
f on an orientable surface M2. By definition, such a diffeomorphism has a hyper-
bolic non-wandering set consisting of a finite number of periodic orbits whose stable
manifolds intersect transversally with unstable ones. Let Oi, Oj be periodic orbits
of the Morse–Smale diffeomorphism f : M2 →M2. In [17] S. Smale introduced the
notion of partial order relation ≺ for periodic orbits

Oi ≺ Oj ⇐⇒ W s
Oi ∩W

u
Oj 6= ∅.

For saddle orbits Oi ≺ Oj any intersection point W s
Oi∩W

u
Oj is called heteroclinic.

A sequence of distinct saddle periodic orbits Oi = Oi0 , Oi1 , . . . , Oik = Oj (k > 1)
such that Oi0 ≺ Oi1 ≺ · · · ≺ Oik is called a chain of length k connecting the periodic
orbits Oi and Oj (see Fig. 1).

Figure 1. Chain of length 2: O1 ≺ O2 ≺ O3, for fixed saddle
points p1 = O1, p2 = O2, p3 = O3

The maximum length of the saddle chain connecting the orbits Oi and Oj is
denoted as beh(Oj |Oi) (beh from behaviounr). We state beh(Oj |Oi) = 0 if Wu

Oj ∩
W s
Oi = ∅. Let

beh(f) = max{beh(Oj |Oi)}.
If beh(f) = 0 for a Morse–Smale diffeomorphism f : M2 →M2, then the diffeo-

morphism f is called a gradient-like diffeomorphism (f has no heteroclinic points).
Denote by G the class of orientation-preserving Morse–Smale diffeomorphisms

f defined on orientable surfaces M2 and satisfying the condition beh(f) 6 1. The
complete topological invariants of such diffeomorphisms known today are described
in the section 4. However, no realization is described for these invariants. The
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approach proposed in this paper for classifying diffeomorphisms of the set G dif-
fers from all currently available approaches. It allows to solve the implementation
problem in the class under consideration.

The classification of Morse–Smale diffeomorphisms with beh(f) = 2 is compli-
cated by the fact that diffeomorphisms of this class have an infinite number of
heteroclinic orbits. The authors suggest that the approach described in this arti-
cle can be improved and used in the classification of this more complex class of
diffeomorphisms.

Let us describe the invariants.

1.1. Diffeomorphism scheme f ∈ G. Let f ∈ G. Then the set Σf of periodic
orbits of the diffeomorphism f can be divided into subsets Σif , i ∈ {ω, s, u, α} as
follows:

• Σωf is the set of all sink points;
• Σsf is the set of saddle points, whose unstable manifolds do not contain

heteroclinic points;
• Σuf is the set of all other saddle points;
• Σαf is the set of all source points.

It follows from the properties of the introduced order ≺ that every orbit Oi ∈ Σuf
is in the relation Oj ≺ Oi with some periodic orbit Oj ∈ Σsf . Let

Af = Σωf ∪Wu
Σsf
, Rf = Σαf ∪W s

Σuf
, Vf = M2 \ (Af ∪Rf ).

In the paper [10] it is shown that the sets Af , Rf are an attractor and a repeller
of the system, respectively. Let

V̂f = Vf/f.

According to the paper [9], each connected component of the orbit space V̂f is

homeomorphic to a two-dimensional torus. Denote by pf : : Vf → V̂f the natural

projection, which is also a covering map for the space V̂f .

We denote by V̂i, i ∈ {1, 2, . . . , n}, the connected components of the orbit space

V̂f . We set Vi = p−1
f (V̂i) and denote by pi : Vi → V̂i the natural projection. The

covering pi induces a non-trivial homomorphism ηi : π1(V̂i)→ miZ that associates

[ĉ] ∈ π1(V̂i) with the number µmi such that any lifting of the curve ĉ connects the
point x ∈ Vi with the point fµmi(x). We set

V̂f = V̂1 t · · · t V̂n
and denote by ηf the map composed of the homomorphisms η1, . . . , ηn.

Denote by mf ∈ N the smallest number such that all points of the non-wandering
set of the diffeomorphism fmf are fixed and the diffeomorphism fmf preserves the
orientation on Wu

σ for all σ ∈ Σf . Let us set f̃ = fmf and note that the sets Af
and Rf are also an attractor and repeller for the diffeomorphism f̃ . We set

Ṽf = Vf/f̃ .

Denote by p̃f : Vf → Ṽf the natural projection, which is also a covering map.
Let us introduce the following notation:
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• Lsf , Luf are sets of all stable, unstable, respectively, saddle separatrices of
the diffeomorphism f and Lf = Lsf ∪ Luf ;

• Lsf =
⋃
l∈Lsf

l, Luf =
⋃
l∈Luf

l and Lf = Lsf ∪ Luf ;

• L̂sf = {l̂ = pf (l) | l ∈ Lsf}, L̂uf = {l̂ = pf (l) | l ∈ Luf} and L̂f = L̂sf ∪ L̂uf ;

• L̂sf =
⋃
l̂∈L̂sf

l̂, L̂uf =
⋃
l̂∈L̂uf

l̂ and L̂f = L̂sf ∪ L̂uf ;

• P̂f is an involution on the set L̂f such that for any element l̂ ∈ L̂f the

equality l̂ ∪ P̂f (l̂) = pf (W δ
σ \ σ) is holds for some δ ∈ {s, u} and σ ∈

(Σsf ∪ Σuf );

• L̃sf = {l̃ = p̃f (l), | l ∈ Lsf}, L̃uf = {l̃ = p̃f (l) | l ∈ Luf} and L̃f = L̃sf ∪ L̃uf ;

• L̃sf =
⋃
l̃∈L̃sf

l̃, L̃uf =
⋃
l̃∈L̃uf

l̃ and L̃f = L̃sf ∪ L̃uf ;

• P̃f is an involution on the set L̃f such that for any element l̃ ∈ L̃f the

equality l̃ ∪ P̃f (l̃) = p̃f (W δ
σ \ σ) is holds for some δ ∈ {s, u} and σ ∈

(Σsf ∪ Σuf ).

For any diffeomorphism f ∈ G we set

Ŝf = (V̂f , L̂f , P̂f ), S̃f = (Ṽf , L̃f , P̃f ).

Definition 1 (Diffeomorphism scheme). We will call the pair

Sf = (Ŝf , S̃f )

the scheme of the diffeomorphism f ∈ G.

1.2. The set Ŝf . Sets Ŝf , Ŝf ′ for diffeomorphisms f, f ′ ∈ G are called equivalent

(see Fig. 2) if there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ such that ηf = ηf ′ ϕ̂∗
and

(1) L̂sf ′ = ϕ̂(L̂sf ), L̂uf ′ = ϕ̂(L̂uf );

(2) the homeomorphism ϕ̂ induces a one-to-one correspondence ϕ̂? : L̂f → L̂f ′

by the formula ϕ̂?(l̂) = ϕ̂(l̂) and holds the property ϕ̂?P̂f = P̂f ′ ϕ̂?.

Figure 2 shows the diffeomorphisms f, f ′ ∈ G. On the left a diffeomorphism
f of a two-dimensional sphere whose non-wandering set consists of fixed source
points α1, α2, α3, α4, fixed saddle points σ1, σ2, σ3 and a fixed sink point ω1 is
shown. The separatrices l1, . . . , l6 ∈ Lf are also marked. The projections of the

separatrices L̂f = {l̂1, . . . , l̂6} on the set V̂f = V̂1 t V̂2. The involution P̂f acts as
follows:

P̂f (l̂1) = l̂2, P̂f (l̂3) = l̂4, P̂f (l̂5) = l̂6.

The figure on the right shows a diffeomorphism f ′ of a two-dimensional torus
whose non-wandering set consists of fixed source points α′1, α

′
2, fixed saddle points

σ′1, σ
′
2, σ

′
3and a fixed sink point ω′1. The separatrices l′1, . . . , l

′
6 ∈ Lf ′ are also

marked. the projections of the separatrices L̂f ′ = {l̂′1, . . . , l̂′6} on the set V̂f ′ =

V̂ ′1 t V̂ ′2 . The involution P̂f ′ acts as follows:

P̂f ′(l̂′1) = l̂′3, P̂f (l̂′2) = l̂′4, P̂f (l̂′5) = l̂′6.

For Ŝf , Ŝf ′ there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ such that ηf = ηf ′ ϕ̂
and point (1) of the sets equivalence holds. But any such homeomorphism does not
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Figure 2. Phase portraits of topologically non-conjugate diffeo-
morphisms f, f ′ ∈ G with non-equivalent sets Ŝf , Ŝf ′ .

satisfy condition (2) ϕ̂?P̂f = P̂f ′ ϕ̂?. The topological non-conjugacy of the diffeo-
morphisms f, f ′ obviously follows from non-homeomorphic supporting surface.

1.3. The set S̃f . Sets S̃f , S̃f ′ of the diffeomorphisms f, f ′ ∈ G are called equiv-

alent (see Fig. 3) if there exists a homeomorphism ϕ̃ : Ṽf → Ṽf ′ such that:

(1) L̃f ′ = ϕ̃(L̃f );

(2) the homeomorphism ϕ̃ induces a one-to-one correspondence ϕ̃?(l̃) = ϕ̃(l̃)

by the formula ϕ̃? : L̃f → L̃f ′ and holds the property ϕ̃?P̃f = P̃f ′ ϕ̃?.

Figure 3 shows the diffeomorphisms f, f ′ ∈ G. On the left a diffeomorphism f of
a two-dimensional sphere whose non-wandering set consists of fixed source points
α1, α2, α3, α4, α5, fixed saddle points σ1, σ2, σ3, σ4 and a fixed sink point ω1 is
shown. The separatrices l1, . . . , l8 ∈ Lf are also marked. The projections of the

separatrices L̂f = {l̂1, . . . , l̂4} are marked on the set V̂f = V̂1 t V̂2. The involution

P̂f acts as follows:

P̂f (l̂1) = l̂2, P̂f (l̂3) = l̂4.
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The separatrices L̃f = {l̃1, . . . , l̃8} are also marked on the set Ṽf = Ṽ1 t Ṽ2. The

involution P̃f acts as follows:

P̃f (l̃1) = l̃2, P̃f (l̃3) = l̃4, P̃f (l̃5) = l̃6, P̃f (l̃7) = l̃8.

The figure on the right shows a diffeomorphism f ′ of a two-dimensional torus
whose non-wandering set consists of fixed source points α′1, α

′
2, α

′
3, fixed saddle

points σ′1, σ
′
2, σ

′
3, σ

′
4 and the fixed sink point ω′1. The separatrices l′1, . . . , l

′
8 ∈ Lf ′

are also marked. The projections of the separatrices L̂f ′ = {l̂′1, . . . , l̂′4} are marked

on the set V̂f ′ = V̂ ′1 t V̂ ′2 . The involution P̂f ′ acts as follows:

P̂f ′(l̂′1) = l̂′2, P̂f (l̂′3) = l̂′4.

The projections of the separatrices L̃′f = {l̃′1, . . . , l̃′8} are marked on the set Ṽf ′ =

Ṽ ′1 t Ṽ ′2 . The involution P̃f ′ acts as follows:

P̃f ′(l̃′1) = l̃4, P̃f ′(l̃′2) = l̃′5, P̃f ′(l̃′3) = l̃′6, P̃f ′(l̃′7) = l̃′8.

For sets Ŝf , Ŝf ′ there is a homeomorphism ϕ̂ : V̂f → V̂f ′ such that ηf = ηf ′ ϕ̂
and points (1) and (2) of the set equivalence hold. There is also a homeomorphism

ϕ̃ : Ṽf → Ṽf ′ for the sets S̃f , S̃f ′ such that point (1) of the equivalence of sets is sat-

isfied. But any such homeomorphism does not satisfy condition (2) ϕ̃?P̃f = P̃f ′ ϕ̃?.
The topological non-conjugacy of the diffeomorphisms f, f ′ obviously follows from
the non-homeomorphic of the supporting manifold.

1.4. Scheme equivalence class is a complete invariant

Definition 2 (Scheme equivalence). Schemes Sf , Sf ′ of diffeomorphisms f, f ′ ∈ G
will be called equivalent if there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ , imple-

menting the equivalence of the sets Ŝf , Ŝf ′ and lifting to the homeomorphism

ϕ̃ : Ṽf → Ṽf ′ , which implements the equivalence of the sets S̃f , S̃f ′ .

Theorem 1. Two diffeomorphisms f, f ′ ∈ G are topologically conjugate if and
only if their schemes Sf , Sf ′ are equivalent.

1.5. Abstract scheme. To solve the realization problem, we introduce the con-
cept of an abstract scheme.

Let m ∈ N, mi ∈ N, i = 1, . . . , n, be the divisors of m and Vi = (R2 \ (0, 0))×
Zmi . Let us define a diffeomorphism φi : Vi → Vi by the formula

φi(x, y, k) =

{
(x, y, k + 1), k ∈ {0, 1, . . . , mi − 2};
(x2 ,

y
2 , 0), k = mi − 1.

Then V̂i = Vi/φi is a torus. Let ai = {(x, y, 0) ∈ Vi : x > 0, y = 0} be a ray with
orientation to the initial, bi = {(x, y, 0) ∈ Vi : x2 + y2 = 1} be a circle with the

clockwise orientation and pi : Vi → V̂i be a natural projection. Then the curves

âi = pi(ai), b̂i = pi(bi) are generators on the torus V̂i (see Fig. 4). Hence any knot

c ⊂ V̂i with respect to these generators has a homotopy type [c] = 〈µc, νc〉. Let us

define an epimorphism ηi : π1(V̂i)→ miZ by the formula

ηi([c]) = µc ·mi.
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Figure 3. Phase portraits of topologically non-conjugate diffeo-
morphisms f, f ′ ∈ G with non-equivalent sets S̃f , S̃f ′

Let L̂si and L̂ui be families of pairwise disjoint knots such that ηi([l]) > 0 for any

l̂ ∈ (L̂si ∪ L̂ui ) and the sets L̂si =
⋃
l̂∈L̂si

l̂, L̂ui =
⋃
l̂∈L̂ui

l̂ intersect transversally. Let

L̂s =

n⋃
i=1

L̂si , L̂u =

n⋃
i=1

L̂ui , L̂ = L̂s ∪ L̂u,

L̂s =

n⋃
i=1

L̂si , L̂u =

n⋃
i=1

L̂ui , L̂ = L̂s ∪ L̂u,

V = V1 t · · · t Vn, V̂ = V̂1 t · · · t V̂n.
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Figure 4. Generators âi, b̂i on the torus V̂i.

Denote by φ : V → V the map composed of the diffeomorphisms φ1, . . . , φn, by
p : V → V̂ the mapping composed of the projections p1, . . . , pn and by η the map
composed of the homomorphisms η1, . . . , ηn.

Let us define on the set L̂ an involution P̂ : L̂ → L̂ such that:

• P̂(L̂s) = L̂s, P̂(L̂u) = L̂u;

• η([P̂(l̂)]) = η([l̂]) for any l̂ ∈ L̂;

• the set l̂ ∪ P̂(l̂) has a non-empty intersection with the set L̂s for any node

l̂ ∈ L̂u.

We set φ̃ = φm : V → V , Ṽ = V/φ̃ and denote by p̃ : V → Ṽ natural projection.

We set q = pp̃−1 : Ṽ → V̂ , L̃s = q−1(L̂), L̃u = q−1(L̂), L̃ = q−1(L̂) and denote by L̃
the set of connected components of the set q−1(L̂). Note that the diffeomorphism

φ induces a substitution Φ̃ : L̃ → L̃ by the formula

Φ̃(l̃) = p̃φp̃−1(l̃).

Let us define on the set L̃ an involution P̃ : L̃ → L̃ such that:

• Φ̃P̃ = P̃Φ̃, qP̃ = P̂q;
• the set obtained from Ṽ by identifying the knots l̃, P̃(l̃), l̃ ∈ L̃, is connected.

We state
Ŝ = (V̂ , L̂, P̂), S̃ = (Ṽ , L̃, P̃).

Definition 3 (Abstract scheme). A pair S = (Ŝ, S̃) is called an abstract scheme.

It is directly verified that the scheme of any diffeomorphism f ∈ G satisfies all
the properties of the abstract scheme. Moreover, the following realization theorem
holds.

Theorem 2. For any abstract scheme S, there exists a diffeomorphism f ∈ G
whose scheme Sf is equivalent to the scheme S.

Given any abstract scheme S = (Ŝ, S̃), one can determine the genus of the
surface on which the diffeomorphism f ∈ G is realized by the given scheme. To do
this, we construct two sets of circles Sω, Sα from the set S̃ as follows.
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By [8, Lemma 3.2.1], for each connected component Ṽi of the set Ṽf there exists

a node βsi that intersects with every node l̃ ∈ L̃s ∩ Ṽi at a single point (see Fig. 5),
let’s call such a knot equator. Denote by Bs the union of all such equators. Points
l̃∩Bs, P̃(l̃)∩Bs are called paired. Denote by Sω the set of knots obtained from Bs

by taking a connected sum along pairwise disjoint neighbourhoods of paired points
(see Fig. 5).
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A set of knots Sα is constructed similarly from the equators Bu to the knots
L̃s. Denote by ks, ku, kω, kα the number of knots in the sets L̃s, L̃u, Sω, Sα,
respectively.

The following lemma connects the genus of the supporting surface of the diffeo-
morphism f ∈ G with scheme invariant S.

Lemma 1. The genus g of the supporting surface for the diffeomorphism f ∈ G
with the scheme S can be calculated by the formula

2− 2g = kα + kω − 1

2
(ks + ku). (1)

2. Necessary and Sufficient Conditions for Topological Conjugacy
of Diffeomorphisms of Class G

Let f : M2 →M2, f ′ : M ′2 →M ′2 be diffeomorphisms from the class G and let
Sf , Sf ′ be the corresponding schemes. Let us prove that diffeomorphisms f, f ′ are
topologically conjugate if and only if their schemes are equivalent.

2.1. Necessity. (⇒) Assume that there exists a homeomorphism h : M2 → M ′2

such that hf = f ′h. We set ϕ̂ = p
f′hp

−1
f : V̂f → V̂f ′ and ϕ̃ = p̃f ′hp̃−1

f : Ṽf → Ṽf ′ .
Let us show that the homeomorphisms ϕ̂, ϕ̃ satisfy the equivalence conditions for
the schemes Sf , Sf ′ .

Let us show that the condition ηf = ηf ′ ϕ̂ is satisfied. Let V̂i be an element of the

set V̂f and ĉ ∈ V̂i be a simple closed curve. We state V̂ ′i = ϕ̂(V̂i) and ĉ′ = ϕ̂(ĉ). Let

x̂ ∈ ĉ. The curve p̂−1
f (ĉ) connects the points x, fηfmi(x) ∈ p−1

f (x̂). Let x̂′ = ϕ̂(x̂),

then the curve p̂−1
f ′ (ĉ′) connects the points x′, f ′ηf′ ([ĉ])mi(x′) ∈ p−1

f (x̂′). Then

h(fηf ([ĉ])mi(x)) = f ′ηf′ ([ĉ
′])mi(h(x)) and hence ηf ([ĉ]) = ηf ′([ϕ̂(ĉ)]).

2.1.1. Equivalence of sets Ŝf , Ŝf ′ . Let us prove the conditions (1), (2) of the equiv-

alence of the sets Ŝf , Ŝf ′ for the homeomorphism ϕ̂.
(1) Since the conjugating homeomorphism h takes the invariant manifolds of

periodic points of the diffeomorphism f into invariant manifolds of periodic points
of the diffeomorphism f ′ with stability and dimension preserved, then

Lsf ′ = h(Lsf ), Luf ′ = h(Luf ).

Then, since ϕ̂ = p
f′hp

−1
f , then

L̂sf ′ = p
f′ (L

s
f ′) = p

f′ (h(Lsf )) = p
f′ (h(p−1

f (L̂sf ))) = ϕ̂(L̂sf ).

Similarly L̂uf ′ = ϕ̂(L̂uf ).

(2) Let l̂1, l̂2 ∈ L̂f be such that l̂1 ∪ l̂2 = pf (W δ
σ) for some δ ∈ {s, u} and

σ ∈ (Σsf ∪ Σuf ). Then there exist l̂′1 ∪ l̂′2 ∈ L̂f ′ such that l̂′1 ∪ l̂′2 = pf ′(h(W δ
σ)) and

hence

ϕ̂?P̂f (l̂1) = ϕ̂?(l̂2) = ϕ̂(l̂2) = l̂′2 = P̂f ′(l̂′1) = P̂f ′ ϕ̂(l̂1) = P̂f ′ ϕ̂?(l̂1).



DIFFEOMORPHISMS WITH A FINITE SET OF HETEROCLINIC ORBITS 581

2.1.2. Set equivalence S̃f , S̃f ′ . Let us prove the conditions (1), (2) of the equiva-

lence of the sets S̃f , S̃f ′ for the homeomorphism ϕ̃.
(1) Since h is a homeomorphism conjugating the diffeomorphisms f, f ′, one has

mf = mf ′ (= m). Then h also conjugates the diffeomorphisms f̃ = fm, f̃ ′ = f ′m

and, consequently, the manifolds Ṽf , Ṽf ′ are m-layered covers of the manifolds

V̂f , V̂f ′ , respectively, and the homeomorphism ϕ̃ is a lift of the homeomorphism ϕ̂.
Moreover, the homeomorphism h maps invariant manifolds of periodic points of the
diffeomorphism f̃ into invariant manifolds of periodic points of the diffeomorphism
f̃ ′ with stability and dimension preserved. Whence it follows that

Ls
f̃ ′ = h(Ls

f̃
), Lu

f̃ ′ = h(Lu
f̃
).

Since p̃f = pf̃ , p̃f ′ = pf̃ ′ and ϕ̃ = pf̃ ′hp
−1

f̃
, then

L̃sf ′ = pf̃ ′(L
s
f̃ ′) = pf̃ ′(h(Ls

f̃
)) = pf̃ ′(h(p−1

f̃
(Ls

f̃
))) = ϕ̃(L̃sf ).

Similarly L̃uf ′ = ϕ̃(L̃uf ).

(2) Let l̃1, l̃2 ∈ L̃f such that l̃1 ∪ l̃2 = p̃f (W δ
σ) for some δ ∈ {s, u} and σ ∈

(Σsf ∪Σuf ). Then there exist l̃′1 ∪ l̃′2 ∈ L̃f ′ such that l̃′1 ∪ l̃′2 = p̃f ′(h(W δ
σ)) and hence,

ϕ̃?P̃f (l̃1) = ϕ̃?(l̃2) = ϕ̃(l̃2) = l̃′2 = P̃f ′(l̃′1) = P̃f ′ ϕ̃(l̃1) = P̃f ′ ϕ̃?(l̃1).

2.2. Sufficiency. (⇐) Let schemes Sf and Sf ′ of diffeomorphisms f, f ′ ∈ G are
equivalent. Let us show that the diffeomorphisms f, f ′ are topologically conjugated.
Let us construct a conjugating homeomorphism h : M2 →M ′2 step by step.

Step 1. The construction of the diffeomorphism H : Vf → Vf ′ . Since

schemes Sf and Sf ′ are equivalent, then there are homeomorphisms ϕ̂ : V̂f → V̂f ′

and ϕ̃ : Ṽf → Ṽf ′ satisfying the conditions of equivalence of sets Ŝf , Ŝf ′ and S̃f , S̃f ′

respectively. Due to homeomorphism ϕ̂ and condition ηf = ηf ′ ϕ̂ it follows that

ϕ̂(V̂i) = V̂ ′i , which means ∀i ∈ {1, . . . , n} ∃ ! i′ ∈ {1, . . . , n′} and consequently
n = n′ and mi = m′i′ . Without loss of generality, we will assume that i′ = i, since
this can always be achieved by renumbering the components.

We define a homeomorphism Hi : Vi → Vi by the formula

Hi(x) = p̃−1
f′

(ϕ̃(p̃f (x))).

and denote by H : Vf → Vf ′ the composition of diffeomorphisms H1, . . . , Hn.
Step 2. Extension of the homeomorphism to the set of saddle

points. We extend by continuity the homeomorphism H to the homeomorphism
H : Vf ∪Σsf ∪ Σuf → Vf ′ ∪Σsf ′ ∪ Σuf ′ as follows. For every curve ls1 = p̃−1

f (l̃s1) there is

unique curve ls2 = p̃−1
f (l̃s2) such that l̃s1 = P̃f (l̃s2) and ls1∪ ls2 = W s

σ \σ, where σ ∈ Σsf .
It follows from the properties of the constructed homeomorphism H that, for the
curves l′s1 = H(ls1), l′s2 = H(ls2), one has l′s1 ∪ l′s2 = W s

σ′ \ σ′, where σ′ ∈ Σsf ′ . Let

H(σ) = σ′.

The equality H(fk(σ)) = f ′k(σ′) extends the homeomorphism H to the orbit of the
saddle point σ and, therefore, to the entire set Σsf . Similarly, the homeomorphism
H can be extended to the set Σuf .
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Similarly to the proof of Theorem 1 in [12] the homeomorphism H is modified
to a homeomorphism h : M2 →M ′2 conjugating the diffeomorphisms f, f ′.

3. Realization of Diffeomorphisms of the Class G
by an Abstract Scheme

In this section, for any abstract scheme S = (Ŝ, S̃) we construct a diffeomor-
phism f ∈ G1 such that the scheme S and Sf are equivalent. Moreover, we will
prove Lemma 1 by establishing relation (1) for the constructed diffeomorphism. We
will use the notation introduced in Section 1.

From each abstract scheme S, a diffeomorphism φ : V → V and the sets Ls =
p̃−1(L̃s), Lu = p̃−1(L̃u) can be recovered. The sets Ls, Lu consisting of oriented

curves divided into pairs l = p̃−1(l̃), l′ = p̃−1(P̃(l̃)). Moreover, each such pair
corresponds to a natural number kl = η([p(l)]). We choose pairwise disjoint φ-
invariant tubular neighbourhoods Nl for pairs l, l′. We state φl = φ|Nl .

Let N = {(x, y) ∈ R2 : |xy| 6 1}, N s = N \ Oy and N u = N \ Ox. We define
on the set N × Zk the following diffeomorphisms:

ak,+(x, y, κ) =

{
(x, y, κ+ 1) ∀κ ∈ {0, 1, . . . , k − 1},
(x2 , 2y, 0) for κ = k;

ak,−(x, y, κ) =

{
(x, y, κ+ 1) ∀κ ∈ {0, 1, . . . , k − 1},
(−x2 , −2y, 0) for κ = k.

Let l ⊂ Lδ, δ ∈ {s, u}. If φk(l) = l′ for some k ∈ {1, . . . , kl − 1} then the
orbit space of the action of the diffeomorphism φl on Nl is isomorphic to the two-
dimensional annulus, which entails the existence of a diffeomorphism ϑl : Nl →
N δ × Zkl/2 such that ϑl(l ∪ l′) = Ox \ {O} and ϑl ◦ φl = akl/2,− ◦ ϑl. In this case
let Nl = N × Zkl/2 and al = akl/2,−. In the oppsite case the orbit space of the
action of the diffeomorphism φl on Nl is isomorphic to a pair of two dimensional
annulus, which entails the existence of a diffeomorphism ϑl : Nl → N δ × Zkl such
that ϑl(l ∪ l′) = Ox \ {O} and ϑl ◦ φl = akl,+ ◦ ϑl. In this case let Nl = N × Zkl
and al = akl,+. In both cases, if the set Nl ∩ Lu is not empty, then we choose
a diffeomorphism ϑl so that each connected component of the set ϑl(Nl ∩ Lu) is
parallel to axis Oy for δ = s and parallel to axis Ox for δ = u.

Denote by Nδ the disjunct union of the sets Nl, l ⊂ Lδ, by aδ the mapping
composed of diffeomorphisms al and by ϑδ is a map composed of diffeomorphisms
of ϑl. Denote by W = V tNs tNu and introduce on the set W a minimal equiv-
alence relation ∼, satisfying the following conditions: x ∼ y, if y = ϑs(x); x ∼ y,

if y = ϑu(x). Denote by Ṁ2 the set of equivalence classes and by p
W

: W → Ṁ2

the natural projection associating the point x ∈ W̃ its equivalent class. By [12,

Theorem 3], Ṁ2 is a non-compact surface without boundary on which the diffeo-
morphisms φ, as, au induce a Morse–Smale diffeomorphism with ku + ks saddle
points, which allows compactification of exactly kω sink and kα source points sat-
isfying the relation (1). The diffeomorphism f ∈ G constructed in this way on the
closed surface M2 is the desired one.
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4. Historical Background

4.1. Classification of gradient-like diffeomorphisms on a surface. In this
subsection, we describe known approaches to the classification of gradient-like dif-
feomorphisms on surfaces.

4.1.1. Directed graph equipped with data. Let f be a gradient-like diffeomorphism
of an orientable surface M2. Denote by σ the saddle point of the diffeomorphism
f of period mσ. Let νσ be the orientation type of σ, which is equal to 1 if the
diffeomorphism fmσ |Wu

σ
is orientation-preserving and −1 otherwise. Let lsσ (luσ) be

the stable (unstable) separatrix of the saddle point σ, i.e., lsσ (luσ) is a connected
component of the set W s

σ \ σ (Wu
σ \ σ). Since lsσ (luσ) does not intersect any saddle

point of the unstable (stable) manifold, there exists a sink point ω (source point α)
such that cl(luσ) = luσ ∪ σ ∪ ω (cl(lsσ) = lsσ ∪ σ ∪ α) [8, Lemma 3.2.1]. For δ ∈ {s, u},
we assume that the separatrix lδσ is directed towards the saddle point σ for δ = s
and away from the saddle point for δ = u.

We will say that the oriented graph Γf is a diffeomorphism graph f (see Fig. 6)
if

1) vertices of the graph Γf correspond to periodic points of the non-wandering
set Ωf ; the vertex corresponding to the periodic saddle point σ is equipped
with the weight νσ;

2) oriented edges of the graph Γf correspond to directed separatrices of saddle
points.

The diffeomorphism f induces an automorphism f∗ of the graph Γf . Let Γf , Γf ′

be the diffeomorphism graphs f, f ′. For topologically conjugated diffeomorphisms
f, f ′, it is necessary to have an isomorphism between the graphs Γf and Γf ′ con-
jugating the automorphisms f∗ and f ′∗. Unfortunately, in the general case, the
existence of a graph isomorphism is not enough for the diffeomorphisms f, f ′ to be
conjugate, even if every periodic point is fixed and every separatrix is f -invariant.
Indeed, consider the diffeomorphisms f and f ′ whose phase portraits are shown in
the figure 6. Although these diffeomorphisms have isomorphic graphs, they are not
topologically conjugate. To verify this, note that any conjugating homeomorphism
necessarily maps the sink basin ω of the diffeomorphism f to the sink basin ω′

of the diffeomorphism f ′. However, such a homeomorphism cannot be extended
to the entire sphere in such a way that it takes the invariant manifolds of saddle
points of the diffeomorphism f into the invariant manifolds of saddle points of the
diffeomorphism f ′.

Thus, the directed graph Γf of the diffeomorphism f does not define the topo-
logical conjugacy class f , so the graph Γf must contain additional information. In
order to obtain a complete classification of gradient-like diffeomorphisms on sur-
faces, in 1985 A. Bezdenezhnykh and V. Grines [1], [2] introduced equipped graphs
similar to M. Peixoto graphs [16] for gradient-like streams. The equipment in-
cluded information about the boundaries of the cells of the diffeomorphism. Below
we present a modification of this equipment, proposed later by V. Grines and O.
Pochinka [8].
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Figure 6. Diffeomorphisms f, f ′ : S2 → S2 have isomorphic
graphs, but they are not topologically conjugate.

Let ω be the sink of the diffeomorphism f and let Lω be a subset of the manifold
M2 consisting of separatrices whose closures contain the sink ω. Then there exists
a smooth 2-disk Bω such that ω ∈ Bω and each separatrix l ⊂ Lω intersects the set
∂Bω at a single point [8, Proposition 2.1.3]. Such equipped graphs can be defined
as follows. Let ω be a sink of f and let Lω be the subset of the manifold M2 that
consists of the separatrices having ω in their closures. Then there exists a smooth
2-disk Bω such that ω ∈ Bω and each separatrix l ⊂ Lω intersects ∂Bω at an unique
point; see, for example, [8, Proposition 2.1.3]. For the vertex w corresponding to
the periodic sink point ω, let Ew denote the set of edges of the directed graph Γf
incident to w. Let Nw denote the cardinality of the set Ew. We enumerate the
edges of the set Ew in the following way. First we pick in the basin of the sink ω a
2-disk Bω and set cω = ∂Bω. We define a pair of vectors (~τ , ~n) at some point of the
curve cω in such a way that the vector ~n is directed inside the disk Bω, the vector
~τ is tangent to the curve cω and induces a counter-clockwise orientation on cω with
respect to Bω (we call this orientation positive). Enumerate the edges e1, . . . , eNw
from Ew according to the ordering of the corresponding separatrices as we move
along cω starting from some point on cω. This enumeration of the edges of the set
Ew is said to be compatible with the embedding of the separatrices.
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Denote such a graph by Γ∗f .

Let Γ∗f and Γ∗f ′ be equipped graphs of diffeomorphisms f and f ′ respectively
and let Γ∗f and Γ∗f ′ be isomorphic by an isomorphism ξ. Let a vertex w of the

graph Γ∗f correspond to a sink and let w′ = ξ(w). Then the isomorphism ξ in-

duces the permutation Θw,w′ on {1, . . . , N} (where N = Nw = Nw′) defined by
Θw,w′(i) = j ⇔ ξ(ei) = e′j .

Two equipped graphs Γ∗f , Γ∗f ′ of diffeomorphisms f , f ′ are said to be isomorphic
if there exists an isomorphism ξ of the graphs Γf , Γf ′ such that

1) ξ sends the vertices into the vertices and preserves the values of the vertices
corresponding to the saddle periodic points; it sends the edges into the edges
and preserves their direction;

2) the permutation Θw,w′ induced by ξ is a power of a cyclic permutation1 for
each vertex w corresponding to a sink;

3) f ′∗ = ξf∗ξ
−1.

The isomorphism of equipped graphs is a complete invariant of the topological
conjugacy of gradient-like Morse–Smale diffeomorphisms on closed surfaces. Let
us show that the framed graphs Γ∗f , Γ′∗f of the diffeomorphisms f, f ′ shown in the

figure 6 are not isomorphic. To do this, suppose that the vertex w (w′) of the
graph corresponds to the sink ω (ω′). It is directly verified that any isomorphism
ξ induces a permutation Θw,w′ which is not a power of a cyclic permutation and,
therefore, framed graphs Γ∗f , Γ∗f ′ are not isomorphic.

4.1.2. Tricolour graph. Let us describe an alternative approach to the classification
of gradient-like diffeomorphisms on surfaces proposed by V. Grines, S. Kapkaeva,
and O. Pochinka [7] and similar to the approach of A. Oshemkov and V. Sharko
for gradient-like flows [15].

Let, as before, f be a gradient-like Morse–Smale diffeomorphism on a closed
surface M2. The non-wandering set Ωf can be represented as Ωf = Ω0

f ∪Ω1
f ∪Ω2

f ,

where Ω0
f , Ω1

f , Ω2
f denote the set of sinks, saddles, and sources of the diffeomorphism

f , respectively. For the remainder of this subsection, we assume that f has at least
one saddle point2.

Remove from the surface M2 the closure of the union of stable and unstable
manifolds of all saddle points of the diffeomorphism f and denote the resulting set
by M̃ , i.e., M̃ = M2 \ (Ω0

f ∪Wu
Ω1
f
∪W s

Ω1
f
∪Ω2

f ). The set M̃ is represented as a union

of areas (cells) homeomorphic to the open two-dimensional disk, the boundary of
each of which has one of three types (see Fig. 7) and contains exactly one source,
one sink, one or two saddle points and some of their separatrices.

Let A be any cell from the set M̃ , and α and ω be the source and sink contained
in its boundary. A simple curve τ ⊂ A whose boundary points are the source α

1It is directly checkable that the property of the permutation to be a power of a cyclic permu-

tation is independent of the choice of the curves cω and cω′ .
2If a Morse–Smale diffeomorphism f : Mn → Mn has no saddle points, then its non-wandering

set consists of one source and one sink. All “source-sink” diffeomorphisms are topologically con-

jugate; the proof of this fact is given, for example, in [8] (Theorem 2.2.1).
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Figure 7. Cell types with t-curves

and the sink ω is called a t-curve (see Fig. 7). Denote by T the f -invariant set and
which consists of t-curves taken one in each cell.

curve

curve

curve

Figure 8. Triangular domain

Any connected component of the set M∆ = M̃ \T is called a triangular domain.
Let ∆f denote the set of all triangular domains of the diffeomorphism f . The
boundary of each triangular domain δ ∈ ∆f contains three periodic points: source
α, saddle σ, sink ω. It also contains the stable separatrix lsσ (we will call it s-
curve) with boundary points α and σ, the unstable separatrix luσ (we will call it
u-curve) with boundary points ω and σ and the curve τ (we will call it t-curve)
with boundary points α and ω (see Fig. 8). Triangular area bounded by s-, u- and
t-curves. We will say that two triangular domains have a common side if this side
belongs to the closures of both domains. Construct a three-color (s, t, u) graph
Tf corresponding to a gradient-like Morse–Smale diffeomorphism f as follows (see
Fig. 9):

1) Tf vertices are in one-to-one correspondence with triangular domains of ∆
sets;

2) two vertices of a graph are incident to an edge of color s, t, and u if the
corresponding triangular domains have a common s, t, and u-curve.
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Figure 9. Non-isomorphic three-color graphs Tf , Tf ′ are associ-
ated with non-conjugate gradient-like diffeomorphisms f, f ′ shown
in the figure 6

By construction, tricolour graphs obtained from different partitions into trian-
gular domains (depending on the choice of t -curve) are isomorphic. The diffeo-
morphism f induces an automorphism f∗ = πffπ

−1
f on the vertex set of the graph

Tf . Two three-color graphs with automorphisms (Tf , f∗) and (Tf ′ , f ′∗) of diffeo-
morphisms f, f ′ are called isomorphic if there exists a one-to-one correspondence ξ
between the sets of their vertices which preserves the incidence and color relations,
as well as the conjugating automorphisms of f∗ and f ′∗ (that is, f ′∗ = ξf∗ξ

−1). The
isomorphism class of a three-color graph with substitution (Tf , f∗) is a complete
invariant of the topological conjugacy of a gradient-like diffeomorphism f defined
on a closed surface.

4.2. Classification of diffeomorphisms beh(f) = 1. In this section, we present
results known to the authors on the classification of Morse–Smale diffeomorphisms
with a finite number of heteroclinic orbits.
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4.2.1. Heteroclinic substitution. In 1993, V. Grines [6] proved that the invariant
for some subset3 of such diffeomorphisms is a graph similar to the Peixoto graph,
equipped with a heteroclinic permutation describing the scheme of intersection of
invariant manifolds, as in Figure 10. The isomorphism of such graphs is a necessary
and sufficient condition for the topological conjugacy of the considered diffeomor-
phisms.

Figure 10. Heteroclinic substitution

4.2.2. The scheme. In 1993, R. Langevin [11] proposed to consider the orbit space
of the basin sink and the projections of unstable separatrices of saddle points onto
the resulting orbit space. This approach was generalized and successfully applied
by Ch. Bonatti, V. Grines, V. Medvedev, E. Pecu and O. Pochinka in [3], [4] for
the topological classification of Morse–Smale diffeomorphisms f with beh(f) 6 1
on 3-manifolds. In 2010, T. Mitryakova and O. Pochinka [13] applied this method
in the topological classification of Morse–Smale diffeomorphisms f with beh(f) 6 1
on an orientable surface, under the assumption that all periodic the points of the
diffeomorphism f are fixed. They constructed a topological invariant, called the
“scheme”, consisting of a finite number of two-dimensional tori corresponding to
the orbit space of the sink and source basins, together with a set of simple closed
curves corresponding to the orbit spaces of the separatrices (see Fig. 11). They also
proved that this invariant is complete for the considered class of diffeomorphisms
and in [14] they solved the problem of their realization using an admissible abstract
scheme.

4.2.3. Markov partitions. In 1998, a different approach was taken by H. Bonatti and
P. Langevin [5], who considered Smale diffeomorphisms of compact surfaces, that is,
structurally stable diffeomorphisms with zero-dimensional basis sets. That is, the

3In [6], the class of Morse–Smale diffeomorphisms with a finite number of heteroclinic orbits
was considered under the assumption that the orbits of the intersection points of connected fun-
damental segments of separatrices exhaust all heteroclinic orbits belonging to the intersection of

these separatrices.



DIFFEOMORPHISMS WITH A FINITE SET OF HETEROCLINIC ORBITS 589

Figure 11. Scheme for a Morse–Smale diffeomorphism with
beh(f) = 1

classification of Morse–Smale diffeomorphisms was obtained as part of the classifica-
tion of structurally stable diffeomorphisms with zero-dimensional basis sets. They
proved that each Smale diffeomorphism corresponds to a finite combinatorial ob-
ject, which is a set of geometric types of Markov partitions. However, Morse–Smale
diffeomorphisms were not singled out for separate consideration, and therefore such
a classification turned out to be unreasonably laborious for them.
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