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Since its original discovery over a decade ago, extracellular RNA (exRNA) has been
found in all biological fluids. Furthermore, extracellular microRNA has been shown to
be involved in communication between various cell types. Importantly, the exRNA is
protected from RNases degradation by certain carriers including membrane vesicles
and non-vesicular protein nanoparticles. Each type of carrier has its unique exRNA
profile, whichmay vary dependingon cell type andphysiological conditions. To clarify
putative mechanisms of intercellular communication mediated by exRNA, the RNA
profile of each carrier has to be characterized. While current methods of biofluids
fractionation are continuously improving, they fail to completely separate exRNA
carriers. Likewise, most popular library preparation approaches for RNA sequencing
do not allow obtaining exhaustive and unbiased data on exRNA transcriptome. In this
mini review we discuss ongoing progress in the field of exRNA, with the focus on
exRNA carriers, analyze the key methodological challenges and provide
recommendations on how the latter could be overcome.
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1 Introduction

Since its initial discovery in 2008, exRNA has been found in all human biological fluids
including blood, saliva, milk, urine, bile, sweat, sputum, lacrimal, seminal, amniotic,
cerebrospinal, synovial fluids, and ascites (Mateescu et al., 2022). In the following years,
it became apparent that exRNA represents a complex mixture of RNase-stable RNA biotypes
and their parts, including miRNA, tRNA, YRNA, snRNA, sno/scaRNA, vault RNA, piRNA,
mRNA, lncRNA, rRNA, and circRNA (Dellar et al., 2022). To remain stable in RNase-rich
cell-free milieu, exRNAmust be protected by association with a certain carrier (Arroyo et al.,
2011; Turchinovich et al., 2011).

To date, experimentally confirmed exRNA carriers include extracellular vesicles (EVs), RNA
binding proteins (RBPs), and large protein aggregates designated as “exomeres” and
“supermeres” (Figure 1). EVs of various sizes remain the most studied exRNA carriers
(Mateescu et al., 2022). Primarily, mammalian cells secrete microvesicles (MVs, also known
as shedding vesicles), which are 50–1,000 nm in diameter and are formed by outward budding of
the plasma membrane. The second type of EVs, the exosomes, have a diameter of 30–150 nm.
They initially arise as intraluminal vesicles budding off the interior of the multivesicular bodies
(MVBs) and penetrate into extracellular space upon fusion ofMVBs with the plasmamembrane
(Figure 1) (Van Niel et al., 2022; Costa et al., 2023; Dixson et al., 2023). Cells typically secrete
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between 10 and 2,000 EVs of different types per cell per day (Barman
et al., 2022; Garcia-Martin et al., 2022). Integrins and selectins remain
well-confirmed MV markers along with membrane-associated
proteins from parental cells. On the contrary, exosomes can be
differentiated by the presence of tetraspanins, including CD9,
CD63, and CD81 (Escola et al., 1998; Abache et al., 2007).
Apoptotic bodies–the third type of membrane vesicles in the
extracellular milieu–are typically between 1,000 and 5,000 nm in
size and may contain cell organelles as well as nuclear fractions.
Finally, the “oncosomes,” membrane vesicles exported by cancer
cells, have been referred as a separate type of exRNA carriers by
some authors (Di Vizio et al., 2012; Morello et al., 2013; Dixson
et al., 2023). Apart from various proteins, the EV cargo typically
includes complex RNA transcriptome. Thus, several online
databases, including Vesiclepedia (Kalra et al., 2012), EVpedia
(Kim et al., 2015), ExoCarta (Keerthikumar et al., 2016), and EV-
ADD (Tsering et al., 2022) have been recently created to
systematize the content of various EV types in human liquid
biopsy samples.

Recently, two novel types of non-vesicular nanoparticles–exomeres
and supermeres–have been isolated from the conditioned media of
different cultured cells. Specifically, 35–50 nm exomeres were
purified by asymmetric field-flow fractionation (AF4) (Zhang
et al., 2018) or ultracentrifugation at 167,000 g (Zhang et al.,
2019). Upon precipitation of exomeres, the supernatant was
further subjected to high-speed ultracentrifugation at 367,000 g,
resulting in sedimentation of smaller 25–35 nm particles named
“supermeres” (Zhang et al., 2021). Both types of particles

contained metabolic enzymes, resident cytoplasmic proteins,
and significant amounts of short RNA. However, it remains
unanswered if exomeres and supermeres are to any extent
different from the aggregates of various RNPs which are also
abundant in the extracellular environment (Tosar et al., 2022).
Finally, certain miRNAs have been found in isolates of lipoprotein
particles (HDL, VLDL and LDL) (Vickers et al., 2011; Florijn et al.,
2019; Clément et al., 2021), but their association with VLDL and
LDL remains controversial (Srinivasan et al., 2019; Rossi-Herring
et al., 2023).

To understand the exact role of an exRNA carrier in cell-cell
communication and to explore its potential as a disease biomarker, it
is crucial to characterize the associated transcriptomes. However, the
latter task has proven to be unexpectedly challenging. Primarily, the
size of different EV types can be identical, while protein markers
specific for each EV type have not been yet established, and
apparently may not exist at all (Van Niel et al., 2022; Hendrix
et al., 2023). Because only a mixed population of EVs can be
obtained in any experimental setting described so far, the terms
“large EV” (lEV) and “small EV” (sEV) are now increasingly used
instead of “microvesicle” and “exosome,” respectively (Figure 1)
(Mathieu et al., 2019). Secondly, certain non-vesicular particles and
their aggregates have sizes and densities identical to EVs (Mathieu
et al., 2019). Therefore, none of the existing bulk isolation methods
secures complete separation of extracellular RNA carriers. In
addition, a lack of standardization in applying particular
approaches can result in significant discrepancies between the
results obtained by different research groups. Combinations of

FIGURE 1
A complex spectrum of extracellular RNA carriers. Microvesicles are generated by outward budding (shedding out) from the cell membrane; the
exosomes are formed by the fusion of multivesicular bodies with the cell membrane, while larger apoptotic bodies are formed during programmed cell
death. The non-vesicular carriers include exomeres and supermeres. The RNP complexes that can be released from dying or damaged cells include
ribosomes, spliceosomes and their fragments, and other RNA-protein complexes of different sizes, up to single proteins in complex with RNA, like
AGO-miRNA complexes.
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several methods usually give significantly better separation but can
be too labor-intensive and require large sample volumes. Thus, the
development of more accessible and efficient techniques for
separating exRNA carriers, as well as their standardization
accepted by the EV community, remains of paramount
importance (Théry et al., 2018; Hendrix et al., 2023).

In the following parts of the manuscript, we discuss the reported
transcriptomes of various exRNA carriers and key points for their
characterization, highlighting current trends, advances and
challenges in the field.

2 Transcriptome of extracellular
vesicles

To date, hundreds of original research reports have addressed
transcriptomes of various biological fluids and individual exRNA
carriers. As a result, several databases accumulating information on
exRNA profiles in whole biological fluids and individual types of
carriers have been created. For instance, the exRNA Atlas,
established by the Extracellular RNA Communication Consortium,
is the most extensive database predominantly featuring small RNA-seq
and RT-qPCR data, encompassing both whole biofluids and EV-
specific datasets (Murillo et al., 2019). The EVAtlas includes small
RNA-seq data on EV fractions only (Liu et al., 2022), while exoRBase is
focused on long RNA content in EV (Lai et al., 2022). Overall, exRNA
Atlas data containmiRNAs (19.1%), mRNA fragments (13.8%), tRNAs
(10.1%), piRNAs (0.8%) and other genome sequences (45.9%) (rRNAs
are excluded on preprocessing stage). According to EVAtlas, EVs from
different biological fluids and conditioned media include rRNA
fragments (38.12%), miRNAs (26.94%), tRNAs (19.19%), Y RNAs
(12.59%), piRNAs (1.51%), snRNAs (1.05%), and snoRNAs (0.6%).

However, the results obtained by different laboratories are
highly heterogeneous. Thus, analysis of 2,756 small RNA-seq
datasets from 83 studies of EV transcriptomes showed that the
distribution of different RNA biotypes in EVs was poorly coherent
between reports even for the same biofluid (Wang et al., 2023a). On
average, the major RNA fractions in EVs isolated from blood plasma
were miRNAs (39.6%), Y RNAs (15.9%), rRNA fragments (10.5%)
and tRNAs (3.2%), while snRNA, sno/scaRNA, tRNA, and other
RNAs accounted for less than 1%. As expected, the distribution of
different exRNA biotypes strongly depended on the EVs isolation
method. Notably, according to most reports, the ratio of miRNAs
found in EVs was significantly lower than in cells, while tRNA and
rRNA proportions were higher (Wang et al., 2023a).

Apart from short RNAs, EVs isolates contain long RNA
molecules detected by 3rd-generation sequencing technologies
(Padilla et al., 2023). Specifically, EVs have been shown to contain
considerable amounts of intact RNA molecules (Rodosthenous et al.,
2020; O’Grady et al., 2022), with full-length mRNAs enriched in lEVs
(Padilla et al., 2023). mRNAs are represented mainly by the 3′UTRs
(Wei et al., 2017). A total of 19,643 mRNAs and 15,646 lncRNAs, as
well as pseudogenes and circRNAs were detected by long RNA
sequencing in EVs according to the current release of exoRBase
(Lai et al., 2022). Full-length tRNAs and YRNAs were also
identified in EVs (Shurtleff et al., 2017).

Unlike sEVs, the lEVs transcriptome composition resembles
that of parent cells and contains many full-length RNA molecules,

including intact rRNA (Jeppesen et al., 2019). However, the reported
sEVs and lEVs transcriptomes are highly heterogeneous and poorly
reproducible.

Considerable variations in exRNA profiles obtained by different
studies, along with limitations of current methodological
approaches, facilitated the development of the so-called
computational deconvolution technique, which allows to identify
the ratio of different types of exRNA carriers in a given sample based
on RNA-seq data from whole biological fluids and “training
samples” corresponding to individual kinds of exRNA carriers
(Murillo et al., 2019; Srinivasan et al., 2019). However, the
precision of the method mentioned above highly depends on the
quality of the original training samples, which ideally should be
obtained from the cleanest possible media with well-documented
identities. In their recent report, LaPlante et al. (2023) proposed an
integrative analysis of eCLIP data, which implied the identification
of 150 RBPs binding sites in more than 6,000 human EV samples.
Specifically, 34 RBPs were indeed detected in blood plasma and
conditioned media. Remarkably, the deconvolution method
described above enabled attributing RBPs to certain exRNA
carriers (LaPlante et al., 2023).

The overall amount of RNA associated with a given exRNA carrier
is poorly understood and highly debated. Thus, several authors
reported a very low proportion of EV RNA relative to the entire
exRNA pool. Furthermore, blood plasma EVs isolates pretreated with
protease and RNase (along with SEC-isolated EVs) had very marginal
RNA content compared to that in the original plasma (Galvanin et al.,
2019). Surprisingly, two research groups reported that, on average, less
than onemiRNAmolecule is associated with sEV (Chevillet et al., 2014;
Wei et al., 2017). Recently, RNA derived from gut microbiota and
viruses was detected in plasma EV (Galvanin et al., 2019; Wang et al.,
2023b). Although EVs with bacterial LPS were indeed found in blood
plasma (Tulkens et al., 2020), great care is needed in exogenous EV
RNA studies because when RNA concentrations in sequencing
preparations are very low, the contribution of contaminating RNAs,
which are found in both water, reagents, and columns for RNA
isolation, becomes significant (Heintz-Buschart et al., 2018).
Therefore, to confirm the conclusions of works such as the ones
described above, it is necessary to perform control sequencing of at
least water and, preferably, of washes from RNA extraction columns, if
they are used, as well as the main reagents.

Nevertheless, cell-cell communication through EV-associated
RNA has been hypothesized to occur via subpopulations of EVs with
high RNA content, including miRNAs, and these EVs were recently
found (Lee et al., 2019a; Barman et al., 2022), suggesting them as
promising candidates for intercellular signaling.

3 Transcriptome of non-vesicular
exRNA carriers

3.1 Non-vesicular exRNA carriers in sEV
fraction

Until recently, differential ultracentrifugation at 100,000 g
followed by precipitation remained a gold standard for sEV
isolation (Théry et al., 2006). However, careful analysis of sEV
pellets in iodixanol gradients revealed the presence of a distinct
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non-vesicular fraction (NVF) enriched with metabolic enzymes
(GAPDH, PKM, ENO1), cytoplasmic proteins (HSP90,
tubulins, ribosome proteins and translation factors), histones,
and intact vault particles. In addition, all cellular RNA classes
have been detected in NVF by small RNA sequencing.
Interestingly, NVF RNA profiles differed significantly from
both intracellular and sEV ones. Specifically, NVF was highly
enriched in vault RNA, while most overrepresented miRNAs
were associated with NVF and not sEVs. Furthermore, NVF
fraction contained almost all AGO proteins. Long RNA
sequencing revealed no significant differences between NVF
and sEV exRNA profiles, with more than 40% of all reads
attributed to mRNAs (Jeppesen et al., 2019).

3.2 Transcriptome of exomeres and
supermeres

While both exomeres and supermeres contain RNA, the latter’s
distribution was very uneven. Specifically, only 10% RNA was found
in the exomeres, whereas the supermeres fraction contained ~65%,
and the remaining ~25% RNA was associated with sEV-NVF
(precipitate after ultracentrifugation at 167,000 g) (Zhang et al.,
2021). However, the RNA content of lEV and supermeres
supernatants was not reported, and thus the full spectrum of
exRNA remained unaddressed. According to small RNA
sequencing data, all major small RNA biotypes have been found
in exomeres and supermeres, with miRNA reads significantly
prevailed (more than 60% of all reads in the supermeres and
79% in the exomeres). Furthermore, both types of particles were
enriched in AGO proteins. Interestingly, expression patterns of
miRNAs in exomeres and supermeres were similar but differed
significantly from sEV-NVF and cells (Zhang et al., 2018; Jeppesen
et al., 2019; Zhang et al., 2019; Zhang et al., 2021).

The mechanisms of biogenesis and the exact biological role of
exomeres and supermeres remain to be addressed. Their protein
composition resembles that of NVF-fraction, so the question arises
whether and to what extent aggregates of exomeres and supermeres
form NVFs. Whether exomeres and supermeres represent discrete
particles with unique protein sets and distinct biogenesis remains
unknown. It is feasible, however, that both exomeres and
supermeres are, in fact, continuous series of cellular RNPs of
different sizes. The point is that the extracellular environment
contains ribosomes and their fragments, as well as fragments of
spliceosomes, and both ribosome and spliceosome proteins were
detected in supermeres and exomeres (Tosar et al., 2020; Zhang
et al., 2021; Tosar et al., 2022). The size of ribosomes and
spliceosomes corresponds to the size of supermeres (Figure 1).
Therefore, it is feasible that both exomeres and supermeres
represent extracellular RNP fractions consisting of a set of
intracellular RNP and protein complexes of different sizes and
their fragments (Tosar et al., 2022). This, however, does not
exclude the possibility of the existence of secreted particles of a
certain composition in these fractions (i.e., bona fide exomeres and
supermeres) (Jeppesen et al., 2022). Another question is whether the
fractions of these particles are free of vesicles. Thus,
ultracentrifugation at 200,000 g shows evidence of the presence of
very small vesicles in the precipitate corresponding to the exomeres

(Lee et al., 2019b). However, whatever non-vesicular exRNA carriers
consist of, they are likely to serve as a new page in the story of cell-
cell communication: it has already been shown that exomeres can
deliver functionally active protein cargo to recipient cells (Zhang
et al., 2019). And since it is the non-vesicular exRNA carriers where
the bulk of exRNAs, including miRNAs as well as AGO proteins, are
concentrated, they may prove to be an important actor in this story.
In this regard, it is interesting to note the recent demonstration that
non-vesicular miRNA-AGO complexes in the extracellular fluids are
indeed functional and capable of efficient silencing (Geekiyanage
et al., 2020).

4 Challenges in the exRNA profiling

The heterogeneity of the results obtained by different research
groups could stem from methods used for RNA conversion into
cDNA. Specifically, widely used RNA-seq library preparation
approaches produce different biases for both long (Rodosthenous
et al., 2020) and small RNA sequencing (Srinivasan et al., 2019). For
instance, a comparison of six different cDNA library preparation
methods for long RNA-seq demonstrated drastic variation in
mapping efficacy and proportions of different RNA classes
detected (Rodosthenous et al., 2020). It should be noted that the
vast majority of previous reports on small RNA sequencing of
exRNA used standard cDNA library preparation protocols based
on the ligation of adapters to both termini of small RNA. By default,
such ligation reaction requires the presence of phosphate at the 5′-
end of the RNA and hydroxyl at the 3′-end. The ligation-based
methods were originally tailored for capturing intracellular miRNAs
that are 5′-phosphorylated, and until recently, the biases associated
with standard ligation-based commercial kits have not been
considered. However, extracellular RNAs are exposed to RNases
and as a result are converted to 5′-hydroxyl and 3′-(cyclo)
phosphate entities (Sorrentino, 2010; Giraldez et al., 2019;
Nechooshtan et al., 2020). Because ssRNA adapters cannot be
ligated to such RNAs, the latter will not be included into the
final library and sequenced without prior end-repair. Therefore,
the distortions of most currently reported exRNA profiles can be
very significant. Such distortions can be avoided by prior treatment
of samples with T4 polynucleotide kinase (T4 PNK), which
phosphorylates the 5′-ends of RNA and removes phosphates/
cyclophosphates from the 3′-termini. Thus, deep sequencing of
T4 PNK-treated extracellular small RNAs demonstrated that in
lEVs, sEVs, NVF and in whole plasma libraries ~80–90% were
rRNA fragments (Wei et al., 2017; Akat et al., 2019; Giraldez et al.,
2019; Solaguren-Beascoa et al., 2023). In rRNA-depleted libraries,
the percentage of reads corresponding to mRNA and lncRNA
fragments was increased up to 10-fold (Giraldez et al., 2019),
while lEVs and sEVs contained ~25% repetitive sequences, and
NVF contained ~45% tRNAs. Thus, most exRNAs are degradation
products of various long RNAs and tRNAs, with a very small
proportion of miRNAs and other small RNA types.

Importantly, exRNA profiling has several previously
underestimated crucial methodological issues that should ideally
be addressed in every experimental setting. To facilitate this process,
we offer a guide containing the key experiments required for the
correct profiling of exRNA carriers (Table 1). Further progress in
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characterizing the exRNA population is expected upon application
of recently emerged RNA-seq library preparation methods such as
D-Plex small RNA-seq kit (Diagenode), SMARTer smRNA-seq kit
(Takara) and BioLiqX small RNA-seq kit (Heidelberg Biolabs),
which enable unbiased incorporation of short RNA fragments
with modified nucleotides. Wide application of novel RNA
sequencing methods can confirm exRNA transcriptomes of
exomeres, supermeres and whole biological fluids.

5 Conclusion and future directions

The experimentally confirmed exRNA carriers list includes
lEVs, several types of sEVs, single RBPs, exomeres and
supermeres. Biofluids apparently contain a set of membrane
vesicles of continuous size range–up to the minimum physically
possible, as well as a set of proteins and RNP aggregates ranging up
to individual proteins. Furthermore, the concentration of a given
exRNA carrier could be labile and prone to change under different
physiologic and pathologic conditions. Apart from that,
methodological obstacles and biological diversity explain the
marked variation in the transcriptomic content of exRNA
carriers obtained by different groups. Thus, the introduction of
unified experimental standards for exRNA purification and
detection is of utmost importance. Further systematic profiling of
individual subfractions, such as immunopurified EVs and RNPs,
may enable the compilation of a comprehensive extracellular
transcriptome map and the creation of relevant training samples
for computational deconvolution of the exRNA transcriptome in
biofluids.
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