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RNA-binding proteins regulating
the CD44 alternative splicing Q1

Q2
Q3
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Alternative splicing is often deregulated in cancer, and cancer-specific isoform
switches are part of the oncogenic transformation of cells. Accumulating evidence
indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play
different roles in cancer cells as compared to normal cells. In particular, the shift of
CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is
crucial for the maintenance of pluripotency in normal human cells and the
acquisition of cancer stem cells phenotype for malignant cells. The growing
and seemingly promising use of splicing inhibitors for treating cancer and
other pathologies gives hope for the prospect of using such an approach to
regulate CD44 alternative splicing. This review integrates current knowledge
about regulating CD44 alternative splicing by RNA-binding proteins.

KEYWORDS
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1 Q6Introduction

CD44 is a multifunctional transmembrane glycoprotein widely expressed and plays an
essential role in physiological activities in normal cells throughout the body. CD44 was first
discovered to be present on the cell membrane of haematopoietic cells (Jalkanen et al., 1986)
and after that, its expression was noted in different non-haematopoietic cells (Fox et al.,
1994). The first studies of the physiological role of CD44 showed that CD44-deficient mice
are viable without obvious developmental defects and show no overt abnormalities as adults.
However, during development, they had impaired lymphocyte trafficking into the thymus
(Protin et al., 1999). During further decades CD44 emerged as a regulator of malignant
progression and metastasis formation due to its involvement in cell proliferation, adhesion,
cytoskeleton rearrangement, migration, angiogenesis, inflammation, metabolism (regulating
glucose and lipid homeostasis) (Zöller, 2011; Senbanjo and Chellaiah, 2017; Chaffer and
Goetz, 2018; Chen et al., 2020; Guo Q. et al., 2022; Weng et al., 2022). Notably, CD44 is a
commonly accepted marker of cancer stem cells (CSC) of different cancer entities including
breast, colon, gastric, pancreas, glioma, ovarian (Zöller, 2011; Hu and Fu, 2012; Yan et al.,
2015; Skandalis et al., 2019), and of epithelial to mesenchymal transition (EMT) a process
vital for distant metastasis formation (Cho et al., 2012; Zhang et al., 2012; Jiang et al., 2015).

The marked multifunctionality and variability of the CD44 protein are ensured by the
existence of its multiple forms, which mainly originate in alternative splicing and is further
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amplified by extensive and often isoform-specific posttranslational
modifications including N- and O-glycosylation, phosphorylation,
and glycosaminoglycan attachment (Fox et al., 1994; Ponta et al.,
2003; Zöller, 2011; Wang et al., 2018). Thus, CD44 is a family of
transmembrane glycoproteins with a high heterogeneity in
molecular weight (85–250 kDa). Alternative splicing (AS) is often
deregulated in cancer, and cancer-specific isoform switches are part
of the oncogenic transformation of cells (Di et al., 2018; Zhang et al.,
2021; Shaw et al., 2022; Bradley and Anczuków, 2023). Indeed,
accumulating evidence supports the concept that CD44 isoforms
play different roles in cancer cells as compared to their normal
counterparts (Zöller, 2011; Bhattacharya et al., 2018; Xu et al., 2020).
In particular CD44 isoform switches have been shown during EMT
and acquisition of CSC properties (Bhattacharya et al., 2018; Zhang
et al., 2019). Moreover, the shift of CD44 isoforms is required for
EMT (Reinke et al., 2012). The understanding of the mechanisms of
alternative splicing and the occurrence of variant isoforms of
CD44 is essential not only to a deeper insight into malignant
progression but may also provide a new generation of splicing
inhibitors as therapies for cancer (Bonnal et al., 2020; Rogalska
et al., 2022). The major experimentally tested regulators of
alternative splicing of CD44 in cancer have been described earlier
by Prochazka and co-authors (Prochazka et al., 2014). Our review
will focus on new data concerning RNA binding proteins, which
were recently shown as an essential regulator in CD44 isoform
switching.

2 Overview of CD44 isoforms

CD44 proteins have a common structure consisting of three
major domains: an extracellular or ectodomain (ECD), a
transmembrane domain (TMD) and a cytoplasmic or
intracellular domain (ICD) (Figure 1) (Ponta et al., 2003; Zöller,
2011; Wang et al., 2018). The ECD comprises an N-terminal
globular domain and a membrane-proximal region, which may
include variant exons (variable region). All CD44 proteins are
encoded by one single gene present on chromosome 11 in
humans, which includes 19 exons so that alternative splicing
gives rise to plentiful isoforms (Figure 2) (Screaton et al., 1992;
Azevedo et al., 2018). According to NCBI database, eight
CD44 isoforms are commonly accepted as biologically expressed
(Figure 2), and the existence of 27 other isoforms was predicted.
Nonetheless, it should be mentioned that some data exist that other
CD44 isoforms except these eight do exist (Bánky et al., 2012;
Marzese et al., 2015; Kim et al., 2018). In a recent study, full-
length mRNA transcripts from diverse normal and cancerous
human tissues have been profiled using long-read sequencing
techniques (Shi et al., 2023). The RNA sequencing data were
collected in the FLIBase repository. Based on the FLIBase data,
more than two hundred CD44 isoforms were detected in human
cells. The shortest or standard CD44 isoform (CD44s, isoform 4)
contains only constant (invariant) exons (the first one to five and the
last four 15–17 and 19). Exon 18 is mostly spliced out in humans.
CD44s is ubiquitously expressed in most tissues. The ECD of this
isoform is composed of only an N-terminal globular domain
(Figure 1). Including variant exons v2-v10 (variant exon v1 is
not present in humans) into a membrane-proximal region of the

ECD gives larger isoforms which are expressed in only a few
epithelial tissues, mainly in proliferating cells, and in cancer cells
of several cancer entities as well. CD44 variant isoforms are often
numbered depending on the inclusion of corresponding exons, e.g.,
CD44 isoform 1 contains CD44v2-v10, isoform 2 contains CD44v3-
v10 and isoform 3 contains CD44v8-v10.

Importantly, authors of studies often adopt a nomenclature
based on commercial names of the used monoclonal antibodies,
highlighting the targeted variant exon, and disregard that the
analysis of a specific variant exon can result in the detection of
all isoforms containing it instead of only one particular protein.
Thus, such isoforms as CD44v3, CD44v6, and CD44v9 started being
the most associated with cancer (Azevedo et al., 2018). However,
most of these studies dealt only with antibodies specific to the
corresponding individual exons. Thus, the lack of nomenclature
standardization makes it difficult to interpret the results presented in
the articles and requires careful conclusions about which isoform/
isoforms are actually in question. In our review, we prefer to use
CD44 isoform designations according to NCBI nomenclature if
possible.

CD44 proteins are primarily considered as cell adhesion
molecules as they contain binding sites for hyaluronan
(Underhill, 1992), collagen (Ishii et al., 1993), laminins (Ishii
et al., 1993; Hibino et al., 2004), fibronectin (Jalkanen and
Jalkanen, 1992), E-/P-/L-selectins (Hanley et al., 2006). However,
due to their signaling functions, CD44 proteins play essential roles in
intercellular communication and numerous other cellular functions
associated with it (Ponta et al., 2003; Wang et al., 2018).
CD44 variant isoforms encode additional peptides in the
membrane-proximal region, which provide binding sites for
other molecules including cytokines and growth factors. This
configuration allows CD44 transmembrane glycoproteins to
emerge as a multidomain platform, which integrates various
extracellular information. We will not dwell on the mechanisms
of signaling in details, information for a deeper understanding can
be found in these excellent reviews (Orian-Rousseau and Sleeman,
2014; Ouhtit et al., 2018; Wang et al., 2018; Mesrati et al., 2021; Guo
Q. et al., 2022).

CD44 is a well-known normal intestinal stem cell marker (ISC)
(Habowski et al., 2020), and its alternative splicing should be tightly
controlled in the crypt-villus axis (Orian-Rousseau and Sleeman,
2014). Thus, ISCs residing at the crypt base in mice express mRNA
encoding CD44 isoforms v4–v10, v6-v10, v7-v10 and isoform 3 (v8-
v10), but do not express the standard isoform 4 (CD44s) (Zeilstra
et al., 2013). Progenitor cells from a transit-amplifying compartment
(daughter cells of ISCs) express mRNAs encoding CD44 isoforms
containing v6-v10, v7-v10, isoform 3 (v8-10), as well as standard
isoform 4 (CD44s). Interestingly, human ISCs display a somewhat
different repertoire of CD44 isoforms than mice presenting
CD44v6-v10, v7-v10, isoform 3 (v8-10), and standard isoform 4
(Zeilstra et al., 2013). However, neoplastic epithelial cells from
microadenomas of familial adenomatous polyposis patients
demonstrate an expression profile of CD44 mRNAs more similar
to mice ISCs, suggesting involvement of variant isoforms at early
stages of human CRC (Zeilstra et al., 2013). An earlier study
reported that the lower part of the crypts express CD44 isoform
containing exon v9 but not exons v4 and v6 in humans (Mackay
et al., 1994).
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3 CD44 isoforms in cancer

A huge amount of data indicates that different CD44 isoforms
play a role in many types of cancer [reviewed in (Chen et al., 2018;
Mesrati et al., 2021; Yaghobi et al., 2021)], and their cellular

functions can both overlap and be distinct. Sometimes, the
information about the functions of CD44 isoforms is
controversial, which complicates our current understanding of
their roles in malignancy and cancer progression (Table 1). Thus,
elevated expression of CD44 isoform 3 occurs in breast (Yae et al.,
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FIGURE 1
Schematic protein structure of CD44 molecules [extrapolated from (Naor et al., 1997)].Q11

FIGURE 2
CD44 genomic organization and alternative splicing according to NCBI database. Transcript IDs are also provided according to the FLIBase database
(Shi et al., 2023).
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2012), gastric (Ishimoto et al., 2011; Lau et al., 2014), bladder
(Miyake et al., 2002), esophageal (Kagami et al., 2018),
gallbladder cancer (Yamaguchi et al., 2000), thyroid (Kawai et al.,
2019), ovarian (Sosulski et al., 2016), colorectal cancer (Boman et al.,
2023; Everest-Dass et al., 2023), melanoma (Zhang et al., 2016) and
leukemia as well (Holm et al., 2015). While in breast, esophageal,
and gallbladder cancer CD44 isoform 3 is associated with a more
metastatic phenotype and poor prognosis [e.g., (Yamaguchi et al.,
2000; Yae et al., 2012; Kagami et al., 2018)], it does not do so in
ovarian cancer (Sosulski et al., 2016). Sometimes, e.g., in the case of
colorectal cancer, CD44 isoform 3 has been shown associated with
both poor prognosis/higher recurrence rate (Yamaguchi et al., 2016)
and good prognosis/lower recurrence rate (Mashita et al., 2014;
Everest-Dass et al., 2023), pointing to the possible greater

significance of the ratio of CD44 isoforms. Indeed, the high ratio
of CD44 isoform 4/CD44 variant exon v9 in patients with colorectal
cancer shows a significantly poorer prognosis than the low
CD44 isoform 4/CD44 variant exon v9 ratio (Mashita et al.,
2014). In prostate cancer, CD44 isoform 3 is associated with CSC
features (Zeng et al., 2013). However, in breast (Zhang et al., 2019),
pancreatic (Li et al., 2014) and ovarian (Bhattacharya et al., 2018)
cancers CSC features are determined by CD44 isoform 4.
CD44 isoform 4 has been showing to play a critical role in the
mesenchymal phenotype of many cancers (Primeaux et al., 2022),
including hepatocellular carcinoma cells (Mima et al., 2012), breast
cancer cells (Brown et al., 2011; Preca et al., 2015), colorectal cancer
cells (Mashita et al., 2014), ovarian cancer cells (Bhattacharya et al.,
2018), and in EMT of CSCs of cutaneous squamous cell carcinoma
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TABLE 1 Roles of CD44 isoforms 3 and 4 in various malignant entities.

CD44 isoform Biological functions Malignant entity References

CD44 isoform 3
(CD44v8-v10)

Overexpressed in tumor tissue Bladder cancer Miyake et al. (2002)

Overexpressed in tumor tissue, Metastasis, Poor prognosis Breast cancer Yae et al. (2012)

Overexpressed in tumor tissue Colorectal cancer Boman et al. (2023),
Everest-Dass et al. (2023)

Poor prognosis/higher recurrence rate Colorectal cancer Yamaguchi et al. (2016)

Good prognosis/lower recurrence rate; The high ratio of CD44 isoform 4/
isoform 3 (or variant exon v9) showed a significantly poorer prognosis than the
low isoform 4/isoform 3 (or variant exon v9) ratio

Colorectal cancer Mashita et al. (2014),
Everest-Dass et al. (2023)

Overexpressed in tumor tissue, Metastasis, Poor prognosis Esophageal cancer Kagami et al. (2018)

Overexpressed in tumor tissue, Metastasis, Poor prognosis Gallbladder cancer Yamaguchi et al. (2000)

Epithelial phenotype, Decreased chemotaxis, Decreased invasiveness,
Unexpectedly increased tumorigenicity

Gallbladder cancer Miwa et al. (2017)

Overexpressed in tumor tissue Gastric cancer Ishimoto et al. (2011); Lau et al.
(2014)

Overexpressed in tumor tissue Leukemia Holm et al. (2015)

Overexpressed in tumor tissue Melanoma Zhang et al. (2016)

Overexpressed in tumor tissue, Presence of transmembrane CD44 isoform 3 on
the surface of primary tumor cells was a marker of a highly epithelial tumor
with better prognosis

Ovarian cancer Sosulski et al. (2016)

CSC features Prostate cancer Zeng et al. (2013)

Overexpressed in tumor tissue Thyroid cancer Kawai et al. (2019)

CD44 isoform 4 (CD44s) CSC features Breast cancer Zhang et al. (2019)

Mesenchymal phenotype Breast cancer Brown et al. (2011), Preca et al.
(2015)

Mesenchymal phenotype Colorectal cancer Mashita et al. (2014)

EMT of CSCs Cutaneous squamous cell
carcinoma

Biddle et al. (2013)

Mesenchymal phenotype, Increased chemotaxis, Increased invasiveness,
Unexpectedly lower tumorigenicity

Gallbladder cancer Miwa et al. (2017)

Mesenchymal phenotype Hepatocellular carcinoma Mima et al. (2012)

CSC features Ovarian cancer Bhattacharya et al. (2018)

Mesenchymal phenotype

CSC features Pancreatic cancer Li et al. (2014)
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TABLE 2 RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

AGGF1 • Promotes the inclusion of exons
v4 and v5 (but not v8-v10 or v10) in
CD44 mRNA and decreases the
level of CD44 isoform 4 in cells

• Promotes the inclusion of exons
v4 and v5 in the CD44 minigene
splicing reporter system

Co-overexpression of AGGF1 with
NONO or SFPQ, or DHX15 enhanced
the inclusion of exons v4 and v5 in the
CD44 minigene splicing reporter
system

Human cervical carcinoma HeLa
cell line

Zhao et al. (2022)

AKAP8 Promotes the inclusion of exon v8 in
the CD44 minigene splicing reporter
system in AKAP8 dose-dependent
manner

hnRNPM knockdown showed a
moderate but insignificant increase in
the AKAP8’s splicing activity

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

CELF1 CELF1 knockdown reduced the
inclusion of variable exons v7-v10 into
mature CD44 mRNAs

Simultaneous depletion of CELF1 and
ELAVL1 reduced the inclusion of
exons v7-v10 into mature CD44
mRNAs even more than each protein
alone

Human cervical carcinoma HeLa
cell line

David et al. (2022)

DHX15 Promotes the inclusion of exons
v4 and v5 in the CD44 minigene
splicing reporter system

Human cervical carcinoma HeLa
cell line

Zhao et al. (2022)

ELAVL1 ELAVL1 knockdown reduced the
inclusion of variable exons v7-v10 into
mature CD44 mRNAs

Simultaneous depletion of CELF1 and
ELAVL1 reduced the inclusion of
exons v7-v10 into mature CD44
mRNAs even more than each protein
alone

Human cervical carcinoma HeLa
cell line

David et al. (2022)

ESRP1 Promotes the expression of variant
CD44 isoforms (isoform 3, isoforms
containing exons v6-v10), switching
from CD44 isoform 4 to variant
isoforms

• The incidence and extent of lung
metastasis were reduced after
orthotopic injection of mouse tumor
cells into mouse mammary glands

Human breast cancer cell lines
MDA-MB-231 and MCF7; mouse
breast cancer cell line 4T1

Warzecha et al. (2009a)

Yae et al. (2012)

Preca et al. (2015)

Promotes the expression of variant
CD44 isoforms, switching from
CD44 isoform 4 to variant isoforms

• The isoform switch to CD44 isoform
4 was required for the formation of
breast tumors in mice

Human mammary epithelial cell
line HMLE.

Brown et al. (2011)

• CD44 isoform 4 activated Akt
signaling

Zhang et al. (2019)

• ESRP1 knockdown enhanced
mammosphere-forming ability in
response to TGFβ treatment

• CD44 isoform 4 activated the
PDGFRβ/Stat3 cascade to promote
CSC traits

• Inhibition of the CSC gene signature

Promotes the expression of variant
CD44 isoforms, switching from
CD44 isoform 4 to variant isoforms

Human pancreatic
adenocarcinoma BxPC-3 cells

Preca et al. (2015)

Switching from CD44 isoform 4 to
variant isoforms

• ESRP1 knockdown increased
migration and invasion

Human epithelial ovarian cancer
cell lines HO8910 and SKOV3

Chen et al. (2017)

• Overall switching from
mesenchymal to epithelial
phenotype of cells

Jeong et al. (2017)

ESRP1 knockdown promoted an
upregulation of CD44 isoform 4 and
downregulation of the CD44 variant
isoforms

Human colorectal cancer cell line
HCT-116

Vadlamudi and Kang (2022)

Promotes conversion from CD44v9-
v10 to CD44v7-v10

Human fully differentiated human
foreskin fibroblasts

Kim et al. (2018)

(Continued on following page)
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TABLE 2 (Continued) RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

ESRP1 knockdown downregulated
CD44v7-v10 expression and
upregulated of CD44v9-v10

Undifferentiated H9 human
embryonic stem cell

Kim et al. (2018)

ESRP1 knockdown stimulated
switching from the CD44 variant
isoforms to the CD44 isoform 4

ESRP1 knockdown enhanced cell
motility

Human head and neck squamous
cell carcinoma cell lines SAS and
HSC4

Ishii et al. (2014)

ESRP1 knockdown decreased the
expression of CD44 isoforms
containing exon v6

ESRP1 knockdown significantly
reduced the migration of cells under
HGF treatment

Human cell lines MB and LH
derived from melanoma lymph
node metastases

Marzese et al. (2015)

ESRP1 ectopic expression significantly
downregulated CD44 overall
expression

Human melanoma cell line MDA-
MB-435 Prasad and Gopalan
(2015)

Warzecha et al. (2009a)

ESRP1 knockdown caused no effects
on the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

Promotes exon v5 inclusion in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT

Harvey et al. (2018)

ESRP1 and
ESRP2

Simultaneous depletion of ESRP1 and
ESRP2 significant decreased the
inclusion of CD44 variant exons
(mainly exons v8–v10) and increased
expression of CD44 isoform 4

• Increased expression of the
mesenchymal isoforms of p120-
catenin and FGFR2

Normal human prostatic epithelial
cell line PNT2

Warzecha et al. (2009a)

• Silencing epithelial-specific isoform
of ENAH.

Simultaneous depletion of ESRP1 and
ESRP2 led to switching from
CD44 isoform 4 to variant isoforms

Human mammary epithelial cell
line HMLE

Warzecha et al. (2009a)

ESRP2 ESRP1 knockdown caused no effects
on the expression of CD44 isoforms

Enhanced cell motility Human head and neck squamous
cell carcinoma cell lines SAS and
HSC4

Ishii et al. (2014)

hnRNPF Promotes exon v8 inclusion in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

hnRNPL Promotes exon v10 skipping in CD44
mRNA.

Human breast cancer cell line
MDA-MB-231

Loh et al. (2015)

hnRNPL knockdown increased exon
v10 skipping in the CD44 minigene
system

Human colorectal cancer cell line
HCT-116

Loh et al. (2015)

hnRNPLL hnRNPLL knockdown increased the
expression of CD44 isoforms
containing exons v3-v10

Increased invasion activity of human
colon cancer cells

Human colon cancer cell line
SW480, mouse colon cancer cell
line CMT93

Sakuma et al. (2018)

hnRNPLL knockdown increased the
expression of CD44 isoforms
containing exon v6

Significantly more metastatic nodules Mouse colorectal cancer
CMT93 cell line

Sakuma et al. (2018)

hnRNPM Promotes variant exons skipping,
switching form CD44 isoform 4 to
isoform containing variant exons
(including exon v6, v8, v8-v9, and
v5-v6)

hnRNPM knockdown completely
abolished TGFβ-induced
CD44 isoform switching from variant
isoforms to isoform 4 and inhibited
TGFβ-induced EMT.

Human breast cancer cell lines
LM2 (MDA-MB-231 derivatives
cells), TGFβ-inducted
mesenchymal MCF10A
(Mes10A), and MCF-7; human
mammary epithelial HMLE cells;
murine breast cancer T4 cells

Xu et al. (2014), Sun et al. (2017),
Zhang et al. (2018)

Promotes variant exons v5 and
v8 skipping in the CD44 minigene
splicing reporter system

• The presence of AKAP8 dampened
the effect of hnRNPM on promoting
CD44 exon v8 skipping

Human embryonic kidney cell
lines HEK293 and HEK293FT.

Xu et al. (2014), Harvey et al.
(2018), Hu et al. (2020)

(Continued on following page)
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TABLE 2 (Continued) RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

• AKAP8 silencing led to a more
drastic effect of hnRNPM on exon
skipping in both CD44v8 and
CD44v5 minigenes

• Caused no effects on CD44 exon
v8 skipping in the CD44 minigene
splicing reporter system

Human colorectal cancer cell line
HCT-116

Xu et al. (2014)

• ESRP1-knockdown in HCT116 cells
restores hnRNPM’s ability to
promote exon skipping

hnRNPR Promotes exon v8 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

MBNL3 MBNL3 knockdown increased the
expression of variant CD44 isoform 3

An activation of a pluripotency
network

Human acute myeloid leukemia
stem cells

Holm et al. (2015)

NONO • Promotes the inclusion of exons v4-
v5 in the CD44 minigene splicing
reporter system

Human cervical carcinoma HeLa
cell line

Zhao et al. (2022)

• Overexpression on NONO caused
no effects on CD44 transcripts levels
in cells

Promotes the inclusion of exons v4-v5
in the CD44 minigene splicing
reporter system

Human embryonic kidney
HEK293T cells

Liu et al. (2011)

NSrp70 NSrp70 overexpression increased exon
v5 inclusion in the CD44 minigene
splicing reporter system

NSrp70 counteracts SRSF1- and
SRSF2-induced CD44 exon
v5 exclusion

Human embryonic kidney cell line
HEK293T

Kim et al. (2011b), Kim et al.
(2016)

PCBP1 Promotes skipping of variant exons v3,
v5, v6, v8, and v10 exons (but not exon
v9) in CD44 mRNA.

• PCBP1 overexpression decreased
cell invasion

Human hepatoma cell line HepG2 Zhang et al. (2010)

• PCBP1 knockdown increased cell
invasion

PTBP1 PTBP1 knockdown decreased the
expression of CD44 isoforms
containing exon v6

• M16 cells showed a significant
decrease in cell migration

Human melanoma brain
metastases’ cell lines BD and M16

Marzese et al. (2015)

• BD cells showed a significant
increase in cell migration

Promotes exon v8 inclusion in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

QKI Negative regulator of CD44 isoform
3 formation (bioinformatic prediction)

Tumor samples of patients with
colorectal cancer

Novosad (2023)

RBFOX2 RBFOX2 knockdown caused no effects
on the inclusion of exons v8-v10 in
CD44 mRNA.

Mouse non-transformed
mammary epithelial cell line
NMuMG and epithelial murine
breast cancer cell line PY2T

Braeutigam et al. (2013)

Negative regulator of variant exon
inclusion in CD44 mRNA
(bioinformatic prediction)

Colon adenocarcinoma samples of
patients

Danan-Gotthold et al. (2015)

RBFOX2 and
ESRP1

Upregulation of long transcript variant
of RBFOX2 and downregulation of
short variant of RBFOX2 and
ESRP1 in response to ectopic
expression of WNT5A downregulated
inclusion of exons v4-v6 (but not v9)
in CD44 mRNA.

• Reduced cell migration Mouse breast cancer cell line 4T1 Jiang et al. (2013)

• Less lung metastasis

(Continued on following page)
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TABLE 2 (Continued) RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

RBM3 Promotes switching from variant
CD44 isoform 3 to standard
CD44 isoform 4

• RBM3 overexpression attenuated
CSC features of prostate cancer cells
and reduced tumor formation in
nude mice

Human prostate adenocarcinoma
cell line PC3

Zeng et al. (2013)

RBM10 Promotes exon v8 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

RBMX Increased exon v8 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293FT.

Hu et al. (2020)

Sam68 Sam68 knockdown decreased the
expression level of CD44 variant
isoforms

Human cervical carcinoma HeLa
cell line

Cheng and Sharp (2023)

Sam68 overexpression increased exon
v5 inclusion in the CD44 minigene
splicing reporter system after
treatment with phorbol ester

Mouse EL4 T-lymphoma cells Matter et al. (2002)

Sam68 overexpression increased exon
v5 inclusion in the CD44 minigene
splicing reporter system

Simultaneous overexpression of
SND1 led to a synergic effect with
Sam68 on variant exon inclusion

Human embryonic kidney cell line
HEK293T

Cappellari et al. (2013)

Sam68 knockdown decreased the
inclusion of variable exons v4, v5, v7,
v8, v9, v10 in CD44 mRNA (especially
the exons v4, v5 and v7)

Reduced proliferation and migration of
prostate cancer cells

Human prostate adenocarcinoma
cell line PC3

Cappellari et al. (2013)

Sam68 knockdown caused no effects
on the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

SFPQ Promotes the skipping of exons v4-v5
in the CD44 minigene splicing
reporter system

Human embryonic kidney
HEK293T cells

Liu et al. (2011)

• Promotes the inclusion of variant
exons v4-v5

Human cervical carcinoma HeLa
cell line

Zhao et al. (2022)

• Overexpression on SFPQ caused no
effects on CD44 transcripts levels in
cells

SFPQ knockdown reduced the
expression of CD44 isoforms
containing exon v6

• Inhibition of cell stemness Human lung cancer mesenchymal
stem cells isolated from lung tissue
biopsies

Yang et al. (2022)

• Inhibition of cell proliferation
in vitro

• Reduction of metastasis in mice

SRm160 SRm160 knockdown decreased the
expression of CD44 variant isoforms

Decrease in HeLa cell invasiveness Human cervical carcinoma HeLa
cell line

Cheng and Sharp (2023)

SRm160 knockdown caused no effects
on the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

SRp20 SRp20 knockdown caused no effects
on the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

SRSF1 Positive regulator of CD44 isoform 3
(but not isoforms containing exon
v6 or exons v6-v10) expression,
switching from CD44 isoform 3 to
isoform 4

Human gastric carcinoma cell line
MGC-803

Peng et al. (2019)

• Promotes exon v6 skipping in the
CD44 minigene splicing reporter
system

Human breast cancer MCF7 Loh et al. (2016)

(Continued on following page)
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TABLE 2 (Continued) RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

• SRSF1 knockdown decreased the
expression of CD44v6-v10 and
CD44v6,v8-v10 isoforms in cells

Promotes exon v5 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293T

Kim et al. (2016)

SRSF2 • Promotes exon v6 skipping in the
CD44 minigene splicing reporter
system

Human breast cancer MCF7 Loh et al. (2014)

• SRSF2 knockdown decreased the
expression of CD44v6 isoform but
increased the expression of
CD44v6-v10 and CD44v6,v8-
v10 isoforms in cells

Promotes exon v5 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293T

Kim et al. (2016)

SRSF3 • Caused no effects on exon
v6 splicing in the CD44 minigene
splicing reporter system

Human breast cancer MCF7 Loh et al. (2014)

• SRSF3 knockdown decreased the
expression of CD44v6-v10 and
CD44v6,v8-v10 isoforms in cells

Positive regulator of CD44 variant
isoforms expression

The reduction of CD44 variant isoform
expression due to SRSF3 silencing
could be partially rescued through the
elevation of TDP43

Human triple-negative breast
cancer cell lines HCC1806 and
MDA-MB-231

Guo et al. (2022a)

SRSF4 • Caused no effects on exon
v6 splicing in the CD44 minigene
splicing reporter system

Human breast cancer MCF7 Loh et al. (2014)

• SRSF4 knockdown caused no effect
on the expression level of
CD44 transcripts in cells

SRSF6 SRSF6 overexpression increased exon
v6 skipping in the CD44 minigene
splicing reporter system

Human breast cancer MCF7 Loh et al. (2016)

SRSF9 • SRSF9 overexpression increased
exon v6 skipping in the
CD44 minigene splicing reporter
system

Human breast cancer MCF7 Loh et al. (2016)

• SRSF9 knockdown caused no effects
on expression levels of endogenous
CD44 transcripts

• SRSF9 overexpression increased
exon v10 skipping in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293T and colorectal cancer
cell line HCT116

Oh et al. (2020)

• SRSF9 knockdown caused no effects
on exon v10 splicing in endogenous
CD44 mRNA.

TDP43 Promotes the inclusion of variant
exons in CD44 mRNA, especially
exons v8, v9, and v10

TDP43 knockdown reduced stemness
features of breast cancer stem cells

Human triple-negative breast
cancer cell lines HCC1806 and
MDA-MB-231

Guo et al. (2022a)

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org09

Maltseva and Tonevitsky 10.3389/fmolb.2023.1326148

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1326148


(Biddle et al., 2013). Several studies showed that a switch in
CD44 isoform expression from CD44v to CD44 standard isoform
3 is essential for EMT (Brown et al., 2011; Preca et al., 2015). All of
the above-mentioned findings suggest that both CD44 isoform 3 and
isoform 4 are expressed in cancer cells but play distinct roles in the
different steps of cancer development. Thus, as it has been partially
shown in colon cancer, CD44 isoform 4 can play an anti-tumor role
during the initial malignant transformation but may later benefit
metastasis formation (Everest-Dass et al., 2023). In gallbladder

cancer CD44 isoform 4 is associated with a mesenchymal
phenotype, increased chemotaxis, increased invasiveness, but
lower tumorigenicity (Miwa et al., 2017). At the same time, the
CD44 variant exon v9 expression is associated with an epithelial
phenotype, decreased chemotaxis, decreased invasiveness, and
unexpectedly increased tumorigenicity. In the review (Wang
et al., 2018), one can find detailed information about the
engagement of CD44 exons v6 and v3 in the maintenance of
CSCs and tumor progression. It is plausible that regulation of
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TABLE 2 (Continued) RNA-binding proteins regulating CD44 variant exon splicing.

Protein Effect on CD44 isoform
expression

Other outcomes Cancer type, cell line References

Tra2β • Tra2β overexpression increased
exon v10 inclusion in the
CD44 minigene splicing reporter
system

Human embryonic kidney cell line
HEK293T and colorectal cancer
cell line HCT116

Oh et al. (2020)

• Tra2β knockdown caused no effects
on exon v10 splicing in endogenous
CD44 mRNA.

Tra2β knockdown caused no effects on
the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

U2AF2 Promotes switching from standard
CD44 isoform 4 to variant
CD44 isoform 3

U2AF2 knockdown diminished the
adhesion probability of Lu1205M cells
and reduced the number of metastatic
lesions

Human melanoma cell lines
Lu1205M and SK-Mel-25

Zhang et al. (2016)

YB-1 Increased the inclusion of variant
exons v4 and v5 in the CD44 minigene
splicing reporter system

Human cervical carcinoma HeLa
cell line

Stickeler et al. (2001)

YB-1 knockdown caused no effects on
the expression level of
CD44 transcripts

Human melanoma cell line
Lu1205M

Zhang et al. (2016)

ZMAT3 ZMAT3 knockdown increased the
expression of CD44 variant isoforms
1 and 2 with a concomitant reduction
of standard CD44 isoform 4

Increase in clonogenicity of tumor cells Human colorectal cancer cell line
HCT116

Muys et al. (2021)

FIGURE 3
Involvement of RNA-binding proteins in the alternative splicing (AS). AS is regulated by combined action of trans- and cis-acting elements. Trans-
acting elements are represented by different RBPs (shown as orange shapes). Cis-acting elements are specific nucleotide motifs in pre-mRNA: intronic
and exonic splicing enhancers (ISE and ESE), which promote the inclusion (+) of the AS exon by providing the binding sites for activators (shown in
orange); intronic and exonic splicing silencers (ISS and ESS) are bound by repressors (shown in orange) and promote exon skipping (−). Exons are
represented as gray boxes, introns as gray lines. BP, a branch point; 3’ss, 3′ splice site; 5’ss, 5′ splice site.
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CD44 splicing allows CSCs to maintain the hybrid E/M state
correlated with higher stemness and tumorigenicity (Pradella
et al., 2017). Thus, CD44 undergoes isoform switching in cancer
cells (Primeaux et al., 2022) and understanding its regulation
mechanisms is incredibly important for a deeper insight into
malignant progression. Our review will focus on how tumor cells
implement CD44 isoform switching. The main players here are
certainly RNA-binding proteins as far as AS relies on them to
recognize and bind target sequences in pre-mRNAs, which
allows for the inclusion or skipping of alternative exons
(Table 2).

4 RNA-binding proteins regulating
CD44 alternative splicing

RNA binding proteins (RBPs) recognize and bind target
sequences in pre-mRNAs, which allows for the inclusion or
skipping of alternative exons. Such target sequences could be
intronic or exonic splicing enhancers (ISEs or ESEs) or intronic
or exonic splicing silencers (ISSs or ESSs), which nucleate the
assembly of complexes of regulatory factors that promote or
inhibit splice site recognition by the core splicing machinery (Ule
and Blencowe, 2019; Rogalska et al., 2022) (Figure 3).

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

FIGURE 4
Interdependence between expression of ESRPs and EMT.

FIGURE 5
Splicing-switch oligonucleotides (SSOs) in AS regulation. (A) An SSO that binds to an intronic splicing silencer (ISS) and prevents binding of RNA-
binding protein (RBP) which negatively regulates splicing (shown in orange), leading to exon inclusion. (B) An SSO that binds to an exonic splicing
enhancer (ESE) and blocks the binding of RBP which promotes splicing (shown in orange), resulting in exon skipping. Exons are represented as color
boxes, introns as gray lines.
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4.1 ESRP1 and ESRP2

Epithelial splicing regulatory proteins (ESRPs), including
ESRP1 and ESRP2 (also known as RBM35A and RBM35B,
respectively), are specifically expressed in epithelial cells and
identified as core modulators of EMT-related splicing events
(Mashita et al., 2014; Katsuno and Derynck, 2021; Liu et al.,
2022). In particular ESRP1 and ESRP2 regulate the alternative
splicing of a number of proteins important for maintaining an
epithelial phenotype. It has been shown that ESRP1 transcription is
regulated by Snail and ZEB1, EMT-related transcription factors,
through its direct binding to ESRP1 promoter (Reinke et al., 2012;
Preca et al., 2015; Chen et al., 2017). Induction of EMT results in the
downregulation of ESRP1 and ESRP2, whereas the depletion of
ESRP1, but not ESRP2 (Warzecha et al., 2009b), is sufficient to
induce mesenchymal splicing patterns (Warzecha et al., 2009b;
Jeong et al., 2017). Ectopic expression of ESRP1/mouse Esrp1 in
human mesenchymal cells induces epithelial-specific changes in the
splicing of ESRP1 target transcripts (Warzecha et al., 2009a;
Warzecha et al., 2009b). Interdependence between expression of
ESRPs and EMT is summarized in Figure 4.

Numerous studies implicate ESRP1 as a regulator of
CD44 isoform switching (see below, Table 2). It has been
reported that ESRP1 recognizes GGU/UGG–rich sequences
(Dittmar et al., 2023). In particular it has been shown that
ESRP1 promotes the inclusion of CD44 variant exon v8 by
directly binding to the GGU/UGG–rich motifs located in the
intron downstream of this exon (Reinke et al., 2012). Another
study indicated the dependence of ESRP1 and ESRP2 upon the
presence of ISE/ISS-3 and/or the UGCAUG motif to promote
splicing (Warzecha et al., 2009a).

Simultaneous depletion of ESRP1 and ESRP2 in the normal
human prostate epithelium cell line PNT2 causes a significant
decrease in the inclusion of CD44 variant exons (mainly exons
v8–v10 corresponding to CD44 isoform 3) and an increase in the
standard CD44 isoform 4 in which all the variable exons are skipped
(Warzecha et al., 2009a; Warzecha et al., 2009b). This isoform
skipping was also accompanied by increased expression of the
mesenchymal isoforms of p120-catenin and FGFR2 and silencing
epithelial-specific isoform of ENAH.

The loss of ESRPs expression in the human mammary epithelial
cell line HMLE due to the induction of an EMT by the transcription
factor Twist resulted in the elevated level of CD44 standard isoform
4 expression and the decreased CD44 variant isoforms expression,
indicating codependence of these events (Warzecha et al., 2009a).
ShRNA-mediated depletion of ESRP1 in HMLE cells resulted in a
shift of expression from CD44 variant isoforms to isoform 4, with
only a slight effect on the overall CD44 expression level and
accelerated EMT (Brown et al., 2011), while
ESRP1 overexpression regulated CD44 alternative splicing in the
opposite direction and inhibited Snail-induced EMT in these cells
(Reinke et al., 2012). Notably, this isoform switch fromCD44 variant
isoforms to isoform 4 was essential for forming breast tumors in
mice (Brown et al., 2011).

To test whether ectopic expression of the ESRP1 in
mesenchymal cells would restore an epithelial splicing pattern,
the mesenchymal human breast cancer cell line MDA-MB-
231 was transduced with virus encoding FLAG-tagged ESRP1

(Warzecha et al., 2009a). The expression of ESRP1 caused a
switch from primarily CD44 isoform 4 expression to variant
isoforms (including CD44 isoform 3 and CD44v6-v10).
Interestingly, the repeat of the experiment with mesenchymal
melanoma cell line MDA-MB-435 (Prasad and Gopalan, 2015)
with predominant expression of the standard CD44 isoform
4 did not lead to the same results, overall expression of
CD44 was significantly downregulated (Warzecha et al., 2009a).
The same authors ectopically expressed mouse Esrp1 in human
MDA-MB-231 cells and also showed the increased inclusion of
human CD44 variant exons and the decreased expression of human
CD44 isoform 4 (Warzecha et al., 2009b). ESRP1 downregulation in
4T1 mouse breast cancer cells also resulted in an isoform switch
from CD44 containing variant exons to CD44 isoform 4 (Yae et al.,
2012). However, this downregulation led to suppression of lung
colonization, presumably due to reduced cell surface expression of
the cystine transporter xCT, the stability of which is controlled by
CD44 variant isoforms. A more recent study demonstrated that
ectopic expression of ESRP1 inhibits the production of standard
CD44 isoform 4 and thus inhibits CSC properties of TGFβ-treated
HMLE cells, where endogenous ESRP1 expression was low (Zhang
et al., 2019). In contrast, ESRP1-depletion possessed enhanced
mammosphere-forming ability of TGFβ-treated HMLE cells, and
silencing CD44 in these ESRP1-depleted cells abrogated
mammosphere formation. In addition, Zhang et al. expressed
ESRP1 in a mesenchymal triple-negative breast cancer cell line
SUM159 and revealed reduced potential for mammosphere
formation, which was rescued by coexpression of CD44 isoform
4 but not CD44v3-v10 (Zhang et al., 2019). A transient knockdown
of ESRP1 in human breast cancer MCF7 and human pancreatic
adenocarcinoma BxPC-3 cells resulted in a shift of expression from
CD44v (containing exon v6) to CD44 isoform 4 without affecting
total CD44 level (Preca et al., 2015). Vice versa, overexpression of
ESRP1 in undifferentiated, mesenchymal breast cancer MDA-
MB231 cells and pancreatic ductal adenocarcinoma Panc-1 cells
resulted in a reverse isoform switch accompanied by decreased
ZEB1 levels (Preca et al., 2015).

Silencing of ESRP1 significantly decreased the expression of
CD44 isoforms containing exon v6 in human MB and LH cells
derived from melanoma lymph node metastases (Marzese et al.,
2015). These siESRP1-transfected melanoma cells also
demonstrated lower migratory potential under hepatocyte growth
factor (HGF) treatment (HGF, a factor released during
inflammation or tissue disruption, should increase the migration
of CD44v6-positive melanoma cells). Further in this study, it has
been shown that ESRP1 is epigenetically silenced in human
melanoma brain metastasis, and high expression of
CD44 containing exon v6 in early stages is a significant predictor
of melanoma brain metastasis development (Marzese et al., 2015).

Switching from CD44 variant isoforms containing exon v7 to
isoform 4 without change in a total amount of CD44 was observed in
human epithelial ovarian cancer cell line HO8910 with a stable
suppression of ESRP1 expression (Chen et al., 2017). This switch in
expression was accompanied by increasing migratory and invasive
capabilities of the ESPRP1 suppressed cells. Moreover, the siRNA-
mediated downregulation of CD44 expression, in turn, suppressed
migration and invasion of the ESRP1-depleted HO8910 cells,
indicating that ESRP1 suppresses HO8910 cell motility mainly by
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repressing CD44 isoform switching (Chen et al., 2017). An enforced
ESRP1 expression in the ovarian cancer cell line SKOV3,
significantly reduced the level of the mesenchymal cell-specific
CD44 isoform 4 and increased levels of CD44 variant isoforms as
well as caused overall switching from mesenchymal to epithelial
phenotype of cells (Jeong et al., 2017).

Based on the qPCR measurement in 14 colorectal cancer (CRC)
cell lines, it has been demonstrated a higher ESRP1 expression was
noted in epithelial phenotype cells than those of mesenchymal
phenotype (Mashita et al., 2014). The higher ESRP1 expression
strongly correlated with higher expression of CD44 variant exon
v9 and lower expression of CD44 isoform 4, respectively. An inverse
correlation between the expression of ESPRs and CD44 alternative
splicing was observed for CRC cell line LS1034 on mRNA level
(Dinger et al., 2020). In particular LS1034 xenografted cancer cells
demonstrated an elevated expression of CD44 mRNA isoform
3 compared to cultured cells, whereas ESPR1 expression was
reduced and ESRP2 expression was essentially enhanced in the
LS1034 xenografts. However, ESRP1 silencing in HCT-116 cell
line has shown suppressed CD44 mRNA variant isoforms and
enhanced standard isoform 4 expressions, which were
accompanied by inducing caspase-independent cell death
(Vadlamudi and Kang, 2022).

Higher ESRP1 expression was associated with CD44 variant
isoforms, including CD44 isoform 1 (CD44v2-v10), isoform 3
(CD44v8-v10), and CD44v6-v10, in human head and neck
squamous cell carcinoma cell lines (Ishii et al., 2014). Si-RNA-
mediated silencing of ESRP1 in SAS and HSC4 cells resulted in
switching from the CD44 variant isoforms to the CD44 standard
isoform 4 (Ishii et al., 2014). In contrast, silencing of ESRP2 did not
affect CD44 isoform switching. Although knockdown of both ESRPs
enhanced cell motility without effect on cell proliferation. Further, it
has been shown that ESRPs suppress cell motility in HNSCC
through distinct mechanisms: ESRP1 regulates the dynamics of
the actin cytoskeleton through repressing expression of the Rac1b
isoform, whereas ESRP2 is involved in the regulation of cell-cell
adhesion by suppressing EMT-associated transcription factors (Ishii
et al., 2014).

Several splice variants of ESRP1 were tested for their ability to
regulate CD44 alternative splicing (Kim et al., 2018). Overexpression
of ESRP1 v1, v4, or v5 in fully differentiated human foreskin
fibroblasts resulted in converting CD44v9-v10 to CD44v7-v10.
ESRP1 knockdown in undifferentiated H9 human embryonic
stem cell induced downregulation of CD44v7-v10 expression as
well as the loss of pluripotency of the cells. Thus, regulating the
ESRP1-CD44v7-v10 axis is crucial for human pluripotency
maintenance and reprogramming of human somatic cells to
pluripotent stem cells (iPSCs) (Kim et al., 2018).

Overall, the presented information indicates that ESRP1 is
mainly a positive regulator of including variant exons (many of
them) in CD44 transcript, whereas ESRP2 is apparently not so much
involved in CD44 alternative splicing.

4.2 RBFOX2 and QKI

RBFOX2 is a member of the RNA-binding Fox (RBFOX)
protein family (RBFOX1, RBFOX2 and RBFOX3) regulating

alternative splicing (Kuroyanagi, 2009). RBFOX1 is expressed in
heart, skeletal muscle and neuronal tissues, whereas RBFOX2 is
ubiquitously expressed in many tissues from the embryonic-stem-
cell stage through adulthood (Jin et al., 2003; Yeo et al., 2009; Kim K.
K. et al., 2011; Underwood et al., 2023). RBFOX3 is expressed
exclusively in the brain (Kim et al., 2009). All three proteins
contain a single conserved RNA-recognition motif (RRM) and
recognize the consensus sequence (U)GCAUG in the introns
flanking target exons. RBFOX2 prevents the binding of U2AF2 to
the 3′-splice site (Ivanova et al., 2023). A general rule for RBFOX2-
regulated exon inclusion or skipping in a position-dependent
manner has been revealed. In particular, RBFOX2 promotes exon
skipping when it binds upstream of the alternative exon but
inclusion occurs when it binds downstream of this exon (Yeo
et al., 2009). Of note, RBFOX2 mRNA undergoes extensive
alternative splicing itself, thus generating many isoforms with a
common RRM. The RBFOX2 splice variants show differences in
intracellular localization and splicing activity (Nakahata and
Kawamoto, 2005). Within the nucleus RBFOX2 can operate their
targets using three binding modes: single, multiple or secondary
(Damianov et al., 2016; Zhou et al., 2021). In the single binding
mode, RBFOX2 is recruited to its target splice sites through a single
canonical binding motif, while in the multiple binding mode,
RBFOX2 binding sites include the adjacent binding of at least
one other RBP partner. In the secondary binding mode,
RBFOX2 is recruited to splice sites lacking its canonical binding
motif by binding one of its protein partners and likely without direct
binding to mRNA. Interestingly, many targets of RBFOX2 are
themselves splicing regulators (Yeo et al., 2009). In addition,
RBFOX2 is implicated in the biogenesis of some miRNAs (e.g.
miR-20b and miR-107) and, thus, in the expression of their
downstream targets (Chen et al., 2016). All of these different
modes of operation may explicate an ambiguous role of
RBFOX2 in cancer progression. Thus, several studies have
reported that RBFOX2 is important to specify a mesenchymal
splicing signature in breast (Braeutigam et al., 2013), colon and
ovarian tissues (Venables et al., 2013). RBFOX2 promotes oncogenic
splice-switching and the resulting mesenchymal signature and
drives an invasive phenotype in breast cancer (Braeutigam et al.,
2013; Ahuja et al., 2020). However, other studies have reported the
anti-metastatic role of RBFOX2 in pancreatic cancer (Jbara et al.,
2023) and its decreased expression in breast, colon, and prostate
adenocarcinomas (Danan-Gotthold et al., 2015), as well as ovarian
cancer (Venables et al., 2009). In general, RBFOX2 is considered a
mesenchymal marker (Pradella et al., 2017; Lambert and Weinberg,
2021), whereas it also promotes epithelial-specific splicing in some
cases (Braeutigam et al., 2013; Baraniak et al., 2023). A possible clue
of these contradictions may be that the epithelial state of cells is
determined by the ratio of the expression levels of RBFOX2 and
ESRP1 (Barriere et al., 2014; Meng et al., 2019).

Based on the analysis of patient TCGA RNA-Seq data of colon
adenocarcinoma and corresponding normal colon, RBFOX2 has
been predicted to act as a negative regulator of variant exon
inclusion in CD44 mRNA (Danan-Gotthold et al., 2015).
Interestingly, it was not the case in seven other analyzed cancer
types (breast invasive carcinoma, kidney clear cell carcinoma, liver
hepatocellular carcinoma, lung adenocarcinoma, prostate
adenocarcinoma, head and neck squamous cell carcinoma, and
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thyroid carcinoma). Our bioinformatic analysis of mRNA-Seq data
of 56 colorectal cancer cell lines downloaded from the CCLE
database revealed the association of higher expression of
RBFOX2 with a higher level of CD44 isoform 4 and a lower level
of CD44 isoform 3 (Novosad and Maltseva, 2023).

Si-RNA mediated knockdown of RBFOX2 did not alter the level
of inclusion of exons v8-v10 into CD44 mRNA in both non-
transformed mammary epithelial cell line NMuMG and epithelial
murine breast cancer cell line PY2T under normal conditions and
TGF-β-treatment (Braeutigam et al., 2013). Upregulation of the long
transcript variant of RBFOX2 and downregulation of short variant
RBFOX2 and ESPR1 inmouse breast cancer 4T1 cell line in response
to ectopic expression of WNT5A (a non-canonical Wnt signaling)
was accompanied by downregulated inclusion of exons v4-v6 (but
not v9) in CD44 mRNA (Jiang et al., 2013). These events also were
associated with reduced cell migration and fewer spontaneous lung
metastasis.

It has been observed that RBFOX2 co-operates with Quaking
(QKI) in the splicing regulation of common pre-mRNA targets
(Brosseau et al., 2014; Danan-Gotthold et al., 2015; Yang et al.,
2023). QKI is an RBP belonging to the signal transduction and
activation of RNA (STAR) protein family, which binds specifically to
RNA containing ACUAA motifs (Hall et al., 2013). QKI regulates
several posttranscriptional processes, including AS, mRNA
localization, mRNA stability, and protein translation
(Saccomanno et al., 1999; Li et al., 2000; Larocque et al., 2002;
Zhao et al., 2010; Hall et al., 2013). Among the three major isoforms
of QKI (QKI-5, QKI-6, and QKI-7), only QKI-5 is predominantly
localized in the nucleus and is involved in the regulation of AS
(Ebersole et al., 1996; Bockbrader and Feng, 2008). QKI binding in
the downstream intron promotes exon inclusion while binding in
the upstream intron promotes exon skipping (Hall et al., 2013). Of
note, QKI strongly induces the mesenchymal and stem-like
phenotypes (Li et al., 2018; Mukohyama et al., 2019) and
promotes mesenchymal splicing patterns (Lambert and
Weinberg, 2021; Yang et al., 2023).

To our knowledge, the involvement of QKI in CD44 splicing
regulation has yet to be experimentally confirmed. However, such a
possibility was predicted for colorectal cancer based on
bioinformatic analysis of mRNA-Seq data of patient tumor
samples (Novosad, 2023). In particular QKI has been shown as a
potential negative regulator of CD44 isoform 3 formation, what is
consistent with the EMT-promoting role of QKI.

4.3 NONO and its protein partners

Non-POU domain-containing octamer-binding protein
(NONO, also known as p54nrb) belongs to the Drosophila
behavior/human splicing (DBHS) family (Knott et al., 2016). In
humans, the DBHS protein family also includes two other members:
splicing factor proline/glutamine-rich (SFPQ, also known as PSF)
and paraspeckle protein component 1 (PSPC1, also known as PSP1).
All three DBHS proteins contain two highly conserved RNA-
recognition motifs and a nuclear localization signal and are
regarded mainly as nuclear factors. However, they may
additionally function intra-cytoplasmically and on the cell surface
(Knott et al., 2016). Structural and biological data suggest that DBHS

proteins rarely function alone. They are found in the nucleoplasm
within the subnuclear domain termed paraspeckles (Knott et al.,
2016), which are known to regulate RNA metabolism, including
splicing, stabilization and export, as well as DNA repair (Wang and
Chen, 2020). NONO and SFPQ were found to be associated with
both the hypophosphorylated and hyperphosphorylated forms of
RNA polymerase II in HeLa cell extracts, indicating that these two
proteins could provide a direct physical link between RNA
polymerase and other pre-mRNA processing components (Emili
et al., 2002).

NONO is a multipurpose protein engaging in almost every step
of gene regulation, including transcriptional activation and
inhibition, RNA processing, and DNA repair (Knott et al., 2016).
Dysregulation of NONO has been found in many types of cancer
entities (Feng et al., 2020). In some of them, such as bladder cancer,
lung cancer, prostate cancer, and oesophageal squamous cell
carcinoma, glioblastoma multiforme NONO exhibits tumor
promoting role, as it induces cell proliferation and inhibits
apoptosis. In contrast, in estrogen receptor-negative breast
cancer, it demonstrates tumor suppressive functions (Feng et al.,
2020; Wang et al., 2022). Recently, it has been shown that NONO
induces expression of ZEB1 and CD44 in LN229 glioblastoma cells
and patient-derived P3glioblastoma stem-like cells and promoted
cells migration and invasion indicating an association between
NONO and EMT (Wang et al., 2022). Si-RNA-mediated loss of
NONO in U251 and P3 glioblastoma cells reduced levels of proteins
involved in the EMT but increased those involved in apoptosis
(Wang et al., 2022). Silencing of NONO inhibits EMT and stemness
of breast cancer cells, as well as its growth, survival, migration and
invasion (Lone et al., 2023).

Using the CD44 minigene reporter system [the variant exons
v4 and v5 of the human CD44 gene, along with their surrounding
intron sequences, inserted into an intron of the β-globin gene driven
by the HSV promoter (Auboeuf et al., 2002)] it has been
demonstrated that NONO and SFPQ regulate alternative splicing
of CD44 variant exons in HEK293T cells transfected with either
NONO vector or SFPQ vector (Liu et al., 2011). NONO decreased
the ratio of skipping to inclusion of CD44 exons v4-v5, whereas
SFPQ increased this skipping-inclusion ratio (Liu et al., 2011).
Interestingly, dephosphorylation of NONO and SFPQ by protein
phosphatase 1 (PP1) reduced their alternative splicing activity on
CD44 minigene.

Knockdown of SFPQ in lung cancer mesenchymal stem cells
resulted in the reduced expression of CD44 isoforms containing
exon v6 with concomitant inhibition of cell stemness, proliferation
in vitro, and metastasis in vivo (Yang et al., 2022).

Applying the CD44 minigene reporter system by Zhao et al.
showed that overexpression of both NONO and SFPQ in HeLa cells
significantly increases variant exon inclusion and decreases a level of
CD44 isoform 4 (Zhao et al., 2022). Of note, a simple overexpression
of NONO or SFPQ in HeLa cells did not significantly affect the
transcription level of neither CD44 isoform 4 nor CD44 variant
isoforms. In the same work, the authors revealed the interaction of
NONO and SFPQ with an angiogenic factor AGGF1 in
paraspeckles, which forms an outside rim around the NONO/
SFPQ/PSP1 core (Zhao et al., 2022). Interestingly, the
overexpression of AGGF1 in HeLa cells in turn resulted in
enhanced inclusion of exons v4 and v5 (but not v8-v10 or v10)
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in CD44 mRNA and decreased level of CD44 isoform 4. The
enhanced inclusion of exons v4 and v5 was also detected in
HeLa cells co-transfected with CD44 minigene reporter and
AGGF1 vector. Also, Zhao et al. detected the decreased ratio of
skipping to inclusion of exons v4-v5 in the CD44 minigene in
response to overexpression of DHX15 (DEAH-Box Helicase 15),
interacting with AGGF1 in HeLa cells (Zhao et al., 2022). Co-
overexpression of AGGF1 with NONO, SFPQ, or DHX15 also
enhanced the inclusion of exons v4 and v5 in the CD44 minigene.

Thus, the available evidence suggests that NONO, AGGF1, and
DHX15 function primarily as an enhancer of the formation of variant
CD44 isoforms. At the same time, SFPQ can contribute to both the
skipping and inclusion of variant exons in the CD44 transcript.

There is evidence for the interactions of NONO and SFPQ with
the ubiquitously expressed heterogeneous nuclear ribonucleoprotein
M (hnRNPM) and for the presence of the last one within a
subpopulation of paraspeckles (Marko et al., 2010). hnRNPM is a
component of the spliceosome machinery and can influence both
constitutive and alternative splicing. It typically binds to ESS
motives, thus antagonizing the recognition of splice sites and
suppressing pre-mRNA splicing (Wahl et al., 2009). hnRNPM is
associated with aggressive breast cancer and correlates with
increased CD44s in patient specimens (Xu et al., 2014; Sun et al.,
2017). Moreover, it has been demonstrated that hnRNPM precisely
controls CD44 splice isoform switching during EMT and acts in a
mesenchymal-specific manner in breast cancer cells (Xu et al., 2014;
Harvey et al., 2018). Silencing hnRNPM completely abolished
TGFβ-induced CD44 isoform switching from CD44 variant
isoforms to isoform 4 in HMLE cells (Xu et al., 2014). The
hnRNPM depletion was also accompanied by a general inhibition
of TGFβ-induced EMT in HMLE cells which resulted in the
reduction of spontaneous lung metastasis numbers in mice with
into the mammary fat pad implanted murine T4 breast cancer cells.
Reduced dissemination potential of murine T4 breast cancer cells
and human LM2 breast cancer cells (MDA-MB-231-derived lung
metastatic cells) with hnRNPM knockdown was also shown after
intravenous injection into murine tail vein (Xu et al., 2014).
Interestingly, the enforced expression of CD44 isoform
4 overrode the loss of hnRNPM and permits EMT and
metastasis formation to occur. In a combination of experiments
with several cell lines, Xu et al. also demonstrated that hnRNPM is
necessary and sufficient to stimulate CD44 variant exon skipping via
its interaction with GU-rich motifs located in introns downstream
from variable exons (Xu et al., 2014). In addition, a cell-type
restricted activity of hnRNPM has been revealed as it does not
promote CD44 exon skipping in HCT116 human colon cancer cells.
A possible reason for this observation is that a competition of
hnRNPM with ESRP1 for the binding to CD44 pre-mRNA exists
(Xu et al., 2014). In their subsequent study, the authors showed that
coregulation of alternative splicing by hnRNPM and ESRP1 is
widespread and primarily antagonistic in breast cancer cells,
although a subset of events is regulated concordantly (Harvey
et al., 2018). An overexpression of hnRNPM in MCF-7 human
breast cancer cells resulted in a decreased expression in
CD44 isoforms containing exon v6 and an increased expression
in CD44 isoform 4 with a slight change in the total level of
CD44 transcripts (Sun et al., 2017). These changes in expression
levels resulted in an increased invasion capacity of MCF-7 cells.

In triple-negative breast cancer cells, hnRNPM has been shown
as a binding partner of a mutated form of chromatin regulatory
protein MORC2 (microorchidia family CW-type zinc finger 2)
(Zhang et al., 2018). The mutation of MORC2 protein consists in
substitution of methionine to isoleucine at residue 276 (M276I), a
cancer-associated mutation, which enhances the interaction of
MORC2 with hnRNPM. This interaction promotes the
hnRNPM-mediated splicing switch from the epithelial
CD44 variant isoform containing exons v5/v6 to the
mesenchymal CD44 isoform 4, ultimately driving EMT. ShRNA-
mediated knockdown of hnRNPM reduced the binding of mutant
MORC2 to CD44 pre-mRNA. It also reversed the mutant MORC2-
induced CD44 splicing switch and EMT, consequently impairing the
migration, invasion, and lung metastasis potential of mutant
MORC2-expressing cells in mice.

Based on experiments with HMLE and HEK293FT cells, it has
been demonstrated that hnRNPM’s splicing activity on
CD44 variant exon skipping could be inhibited by the interaction
of hnRNPM with AKAP8 (the A-kinase anchoring protein 8), a
recently identified RNA-binding protein (Hu et al., 2020). Several
observations let the authors speculate that AKAP8 binding to
hnRNPM blocks hnRNPM from binding to its RNA targets.
Firstly, the AKAP8-hnRNPM interaction became stronger upon
RNase treatment. Secondly, depletion of AKAP8 promoted
hnRNPM’s ability to bind its consensus RNA sequences and to
stimulate exon skipping. Significantly, AKAP8 can bind its own
RNA consensus sequences and prevent CD44 variant exon skipping,
as well as the other EMT-associated alternative splicing.
AKAP8 itself inhibits EMT and breast cancer metastasis to the
lung. In the same study, 28 other hnRNPM-interacting splicing
factors have been found (Hu et al., 2020). Among them, PTBP1 and
hnRNPF promoted exon v8 inclusion in CD44 exon v8 splicing
minigene reporter assay, whereas RBM10, RBMX, and hnRNPR
promoted exon skipping.

Summarizing the current studies, we can conclude that
hnRNPM promotes the exclusion of variant exons from
CD44 pre-mRNA in breast cancer. However, the role of
hnRNPM in regulating alternative splicing is more complex and
may vary in different cell types.

4.4 SR proteins

The serine/arginine (SR)-rich protein family of RNA-binding
proteins includes 12 members (SRSF1-12) in humans (Busch and
Hertel, 2012; Wagner and Frye, 2021). The alternative nomenclature
for SR proteins is presented in (Manley and Krainer, 2010). SR
proteins play important roles in both alternative and constitutive
splicing. As the regulator of constitutive splicing, they promote the
binding of U1 snRNP to a 5′ splice site and the binding of U2 snRNP
to a branch point in spliceosome assembly. In general, SR proteins
are shown to antagonize hnRNP functions in alternative splicing. Of
note, not all SR proteins promote splicing. Thus, depending on their
phosphorylation state, SRSF10 and SRSF12 also act as global splicing
repressors (Wagner and Frye, 2021). SRSF1 has been described as a
mesenchymal splicing factor (Lambert and Weinberg, 2021).

Two screening studies of SR proteins for CD44 splicing were
performed by Loh et al. (2014); Loh et al. (2016). Overexpression of
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SR proteins in MCF7 cells stably expressing the pFlare-V6 plasmid
(a kind of CD44 minigene reporter system containing CD44 variant
exon v6) showed that SRSF3 and SRSF4 do not affect exon
v6 splicing of CD44 pre-mRNA, whereas SRSF1, SRSF6, SRSF9,
and SRSF2 induced the exon v6 skipping. However, lentivirus-
mediated shRNA treatment of MCF7 cells revealed that reduced
expression of SRSF3 and SRSF1 caused a decrease of CD44v6-v10
and CD44v6,v8-v10 isoforms. Reduced expression of SRSF4 and
SRSF9 did not induce a significant change in CD44 isoforms.
Depletion of SRSF2 (also known as SC35) led to decreased
expression of CD44v6 isoform but increased expression of both
CD44v6-v10 and CD44v6,v8-v10 isoforms (Loh et al., 2016). These
results indicate that CD44 minigene reporter systems could be used
for the identification of RBPs’ responsive elements in exons or their
flanking introns, but the endogenous regulation mechanisms of
CD44 alternative splicing are more complicated in cells, and other
events may play a role, e.g., the presence of other exons in CD44 pre-
mRNA. This conclusion is confirmed by the results obtained for
HEK293 and HCT-116 cells (Oh et al., 2020). Thus, using a
minigene-based approach, Oh et al. demonstrated the opposite
roles of SRSF9 and Tra2β on CD44 variant exon v10 splicing.
While SRSF9 inhibited exon v10 inclusion, Tra2β promoted exon
v10 inclusion. They also showed that both proteins functionally bind
to exon v10, in which SRSF9 recognizes the AAGAC sequence and
Tra2β recognizes the GAAGAAG sequence. However, the
knockdown of neither SRSF9 nor Tra2β did not affect
endogenous CD44 exon v10 splicing in HEK293T and
HCT116 cells.

In the triple-negative breast cancer cell lines HCC1806 and
MDA-MB-231, SRSF3 has been identified as a positive regulator of
variant exon inclusion in CD44 pre-mRNA, especially exons v8, v9,
and v10 (Guo L. et al., 2022). The loss of SRSF3 reduced the
abundance of CD44 variant isoforms expression but increased
the expression of CD44 standard isoform 4. Accordingly,
exogenous expression of SRSF3 induced a significant increase in
CD44 variant exon inclusion in the MDA-MB-231 and
HCC1806 cells, while the total abundance of CD44 did not
change. Interestingly, the reduction of CD44 variant isoform
expression due to SRSF3 silencing could be partially rescued
through the elevation of another splicing regulator TDP43 (TAR
DNA-binding protein-43). Based on overexpression and
knockdown experiments, it has been shown that
TDP43 promotes variant exons inclusion in CD44 mRNA,
especially exons v8, v9, and v10, in triple-negative breast cancer
cell lines MDA-MB-231 and HCC 1806 (Guo L. et al., 2022). The AS
regulation occurs through the direct interaction of TDP43 with
CD44 pre-mRNA. The knockdown of TDP43 reduced stemness
features of breast cancer stem cells. SRSF3, in turn, stabilized the
TDP43 mRNA by inhibiting non-sense-mediated decay and
thereafter provides enough TDP43 proteins for the cooperative
network to regulate the splicing of its target genes (Guo L. et al.,
2022).

In MGC-803gastric cancer cells, the splicing of CD44 was
controlled by SRSF1 (Peng et al., 2019). The depletion of
SRSF1 led to a significant decrease in CD44 isoform 3 level (but
not in isoforms containing exon v6 or exons v6-v10) and an increase
in CD44 isoform 4 level. An overexpression of SRSF1, in turn,
induced switching from CD44 isoform 4 to isoform 3.

The splicing activity of SRSF1 and SRSF2 could be counteracted
by another SR protein family member namely by NSrp70 (Kim Y. D.
et al., 2011; Kim et al., 2016). Based on the CD44 exon v5 minigene
assay, it has been shown that NSrp70 and SRSF1/2 have opposite
functions in HEK293T cells. The interaction of NSrp70 with
SRSF1 and SRSF2 prevented the SRSF1- and SRSF2-induced
CD44 exon v5 exclusion.

4.5 Other RNA-binding proteins

Several other RBPs have also been implicated in the splicing
regulation of CD44. Based on siRNA-mediated knockdown, it has
been shown that PTBP1, RBP recognizing CUCUCU-rich sequences
(Oberstrass et al., 2005), induced a significant decrease in expression
of CD44 containing exon v6 at mRNA and protein level in two
melanoma brain metastases’ cell lines BD and M16 (Marzese et al.,
2015). Interestingly, the reduction of PTBP1 affected the migration
of BD and M16 cells treated with HGF in opposite directions:
M16 showed a significant decrease, while BD showed a
significant increase in cell migration. Also, PTBP1 promoted
exon v8 inclusion in CD44 exon v8 minigene system in
HEK293FT cells (Hu et al., 2020).

CELF1 and ELAVL1 proteins, in addition to their cytoplasmic
roles, have been found directly interacting in the nucleus, where they
cooperatively control the splicing of CD44 in HeLa cells (David
et al., 2022). Namely, they promote the inclusion of exons v7-v10.
Correlation analysis of the alternative splicing events of CD44 with
expression levels of CELF1 and ELAVL1 based on RNA-Seq data
from TCGA revealed that high expression of CELF1 and/or ELAVL1
is correlated with the inclusion of CD44 variable exons in eight
tumor types.

In experiment combination, it has been shown that SRm160
(encoded by the SRRM1 gene) is important for the inclusion of most
of the endogenous CD44 variable exons in HeLa cells (Cheng and
Sharp, 2023). The regulation of CD44 splicing by SRm160 occurs in
a Ras-dependent manner. Reduction of SRm160 by siRNA
transfection downregulated the endogenous levels of
CD44 variant isoforms and correlated with a decrease in HeLa
cell invasiveness. In immunoprecipitation assay an association of
SRm160 with Sam68 has been revealed (Cheng and Sharp, 2023),
which in turn also stimulated the formation of CD44 variant
isoforms in a Ras-dependent manner (Matter et al., 2002; Cheng
and Sharp, 2023). The patterns of CD44 variant exons’ inclusion in
HeLa cells treated with Sam68 siRNA were like those treated with
SRm160 siRNA. These results suggest that SRm160 with Sam68 may
interact to regulate CD44 splicing.

The splicing activity of Sam68 is dependent on the type of a
complex it is a part of (Huot et al., 2009). A large Sam68 complex
(>1 MDa) is a ribonucleoprotein complex composed of
~40 proteins. The treatment of HeLa cells by phorbol 12-
myristate 13-acetate or epidermal growth factor induced the
disassociation of Sam68 from this large complex and the
appearance of Sam68 within the smaller complex. In human
MCF-7 and BT-20 breast cancer cells Sam68 exists in
equilibrium between a large and a small complex, whereas MDA-
MB-231 cells harbors only the smaller Sam68 complex. The
appearance of the small Sam68 complex in the cells correlated
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with the ability of Sam68 to promote the inclusion of exon v5 in the
CD44 minigene system and cell migration (Huot et al., 2009). The
existence of Sam68 in the form of a protein complex provides
multiple opportunities for cell-type-specific regulation of its
splicing activity. Thus, the interaction of Sam68 with SND1 in
prostate cancer cells leads to a synergic effect with Sam68 on
variant exon inclusion in CD44 mRNA (Cappellari et al., 2013).
It has been demonstrated that SND1 affected the recruitment of
Sam68 and snRNPs on CD44 pre-mRNA. These results, in
combination with others provided by (Cappellari et al., 2013),
suggest that SND1 acts as a bridge between RNA polymerase II
(RNAPII) and Sam68 and has a crucial role in CD44 AS by favoring
the recruitment of the spliceosome and the efficient splicing of the
variant exons. Knockdown of SND1, or Sam68, reduced
proliferation and migration of prostate cancer cells.

In prostate cancer PC3 cells, overexpression of RBM3 protein
resulted in decreased expression of CD44 isoform 3 (CD44v8-v10)
and an increased expression of CD44 isoform 4 (CD44s) (Zeng et al.,
2013). Vice versa, decreasing the expression of RBM3 promoted the
expression of CD44 isoform 3 and suppressed the expression of
isoform 4. These results suggested that RBM3 promoted switching
from CD44 isoform 3 to isoform 4. Such switching, in turn,
attenuated CSC-like features of prostate cancer cells. This finding
is confirmed by the fact that RBM3 overexpression in PC3 cells
showed a significant reduction in tumor formation when cells were
inoculated in nude mice.

The MBNL3 protein is a splicing regulator promoting
embryonic stem cell differentiation (Han et al., 2013).
Knockdown of MBNL3 in acute myeloid leukemia stem cells
enhanced the expression of the CD44 isoform 3, which promoted
stem cell maintenance (Holm et al., 2015).

Interestingly, in studies with MCF7 and HEK293T cells, it has
been found that binding of the acetyltransferase p300 to the
CD44 promoter region stimulated the inclusion of variant exons
v5-v6 in CD44 mRNA independently of RNAPII transcriptional
elongation rate (Siam et al., 2019). The mechanism of AS regulation
by p300 included an acetylation of splicing factors, leading to the
exclusion of hnRNPM from CD44 pre-mRNA and activation of
Sam68.

U2AF2 knockdown and overexpression experiments revealed its
positive regulatory role in the inclusion of variant exons and
CD44 isoform 3 expression in melanoma cells (Zhang et al.,
2016). It has been demonstrated that U2AF2 can bind to weak
polypyrimidine tract in the 3′-splicing site to facilitate CD44 isoform
3 splicing. The U2AF2 activity could be inhibited by the
CD82 tetraspanin protein by inducing U2AF2 ubiquitination.
Knockdown of U2AF2 or CD44 isoform 3 significantly
diminished the adhesion to E-selectin of Lu1205M melanoma
cells and reduced the number of metastatic lesions. Of note,
silencing of a set of other splicing factors in this study, Tra2β,
SRp20, ESRP1, YB-1, SRm160, and Sam68, did not show any
changes in the expression level of CD44 isoform 3 in melanoma
cells (Zhang et al., 2016).

PCBP1 (alpha CP1 or hnRNPE1) has been characterized as a
negative regulator of CD44 variants splicing in the human hepatoma
cell line HepG2 (Zhang et al., 2010). An enforced expression of
PCBP1 inhibited CD44 variant isoforms expression, including v3,
v5, v6, v8, and v10 exons, while knockdown of endogenous

PCBP1 induced CD44 variant isoforms splicing. The
PCBP1 overexpression was accompanied by a decrease in
invasive features of tumor cells; the knockdown accordingly
promoted invasion.

Reduced expression of hnRNPL (the heterogeneous nuclear
ribonucleoprotein L) promoted inclusion of only exon v10 in
endogenous CD44 mRNA in MDA-MB-231 cells (Loh et al.,
2015). A similar result has been shown using the CD44 exon
v10 minigene reporter system in MDA-MB-231 and HCT-116
cells. In addition, it has been revealed that hnRNPL directly
interacts with the CA-rich sequence in the intron upstream of
CD44 exon v10. This interaction inhibited the recruitment of
U2AF2 on intron upstream exon v10 and prevented its splicing.

HNRNPLL, a paralog of HNRNPL, has been demonstrated as
a negative regulator of invasion and metastasis of mouse
colorectal cancer CMT93 cells, which may be caused in part
by its negative regulation of splicing CD44 isoforms containing
exon v6 (Sakuma et al., 2018). In human colon cancer
SW480 cells, reduced level of HNRNPLL enhanced expression
of the CD44 isoforms containing exons v3-v10 and cell invasion
activity. Induction of EMT in SW480 cells led to transcriptional
downregulation of HNRNPLL and upregulation of exon
v6 inclusion in CD44 mRNA.

In the study described by Muys et al. CD44 was the strongest
alternatively spliced target of ZMAT3 in HCT116 cells (Muys et al.,
2021). Silencing of ZMAT3 resulted in a higher abundance of
CD44 variant isoform 1 and isoform 2, a concomitant reduction
of the short standard CD44 isoform 4 and an increase in
clonogenicity of HCT116 cells. ZMAT3 regulation of
CD44 splicing may be related to its binding at pyrimidine-rich
sequences of pre-mRNA introns, a crucial sequence element
required for 3′ splice site definition. Most commonly,
ZMAT3 binding sites consist of Us, with additional significant
contribution of A/U-rich elements (AREs). Thus, ZMAT3 might
compete with the other ARE-binding RBPs and splicing machinery
for binding and interfere with properly recognizing 3′ splice sites
(Muys et al., 2021).

In experiments with HeLa cells, A/C-rich elements (ACE) in
CD44 exon v4 were recognized by the human YB-1 protein,
encoding the YBX1 gene and initially identified as a
transcription factor (Stickeler et al., 2001). The YB-1 binding
to the exonic ACE stimulated CD44 exons v4 and v5 inclusion in
the final transcript.

5 Conclusion and prospects

Alternative splicing of CD44 pre-mRNA and the essential role of
CD44 isoforms in cancers are highlighted in this review. Many RBPs
have been identified as regulators of CD44 isoform splicing, of which
the most studied regulator is ESRP1 (Table 2, the extended version
of the table see in Supplementary Table S1). RBPs typically exist as
an important part of larger protein complexes that provide multiple
opportunities for cell-type specific regulation of their splicing
activity. Moreover, RBPs may counteract each other [e.g., as was
shown for SRSF1/2 and NSrp70 (Kim Y. D. et al., 2011; Kim et al.,
2016) or hnRNPM and AKAP8 (Hu et al., 2020)] and their
expression ratio could be important [e.g., as it was shown for
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RBFOX2 and ESRP1 (Barriere et al., 2014; Meng et al., 2019)]. All of
these necessitate further research into the role of RBPs mentioned in
the review in each type of cancer and the identification of other
possible regulators of CD44 alternative splicing. The importance of
studying endogenous AS in cells is worth noting, since the model
systems such as the CD44 minigene splicing reporter systems
provide only limited information and do not fully reflect
endogenous processes in cells.

It is also important to note that, according to sequencing data of
full-length RNA transcripts from the FLIBase repository (Shi et al.,
2023), CD44 splicing may be more complex than the inclusion or
exclusion of cassette exons and may involve changes in the sequence
of the exons themselves. How these types of CD44 isoforms are
realized and what functional role they play remains to be studied.
The fact that six isoforms of eight, confirmed per the NCBI database,
are very low expressed and are not even included in the top 20 high-
expressed ones (Supplementary Figures S1, S2), according to
FLIBase, also deserves particular discussion.

Several studies demonstrated that CD44 is a potential
therapeutic target among various malignant entities, e.g., triple-
negative basal-like breast cancer, squamous cell carcinomas, and
acute myelogenous leukemia (Yan et al., 2015; Xu et al., 2020; Elakad
et al., 2022). However, the results of preclinical and clinical trials
showed not only the safety and efficacy of existing anti-CD44
therapies but their limited success also [the detailed information
were nicely summarized in (Xu et al., 2020; Primeaux et al., 2022;
Weng et al., 2022)].

Many studies have been devoted to exploring the possibility
of splicing regulation through splicing-switch oligonucleotides
(SSOs) which can specifically bind to splicing sites in the pre-
mRNA in a complementary pairing manner, preventing RBPs
binding and the normal assembly of spliceosome (Figure 5)
(Hong, 2017; Du et al., 2021; Roy Burman et al., 2021; Zhang
et al., 2021). Such oligonucleotides are analogs of the antisense
oligonucleotides (ASOs), which the FDA has approved for the
treatment of Duchenne muscular dystrophy (Lim et al., 2017)
and spinal muscular atrophy (Corey, 2017). This approach
provides a hope for perspective using SSOs as regulators of
AS in cancer treatment. Interestingly, the endogenous
prototypes of SSOs are miRNAs. It raises the important
question: Could natural miRNAs be the regulators of AS in
cells? The answer of this question definitively defines direction
for future studies.
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