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Abstract. We consider the damped/driven cubic NLS equation on the
torus of a large period L with a small nonlinearity of size λ, a properly
scaled random forcing and dissipation. We examine its solutions under
the subsequent limit when first λ → 0 and then L → ∞. The first limit,
called the limit of discrete turbulence, is known to exist, and in this
work we study the second limit L → ∞ for solutions to the equations
of discrete turbulence. Namely, we decompose the solutions to formal
series in amplitude and study the second-order truncation of this series.
We prove that the energy spectrum of the truncated solutions becomes
close to solutions of a damped/driven nonlinear wave kinetic equation.
Kinetic nonlinearity of the latter is similar to that which usually appears
in works on wave turbulence, but is different from it (in particular, it is
non-autonomous). Apart from tools from analysis and stochastic analysis,
our work uses two powerful results from the number theory.

1. Introduction

1.1. The Setting

In this paper we continue the study of the Zakharov–L’vov stochastic model
for wave turbulence (WT), initiated in [7,8]; see also a survey [9]. We start by
recalling the classical and the Zakharov–L’vov stochastic settings of WT. See
the introduction to [7] for more detailed discussions of the two models.

Classical setting. Let T
d
L = R

d/(LZ
d) be the d-dimensional torus, d ≥ 2, of

period L ≥ 2. We denote by ‖u‖ the normalized L2-norm of a complex function
u on T

d
L, ‖u‖2 = L−d

∫
T

d
L

|u(x)|2 dx , and write the Fourier series of u in the
form
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u(x) = L−d/2
∑

s∈Z
d
L

vse
2πis·x, Z

d
L = L−1

Z
d. (1.1)

Here the vector of Fourier coefficients v = (vs)s∈Z
d
L

is given by the Fourier
transform of u(x),

v = F(u), vs = L−d/2

∫

T
d
L

u(x)e−2πis·x dx for s ∈ Z
d
L,

so the Parseval identity takes form ‖u‖2 = L−d
∑

s∈Z
d
L
|vs|2. We will study

solutions u(t, x) whose norms satisfy ‖u(t, ·)‖ ∼ 1 as L → ∞. This makes the
chosen in (1.1) scaling of Fourier series convenient for our purposes.

We consider the cubic NLS equation with modified nonlinearity

∂

∂t
u + iΔu − iλ

(
|u|2 − 2‖u‖2

)
u = 0, x ∈ T

d
L, (1.2)

where u = u(t, x), Δ = (2π)−2
∑d

j=1(∂
2/∂x2

j ) and λ ∈ (0, 1] is a small pa-
rameter. The modification of the nonlinearity by the term 2iλ‖u‖2u keeps the
main features of the standard cubic NLS equation, reducing some non-crucial
technicalities; see the introduction to [7].

The objective of WT is to study solutions of (1.2) under the limit L → ∞
and λ → 0 on long time intervals. There are plenty of physical works containing
some different (but consistent) approaches to the limit; many references may be
found in [25,26,30]. Despite the strong interest in physical and mathematical
communities to the addressed questions, significant progress in the rigorous
justification of the physical predictions was achieved only recently [1–6,15,
16,23]. See, for example, the introductions to [3,6,7] for discussions of the
obtained results.

Zakharov–L’vov setting. When studying Eq. (1.2), members of the WT com-
munity talk about “pumping energy to low modes and dissipating it in high
modes”. To make this rigorous, following Zakharov–L’vov [29], in the present
paper as well as in [7,8] we consider the NLS equation (1.2) damped by a
(hyper) viscosity and driven by a random force:

∂

∂t
u + iΔu − iλ

(
|u|2 − 2‖u‖2

)
u = −νA(u) +

√
ν

∂

∂t
ηω(t, x). (1.3)

Here ν ∈ (0, 1/2] is another small parameter, which should be properly agreed
with λ and L. The dissipative linear operator A is defined as

A(u(x)) = L−d/2
∑

s∈Z
d
L

γsvse
2πis·x, v = F(u), γs = γ0(|s|2), (1.4)

where |s| stands for the Euclidean norm of a vector s and γ0(y) is a smooth
real increasing function of y > 0, satisfying 1

γ0 ≥ 1 and c(1 + y)r∗ ≤ γ0(y) ≤ C(1 + y)r∗ ∀ y > 0. (1.5)

1 For example, if γs = (1+ |s|2)r∗, then A = (1−Δ)r∗. In particular, we can take A = 1−Δ.
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The exponents r∗ > 0 and c, C are positive constants. We also assume that

all derivatives of γ0 have at most polynomial growths at infinity.

The random noise ηω is given by a Fourier series

ηω(t, x) = L−d/2
∑

s∈Z
d
L

b(s)βω
s (t)e2πis·x,

where {βs(t), s ∈ Z
d
L} are standard independent complex Wiener processes 2

and b(s) is a Schwartz function on R
d ⊃ Z

d
L.3

Solutions u(τ) of (1.3) are random processes in the space H = L2(Td
L, C),

equipped with the norm ‖ · ‖. If r∗ is sufficiently big in terms of d, Eq. 1.3 is
known to be well posed, see Theorem 1.1 below and a discussion after its for-
mulation. Moreover, Ito’s formula shows that E‖u(τ)‖2 is bounded uniformly
in τ and L, ν, λ, once E‖u(0)‖2 is bounded uniformly in these parameters, see
in [7].

We will study the equation on time intervals of order ν−1. So, it is con-
venient to pass from t to the slow time τ = νt and write Eq. (1.3) as

u̇ + iν−1Δu − iρ
(
|u|2 − 2‖u‖2

)
u = −A(u) + η̇ω(τ, x),

ηω(τ, x) = L−d/2
∑

s∈Z
d
L

b(s)βω
s (τ)e2πis·x. (1.6)

Here ρ = λν−1, the upper dot stands for d/dτ and {βs(τ), s ∈ Z
d
L} is another

set of standard independent complex Wiener processes. Below we use ρ, ν and
L as parameters of the equation.

In the context of Eq. (1.6), the objective of WT is to study its solutions
u(τ) when

L → ∞ and ν → 0, (1.7)

while ρ = ρ(ν, L) is scaled appropriately, mostly paying attention to their
energy spectra

Ns(τ) := E|vs(τ)|2, where v(τ) = F(u(τ)). (1.8)

Exact meaning of the limit (1.7) is unclear since no relation between the pa-
rameters ν and L is postulated by the theory.

Motivated by physical works, in the present paper, as in [7,8], we study
formal decompositions in ρ of solutions to Eq. (1.6) and of their energy spectra
Ns under the limit (1.7). See the introduction to [7] for a discussion of our
motivation, and see below Sect. 4. In [7,8] we understand the limit (1.7) as

first L → ∞ and then ν → 0, or L � ν−2 while ν → 0. (1.9)

There we have shown that principal terms of the decomposition of Ns in ρ
have a non-trivial limiting behaviour, provided that ρ is scaled as ρ ∼ ν−1/2,

2 i.e. βs = β1
s + iβ2

s , where {βj
s , s ∈ Z

d
L, j = 1, 2} are standard independent real Wiener

processes.
3Often it is assumed that the intensity b(s) of the noise ηω is non-negative, but we do not
impose this condition. Note that if b(s) ≡ 0, then our results become trivial since below we
will provide (1.3) with the zero initial conditions.
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governed by a nonlinear wave kinetic equation (WKE) with added dissipation
and a constant forcing. The WKE coincides with that, arising in physical
works, so this result agrees well with the predictions of the WT.

In the present paper we are interested in the opposite order of limits,
which rarely appears in physical works:

firstly ν → 0 and then L → ∞. (1.10)

Roughly speaking, our main result is that under the double limit (1.10) the
behaviour of principal terms of the decomposition in ρ for the energy spectrum
Ns is governed by a modified WKE. The latter is similar to the WKE arising
in [7,8] and physical papers, but is different from them. The scaling of ρ now
is ρ ∼ Lχd(L), where

χd(L) ≡ 1 if d ≥ 3 and χd(L) = (lnL)−1/2 if d = 2. (1.11)

To the best of our knowledge, this WKE did not appear in the literature be-
fore. For the proof we start with the result obtained in [17,21], where the
limiting as ν → 0 behaviour of Eq. (1.6) is examined (while L and ρ are kept
fixed). Then we pass to the limit as L → ∞, following the approach of [7,8]
and using the developed there tools, such as a specific Feynman diagram pre-
sentation. Another key ingredient of the proof is an obtained in [10] refinement
of the Heath–Brown circle method for quadratic forms [14], and certain upper
bounds for the number of integer points on intersections of quadrics. In the
next subsections we describe our results and methods in more detail.

In [20] a similar result concerning the iterated limit (1.10) was found
heuristically; however, there ρ was scaled as ρ ∼

√
L. The present paper shows

that the correct scaling is different: ρ ∼ Lχd(L).
Similar regimes, when L → ∞ slowly while ν > 0 fast decays to zero,

were studied in [1,16]. However the elegant description of the limit, obtained
there, is far from the prediction of WT. The works [1,16] should rather be
regarded as a kind of averaging (similar to that of Krylov–Bogolyubov) since
the considered there time scale is much shorter than the characteristic time
scale of WT. Note that in [1] a similar to ours [10] refinement of the Heath–
Brown method also is crucially used.

1.2. The Limit of Discrete Turbulence

We first consider the limit

ν → 0 while L and ρ stay fixed. (1.12)

It is known as the limit of discrete turbulence (see [25, Section 10]) and has been
successfully studied in [17,21]. To explain the result, let us take the Fourier
transform of Eq. (1.6):

v̇s − iν−1|s|2vs + γsvs = iρL−d

(
∑

1,2,3

δ′12
3s v1v2v̄3 − |vs|2vs

)

+ b(s)β̇s

(1.13)
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for s ∈ Z
d
L. Here, as it is common in WT, vj abbreviates vsj

,
∑

1,2,3 stands for∑
s1,s2,s3∈Z

d
L
, and

δ′12
3s = δ′s1s2

s3s :=
{

1, if s1 + s2 = s3 + s and {s1, s2} �= {s3, s},
0, otherwise. (1.14)

Note that

if δ′12
3s = 1, then {s1, s2} ∩ {s3, s} = ∅. (1.15)

We pass to the interaction representation,

as(τ) = vs(τ)e−iν−1τ |s|2 , s ∈ Z
d
L, (1.16)

and denote

ω12
3s = ωs1s2

s3s := |s1|2 + |s2|2 − |s3|2 − |s|2 = −2(s1 − s) · (s2 − s), (1.17)

where the last equality holds if δ′12
3s = 1 since then s3 = s1 + s2 − s. Then Eq.

(1.13) takes the form

ȧs + γsas = iρYs(a, ν−1τ) + b(s)β̇s, s ∈ Z
d
L,

Ys(a, t) = L−d

(
∑

1,2,3

δ′12
3s a1a2ā3e

itω12
3s − |as|2as

)

,
(1.18)

where {βs} is yet another set of standard independent complex Wiener pro-
cesses (and, again aj stands for asj

). Note that the energy spectra of solutions
to Eqs. (1.13) and (1.18) coincide:

Ns(τ) = E|vs(τ)|2 = E|as(τ)|2. (1.19)

Sometimes we will write Ns and as as Ns(τ ; ν, L) and as(τ ; ν, L). The limit-
ing dynamics in Eq. (1.18) under the limit (1.12) is governed by the effective
equation of discrete turbulence. The latter has the form (1.18) with the mod-
ified nonlinearity Y res, in which the sum is taken only over resonant vectors
s1, s2, s3:

ȧs + γsas = iρY res
s (a) + b(s)β̇s, s ∈ Z

d
L,

Y res
s (a) = L−d

(
∑

1,2,3

δ′12
3s δ(ω12

3s)a1a2ā3 − |as|2as

)

.
(1.20)

Here δ(ω12
3s) = 1 if ω12

3s = 0 and δ(ω12
3s) = 0 otherwise. The following result is

proven in [17,21] (concerning the well posedness of (1.18) also see [28]).

Theorem 1.1. If A(u) = −Δu + u and d ≤ 3, then Eqs. (1.18) and (1.20) are
well posed. Under the limit (1.12), on time intervals of order 1,

(i) A solution aν(τ) of (1.18) converges in distribution to a solution a0(τ)
of (1.20) once they have the same deterministic initial data at τ = 0;

(ii) The energy spectrum E|aν
s (τ)|2 = Ns(τ ; ν, L) converges to the energy

spectrum E|a0
s(τ)|2.
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It is very likely that the assertions of the theorem stays true with a similar
proof for any d if A is the operator (1.4, 1.5) with a sufficiently large r∗, and
in [21] this indeed is proved, provided that Eq. (1.18) is known to be well
posed. It is also shown in [17,21] that if under the assumptions of Theorem 1.1
Eqs. (1.18) and (1.20) are mixing, then the stationary measure for the former
converges to that for the latter as ν → 0. The mixing property for Eq. (1.18)
is established in [28] for the case when all numbers b(s) are nonzero and d = 1.
It is plausible that a variation of the argument in [28] allows to establish the
mixing property for both Eqs. (1.18) and (1.20) if in (1.5) r∗ is big in terms of
d and b(s) �= 0 for all s.

1.3. The Main Result

In view of Theorem 1.1, to understand behaviour of the energy spectrum (1.19)
of Eq. (1.18) under the limit (1.10), it remains to study that of the energy
spectrum E|as(τ ;L)|2 of the effective Eq. (1.20) under the limit L → ∞.
Instead, following the logic of [7], we study the energy spectrum corresponding
to a principal part of a decomposition in ρ for the solutions as(τ ;L) of Eq.
(1.20).

Quasisolutions and their energy spectra. To simplify presentation we assume
that initially the system was at rest, i.e. supplement Eq. (1.20) with the zero
initial condition

as(0) = 0 ∀s ∈ Z
d
L. (1.21)

We formally decompose the corresponding solution of (1.20) in ρ,

a(τ) = a(0)(τ) + ρa(1)(τ) + ρ2a(2)(τ) + . . . , a(k)(0) = 0, (1.22)

a(k)(τ) = a(k)(τ ;L). The process a(0)(τ) satisfies the linear equation

ȧ(0)
s + γsa

(0)
s = b(s)β̇s, s ∈ Z

d
L.

So it is Gaussian,

a(0)
s (τ) = b(s)

∫ τ

0

e−γs(τ−l)dβs(l), (1.23)

and its components {a(0)
s } are independent. The process a(1) satisfies

ȧ(1)
s + γsa

(1)
s = iY res

s (a(0)),

so that

a(1)
s (τ) = iL−d

∫ τ

0

e−γs(τ−l)

(
∑

1,2,3

δ′12
3s δ(ω12

3s)(a(0)
1 a

(0)
2 ā

(0)
3 ) − |a(0)

s |2a(0)
s

)

(l)dl (1.24)
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is a Wiener chaos of third order (see [18]). Similar for n ≥ 1,

a(n)
s (τ) = iL−d

∑

n1+n2+n3=n−1

∫ τ

0

e−γs(τ−l)

×
(
∑

1,2,3

δ′12
3s δ(ω12

3s)
(
a
(n1)
1 a

(n2)
2 ā

(n3)
3

)
− a(n1)

s a(n2)
s ā(n3)

s

)

(l) dl,

(1.25)

is a Wiener chaos of order 2n + 1.
Next we consider the quadratic truncation of the series (1.22),

As(τ ;L) = As(τ) = a(0)
s (τ) + ρa(1)

s (τ) + ρ2a(2)
s (τ), (1.26)

which we call the quasisolution 4 of the effective Eqs. (1.20), 1.21). It is tradi-
tional in WT to analyse the quasisolution instead of the solution itself, postu-
lating that the former well approximates the latter; see introduction to [7] for
a discussion. The goal of the present paper is to study the behaviour of the
energy spectrum of A(τ),

ns,L(τ) = E|As(τ ;L)|2, s ∈ Z
d
L, (1.27)

as L → ∞. Our results, formulated below, show that under this limit the energy
spectrum ns,L(τ) has a non-trivial behaviour (i.e. stays finite and behaves
differently from E|a(0)

s |2) only if ρ ∼ Lχd(L), where χd is defined in (1.11).
Accordingly, from now on we assume that

ρ = εLχd(L), (1.28)

where 0 < ε ≤ 1/2 is a small but fixed constant (see a few lines below for its
discussion). Then the energy spectrum ns,L expands as

ns,L(τ) = n
(0)
s,L(τ) + ε n

(1)
s,L(τ) + ε2n

(2)
s,L(τ) + ε3n

(3)
s,L(τ) + ε4n

(4)
s,L(τ),

(1.29)

s ∈ Z
d
L, where

n
(k)
s,L(τ) =

(
Lχd(L)

)k ∑

k1+k2=k
0≤k1,k2≤2

Ea(k1)
s (τ)ā(k2)

s (τ). (1.30)

In particular, by (1.23)

n
(0)
s,L(τ) = E|a(0)

s (τ ;L)|2 =
b(s)2

γs

(
1 − e−2γsτ

)
, s ∈ Z

d
L, (1.31)

and a simple computation shows that n
(1)
s,L(τ) ≡ 0. For higher-order terms, we

prove that

n
(2)
s,L ∼ 1 and |n(3)

s,L|, |n(4)
s,L| � 1 as L → ∞ uniformly in τ ≥ 0;

(1.32)

4By analogy with the quasimodes in the spectral theory of the Shrödinger operator.
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see a discussion in the next subsection. Thus, the parameter ε measures the
properly scaled amplitude of the solutions, and indeed it should be small for the
methodology of WT to apply. Then, the term ε2n

(2)
s,L is the crucial non-trivial

component of the energy spectrum ns,L, while the terms ε3n
(3)
s,L, ε4n

(4)
s,L are

perturbative. This well agrees with the prediction of physical works concerning
various models of WT.

Wave kinetic equation. In view of (1.32), to study the limiting as L → ∞
behaviour of the energy spectrum ns,L(τ) up to an error of size ε3 it remains
to investigate the behaviour of its principal component n(0)

s,L(τ)+ε2n
(2)
s,L(τ). We

show that the latter is governed by a WKE. To state the result, let us consider
the resonant quadric

Σs =
{
(s1, s2) ∈ R

2d : (s1 − s) · (s2 − s) = 0
}

, (1.33)

cf. (1.17), and a measure μΣs on it, given by

μΣs(ds1ds2) =
(
|s1 − s|2 + |s2 − s|2

)−1/2
ds1ds2 |Σs

, (1.34)

where ds1ds2 |Σs
denotes the volume element on Σs, corresponding to the

standard Euclidean structure on R
2d.

Let us consider the following non-autonomous cubic wave kinetic integral
operator K(τ), for any τ ≥ 0 sending a function ys, s ∈ R

d, to the function
Ks(τ)y, defined as

Ks(τ)y = 4Cd

∫

Σs

μΣs(ds1ds2)
(
Z4y1y2y3

+Z3y1y2y4 − Z2y1y3y4 − Z1y2y3y4

)
. (1.35)

Here yj := ysj
with s4 := s and s3 := s1 + s2 − s, Cd is the constant from

Theorem B below, the kernels Zj = Zj(τ ; s1, s2, s3, s4) are given by formulas
(4.14, 4.15) and satisfy 0 ≤ Zj(τ) ≤ 1. When τ → ∞, the operator K(τ)
exponentially fast converges to a limiting kinetic integral operator K(∞), given
by (1.35) with Zj replaced by (γs1 + γs2 + γs3 + γs4)

−1 for all j:

Ks(∞)y = 4Cd

∫

Σs

μΣs(ds1ds2)
γs1 + γs2 + γs3 + γs4(

y1y2y3 + y1y2y4 − y1y3y4 − y2y3y4

)
. (1.36)

It is similar to the standard four-wave kinetic operator of WT (e.g. see in [25]),
which has the form (1.35) with Zj ≡ const, but still is different from the latter
since K(∞) depends on the spectrum {γs} of the dissipation operator A.5

For r ∈ R we denote by Cr(Rd) a space of continuous complex functions
on R

d with finite norm

|f |r = sup
z∈Rd

|f(z)|〈z〉r, where 〈z〉 = max(|z|, 1). (1.37)

5Earlier the kinetic operator K(∞) was heuristically obtained in [20].
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In Sect. 5, following [7], we show that if r > d, then for any τ the operator K(τ)
defines a continuous 3-homogeneous mapping K(τ) : Cr(Rd) �→ Cr+1(Rd), and
for any y ∈ Cr(Rd) the curve τ �→ K(τ)(y) is Hölder continuous in Cr(Rd).

Now consider the following damped/driven non-autonomous WKE

żs(τ) = −2γszs + ε2Ks(τ)(z) + 2b(s)2, z(0) = 0, (1.38)

where τ ≥ 0 and s ∈ R
d. In Sect. 5 we prove that for small ε it has a unique

solution zs(τ), which can be written as zs(τ) = z0s(τ)+ε2z1s(τ, ε), where z0s, z
1
s ∼

1 and z0s solves the linear Eq. (1.38)|ε=0. It is easy to see that z0s equals the
component n

(0)
s,L of the energy spectrum ns,L, given by (1.31), and we prove

that z1s is ε4-close to n
(2)
s,L uniformly in τ . Then, in view of (1.32), the energy

spectrum ns,L is ε3-close to the solution zs(τ).
Below we denote by C#(s) various positive functions of s which decay as

|s| → ∞ faster than any negative degree of |s|. These functions never depend on
L, ε and τ . By C#(s; p) we denote functions C#(s) depending on a parameter
p.

Theorem A (Main theorem). Let d ≥ 2. Then, the energy spectrum ns,L(τ) of
the quasisolution As(τ) of (1.20), 1.21) satisfies the estimate ns,L(τ) ≤ C#(s)
and is ε3-close to the solution zs(τ) of WKE (1.38). Namely, under the scaling
ρ = εLχd(L), for any r there exists εr ∈ (0, 1/2] such that for 0 < ε ≤ εr we
have

|n·,L(τ) − z·(τ)|r ≤ Crε
3 ∀ τ ≥ 0, (1.39)

if L ≥ ε−2 for d ≥ 3, and L ≥ eε−1
for d = 2.

See Theorem 5.9. Since the energy spectrum ns is defined for s ∈ Z
d
L with

finite L, then the norm in (1.39) is understood as |f |r = supz∈Z
d
L

|f(z)|〈z〉r.

Remark 1.2. If d = 2, the lower bound L ≥ eε−1
can be relaxed in the following

sense. In Appendix D we explain that there is a bounded correction f(τ, L)
which can be written explicitly, such that

∣
∣
∣n·,L(τ) − z·(τ) − f(τ, L)

ln L

∣
∣
∣
r

≤ Crε
3 ∀ τ ≥ 0, (1.40)

if L ≥ ε−6.

In Lemma 5.6 we show that in the vicinity of the unique steady state
z0s := b(s)2/γs for the linear Eq. (1.38)|ε=0, Eq. (1.38)|τ=∞ with ε � 1 has a
unique steady state zε ∈ Cr(Rd) and the latter is asymptotically stable. Jointly
with Theorem A, this result implies the following asymptotic in time behaviour
of the energy spectrum ns,L(τ):

|n·,L(τ) − zε· |r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0, (1.41)

if L is as in Theorem A, see (5.19).
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The cases d ≥ 3 and d = 2 are similar, but should be treated separately.
To shorten the presentation, we give a detailed proof of Theorem A only for
d ≥ 3, when

χd = 1 and ρ = εL.

The proof for d = 2 can be obtained by a simple modification of the argument
for d ≥ 3. We sketch it in Appendix D. So from now on, except Sect. 2 which
gives a brief account of the method of Feynman diagrams from [7,8], we assume
that d ≥ 3.

In paper [7] we examine the behaviour of the energy spectrum ns,L,ν(τ) of
a quasisolution to Eq. (1.18) under the limit (1.9), assuming that ρ = εν−1/2. 6

We got there a similar result which states that n·,L,ν(τ) is ε4-close to a solution
of the damped/driven four-wave kinetic equation as in [25, Section 6.9.1] [in
contrast with Eq. (1.38), the kinetic nonlinearity there does not depend on the
dissipation A in Eq. (1.3)].

What next? In this work and in [7] we obtained wave kinetic limits for the
energy spectra of quasisolutions for the NLS Eq. (1.6) under limit (1.10) with
the scaling ρ = εLχd(L) and limit (1.9) with the scaling ρ = εν−1/2. Our
next goal is to show that an exact solution a·(τ) of Eq. (1.18) is ε3-close
to its quasisolution A·(τ) (uniformly in L ≥ 2 and τ ∈ [0, T ], for any T >
0). And that a solution of Eq. (1.6) is ε3-close to the quasisolution of the
equation (uniformly in ν, L and τ ∈ [0, T ], if L ≥ ν−2−γ̄ , γ̄ > 0). This
would imply that the energy spectra of solutions of Eq. (1.6) under limit (1.10)
and limit (1.9) are ε3-close to solutions of the two WKE (namely, Eq. (1.38)
and the WKE from [7]). To prove this, say, for a solution a·(τ) of Eq. (1.18)
we consider the equation on any fixed time-interval [0, T ] and regard it as a
nonlinear equation FT (a·(·)) = 0 for the unknown process as(τ). Then the
quasisolution A satisfies the equation with a disparity � ε3. By analogy with
some stochastic problems for nonlinear PDEs, recently successfully resolved
by the KAM-techniques (e.g. see [19]), we believe that KAM also applies to
the equation FT = 0. Its application would imply that a is ε3-close to A, as
stated. We also believe that analysis of the KAM-iterations which build a from
A will show that the energy spectrum of the solution a·(τ) of Eq. (1.18) under
the limit L → ∞ converges to a solution of the WKE (1.38). A similar logic
should apply to the energy spectra of solutions for Eq. (1.6) under the limit
(1.9).

1.4. Outline of The Proof: Feynman Diagrams and Number Theory

It is well understood that to write down formulas for the terms n(k)
s,L of decom-

positions as (1.29) it is instrumental to use the language of Feynman diagrams.
In application to similar problems this goes back at least to the works [11,12],
and then was successfully used for the purposes of WT in [2–6,23] and other
papers. We use this techniques in the form developed in [8] which gives a con-
venient presentation of the terms n

(k)
s,L [see (1.30)]. Namely, by iterating the

6In [7] the notation is slightly different: there we set ρ = ε1/2ν−1/2.
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Duhamel formula (1.25) we express a(n)(τ) in terms of the Gaussian processes
a
(0)
s , and next evoking the Wick formula for moments of a(0)

s write the terms
n
(k)
s,L as multiple sums. Then the just mentioned diagram techniques allows to

‘integrate’ these sums. That is, to write any n
(k)
s,L as a sum over an intersections

of k − 1 quadrics in (Zd
L)k in a form, convenient to pass to a limit as L → ∞.

The term n
(2)
s,L is a sum over a single quadric and may be analysed without the

diagram’s machinery. This and some other similar terms play a leading role
in our analysis and dictate the form of the limiting WKE. The terms may be
written as sums

Gs(τ, L) = L2(1−d)
∑

z1,z2∈Z
d
L:

z1·z2=0, z1,z2 �=0

Φs(τ ; z1, z2), (1.42)

well known in works on WT. To study them under the limit L → ∞ we make
use of the celebrated circle method of Heath–Brown [14]. Since the result of
[14] does not completely fit our purposes, we specified it in the accompanying
paper [10] (also see [1, Section 5] for another specification of the Heath–Brown
method, used for the purposes of WT). This implies

Theorem B. For any L ≥ 2,
∣
∣
∣Gs(τ, L) − Cd

∫

Σ0

Φs(τ ; z1, z2)μΣ0(dz1dz2)
∣
∣
∣ ≤ Kd

‖Φs(τ ; ·)‖N1,N2

Ld−5/2
,

where Σ0 = {z1, z2 ∈ R
d : z1 · z2 = 0}, μΣ0 is the measure on it, defined by

(1.34) with s = 0, Cd is a number-theoretical constant, satisfying Cd ∈ (1, 1 +
22−d), the norm ‖ · ‖N1,N2 is defined in (3.3) and the constants N1, N2 ∈ N

depend only on d.

In particular, the term n
(2)
s,L(τ) admits a limit when L → ∞.

The terms n
(3)
s,L and n

(4)
s,L in (1.29) correspond to multiple intersections

of quadrics, and the Heath–Brown method does not apply to them. Still the
diagram technique allows to write these terms in a convenient compact form.
Then next in Sect. 3 and Appendix A we use Theorem B jointly with another
powerful result from the number theory—Bezout’s theorem for finite fields—to
prove 7

Theorem C. For k = 3, 4, |n(k)
s,L(τ)| ≤ C#(s).

Theorems B and C imply (1.32). So to establish Theorem A it remains to
show that the term n≤2

s,L(τ) := n
(0)
s,L(τ) + ε2n

(2)
s,L(τ) (or equivalently its limit as

L → ∞, provided by Theorem B) can be well approximated by a solution of the
WKE (1.38). To this end, following the lines of [7] (and the logic of the Krylov–
Bogolyubov averaging) we consider increments Δn≤2

s,L := n≤2
s,L(τ + θ) − n≤2

s,L(τ)

and express them through the processes a
(0)
m via the Duhamel formula (1.25)

7 In fact, in Sect. 3 we prove an abstract result, more general than the theorem below; see
there Theorem 3.2.
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and the Wick theorem. Then the increments approximately take the form
(1.42), and we use Theorem B to show that they are close to the r.h.s. of the
WKE, multiplied by θ.

Although the computation of the increments Δn≤2
s,L is similar to that in

[7], now a mechanism leading to a WKE is rather different. Namely, in [7] com-
ponents of the terms n

(k)
s,L are approximated by formulas analogous to (1.42),

where the summation over the lattice (Zd)k = {z} is replaced by an integra-
tion over R

dk. The integrals in those formulae involve fast oscillating Gaussian
kernels. The zero sets of these kernels define quadrics, related to the quadrics
{(z1, z2) : z1 ·z2 = 0} in (1.42). Due to the fast oscillations a crucial component
of the increments Δn≤2

s,L is given by the terms, associated with short-range cor-

relations in τ of the processes a(0)
m (τ). On the contrary, in the present situation

a crucial contribution is given by other terms, associated with long-time corre-
lations of the processes a

(0)
m (τ), while the short-range correlations only give a

small correction, as it can be seen from computations of Appendix A.4. So, it
is natural that the kinetic integral in the WKE (1.38) depends on the viscosity
operator A, while that in the WKE in [7] does not.

Finally we note that, as we explain in Sect. 3.2, it is plausible that The-
orem C holds for all k ≥ 3. If so, then for ρ = εL the energy spectrum of
a solution a(τ), written as (1.22), defines a formal series in ε, uniformly in
L ≥ 2. Then the partial sums of this series, made by the terms of order εm,
m ≤ M , with any fixed M ≥ 2, also satisfy Theorem A with the constants Cr,
depending on M . Cf. Conjecture 3.8.

2. Series Expansion: Approximating Equation and
Diagrammatic Representation for Solutions

In this section, assuming that d ≥ 2, we approximate processes (1.25) by more
convenient processes a(n), and then obtain a compact and instrumental repre-
sentation for their correlations in terms of Feynman diagrams (see Lemma 2.2),
following [8, Sections 3–5]. This representation (as well as its analogy in [7,8])
is used to estimate various disparity terms, related to quasisolutions A(τ ;L),
see (1.26), and to their energy spectra.

Our presentation is sketchy, but missing details may be found in [8]. For
a general discussion of the language of Feynman diagrams, see [18].

2.1. Approximate a-Equation

We start by considering an approximation of the original Eq. (1.20) by an
equation, where the term L−d|as|2as is removed:

ȧs + γsas = iρYs(a) + b(s)β̇s, s ∈ Z
d
L,

Ys(a) = L−d
∑

1,2,3

δ′12
3s δ(ω12

3s)a1a2ā3.
(2.1)
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Similar to processes as, we decompose

a = a(0) + ρa(1) + . . . . (2.2)

Here a(0) = a(0) and the processes a
(n)
s (τ) with n ≥ 1 are built by the recur-

sive formula (1.25) with the term an1
s an2

s ān3
s being dropped. That is, with the

nonlinearity Y res
s replaced by the Ys above.

Results of [8] together with Theorem 3.2 below (which is an abstract
version of Theorem C from the introduction) imply

Proposition 2.1. For all m,n ≥ 0, satisfying N := m + n ≤ 4,

∣
∣Ea(m)

s (τ1)ā(n)
s (τ2) − Ea(m)

s (τ1)ā(n)
s (τ2)

∣
∣ ≤ L−N−d+1

χd(L)N−1
C#(s;n,m), (2.3)

uniformly in τ1, τ2 ≥ 0.

We prove the proposition in Appendix C for d ≥ 3 and discuss an adap-
tation of the proof to the case d = 2 in Appendix D. Doing that we use the
relation N := m+n ≤ 4 only to apply Theorem 3.2 (or Theorem D.2 if d = 2).
So, if the assertion (3.9) of the latter theorem holds for larger N ’s, then for
those N ’s estimates (2.3) remains true as well [we believe that (3.9) is fulfilled
for all N , see in Sect. 3.2].

Relations (2.3) imply that moments of processes a
(m)
s (τ) well approximate

those of processes a(m)
s (τ) as L → ∞. Accordingly, from now on we will mostly

study processes as(τ) and their decompositions (2.2).

2.2. Diagrams for Solutions

For what follows it is convenient to re-write operator Y from (2.1), using a
fictitious index s4:

Ys(a) = L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34)δs
4 a1a2ā3,

where δs
4 is the Kronecker symbol. Then analogous of the expression (1.25) for

a(m), m ≥ 1, takes the form

a(m)
s (τ) =

∑

m1+m2+m3=m−1

i

∫ τ

0

dl e−γs(τ−l)

L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34) δs
4

(
a
(m1)
1 a

(m2)
2 ā

(m3)
3

)
(l).

(2.4)

We will call the objects as those in the r.h.s. of (2.4) sums, despite they involve
integrating in dl. The r.h.s. of (2.4) contains several sums, corresponding to
all admissible choices of numbers m1,m2,m3.

We apply Duhamel’s formula (2.4) to the terms a
(mi)
si (l) in the right-hand

side of (2.4) with mi > 0, and iterate the procedure till a
(m)
s (τ) is expressed

through the processes a(0) and ā(0). Then a
(m)
s becomes represented as a finite

sum of sums; we denote such sums by Is. Below we will associate with each
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sum Is an appropriately constructed diagram D. Thus, we will write a
(m)
s (τ)

as

a(m)
s (τ) =

∑

D∈Dm

Is(D; τ), (2.5)

where Dm is a set of all diagrams, corresponding to the just explained repre-
sentation of a(m) via the processes a(0) and ā(0). Similarly by Dn we denote
the set of diagrams, parametrizing the terms in the sum, representing ā(n)(τ)
in a form, analogous to (2.5): ā

(n)
s (τ) =

∑
D̄∈Dm

Is(D̄; τ).

2.2.1. Construction of the Sets of Diagrams Dm and Dn . We start with dis-
cussing the set D2 and the sums Is(D) with D ∈ D2.

When iterating the Duhamel formula (2.4) (or its complex conjugation)
for a j-th time, we will denote the corresponding time l ∈ [0, τ ] by lj and
will write the set of indices {s1, s2, s3, s4} as {ξ2j−1, ξ2j , σ2j−1, σ2j}, where we
enumerate by ξi the indices of non-conjugated variables a

(k)
s′ in (2.4) and by

σi – those of conjugated variables ā
(n)
s′′ . We write the corresponding fictitious

index s4 as σ2j if we apply (2.4), or as ξ2j if we apply the complex conjugation
of (2.4). More precisely, when applying (2.4) we denote s1 = ξ2j−1, s2 = ξ2j ,
s3 = σ2j−1 and s4 = σ2j , and when applying its complex conjugation, we write
s1 = σ2j−1, s2 = σ2j , s3 = ξ2j−1 and s4 = ξ2j . We will abbreviate

δj = δ′ξ2j−1ξ2j
σ2j−1σ2j

and ωj = ωξ2j−1ξ2j
σ2j−1σ2j

, j ≥ 1, (2.6)

[these terms correspond to δ′12
34 and ω12

34 in (2.4)]. We also set

ξ0 = σ0 := s. (2.7)

Applying (2.4) to a
(2)
s and using the notation above with j = 1, we find

a(2)
s (τ) = a

(2)
ξ0

(τ) =
∑

m1+m2+m3=1

i

∫ τ

0

dl1 e−γξ0 (τ−l1)

L−d
∑

ξ1,ξ2,σ1,σ2

δ1 δ(ω1) δξ0
σ2

(
a
(m1)
ξ1

a
(m2)
ξ2

ā(m3)
σ1

)
(l1).

(2.8)

Let us consider the summand with m1 = m2 = 0 and m3 = 1. Applying the
conjugated formula (2.4) to ā

(1)
σ1 and using the introduced notation with j = 2,

we get

ā(1)
σ1

(l1) = −i

∫ l1

0

dl2 e−γσ1 (l1−l2)

L−d
∑

ξ3,ξ4,σ3,σ4

δ2 δ(ω2) δσ1
ξ4

(
a
(0)
ξ3

ā(0)
σ3

ā(0)
σ4

)
(l2).

(2.9)

Inserting (2.9) into the summand in (2.8) with m1 = m2 = 0 and m3 = 1, we
get a sum Is(D; τ) which we associate with the diagram D from Fig. 1c; further
on we will denote this diagram by Dc. The non-conjugated vertices c

(k)
i of the

diagram are associated with the variables a
(k)
ξi

in (2.8), (2.9); the corresponding
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Figure 1. The set of diagrams D2

to them indices are ξi. The conjugated vertices c̄
(n)
j are associated with the

variables ā
(n)
σj and the corresponding indices are σj . In particular, the root c

(2)
0

is associated with a
(2)
ξ0

= a
(2)
s and the corresponding index is ξ0. In the notation

c
(k)
i and c̄

(n)
j we sometimes omit the upper indices k and n which we call the

degrees of the vertices c
(k)
i , c̄

(n)
j . The vertices w̄2 and w4 are called conjugated

(non-conjugated) virtual vertices, and the corresponding indices are σ2 and ξ4;
these vertices are associated with the Kronecker symbols δξ0

σ2
and δσ1

ξ4
in (2.8)

and (2.9). Vertices which are not virtual are called real. Every edge of the
diagram couples a non-conjugated (conjugated) vertex c

(k)
i (c̄(k)

i ) of positive
degree k ≥ 1 with a conjugated (non-conjugated) virtual vertex w̄i′ (wi′). It
is associated with an application of formula (2.4) (or its complex conjugation)
to the variable a

(k)
ξi

(or ā
(k)
σi ), corresponding to the vertex c

(k)
i (or c̄

(k)
i ).

The set of four vertices

c2j−1, c2j , c̄2j−1, w̄2j or c2j−1, w2j , c̄2j−1, c̄2j (2.10)

(in dependence whether the virtual vertex is conjugated or not) to which corre-
spond the indices ξ2j−1, ξ2j , σ2j−1, σ2j is called the j-th block ; the diagram Dc

has two blocks. The index i of a virtual vertex wi (w̄i) is always pair, i = 2j.
Each block corresponds to an application of formula (2.4) (or its complex con-
jugation) to its parent, i.e. to the vertex of positive degree coupled with the
virtual vertex of the block. The virtual vertex is conjugated if the parent is
non-conjugated and the other way round. The time variable lj is associated
with the j-th block.

The leaves are the vertices of zero degree, that is, the vertices c
(0)
i and

c̄
(0)
j .

The diagrams from Fig. 1(a,b) correspond to the summands in (2.8) with
m1 = 1, m2 = m3 = 0 and m1 = m3 = 0, m2 = 1; they are constructed by the
same rules as the diagram Dc. The three diagrams from Fig. 1 form the set D2.
The set of diagrams D2, corresponding to ā

(2)
s (τ), is obtained by conjugating

the vertices in the three diagrams above and re-ordering the elements of each
block in such a way that the pair of non-conjugated vertices is followed by the
pair of conjugated vertices, i.e. the blocks have the form (2.10).

The sets Dm and Dn with arbitrary m,n ≥ 0 and the diagrams which
are their elements, are constructed similarly. Namely, the sets D0 and D0
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are trivial—they contain one diagram each, made by the root c
(0)
0 (or c̄

(0)
0 ).

The sets D1 and D1 also contain only one diagram each; e.g. the diagram
in D1 consists of the root c

(0)
1 , joint by an edge with w̄2 in the only block

B1 = (c(0)
1 , c

(0)
2 , c̄

(0)
1 , w̄2). Arbitrary sets Dm and Dn may be constructed by

induction. Indeed, consider a process a(m+1)(τ) with m ≥ 1 and apply to it
(2.4) with m := m + 1. In the r.h.s. of (2.4) the sum in m1,m2,m3 contains
(m + 2)(m + 1)/2 terms. Consider any one of them,

i

∫ τ

0

dl e−γs(τ−l)L−d
∑

1,2,3,4

δ′12
34 δ(ω12

34) δs
4

(
a
(m1)
1 a

(m2)
2 ā

(m3)
3

)
(l), (2.11)

draw the block B1 = (c(m1)
1 , c

(m2)
2 , c̄

(m3)
1 , w̄2), and join w̄2 by an edge with the

root c
(m+1)
0 . Next consider the sets Dm1 ,Dm2 ,Dm3 and do the following:

(a) Firstly, take Dm1 . If m1 = 0, do nothing. Otherwise, choose any diagram
D1 ∈ Dm1 , place it below c

(m1)
1 and identify its root with c

(m1)
1 . Do this

for each diagram in Dm1 , thus obtaining |Dm1 | diagrams with roots in
c
(m+1)
0 .

(b) Then consider the set Dm2 and do the same with the just obtained |Dm1 |
diagrams, identifying their roots with the vertex c

(m2)
2 , and next—the

set Dm3 , identifying the roots with c̄
(m3)
3 .

(c) It remains to convert thus obtained |Dm1 | × |Dm2 | × |Dm3 | diagrams to
elements of the set Dm+1 by re-numerating properly their blocks and
accordingly re-numerating the vertices in the blocks as in (2.10). Do this
by numerating the blocks from top to the bottom and from left to right,
as in the examples above with m = 2.

(d) Doing the same for all blocks, corresponding to all possible (m+2)(m+
1)/2 terms (2.11), get the diagrams, forming the set Dm+1.

The set Dm+1 is constructed inductively in the same way.
For further needs we note that due to the factors δ′12

34 and δs
s4

in (2.4),
the indices ξi, σj entering the formula for the sums Is(D) from (2.5) satisfy
the relations

(1) δ′ξ2j−1ξ2j
σ2j−1σ2j

= 1 ∀j,

(2) indices ξi, σj corresponding to adjacent in D vertices are equal.

(2.12)

2.3. Feynmann Diagrams for Expectations

The main objects we are interested in are the correlations Ea
(m)
s1 (τ1)ā

(n)
s2 (τ2).

It can be shown that they vanish if s1 �= s2.8 To represent an expectation
Ea

(m)
s (τ1)ā

(n)
s (τ2), we consider the set of diagrams

Dm × Dn := {D1 � D̄2 : D1 ∈ Dm, D̄2 ∈ Dn}.

Here a diagram D1 �D̄2 is obtained by drawing D1 and D̄2 side by side, where
the blocks of D1 are enumerated from 1 to m, while those of D̄2 together with

8As well vanish the correlations Ea
(m)
s1 (τ1)a

(n)
s2 (τ2) and Eā

(m)
s1 (τ1)ā

(n)
s2 (τ2) for all s1, s2.
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Figure 2. A diagram from the set a D2 × D0 and b D1 × D2

the corresponding time variables lj are enumerated from j = m + 1 to m + n.
The vertices together with the corresponding indices ξ2j−1, ξ2j , σ2j−1, σ2j are
enumerated accordingly, see Fig. 2. The diagram D1 � D̄2 has two roots c

(m)
0

and c̄
(n)
0 . For any D = D1 � D̄2 consider

Is(D; τ1, τ2) = Is(D1; τ1)Is(D̄2; τ2),

so that a
(m)
s (τ1)ā

(n)
s (τ2) =

∑
D∈Dm×Dn

Is(D; τ1, τ2). Our next task is to com-
pute EIs(D) for each D ∈ Dm × Dn.

Randomness enters the term Is(D) via the random variables a
(0)
ξi

, ā
(0)
σj ,

corresponding to the leaves of the diagram D = D1 � D̄2. They are Gaussian
with correlations

Ea(0)
s (l1)a

(0)
s′ (l2) = 0, Ea(0)

s (l1)ā
(0)
s′ (l2) = δs

s′ Corr(γs, b(s), l1, l2),
(2.13)

where

Corr(γs, b(s), l1, l2) = Bs

(
e−γs|l1−l2| − e−γs(l1+l2)

)
, Bs =

b(s)2

γs
.

(2.14)

So, the Wick theorem [18] implies that the expectation EIs(D) is given by a
sum over all Wick pairings of variables a

(0)
ξi

, corresponding to non-conjugated

leaves c
(0)
i , with variables ā

(0)
σj corresponding to conjugated leaves c̄

(0)
j . More-

over, the leaves c
(0)
i and c̄

(0)
j should belong to different blocks since otherwise

the summand corresponding to such Wick pairing vanishes due to (1.15) and
item (1) in (2.12). We parametrize the sum over the Wick pairings by the
defined below set F(D) of Feynman diagrams. Denoting by Js(F) a term (i.e.
a sum), corresponding to a specific Feynman diagram F, we have:

EIs(D) =
∑

F∈F(D)

Js(F).

2.3.1. Definition of Feynman diagrams. To construct the set of Feynman di-
agrams F(D), corresponding to some diagram D = D1 � D̄2, we consider all
possible partitions of the set of leaves of D to non-intersecting pairs (c(0)

i , c̄
(0)
j ),

such that the paired leaves c
(0)
i and c̄

(0)
j do not belong to the same block. To
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Figure 3. a A Feynman diagram F obtained from the dia-
gram D in Fig. 2(a). b A cycle obtained from the Feynman
diagram F

each such partition, we associate a diagram F obtained from D by joining
with an edge the two leaves in every pair, see Fig. 3(a). So, in each diagram
F ∈ F(D) all vertices of D are joint by edges, every edge couples a conjugated
vertex with a non-conjugated in another block (or with a root), and every
vertex belongs to exactly one edge.

Since Ea
(0)
s ā

(0)
s′ = 0 if s �= s′, the indices ξi, σj entering the formulas for

sums Js(F) satisfy (2.12), where in item (2) the diagram D is replaced by the
Feynman diagram F; below we denote these relations as (2.12)F. In particular,
due to the item (2), the vector of indices σ = (σi) is a function of the vector
ξ = (ξj). Accordingly below we write σ = σF(ξ).

Let

Fm,n =
⋃

D∈Dm×Dn

F(D)

be the set of all Feynman diagrams associated with the product a
(m)
s ā

(n)
s . Each

diagram F ∈ Fm,n has N := m+n blocks and 4N +2 vertices, including 2N +2
leaves. Half of edges (and of leaves) are conjugated, while another half is not.

By construction a diagram F ∈ Fm,n never pairs leaves from the same
block. This alone does not exclude that F is such that in (2.12)F the assump-
tions (1) and (2) are incompatible since for some j we may have ξ2j−1, ξ2j =
σ2j−1 or σ2j once σ = σF(ξ). Analysis shows that this cannot happen if
m + n ≤ 4, but may happen if m + n ≥ 5. Accordingly, we denote by

Ftrue
m,n ⊂ Fm,n

the set of Feynman diagrams for which the set of indices ξi, σj satisfying the
relations (2.12)F is not empty. For any diagram F /∈ Ftrue

m,n , we have Js(F) = 0
due to the factors δ′12

34 and δs
s4

in (2.4).

2.4. Transformation, Resolving Linear Relations on Indices

Let us take a Feynman diagram F ∈ Fm,n, denote N := m+n ≥ 1 and consider
the sum Js(F). The relations (2.12)F on indices ξi, σj ∈ Z

d
L, 0 ≤ i, j ≤ 2N , 9

9Recall that ξ0 = σ0 = s.
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entering the formula for Js(F) are involved, which makes the sum Js(F) difficult
for further analysis. In [8] it was found a convenient way to “integrate the sums
Js(F)”, i.e. to parametrize the indices ξi, σj by N -vector z = (z1, . . . , zN ) from
a domain in (Zd

L)N , free from any relations on its components. In this section
we present this parametrization, referring the reader to [8] for a proof.

Since item (2) of (2.12)F is equivalent to the relation σ = σF(ξ), it suffices
to parametrize the set of admissible multi-indices ξ, i.e. of those ξ for which
the multi-indices ξ and σ = σF(ξ) satisfy item (1) in (2.12)F. The construction
starts with defining for each F ∈ Fm,n a skew-symmetric N × N incidence
matrix αF = (αF

ij) whose elements are integers from the set {0,+1,−1}. In
terms of this matrix, we define the set of polyvectors

Z(F) = {z = (z1, . . . , zN ) ∈ (Zd
L)N : zj �= 0 and (αFz)j �= 0 ∀ j}.

(2.15)

Here and below for an M × N -matrix A we denote by Az the polyvector with
components (Az)j :=

∑
i Ajizi ∈ Z

d. 10 The matrix αF has no zero rows and
zero columns if and only if F ∈ Ftrue

m,n , and, accordingly, the set Z(F) is non-
empty if and only if F ∈ Ftrue

m,n . Next, it turns out that the vectors z ∈ Z(F)
may be used to parametrize the set of admissible indices ξi by means of an
affine mapping

ξ(z) = s + AFz, z ∈ Z(F). (2.16)

Here AF is an (2N + 1) × N -matrix, whose elements again are integers from
the set {0,+1,−1}. Transformation (2.16) provides a presentation of the terms
Js(F), forming the correlation Ea

(m)
s (τ1)ā

(n)
s (τ2), and so for the correlation

itself. The corresponding result is proved in Theorem 5.5 of [8]. In our setting
its statement, where for the function θ(x, t) is chosen I{0}(x)—the indicator
function of the point x = 0—takes the following form:

Lemma 2.2. For any integers m,n ≥ 0 satisfying N = m + n ≥ 1, any s ∈ Z
d
L

and τ1, τ2 ≥ 0,

(1) for each F ∈ Ftrue
m,n parametrization (2.16) (depending on s and F) is

such that the quantity ωj in (2.6), written in the z-coordinates, takes the
form

ωF
j (z) = 2zj ·

N∑

i=1

αF
jizi = 2zj · (αFz)j . (2.17)

(2) We have

LN
Ea(m)

s (τ1)ā(n)
s (τ2) =

∑

F∈F true
m,n

cFJs(τ1, τ2;F), (2.18)

10That is, abusing notation we denote by A an operator in (Zd)M with the block-matrix
A ⊗ 1.
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where the constants cF ∈ {±1,±i} and

Js(τ1, τ2;F) =
∫

RN

dl LN(1−d)
∑

z∈Z(F), ωF
j (z)=0 ∀j

FF
s (τ1, τ2, l, z). (2.19)

The density FF
s (τ1, τ2, l, z) is a real function, smooth in (s, z) ∈ R

d ×
R

dN , satisfying

|∂μ
s ∂κ

z FF
s (τ1, τ2, l, z)| ≤ C#

μ,κ(s)C#
μ,κ(z) e−δ

(∑m
i=1 |τ1−li|+

∑N
i=m+1 |τ2−li|

)

(2.20)

with a suitable δ = δN > 0, for any vectors μ ∈ (N ∪ {0})d, κ ∈ (N ∪
{0})dN and any s ∈ R

d, z ∈ R
dN , l ∈ R

N .

Let us briefly explain the way to construct the parametrization (2.16). We
first add to the Feynman diagram F dashed edges that couple non-conjugated
vertices with conjugated inside all blocks, as in Fig. 3(b). For each block there
are two ways of doing that. We prove that there exists a choice (possibly,
not unique) of a dashed edge in each block such that the diagram becomes
a cycle, as in Fig. 3b. Then, for each j we set x2j−1 := ξ2j−1 − σ2j−1 and
x2j := ξ2j − σ2j or x2j−1 = ξ2j−1 − σ2j and x2j := ξ2j − σ2j−1, according to
the choice of the dashed edges in the j-th block, where we substitute σ = σF(ξ).
The fact that the Feynman diagram with added dashed edges forms a cycle
implies that the transformation ξ �→ x is invertible. Item (1) of (2.12)F implies
that x2j = −x2j−1. Then we set zj := x2j−1 and get (2.16). The incidence
matrix αF also is constructed in terms of this cycle.

Since the choice of the dashed edges in general is not unique, the parametri-
zation z �→ ξ is not unique as well. However, if z′ �→ ξ is another parametriza-
tion, obtained by the procedure above, and αF ′ is the associated incidence
matrix, then for each j we have either z′

j(ξ) = zj(ξ) or z′
j(ξ) = (αFz(ξ))j . In

the latter case we also have the symmetric relation zj(ξ) = (αF ′z′(ξ))j .
Computing in (2.19) the integral over dl and using estimate (2.20), we

obtain a form of integrals Js, more convenient for some of the subsequent
analysis:

Corollary 2.3. In terms of Lemma 2.2, the integrals Js from (2.18) can be
written as

Js(τ1, τ2;F) = LN(1−d)
∑

z∈Z(F), ωF
j (z)=0 ∀j

ΦF
s (τ1, τ2, z), (2.21)

where the real-valued functions ΦF
s are Schwartz in (s, z) and satisfy

|∂μ
s ∂κ

z ΦF
s (τ1, τ2, z)| ≤ C#

μ,κ(s)C#
μ,κ(z), (2.22)

uniformly in τ1, τ2 ≥ 0, for any vectors μ ∈ (N ∪ {0})d and κ ∈ (N ∪ {0})dN .
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3. Main Estimates for The Sums

In this section we focus on estimates for the sums (2.21) and on their depen-
dence on L and N . We recall that d ≥ 3. It is convenient to study the problem
we consider in the following abstract setting. Let α = (αij), N ≥ 2, be an
N × N skew-symmetric matrix whose elements belong to the set {−1, 0, 1},
without zero lines and rows.11 Consider a family of quadratic forms on (Rd)N

ωj(z) = zj · (αz)j , 1 ≤ j ≤ N,

where z is the polyvector (z1, . . . , zN ), zj ∈ R
d, and (αz)j :=

∑N
i=1 αjizi. Let

us set

Z = {z ∈ (Zd
L)N : zj �= 0 and (αz)j �= 0 ∀ j}. (3.1)

Let a function Φ : R
Nd → R be sufficiently smooth and sufficiently fast de-

caying at infinity (see below for exact assumptions). Our goal is to study
asymptotic as L → ∞ behaviour of the sum

SL,N (Φ) := LN(1−d)
∑

z∈Z: ωj(z)=0 ∀j

Φ(z). (3.2)

For a function f ∈ Ck(Rm), n1 ∈ N ∪ {0} satisfying n1 ≤ k and n2 ∈ R,
we set

‖f‖n1,n2 = sup
z∈Rm

max
|α|≤n1

|∂αf(z)|〈z〉n2 , 〈x〉 := max{1, |x|}. (3.3)

The first crucial result concerns the case N = 2. Then ω1(z) = −ω2(z) =
α12z1 · z2 and α12 �= 0, so

SL,2(Φ) = L2(1−d)
∑

z∈Z
2d
L : z1·z2=0

z1 �=0, z2 �=0

Φ(z). (3.4)

Then we write the sum above as
∑

z1·z2=0 −
∑

z1=0 or z2=0 .

Since
∣
∣
∣L−d

∑
z∈Z

2d
L : zi=0 Φ(z)

∣
∣
∣ ≤ C‖Φ‖0,d+1 for i = 1, 2, we get

∣
∣
∣SL,2(Φ) − L2(1−d)

∑

z∈Z
2d
L : z1·z2=0

Φ(z)
∣
∣
∣ ≤ CL2−d‖Φ‖0,d+1. (3.5)

Now an asymptotic for the sum SL,2(Φ) immediately follows from Theorem 1.3
in [10] where the dimension is 2d, ε = 1/2 and m = 0, by applying it to the
sum

∑
z1·z2=0 in (3.5) (we recall that d ≥ 3):

Theorem 3.1. Let N1(d) := 4d(4d2 + 2d − 1) and N2(d) := N1 + 6d + 4. If
‖Φ‖N1,N2 < ∞, then there exist constants Cd ∈ (1, 1 + 22−d) and Kd > 0 such
that ∣

∣
∣
∣SL,2(Φ) − Cd

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣
∣ ≤ Kd

‖Φ‖N1,N2

Ld−5/2
, (3.6)

11 The theorems below and their proofs remain valid as well for arbitrary skew-symmetric
matrices with integer elements without zero lines and rows, but in this case the notation
used in the proof becomes heavier.
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where Σ0 is the quadric {z ∈ R
2d : z1 · z2 = 0} and the measure μΣ0 is given

by (1.34) with s = 0.

In Appendix C of [10] we give the following explicit formula for the
number-theoretical constants Cd:

Cd =
ζ(d − 1)ζ(4d − 2)

ζ(d)ζ(2d − 2)
, (3.7)

where ζ is the Riemann zeta-function. Due to (3.7) Cd satisfies 1 < Cd <
1 + 22−d, as is stated in the theorem. The integral in (3.6) converges if Φ(z)
decays at infinity fast enough:

∣
∣
∣

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣ ≤ Cr‖Φ‖0,r if r > 2d − 1, (3.8)

see Proposition 3.5 in [7]. So, it converges under the theorem’s assumptions.
From Theorem 3.1 another result can be deduced, whose proof is given

in the next Sect. 3.1:

Theorem 3.2. For N = 2, 3, 4 there exist constants Cd,N such that
∣
∣SL,N (Φ)

∣
∣ ≤ Cd,N‖Φ‖0,N̄ , (3.9)

for N̄ := �N/2�N2(d)+(N −2)(d−1)+1, where N2 is defined in Theorem 3.1.

Since in view of estimate (2.22) the functions ΦF
s from Corollary 2.3

satisfy

‖ΦF
s (τ1, τ2, ·)‖n1,n2 ≤ C#

n1,n2
(s), ∀n1, n2, (3.10)

then the two theorems above apply to study correlations (2.18) with N =
m + n ≤ 4. In fact, in the case N = 2 the number of Feynmann diagrams is
small and the corresponding correlations may be calculated directly without
the machinery, developed in Sect. 2. In Example 3.4 which illustrates this com-
putation, as well as in a number of situations below, we apply Theorem 3.1 in
the following setting:

Corollary 3.3. Let

SL,2 = L2(1−d)
∑

1,2,3

δ′12
3s δ(ω12

3s)fs(s1, s2, s3; q),

where ω12
3s is given by (1.17), q ∈ R

n is a parameter (in applications usually
this will be the time) and fs(s1, s2, s1 + s2 − s; q)12 is a Schwartz function of
(s1, s2, s) satisfying |∂μ

(s1,s2,s)fs| ≤ C#
μ (s1)C#

μ (s2)C#
μ (s) uniformly in q, for

any multi-index μ. Then
∣
∣
∣
∣SL,2 − Cd

∫

Σs

fs(s1, s2, s1 + s2 − s; q) μΣs(ds1ds2)
∣
∣
∣
∣ ≤

C#(s)
Ld−5/2

, (3.11)

uniformly in q, where Σs and μΣs are the quadric (1.33) and the measure
(1.34) on it.

12The formula for s3 comes from the relation δ′12
3s = 1.
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Proof. In the variables z1 = s1 − s, z2 = s2 − s the quadratic form ω12
3s with

s3 = s1+s2−s reads ω12
3s = −2z1 ·z2 [see (1.17)]. Then, taking into account that

the relation δ′12
3s = 1 is equivalent to the relations z1, z2 �= 0 and s3 = s1+s2−s,

we find that the sum SL,2 takes the form (3.4). Applying next Theorem 3.1
and changing in (3.6) back to the variables s1, s2, we get (3.11). �

Example 3.4. Let us calculate the asymptotic as L → ∞ of E|a(1)
s (τ)|2. Ex-

panding a
(1)
s as in (2.4) and then using (2.13), we get:

E|a(1)
s (τ)|2 = 2L−2d

∑

1,2,3

δ′12
3s δ(ω12

3s)
∫ τ

0

dl1

∫ τ

0

dl2B123

×
3∏

j=1

(
e−γj |l1−l2| − e−γj(l1+l2)

)
eγs(l1+l2−2τ)

with B123 = B1B2B3, where Bs is defined in (2.14). In the case of τ = ∞ the
formula simplifies since by changing the integration variables as rj := τ − lj
and passing to the limit we get

E|a(1)
s (∞)|2 = 2L−2d

∑

1,2,3

δ′12
3s δ(ω12

3s)
∫ ∞

0

dr1

∫ ∞

0

dr2

B123 e−(γ1+γ2+γ3)|r1−r2|e−γs(r1+r2)

=
2L−2d

γs

∑

1,2,3

δ′12
3s δ(ω12

3s)
B123

γ1 + γ2 + γ3 + γs
.

Then, by Corollary 3.3,
∣
∣
∣
∣L

2
E|a(1)

s (∞)|2 − 2Cd

γs

∫

Σs

B123 μΣs(ds1ds2)
γ1 + γ2 + γ3 + γs

∣
∣
∣
∣ ≤

C#(s)
Ld−5/2

, s3 := s1 + s2 − s.

3.1. Proof of Theorem 3.2

Let us define the geometric quadrics Qj := {z ∈ (Rd)N : ωj(z) = 0} and
consider their intersection Q = ∩N

j=1Qj . Note that Q = ∩N−1
j=1 Qj since the

skew symmetry of the matrix α implies ω1 + . . .+ωN = 0. Denote by BNd
R the

open cube |z|∞ < R in R
Nd, where by | · |∞ we denote the l∞-norm.

Proposition 3.5. If w : R
Nd �→ R is such that |w|L∞ < ∞ and supp(w) ⊂ BNd

R ,
where R ≥ 1, then for N = 2, 3, 4 we have

∣
∣
∣
∣
∣
∣

∑

z∈Q∩Z
w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)R
N/2�N2(d)+(N−2)(d−1)LN(d−1)|w|L∞ . (3.12)

Here N2 is defined in Theorem 3.1 and Z—in (3.1).

Proof. Below in this proof for any subset Q ⊂ R
md, we denote

QL = Q ∩ Z
md
L . (3.13)
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By suitably rearranging indices i and possibly multiplying ωi by −1, ω1 may
be assumed to be of the form ω1(z) = z1 ·

∑
i α1izi with α1N = 1. Define

v =
∑

i α1izi so that

ω1(z) = z1 · v and zN = α1NzN = v −
∑

1<i<N

α1izi, (3.14)

since α11 = 0 by the skew symmetry of the matrix α.
For N > 2, fix (z1, v) ∈ R

2d. Then the remaining quadratic forms ωj with
1 < j < N as functions of (z2, . . . , zN−1) ∈ R

(N−2)d become polynomials qj of
degree at most two, with no constant term. Namely

qj(z2, . . . , zN−1; z1, v) = zj ·
(

αj1z1 + αjNv +
∑

1<i<N

(αji − αjNα1i)zi

)

.

(3.15)

For 1 < j < N consider the sets

Q̃j(z1, v) = {(z2, . . . , zN−1) : qj(z2, . . . , zN−1; z1, v) = 0} ⊂ R
(N−2)d,

and their intersection Q̃(z1, v) = ∩1<j<N Q̃j(z1, v). We denote Q0
1 = {(z1, v) ∈

R
2d : z1 · v = 0} (cf. (3.14)) and set

A2 = {(z1, v) ∈ R
2d : z1 �= 0, v �= 0}. (3.16)

Since |αij | ≤ 1, then on the support of w we have |(z1, v)|∞ ≤ (N − 1)R. So,
recalling (3.13), for N > 2 we get
∣
∣
∣
∣
∣
∣

∑

z∈Z∩Q

w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)|w|L∞

∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1

× sup
(z1,v)∈Q0

1 L∩A2∩B2d
(N−1)R

∑

(z2,...,zN−1)∈Q̃L(z1,v)∩B
(N−2)d
R

1 .

(3.17)

For N = 2 the same estimate holds with the second line replaced by 1.
To estimate the sum in the first line, we take any smooth function w0(x) ≥

0, equal one for x ≤ 1 and vanishing for x ≥ 2. Then
∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1 ≤
∑

(z1,v)∈Q0
1 L

wR(z1, v),

where wR(z1, v) := w0

(
(|(z1, v)|/(N − 1)R

√
2d
)
. Since for R ≥ 1 and any a ∈

N∪{0}, b ≥ 0 we have ‖wR‖a,b ≤ C(a, b,N, d)Rb, then in view of Theorem 3.1
and (3.8),

∑

(z1,v)∈Q0
1 L∩B2d

(N−1)R

1 ≤ CL2(d−1)
[
R2d + RN2L−d+5/2

]
≤ C ′L2(d−1)RN2 ,

(3.18)

where C,C ′ depend on d,N,N1 and N2.



Vol. 24 (2023) The large-period limit for equations 3709

To estimate the second line of (3.17), we use the following lemma, proved
in Appendix A.

Lemma 3.6. Assume that the matrix α is irreducible. Then for N = 2, 3, 4,
any R ≥ 1 and any (z1, v) ∈ B2d

(N−1)R satisfying (z1, v) ∈ Q0
1 L ∩ A2 we have:

∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ ≤ 2(N−2)d(NRL)(N−2)(d−1). (3.19)

This completes the proof of Proposition 3.5 in the case of irreducible
matrix α: indeed, we get

∣
∣
∣
∣
∣
∣

∑

z∈Z∩Q

w(z)

∣
∣
∣
∣
∣
∣
≤ C(N, d)|w|L∞RN2+(N−2)(d−1)LN(d−1). (3.20)

If the matrix α is reducible, it can be reduced through permutations to a block
diagonal matrix with m blocks which are irreducible square matrices of sizes
Ni satisfying

∑
i Ni = N . Since Ni ≥ 2 (otherwise there would be a zero row

or column in α), m ≤ �N/2�. Applying estimate (3.20) to each block, we get
the assertion of the proposition. �

Now we derive the theorem from the proposition. Let ϕ0(t) = χ(−∞,1](t)
and for k ≥ 1, ϕk(t) = χ(2k−1,2k](t). Then 1 =

∑
k ϕk(t) and

Φ =
∞∑

k=0

fk(z), fk(z) = ϕk(|z|∞)Φ(z).

Then supp fk ⊂ Bk = {|z|∞ ≤ 2k} and ‖fk‖∞ ≤ C2−kN̄‖Φ‖0,N̄ , for any N̄ .
Therefore, by Proposition 3.5,

|SL,N (Φ)| ≤ C(N, d)‖Φ‖0,N̄

∞∑

k=0

2k(
N/2�N2+(N−2)(d−1)−N̄),

which converges if N̄ > �N/2�N2 + (N − 2)(d − 1). This completes the proof
of Theorem 3.2. �

Remark 3.7. For any fixed vector (z1, v), Q̃(z1, v) is a real algebraic set in
R

(N−2)d of codimension (N − 2). If Q̃(z1, v) were a smooth manifold of that
codimension, then estimate (3.19), modified by a multiplicative constant
CQ̃(z1,v), would be obvious. But Q̃(z1, v) is a stratified analytic manifold (with
singularities), and to obtain for it a modified version of the estimate (3.19) as
above, using analytical tools, seems to be a heavy job since we need a good
control for the factor CQ̃(z1,v). Instead in Appendix A we prove the lemma,
using arithmetical tools.

3.2. On Extension of Theorem 3.2 to any N

The restriction on N in the statement of Theorem 3.2 comes from estimate
(3.19) in Lemma 3.6, proved only for N = 3, 4. We know that for every N

the system of polynomials qj(·; z1, v), 1 < j < N , defining the set Q̃L(z1, v)
in Lemma 3.6, is linearly independent for any (z1, v) and any irreducible inci-
dence matrix α. Also we know that all polynomials qj(·; z1, v) are irreducible;
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see Lemmas A.9 and A.10 in Appendix A (there the independence and re-
ducibility are understood over some specific algebraically closed field K, but
the argument also works for K replaced by C). These two facts certainly are
insufficient to prove Lemma 3.6 for any N , but they naturally lead to

Conjecture 3.8. Under assumptions of Lemma 3.6, for any N ≥ 2
∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ ≤ C(N, d)(RL)(N−2)(d−1).

One may try to prove this assertion using either arithmetical or analytical
tools; cf. Appendix A and Remark 3.7. It is straightforward to see that, if the
conjecture is true, then Theorem 3.2 holds for any N , so in view of Lemma 2.2
any expected value LN

Ea
(m)
s (τ1)ā

(n)
s (τ2) admits a uniform in L upper bound.

4. Quasisolutions

In this section we start to study a quasisolution A(τ) = A(τ ;L) of Eq. (2.1)
with as(0) = 0, which is the second-order truncations of series (2.2):

A(τ) = (As(τ), s ∈ Z
d
L), As(τ) = a(0)

s (τ) + ρa(1)
s (τ) + ρ2a(2)

s (τ).
(4.1)

We focus on its energy spectrum

ns,L = ns,L(τ) = E|As(τ)|2, s ∈ Z
d
L, (4.2)

when L is large and the parameter ρ is chosen to be ρ = εL. Our goal is
to show that it approximately satisfies a wave kinetic equation (WKE). Using
Proposition 2.1, we will then show that the same applies to the quantities ns,L,
considered in the Introduction.

The energy spectrum ns,L is a polynomial in ε of degree four,

ns,L = n
(0)
s,L + ε n

(1)
s,L + ε2n

(2)
s,L + ε3n

(3)
s,L + ε4n

(4)
s,L, s ∈ Z

d
L, (4.3)

where the terms n
(k)
s,L(τ) are defined by

n
(k)
s,L(τ) = Lk

∑

k1+k2=k
0≤k1,k2≤2

Ea(k1)
s (τ)ā(k2)

s (τ). (4.4)

By Corollary 2.3,

the second moments Ea(k1)
s ā(k2)

s

naturally extend to a Schwartz function of s ∈ R
d,

(4.5)

given by (2.18), (2.21). Accordingly, from now on we always regard the second
moments and the terms n

(k)
s,L(τ) as Schwartz functions of s ∈ R

d.
As customary in WT, we aim at considering the limit of ns,L(τ) as L →

∞, that is, the limits of the terms n
(j)
s,L. The term n

(0)
s,L = n

(0)
s,L is given by (1.31)

and is L-independent, while by a direct computation we see that

n
(1)
s,L = 2REā(0)

s a(1)
s = 0, s ∈ R

d, (4.6)
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[here we use (2.4), the Wick theorem and (1.15)]. Writing explicitly n
(i)
s,L with

2 ≤ i ≤ 4, we find that

n
(2)
s,L = L2

E
(
|a(1)

s |2 + 2Rā(0)
s a(2)

s

)
,

n
(3)
s,L = 2L3REā(1)

s a(2)
s , n

(4)
s,L = L4

E|a(2)
s |2.

(4.7)

The function R
d � s �→ n

(2)
s,L(τ) is made by two terms. By Corollary 2.3 with

N = 2, Theorem 3.1 applies to the both of them. Since d ≥ 3, we get

|n(2)
s,L(τ) − n(2)

s (τ)| ≤ C#(s)/L1/2, (4.8)

where

n(2)
s (τ) := Cd

(
∑

F∈Ftrue
1,1

+2R
∑

F∈Ftrue
2,0

)

cF

∫

Σ0

μΣ0(dz1dz2)ΦF
s (τ, τ, z),

and we have used estimate (3.10). Thus, we see that the processes n
(0)
s,L, n

(1)
s,L

and n
(2)
s,L admit the limits

n(j)
s (τ) := lim

L→∞
n

(j)
s,L(τ ;L).

The limits satisfy (4.8), and for all τ

n(0)
s (τ) = B(s)

(
1 − e−2γs(τ0+τ)

)
, n(1)

s (τ) = 0, |n(2)
s (τ)| ≤ C#(s) ,

(4.9)

where the last inequality follows from Theorem 3.2.
We do not know if the terms n

(3)
s,L, n

(4)
s,L admit limits as L → ∞, but in

view of Corollary 2.3 both of them may be estimated through Theorem 3.2:

|n(3)
s,L(τ)| ≤ C#(s), |n(4)

s,L(τ)| ≤ C#(s), (4.10)

uniformly in L ≥ 2 and τ ≥ 0. We then decompose

ns,L = n≤2
s,L + n≥3

s,L,

where

n≤2
s,L = n

(0)
s,L + εn

(1)
s,L + ε2n

(2)
s,L and n≥3

s,L = ε3n
(3)
s,L + ε4n

(4)
s,L

(we recall that n
(1)
s,L ≡ 0), and similarly define

n≤2
s := n(0)

s + ε2n(2)
s .

Due to (4.8),

|n≤2
s (τ) − n≤2

s,L(τ)| ≤ C#(s)ε2L−1/2, (4.11)

so by (4.10),

|n≤2
s (τ) − ns,L(τ)| ≤ C#(s)ε2(L−1/2 + ε). (4.12)

Thus, the cut energy spectrum n≤2
s governs the limiting as L → ∞ behaviour

of the energy spectrum ns,L with precision ε3C#(s), where we regard the
constant ε ≤ 1/2 (which measures the size of solutions for (1.6) under the
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proper scaling) as a fixed small parameter. Accordingly, our next goal is to
show that n≤2

s (τ) approximates the solution of a WKE.

4.1. Increments of the Energy Spectra n≤2
s

In this section we will show that the process n≤2
s (τ) approximately satisfies a

WKE. We denote s4 := s, γj := γsj
and set

γ1234 = γ1 + γ2 + γ3 + γ4, �s = (s1, s2, s3, s4) ∈ (Rd)4. (4.13)

Now, for a fixed τ0 ≥ 0 and for j = 1, 2, 3, 4 we define the functions
Zj(τ0) = Zj(τ0; �s) as

Zj(τ0; �s) :=
∫ τ0

0

dl e−γj(τ0−l)
∏

m=1,2,3,4
m �=j

sinh(γml)
sinh(γmτ0)

if τ0 > 0, (4.14)

and Zj(0; �s) = 0. Computing this integral, we get

Zj(τ0; �s) =

⎛

⎝
∏

l �=j

1
1 − e−2γlτ0

⎞

⎠ ·
[
1 − e−γ1234τ0

γ1234
− e−2(γ1234−γj)τ0 − e−γ1234τ0

2γj − γ1234

+
∑

l �=j

(
e−2(γ1234−γj−γl)τ0 − e−γ1234τ0

2(γj + γl) − γ1234
− e−2γlτ0 − e−γ1234τ0

γ1234 − 2γl

)
⎤

⎦ ,

(4.15)

where each fraction from the square brackets should be substituted by τ0e
−γ1234τ0

if its denominator vanishes.
For any real number r let Cr(Rd) be the space of continuous complex

functions on R
d with the finite norm

|f |r = |f(z)〈z〉r|L∞ . (4.16)

We naturally extend this norm to f ∈ L∞(Rd) and set

L∞,r(Rd) =
{
f ∈ L∞(Rd) : |f |r < ∞

}
. (4.17)

Consider also the linear operator L, given by

(Lv)(s) = 2γsv(s), s ∈ R
d. (4.18)

Below we often write the value v(s) of a function v at s ∈ R
d as vs and the

function v itself as (vs, s ∈ R
d). Now, for v ∈ Cr(Rd), where r > d, and for

τ0 ≥ 0, τ ∈ (0, 1], we define the kinetic integral Kτ (τ0)(v) = (Kτ
s (τ0)(v), s ∈

R
d):

Kτ (τ0)(v) =
∫ τ

0

e−tLK(τ0)(v)dt. (4.19)
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Here the operator K(τ0) = K1(τ0)+ · · ·+K4(τ0) sends a function v = (vs, s ∈
R

d) to the function

Ks(τ0)(v) = 4Cd

∫

Σs

μΣs(ds1ds2)
(
Z4(τ0; �s)v1v2v3

+ Z3(τ0; �s)v1v2v4 − Z2(τ0; �s)v1v3v4 − Z1(τ0; �s)v2v3v4

)

=: K4
s (τ0)(v) + K3

s (τ0)(v) + K2
s (τ0)(v) + K1

s (τ0)(v)

(4.20)

(note the reversed signs for K2 and K3). Here vj := v(sj), where s4 = s and
s3 := s1 + s2 − s4 (in view of the factor δ′12

3s ). While μΣs is the measure (1.34)
on the quadric Σs = {(s1, s2) ∈ R

2d : (s1 − s) · (s2 − s) = 0}. Computing the
integral in t in (4.19), we find

Kτ
s (τ0)(v) =

1 − e−2γsτ

2γs
Ks(τ0)(v) =

1 − e−2γsτ

2γs

4∑

j=1

Kj
s(τ0)(v). (4.21)

We study the kinetic integral Kτ in Sect. 5 while now we formulate a result
which is the main step in deriving the wave kinetic limit.

Theorem 4.1. For any 0 < τ ≤ 1 the function (n≤2
s , s ∈ R

d) satisfies

n≤2(τ0 + τ) = e−τLn≤2(τ0) + 2
∫ τ

0

e−tLb2 dt

+ ε2Kτ (τ0)(n≤2(τ0)) + ε2R,

(4.22)

where b2 = (b2(s), s ∈ R
d) and the remainder Rs(τ) satisfies

|R(τ)|r ≤ Crτ (τ + ε2), ∀r. (4.23)

4.2. Proof of Theorem 4.1

We first fix a value for L and decompose the processes τ �→ a
(i)
s (τ0 + τ), where

τ0 ≥ 0 and 0 ≤ τ ≤ 1, as

a(i)
s (τ0 + τ) = c(i)

s (τ ; τ0) + Δa(i)
s (τ ; τ0), i = 0, 1, 2, s ∈ Z

d
L. (4.24)

Here

c(i)
s (τ ; τ0) = e−γsτa(i)

s (τ0)

and Δa
(i)
s is defined via relation (4.24). Below we write c

(i)
s (τ ; τ0) and Δa

(i)
s (τ ; τ0)

as c
(i)
s (τ) and Δa

(i)
s (τ) since τ0 is fixed.

Obviously,

c(τ) := c(0)(τ) + ρc(1)(τ) + ρ2c(2)(τ)

with τ ≥ 0 being a solution of the linear equation (2.1)ρ=0,b(s)≡0, equal A(τ0)
at τ = 0, and Δa(τ) =

∑2
j=0 ρjΔa(j)(τ) equals A(τ0 + τ) − c(τ). By (4.5), for

0 ≤ i, j ≤ 2

the functions Ec(i)
s c̄(j)

s , Ec(i)
s Δā(j)

s , EΔa(i)
s Δā(j)

s

naturally extend to Schwartz functions of s ∈ R
d.

(4.25)
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Due to (4.6) and (4.7),

e−2γsτn≤2
s,L(τ0) = E|c(0)

s (τ)|2 + ρ2
E
(
|c(1)

s (τ)|2 + 2Rc̄(0)
s (τ)c(2)

s (τ)
)
, ∀ s ∈ R

d.

Then,

n≤2
s,L(τ0 + τ) − e−2γsτn≤2

s,L(τ0) = E

(
|a(0)

s (τ0 + τ)|2 − |c(0)
s (τ)|2

+ ρ2
(
|a(1)

s (τ0 + τ)|2 − |c(1)
s (τ)|2

+ 2R
(
a(2)

s ā(0)
s (τ0 + τ) − c(2)

s c̄(0)
s (τ)

))
.

(4.26)

Let us set

Ys(u, v, w) := L−d
∑

1,2,3

δ′12
3s δ(ω12

3s)u1v2w̄3.

Writing explicitly the processes Δa
(i)
s (τ), s ∈ Z

d
L, we find

Δa(0)
s (τ) = b(s)

∫ τ0+τ

τ0

e−γs(τ0+τ−l) dβs(l),

Δa(1)
s (τ) = i

∫ τ0+τ

τ0

e−γs(τ0+τ−l)Ys(a(0)) dl,

Δa(2)
s (τ) = i

∫ τ0+τ

τ0

e−γs(τ0+τ−l)

(

Ys(a(0), a(0), a(1))

+ Ys(a(0), a(1), a(0)) + Ys(a(1), a(0), a(0))

)

dl,

(4.27)

where a(i) = a(i)(l). Note that to get explicit formulas for c
(i)
s (τ), i = 0, 1, 2,

it suffices to replace in the r.h.s.’s of the relations in (4.27) the range of in-
tegration from [τ0, τ0 + τ ] to [0, τ0]. For example, c

(0)
s (τ) = e−γsτa

(0)
s (τ0) =

b(s)
∫ τ0
0

e−γs(τ0+τ−l) dβs(l).

Using that Ec
(i)
s (τ)Δā

(0)
s (τ) = Ec

(i)
s (τ) EΔā

(0)
s (τ) = 0 for any i and s, we

obtain

E
(
a(2)

s ā(0)
s (τ0 + τ) − c(2)

s c̄(0)
s (τ)

)
= EΔa(2)

s (τ)ā(0)
s (τ0 + τ), (4.28)

and from (4.24) we get that

|a(1)
s (τ0 + τ)|2 − |c(1)

s (τ)|2 = |Δa(1)
s (τ)|2 + 2RΔa(1)

s c̄(1)
s (τ),

E
(
|a(0)

s (τ0 + τ)|2 − |c(0)
s (τ)|2

)
= E|Δa(0)

s (τ)|2.
(4.29)

Then, inserting (4.28) and (4.29) into (4.26) and using that ρ = εL, we find

n≤2
s,L(τ0 + τ) − e−2γsτn≤2

s,L(τ0) = E
∣
∣Δa(0)

s (τ)
∣
∣2 + ε2Qs,L(τ0, τ), s ∈ R

d,
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where

Qs,L(τ0, τ) := L2
(
E|Δa(1)

s (τ)|2 + 2RE
[
Δa(1)

s (τ)c̄(1)
s (τ)

+ Δa(2)
s (τ)ā(0)

s (τ0 + τ)
])

,
(4.30)

and we recall (4.25). Since

E
∣
∣Δa(0)

s (τ)
∣
∣2 =

b(s)2

γs
(1 − e−2γsτ ) = 2

∫ τ

0

e−tLb2(s) dt,

then

n≤2
·,L(τ0 + τ) − e−τLn≤2

·,L(τ0) = 2
∫ τ

0

e−tLb2 dt + ε2Q·,L(τ0, τ),

for n≤2
·,L = (n≤2

s,L, s ∈ R
d). In order to pass to the limit L → ∞ we recall the

relation (4.11). Then the desired formula (4.22) is an immediate consequence
of the assertion below:

Proposition 4.2. We have

lim
L→∞

Qs,L(τ0, τ) = Kτ
s (τ0)(n≤2(τ0)) + Rs(τ), s ∈ R

d, (4.31)

where the remainder R satisfies (4.23).

Proof. The first step in the proof of (4.31) is the following result, established
in Appendix B:

Proposition 4.3. One has
∣
∣Qs,L(τ0, τ) − Xs,L(τ0, τ)

∣
∣ ≤ C#(s)τ2, s ∈ R

d, (4.32)

where

Xs,L(τ0, τ) := 4L2(1−d)τ
∑

1,2,3

δ′12
3s δ(ω12

3s)
(
Z4n

(0)
1 n

(0)
2 n

(0)
3 + Z3n

(0)
1 n

(0)
2 n(0)

s

− Z1n
(0)
2 n

(0)
3 n(0)

s − Z2n
(0)
1 n

(0)
3 n(0)

s

)
. (4.33)

The terms Zj = Zj(τ0; s1, s2, s3, s) are defined by (4.14) and n
(0)
i := n

(0)
si,L

(τ0),

n
(0)
s := n

(0)
s,L(τ0).

By (4.9) n
(0)
i = n

(0)
si are Schwartz functions in si. Besides, the functions

Zj(τ0, �s) have at most polynomial growth in �s together with their derivatives,
uniformly in τ0 ≥ 0:

Lemma 4.4. For any vector μ ∈ (N ∪ {0})4d, uniformly in τ0 ≥ 0, we have∣
∣∂μ

�s Zj(τ0, �s)∣∣ ≤ P (�s;μ) , where P (�s;μ) has at most a polynomial growth in �s.
By the lemma, which is proven in Sect. B.7, Xs,L satisfies the hypotheses

of Corollary 3.3. So

|Xs,L(τ0, τ) − τKs(τ0)(n(0))| ≤ C#(s)L−1/2τ. (4.34)
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Next, note that |n(0)
s (τ0)−n≤2

s (τ0)| ≤ C#(s)ε2 due to (4.9). Then the estimate
on the Lipschitz constants of the operators Kj(t), given in (5.4), implies that

∣
∣K(τ0)(n(0)(τ0)) − K(τ0)(n≤2(τ0))

∣
∣
r

≤ Crε
2 ∀ r.

Hence,

|τKs(τ0)(n(0)(τ0)) − τKs(τ0)(n≤2(τ0))| ≤ C#(s)τε2. (4.35)

On the other hand, on account of the definition (4.21), for 0 ≤ τ ≤ 1 we have
the bound
∣
∣τKs(τ0)(n≤2) − Kτ

s (τ0)(n≤2)
∣
∣ ≤ Cγsτ

2|Ks(τ0)(n≤2)| ≤ C#(s)τ2, (4.36)

where the last inequality follows from the estimate of the norm of the operator
Kj(t), given in (5.3), and from (4.9).

Putting together (4.32), (4.34), (4.35), (4.36) and letting L grow to in-
finity, we conclude the proof. �

5. Kinetic Equation

At this section we examine the wave kinetic equation

żs(τ) = −(Lz)s + ε2Ks(τ)(z) + 2b(s)2, τ ≥ 0, z(0) = 0 (5.1)

(L is defined in (4.18) and the operator K = K1+· · ·+K4 is defined in (4.20)),
and next we derive from this analysis and (4.22) the proximity of n≤2

s (τ) to
a solution of (5.1). We will need the following result, which is Lemma 4.2
from [7]:

Lemma 5.1. For j, l = 1, . . . , 4 and uj ∈ Cr(Rd) consider the operators

Jl(u1, . . . , u4)(s) =
∫

Σs

μΣs(ds1ds2)
∏

i�=l

ui(si)

(see (1.34)), where s4 = s and s3 = s1 + s2 − s. Then for each l,

|Jl(u1, . . . , u4)|r+1 ≤ Cr

∏

i�=l

|ui|r if r > d. (5.2)

5.1. Kinetic Integrals

We recall notation (4.13), (4.14).

Lemma 5.2. For j = 1, . . . 4, any τ ≥ 0 and any �s = (s1, . . . , s4) ∈ (Rd)4,
(i) 0 ≤ Zj(τ ; �s) ≤ min(τ, 1/γsj

) ≤ 1,
(ii) |Zj(τ ; �s) − Z(∞; �s)| ≤ Ce−2τ , where Z(∞; �s) = 1/γ1234.

Proof. The first assertion follows from (4.14) since sinh(x) is an increasing
non-negative function of x ≥ 0, so in the integrand in (4.14) we have 0 ≤
sinh(γml)/ sinh(γmτ ′) ≤ 1. For 0 ≤ τ ≤ 1 the second estimate follows from the
first one as

|Zj(τ ; �s) − Z(∞; �s)| ≤ |Zj(τ ; �s)| + |Z(∞; �s)|,
while for τ ≥ 1 it follows from (4.15) since γ123j −γj ≥ 1 and γ1234−γj −γl ≥ 1
for j, l ∈ {1, 2, 3, 4}, j �= l. �
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Since the kernels Zj are non-negative by the first assertion of the lemma
above, then denoting κ1 = κ2 = 1, κ3 = κ4 = −1 we achieve that the operators
κjK

j , 1 ≤ j ≤ 4, are positive (in the sense that they send positive functions to
positive). Due to the first assertion of the lemma and (5.2), for any τ ≥ 0 they
define positive 3-homogeneous mappings Cr(Rd) → Cr+1(Rd) if r > d, and

|κjK
j(τ)(v)|r+1 = |Kj(τ)(v)|r+1 ≤ Cr min(τ, 1)|v|3r, j = 1, . . . , 4, (5.3)

for τ ≥ 0. So, the mappings Kj(τ) are locally Lipschitz:

|Kj(τ)(v1) − Kj(τ)(v2)|r+1

≤ 3Cr min(τ, 1)R2|v1 − v2|r, if |v1|r, |v2|r ≤ R. (5.4)

Since for j = 1, . . . , 4 and any s ∈ R
d,

• for non-negative functions n,m ∈ L∞,r [see (4.17)] such that m ≤ n we
have κjK

j
s(τ)(m) ≤ κjK

j
s(τ)(n) ≤ ∞,

• |Kj
s(τ)(v)| ≤ κjK

j
s(τ)(|v|) ≤ ∞ for any complex function v ∈ L∞,

• |vs| ≤ |v|r〈s〉−r for all v ∈ L∞,r,
then the relations (5.3), (5.4) remain true for functions from L∞,r.

Lemma 5.3. If |sl| ≤ R for l = 1, . . . , 4, then
∣
∣
∣
∣

∂

∂τ
Zj(τ ; �s)

∣
∣
∣
∣ ≤ Cγ0(R2) (5.5)

(see (1.5)).

Proof. For any m ∈ {s1, . . . , s4} and 0 ≤ l ≤ τ , we have
∣
∣
∣
∣

∂

∂τ

sinh γml

sinh γmτ

∣
∣
∣
∣ ≤ γm

cosh γmτ

sinh γmτ
≤ γmC max(1, 1/(γmτ)).

Considering separately the cases τ ≥ 1 and 0 ≤ τ < 1, using (4.14) and the
estimate above we get the result. �

This lemma implies that for any v ∈ Cr(Rd) and any j the curve τ �→
Kj(τ)(v) ∈ Cr(Rd) is Hölder continuous:

Lemma 5.4. For any τ0 ≥ 0, 0 ≤ τ ≤ 1, j = 1, . . . , 4 and any r > d + 1,

|Kj(τ0 + τ)(v) − Kj(τ0)(v)|r ≤ Cr|v|3rτκ∗ ∀ v ∈ Cr(Rd), (5.6)

where κ∗ = 1/(1 + 2r∗).

Proof. By the homogeneity we may assume that |v|r = 1. For R ≥ 1 let us set
vR(s) = v(s)χ|s|≤R ∈ L∞. Then

|vR|r ≤ 1, |v − vR|r−1 ≤ R−1. (5.7)

Now let us write the increment Kj(τ0 + τ)(v) − Kj(τ0)(v) as
(
Kj(τ0 + τ)(v) − Kj(τ0 + τ)(vR)

)
+
(
Kj(τ0 + τ)(vR) − Kj(τ0)(vR)

)

+
(
Kj(τ0)(vR) − Kj(τ0)(v)

)
=: Δ1 + Δ2 + Δ3.

Recalling that (5.3) and (5.4) hold for functions from L∞,r′ with r′ > d, we get
from (5.7) that |Δ1|r+|Δ3|r ≤ CrR

−1. To estimate Δ2, we set ΔR
2 = Δ2χ|s|≤R.
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Since by (5.3), |Δ2|r+1 ≤ 2Cr, then |Δ2 − ΔR
2 |r ≤ 2CrR

−1. For |s| > R the
function ΔR

2 vanishes, while for |s| ≤ R in view of Lemma 5.3 we have

|ΔR
2 s| = |Δ2s| =

∣
∣Kj

s(τ0 + τ)(vR) − Kj
s(τ0)(vR)

∣
∣

≤ Cr

∫

Σs

μs(dv1dv2)
∣
∣Zj(τ0 + τ ; �s) − Zj(τ0; �s)∣∣ |v1| . . . |v4|

|vj |
χ{|sj |≤R ∀j}

≤ C1rγ
0(R2)τ

∫

Σs

μs(dv1dv2)
|v1| . . . |v4|

|vj |
≤ C2r〈s〉−r−1τR2r∗ ,

where to get the last inequality we used (5.2). We have seen that the Cr-norm
of the increment is bounded by Cr(R−1 + τR2r∗), for any R ≥ 1. Choosing
R = τ−1/(1+2r∗), we achieve (5.6). �
5.2. Kinetic Equation

Now we will apply the obtained results to the kinetic Eq. (5.1). Since the func-
tion b(·)2 := {b(s)2} ∈ Cr(Rd) for all r, since L is the operator of multiplying by
the function 2γs as in (1.4), 1.5), and the operator K satisfies (5.3), 5.4), then
for small enough ε > 0 Eq. (5.1) has a unique solution, belonging to Cr(Rd) for
each r, which in a Lipschitz way depends on the r.h.s. of the equation, when
the latter deviates from b(·)2. Namely, the following result, where Xr stands
for the space C(0,∞; Cr(Rd)), given the norm |v(·)|Xr = supt≥0 |v(t)|r, may
be easily verified (a proof of a similar fact may be found in Section 4 of [7]).

Lemma 5.5. For any r > d,
(1) There exists ε∗, depending on b(·), r and r∗, such that for 0 ≤ ε ≤ ε∗

Eq. (5.1) has a unique solution z(τ), belonging to Xr. It satisfies

|z|Xr ≤ Cr|b2|r. (5.8)

(2) If z0(τ) is a solution of the linear Eq. (5.1)|ε=0, then |z− z0|Xr ≤ Crε
2.

If a curve z′(τ) solves (5.1) with 2b(s)2 replaced by 2b(s)2 + ξs(t), where
ξ ∈ Xr and |ξ|Xr ≤ 1, then |z − z′|Xr ≤ Cr|ξ|Xr .

The lemma’s assertion holds as well for nonzero initial conditions z(0) ∈
Cr(Rd) in (5.1), but we do not need this.

Let K(∞) be the operator, obtained from K(τ0) by replacing in (4.20)
the kernels Zj(τ0; s), s ∈ R

d, by Z(∞; �s) (see Lemma 5.2). Let r > d and
zε ∈ Cr(Rd) be a solution of the limiting stationary equation

Lzε − ε2K(∞)(zε) = 2b(·)2 (5.9)

in the vicinity of L−1(2b2), existing for small ε by the inverse function theorem.
Since b2(·) ∈

⋂
r Cr(Rd) and, as in (5.3), the map K(∞) is one-smoothing, then

decreasing ε∗ if needed we achieve that zε ∈
⋂

r Cr(Rd) for ε ≤ ε∗ and

|zε − 2L−1(b2)|m ≤ Cmε2 ∀m. (5.10)

Here and below the constants depend on b and r∗.
Let us consider the curve w(t) = z(t) − zε. It satisfies the equation

ẇ + L(w) = ε2
(
K(t)(z) − K(∞)(zε)

)

= ε2
[(

K(t)(z) − K(t)(zε)
)

−
(
K(t)(zε) − K(∞)(zε)

)]
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and w(0) = −zε. Denote K(τ)(zε) − K(∞)(zε) =: −η(τ). In view of Lem-
mas 5.2 and 5.1, |η(τ)|r ≤ Cre

−2τ for τ ≥ 0. Next, regarding the differ-
ence K(τ)(z(τ)) − K(τ)(zε) as an operator, linear in w(τ) = z(τ) − zε and
quadratic in (z(τ), zε), we write it as K(τ)(w(τ)). Then by (5.4) and (5.8),
|K(τ)w|r+1 ≤ Cr|w|r, ∀r > d. Finally, we substitute

w(τ) = v(τ) + y(τ), v(τ) = −e−τLzε,

and rewrite the equation on w as an equation on y:

ẏ + Ly = ε2K(τ)
(
v(τ) + y(τ)

)
+ ε2η(τ), y(0) = 0.

Or

y(t) = ε2

∫ t

0

e−(t−s)L[K(s)
(
v(s) + y(s)

)
+ η(s)

]
ds. (5.11)

Let Y r be the space of continuous curves y : R+ → Cr(Rd), vanishing at zero,
with finite norm |y|Y r = supt≥0 et|y(t)|r.

Let B be the linear operator

B(y)(t) =
∫ t

0

e−(t−s)LK(s)(y(s)) ds.

Then the equation for y may be written as

y(t) = ε2
(
B(y)(t) + B(v)(t) +

∫ t

0

e−(t−s)Lη(s)ds
)
. (5.12)

If |ỹ|Y r = 1, then

|B(ỹ(t))|r+1 ≤
∫ t

0

∣
∣e−(t−s)LK(s)(ỹ(s))

∣
∣
r+1

ds ≤ C ′
r

∫ t

0

e−2(t−s)e−sds < C ′
re

−t.

So B : Y r → Y r+1 is a bounded linear operator if r > d, and accordingly the
operator (id−ε2B) is a linear isomorphism of Y r if r > d and ε is sufficiently
small. It easy to see that B(v) and

∫ t

0
e−(t−s)Lη(s)ds both belong to all spaces

Y r. Then in view of (5.12), |y|Y r+1 ≤ Cε2. Since the operator B is 1-smoothing,
then by induction we get that y belongs to all spaces Y r. We have proved that

Lemma 5.6. The solution z(τ), constructed in Lemma 5.5, may be written as

z(τ) = (id − e−τL)zε + y(τ), where |y(τ)|r ≤ Crε
2e−τ ∀ τ ≥ 0, ∀ r.

Here zε is the stationary solution, defined in (5.9) and satisfying (5.10).

5.3. Energy Spectra of Quasisolutions and Kinetic Equation

In this section we prove our main result. Namely, we show that the energy
spectrum (4.2) of the quasisolution ns,L(τ) = E|As(τ)|2 of Eq. (2.1) with
large L is ε3-close to the solution z(τ) of the WKE (5.1), constructed in Lem-
mas 5.5, 5.6. By (4.12), it suffices to prove this for ns,L replaced by n≤2

s . Let
us denote ws(τ) = n≤2

s (τ) − zs(τ); then ws(0) = 0. Recall that ε∗ is defined in
Lemma 5.5.
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Lemma 5.7. If r > d + 1 and ε ≤ C−1
1r ≤ ε∗ for an appropriate constant C1r,

then for any τ0 ≥ 0 and 0 < τ ≤ 1/2,

|w(τ0 + τ)|r ≤ (1 − τ/2)|w(τ0)|r + C2rτε2(τκ∗ + ε2), (5.13)

where κ∗ = 1/(1 + 2r∗).

Proof. Since by (5.1)

z(τ0 + τ) = e−τLz(τ0) + 2
∫ τ

0

e−tLb2dt + ε2

∫ τ0+τ

τ0

e−(τ0+τ−t)LK(t)(z(t))dt,

then in view of (4.22) and (4.19)

w(τ + τ0) = e−τLw(τ0) + ε2Δ + R, (5.14)

where R is as in (4.22) and

Δ =
∫ τ0+τ

τ0

e−(τ0+τ−t)L
(
K(τ0)(n≤2(τ0)) − K(t)(z(t))

)
dt.

Note that in view of Lemma 5.5 and estimates (4.9),

|n≤2(τ)|r, |z(τ)|r ≤ Cr for all τ and all r, (5.15)

with suitable constants Cr. Let us re-write Δ as follows:

Δ =
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(τ0)(n≤2(τ0)) − K(τ0)(z(τ0))
)
dt

+
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(τ0)(z(τ0)) − K(t)(z(τ0))
)
dt

+
∫ τ0+τ

τ0

e−(τ0+τ−t)L(K(t)(z(τ0)) − K(t)(z(t))
)
dt =: Δ1 + Δ2 + Δ3.

By (5.4) and (5.15), |Δ1|r ≤ Crτ |w(τ0)|r. Similar,

|Δ3|r ≤ Crτ sup
τ0≤t≤τ0+τ

|z(t) − z(τ0)|r ≤ Crτ
2

since |z(t)−z(τ0)|r ≤
∫ t

τ0
|−Lz(l)+ε2K(l)(z(l))+2b2|rdl and |z(t)|r+r∗ ≤ C ′

r by
(5.15). Now let us consider Δ2. By Lemma 5.4, |K(τ0)(z(τ0))−K(t)(z(τ0))|r ≤
Cr(t − τ0)κ∗ . So Δ2 ≤ Cr

∫ τ

0
tκ∗dt = C ′

rτ
1+κ∗ .

Since L ≥ 21 and τ ≤ 1/2, then |e−τLw(τ0)|r ≤ (1 − τ)|w(τ0)|r. Now
(5.14), (4.23) and the bounds on Δj imply that

|w(τ0 + τ)|r ≤ (1 − τ)|w(τ0)|r + Crε
2τ
(
|w(τ0)|r + τ + τκ∗ + (τ + ε2)

)
,

and (5.13) follows if C−1
1r � 1. �

For any 0 < τ ≤ 1/2, any N and for k = 0, . . . , N let us set wk = |w(kτ)|r.
Let the function k → wk attain its maximum at a point k which we write as
k := k0 + 1. If k0 + 1 = 0, then wk ≡ 0. Otherwise, in view of (5.13) we have

wk0 ≤ wk0+1 ≤ (1 − τ/2)wk0 + C2rτε2(τκ∗ + ε2).
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So, wk0 ≤ 2C2rε
2(τκ∗ + ε2) and

max
0≤k≤N

|w(kτ)|r = wk0+1 ≤ 3C2rε
2(τκ∗ + ε2)

since τ ≤ 1/2. Applying again (5.13) with τ0 = kτ and τ replaced by any
τ̄ ∈ (0, τ), and using that in the formula above N is any, we get that |w(t)|r ≤
4C2rε

2(τκ∗ + ε2), for any t ≥ 0. Sending τ → 0 (and estimating norms | · |r
with r < d + 2 via | · |d+2) and then using (4.12), we finally get

Theorem 5.8. For any r there exist positive constants C1r, C2r, C3r such that
if ε ≤ C−1

1r , then

sup
τ≥0

|n≤2(τ) − z(τ)|r ≤ C2rε
4 (5.16)

and if L ≥ ε−2, then

sup
τ≥0

|n·,L(τ) − z(τ)|r ≤ C3rε
3. (5.17)

Relation (5.17) together with Lemma 5.6 gives a control over the long-
time behaviour of the spectra of quasisolutions of (2.1) in terms of the station-
ary solution zε of the limiting kinetic equation (see (5.9)):

|n·,L(τ) − zε|r ≤ Cr(e−τ + ε3), ∀ τ ≥ 0.

By Proposition 2.1 with d ≥ 3 this result and (5.17) extend to the spectra of
quasisolutions of (1.20), defined in (1.27), as expressed in

Theorem 5.9. For any r there exist positive constants C4r, C5r such that if
ε ≤ C−1

4r and L ≥ ε−2, then

sup
τ≥0

|n·,L(τ) − z(τ)|r ≤ C4rε
3 , (5.18)

|n·,L(τ) − zε|r ≤ C5r(e−τ + ε3), ∀ τ ≥ 0 . (5.19)

Relation (5.16) extends to the energy spectra of quasisolutions of (1.20)
analogously.
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Appendix A. Proof of Lemma 3.6

In this appendix we suppose that the dimension d satisfies d ≥ 2.

A.1. Idea of the Proof and General Setting

In Lemma 3.6 (up to an obvious scaling) we have to estimate the number
of integer points on a quadric inside a large box. The idea is to embed the
integral points of the box in an affine space over a large finite field and then
apply powerful algebraic geometry techniques to estimate the needed number
(note that this identification of bounded integers with elements of a finite
field is ubiquitous in coding theory and combinatorics). It is possible mainly
due to the fact that this techniques permits to count points defined over a
finite field using some geometric information (essentially the dimension, the
degree and irredundant decomposition) on the corresponding algebraic set over
the algebraic closure of our finite field. We begin with recalling some basic
definitions and results concerning such algebraic sets (see, for example, the
first chapter of the book [27]).

Affine algebraic sets. Let us fix an algebraically closed field K. Let A
m = Km

be the m-dimensional affine space over K, and let F1, . . . , Fs ∈ K[T1, . . . , Tm]
be nonzero polynomials. Then an affine algebraic set (AAS) X is just the set
of common zeros of these polynomials:

X ={(a1, . . . , am) ∈ Km : F1(a1, . . . , am)= . . .=Fs(a1, . . . , am)=0}.

(A.1)

Irreducibility. An AAS X is reducible if X = X1 ∪ X2 with two non-empty
AAS X1,X2 s.t. X1 �= X,X2 �= X. If it is not the case, X is called irreducible,
or an affine algebraic variety (see [27], Section I.3.1).

Theorem A.1 (Irredundant decomposition). Any non-empty AAS X can be
presented as

X = X1 ∪ . . . ∪ Xl (A.2)

for irreducible X1, . . . , Xl such that Xi �⊂ Xj for i �= j. The decomposition is
unique up to order.

This decomposition is especially simple for a hypersurface X, i.e. when
in (A.1) s = 1. Then F = F1(T1, . . . Tm) = Πl

j=1Qj for irreducible polynomials
Qj which are uniquely defined up to multiplicative constants and permutation
since the ring K[T1, . . . , Tm] is a unique factorization domain, see, for example,
Chapter IV of [24], and then Xj = {Qj = 0}. This uniqueness is true under the
condition which we can and will suppose to hold, namely, that the polynomial
P does not have multiple divisors, i.e. all Qj , j = 1, . . . , l are distinct. For
further references we formulate a corollary of the unique factorization property
(see [27], Section I.3.1)

Lemma A.2. (i). If X and Y are hypersurfaces, then X = Y if and only if
the corresponding polynomials PX and PY are proportional. Moreover if
Y is irreducible and X ⊆ Y , then X = Y.
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(ii). If deg PX = 2, then there are exactly two possibilities: either X irre-
ducible (in this case it cannot contain a hyperplane), or X = X1 ∪ X2

for two affine hyperplanes, defined by affine linear polynomials l1 and l2,
and PX = l1l2.

Dimension. One can define the dimension r = dim X ∈ {0, 1, . . . ,m} as follows:
dim X = max{dim Xi, i = 1, . . . , l} for (A.2), and for an irreducible AAS X

dim X = max{r : X = X0 ⊃ X1 ⊃ . . . ⊃ Xr �= ∅},

where all Xi, i = 0, . . . , r are irreducible AAS and all inclusions are strict. The
codimension of X is codim X = m − dim X.

In particular, if dimX = m then X = A
m (indeed, if X ⊂ A

m,X �= A
m

the definition implies that dimX < dim A
m = m) and if dimX = 0 then X is

a finite set. The codimension of X as in (A.1) is at most s.
From the definition we get immediately (see [27], Section I.6.2)

Lemma A.3. If Y ⊂ X,Y �= X and X is irreducible, then dim X > dim Y ,
codim X < codim Y.

Degree. Let X ⊂ A
m be a non-empty AAS, dimX = r. Then its degree deg X

is defined as follows:

deg X = max{cardinality of X ∩ L : dim
(
X ∩ L

)
= 0},

where L ⊂ A
m is an affine plane with dimL = m − r.

Lemma A.4. If X is a hypersurface (i.e. in (A.1) s = 1), then codim X = 1
and deg X = deg F1.

The famous Bezout theorem in its the most elementary setting over the
field C states that

deg X ≤ Πs
i=1 deg Fi.

A.2. Finite Fields’ Bezout Theorem

From now on the field K is the algebraic closure F̄p of a finite field Fp, where
p is a large prime number (see [24], Section V.5).

We will use a version of Bezout’s theorem over finite fields which can
be deduced from its general form, e.g. [13], and is also explicitly stated and
proved in [22, Corollary 2.2].

Theorem A.5. Let K = F̄p and the AAS X in (A.1) is such that Fj ∈ Fp[T1,
. . . , Tm], deg Fj = dj, j = 1, . . . , s, and dim X = r. Then

|X ∩ F
m
p | ≤ prΠs

i=1di.
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A.3. Preliminary Result

Let q1, . . . , qs, s ≥ 1, be polynomials of degree at most two in m ≥ s vari-
ables, qi ∈ Z[X1, . . . , Xm], with qi(0) = 0, i = 1, ..., s. Consider the geometric
quadrics Qi = {x ∈ R

m : qi(x) = 0} and their intersection Q = ∩s
i=1Qi. The

latter is not empty since 0 ∈ Q.
Let Bm

M ⊂ R
m be an open cube {|x|∞ < M} with some M ≥ 1. Consider

the set

Sm(M,Q) = Q ∩ Z
m ∩ Bm

M .

Let p be a prime and q
(p)
i ∈ Fp[X1, . . . , Xm] denote the polynomials qi

mod p over the finite field Fp. Consider the sets

Q
(p)
i = {x ∈ Km : q

(p)
i (x) = 0}

and their intersection Q(p) = ∩s
i=1Q

(p)
i (recall that now K = F̄p is the algebraic

closure of Fp). We will be interested mainly in the cardinality of Q(p)(Fp) :=
Q(p) ∩ F

m
p as a tool to estimate |Sm(M,Q)|.

Proposition A.6. Let M ≥ 1 and suppose that a prime p > 2M satisfies p =
2M(1 + r(M)), where r(M) > 0. Suppose also that deg qi ≤ 2 for each i and
that the AAS Q(p) is of dimension m − s (and of codimension s, that is, the
s quadrics Q

(p)
i intersect properly):

dim Q(p) = m − s. (A.3)

Then

|Sm(M,Q)| ≤ 2m
(
1 + r(M)

)m−s
Mm−s . (A.4)

By Bertrand’s postulate, for any M ≥ 1 there is a p satisfying 2M < p <
4M , and when applying Proposition A.6 we will always chose

r(M) < 1. (A.5)

Moreover, by the Prime Number Theorem, for large M one can chose r(M) =
o(1).

Proof of Proposition A.6. Let Π : Sm(M,Q) −→ F
m
p be defined by

Π(x1, . . . , xm) = (x1 mod p, . . . , xm mod p).

Then Π is injective and its image is contained in Q(p) ∩ F
m
p ⊂ F

m
p . Indeed, the

last assertion is clear and the injectivity is established as follows: if

(x′
1 mod p, . . . , x′

m mod p) = (x1 mod p, . . . , xm mod p)

but x′ �= x, then for some i ∈ {1, ...,m} we have x′
i mod p = xi mod p, but

x′
i �= xi. Consequently, |xi − x′

i| ≥ p > 2M which contradicts the condition
xi, x

′
i ∈ Bm

M . Applying then Theorem A.5 to X = Q(p), we get the conclusion
since

|Sm(M,Q)| ≤ |Q(p)(Fp)| ≤ 2spm−s = 2m
(
1 + r(M)

)m−s
Mm−s.

�
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A.4. Main Estimate for N = 3 and 4

Now we pass to the proof of Lemma 3.6 and denote
∣
∣Q̃L(z1, v) ∩ B

(N−2)d
R

∣
∣ =

s(R, Q̃, L). Consider the set

S′(R, Q̃, L
)

= Q̃ ∩ Z
(N−2)d ∩ B

(N−2)d
RL , Q̃ = Q̃(Lz1, Lv),

and denote by s′(R, Q̃, L) its cardinality. Then s′(R, Q̃, L) = s(R, Q̃, L) since
the map (z2, . . . , zN−1) �→ (Lz2, . . . , LzN−1) is a bijection between the sets
Q̃L(z1, v) ∩ B

(N−2)d
R and S′(R, Q̃, L).

Let us estimate s′(R, Q̃, L) through Proposition A.6 with m = (N − 2)d
and s = N − 2, where N = 3 or 4. To this end it suffices to find M ≥ RL
and p > 2M such that assumption (A.3) is fulfilled for any (z1, v) ∈ B2d

(N−1)R

satisfying (z1, v) ∈ Q0
1 L ∩ A2. Lemma A.7 below establishes this for M =

NRL/2 and any p > 2M . Then, applying (A.4) with r(M) < 1 (see (A.5)),
we conclude the proof of Lemma 3.6.

For a prime p and a, b ∈ F
d
p, let us consider algebraic sets Q̃

(p)
j over

K = F̄p:

Q̃
(p)
j (a, b) := {(z2, . . . , zN−2) ∈ K(N−2)d : q

(p)
j (z2, . . . , zN−2; a, b) = 0},

where q
(p)
j (z2, . . . , zN−2; a, b) are the residues modulo p of the polynomials

qj(z2, . . . , zN−2; a, b), defined by (3.15). We set Q̃(p) = ∩1<j<N Q̃
(p)
j for the

intersection of the algebraic sets.

Lemma A.7. Let N ∈ {3, 4}, (z1, v) ∈ Q0
1 L ∩ A2 (see (3.16)) and let p be a

prime satisfying p > max(|Lz1|∞, |Lv|∞). Then

dim Q̃(p)(Lz1, Lv) = (N − 2)(d − 1). (A.6)

The assumption p > max(|Lz1|∞, |Lv|∞) ensures that Lz1 and Lv are
different from zero in Kd. In particular, for (z1, v) ∈ B2d

(N−1)R this assumptions
is satisfied if p > 2M with M = NRL/2.

Proof of Lemma A.7. Let N = 3. Then N − 2 = 1 and Q̃(p) is given by the
unique equation q

(p)
2 (z2;Lz1, Lv) = 0, for a fixed (z1, v). By Lemma A.9 the

equation is non-trivial, so the conclusion follows from Lemma A.4.
N = 4. The codimension of the intersection of two quadrics is at most

two. We have to show that it is two (and not one). The result will follow from
the next three lemmas.

Lemma A.8. Let Q1 = {q̃1 = 0},Q2 = {q̃2 = 0} be two linearly independent
quadrics over K. Then the codimension of Q1 ∩Q2 is one if and only if q̃1 and
q̃2 have a mutual affine linear factor l(x).

Proof. Let the codimension of the intersection be one. In this case if one of
Q1,Q2 is irreducible, then Q1 = Q2 by Lemma A.3 with Y = Q1 ∩ Q2. How-
ever, this is impossible by Lemma A.2. (i) since q̃1 and q̃2 are independent.
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Therefore, by Lemma A.2. (ii) Q1 = H1 ∪ H2 and Q2 = H ′
1 ∪ H ′

2, with hyper-
planes H1, . . . , H

′
2. If all Hi ∩ H ′

j are of codimension two, then

codim Q1 ∩ Q2 = codim
(
∪(Hi ∩ H ′

j)
)

= min(codim Hi ∩ H ′
j) = 2.

Therefore, at least one of Hi ∩ H ′
j is of codimension one and then we have

ker(l(x)) = Hi ∩ H ′
j ⊂ Q1 ∩ Q2 for an affine linear l(x). Hence, l(x) divides

both q̃1 and q̃2 by Lemma A.2. (ii).
The inverse statement is obvious. �

Lemma A.9. For any N > 2, if the matrix α is irreducible and (z1, v) ∈ Q0
1 L ∩

A2 is such that Lz1, Lv �= 0 in Kd, then the polynomials q
(p)
j (·, Lz1, Lv),

1 < j < N are linearly independent over K. In particular, each q
(p)
j is a

nonzero polynomial.

Proof. Consider a linear combination
∑

1<j<N cjq
(p)
j . By the homogeneity in

(z2, . . . , zN−1), it vanishes identically if and only if
∑

1<j<N

cjzj · (αj1(Lz1) + αjN (Lv)) ≡ 0,

∑

1<i,j<N

cj(αji − αjNα1i)zj · zi ≡ 0.
(A.7)

Arguing by induction and using that the matrix α is irreducible, we construct
a partition E0, . . . , EM , M ≥ 1, of the set {1, . . . , N} such that E0 = {1, N}
and for n ≥ 1,

En = {j : αjl = 0 ∀ l ∈ En′ , n′ ≤ n − 2, and ∃ l′ ∈ En−1 such that αjl′ �= 0}.

Since (z1, v) ∈ Q0
1 L and Lz1, Lv �= 0 in Kd, then the term in brackets in the

first line of (A.7) is not identically zero for each j ∈ E1, so cj = 0 for every
j ∈ E1. Using this in the second line of (A.7), we get:

M∑

n=2

M∑

m=n−1

∑

j∈En

∑

i∈Em

cjαjizj · zi ≡ 0.

This relation holds if and only if (cj − ci)αji = 0 for all j ∈ En, 2 ≤ n ≤ M ,
and i ∈ Em, n − 1 ≤ m ≤ M . We know that cj = 0 if j ∈ E1. Starting from
n = 2 and arguing by induction in n, we find that if ci = 0 for all i ∈ En−1,
then cj = 0 for all j ∈ En. Indeed, for any j ∈ En there exists at least one
i ∈ En−1 such that αji �= 0 by the definition of Ei, so relation (cj − ci)αji = 0
implies that cj = 0 if j ∈ En. That is, cj ≡ 0. �

Lemma A.10. For any N > 2, if the matrix α is irreducible and (z1, v) ∈
Q0

1 L∩A2 is such that Lz1, Lv �= 0 in Kd, then the polynomials q
(p)
j (·, Lz1, Lv),

1 < j < N , are irreducible.

Proof. Each polynomial q
(p)
j has degree one or two. If its degree is one the

assertion is obvious. Now let the degree be two. Note that in view of (3.15)
q
(p)
j can be written as the scalar products q

(p)
j = zj · lj(z2, . . . , zN−1; z1, v) mod
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p, where lj are surjective affine functions lj : Kd(N−2) −→ Kd. But such scalar
product cannot vanish for d ≥ 2 > 1 on a hyperplane H ⊂ Kd(N−2) which
by Lemma A.2. ii) would be the case for a reducible quadric. Indeed, only two
cases can occur:
(a) The coefficient α of zj in lj is nonzero, or
(b) It is zero but then the coefficient β of some other zi is nonzero.

In case (a) take the two-dimensional plane P (x1, x2) in the whole space, gener-
ated by two orthogonal vectors from the zj-space, where the first basis vector
is parallel to α1jz1 + αNjv �= 0 (this vector is nonzero since (z1, v) ∈ Q0

1 L and
Lz1, Lv �= 0 in Kd, and for the case a) we have α1j , αNj �= 0). Then the restric-
tion of q

(p)
j = 0 on P is α(x2

1 +x2
2)+ c1x1 = 0 with c1 �= 0, which is isomorphic

to x2
1 + x2

2 = C �= 0. This plane quadric in P (x1, x2) cannot contain P (x1, x2)
∩ H (a line or the whole P (x1, x2)). Indeed, otherwise, supposing by symme-
try that the quadric contains a line x1 = ax2 + b, we would have that the
polynomial

a2x2
2 + 2abx2 + b2 + x2

2 − C

= (a2 + 1)x2
2 + 2abx2 + b2 − C

vanishes identically. This implies ab = 0, and if a = 0 then the term
(a2 + 1)x2

2 = x2
2 �= 0, while for b = 0 the term b2 − C = −C �= 0.

Similarly, in case b) we take the four-dimensional vector subspace P ′

generated by the two first basis vectors in the zj space and the two first basis
vectors in the zi space. The restriction of q

(p)
j = 0 on P ′ is then β(x1y1 +

x2y2) + c1x1 + c2x2 = 0, isomorphic to x1y1 + x2y2 = C which cannot contain
P ′(x1, x2, y1, y2)∩H. Indeed, else, supposing by symmetry that P ′(x1, x2, y1, y2)
∩H ⊃ {x1 = a1x2+b1y1+b2y2−c} we get that the following quadratic function
of x2, y1, y2:

(a1x2 + b1y1 + b2y2 − c) y1 + x2y2 − C

= a1x2y1 + b1y
2
1 + b2y1y2 − cy1 + x2y2 − C

vanishes identically, which is clearly wrong. �

End of the proof of Lemma A.7. Since each q
(p)
j is a nonzero polynomial of de-

gree one or two, then to prove Lemma A.7 we have to consider three cases. In
the first case both polynomials q

(p)
2 and q

(p)
3 are linear. Then the codimension

of the intersection Q̃(p) is two since they are linearly independent. In the sec-
ond case both q

(p)
2 and q

(p)
3 are quadratic. Then, according to Lemma A.8, the

codimension still is two since the polynomials are irreducible by Lemma A.10.
Finally in the last case, when one polynomial is linear and another one is qua-
dratic, the assertion is clear since then the AAS in question is an intersection
of a quadratic irreducible surface with a hyperplane. Thus, its codimension is
two by Lemma A.2. (ii).

Remark A.11. The proof of Lemma A.7 follows from three lemmas. Two of
them are valid for any N > 2, but Lemma A.8 holds only for N = 4 (and
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tautologically holds for smaller N). Still the bi-linear (or linear) nature of the
polynomials q

(p)
j and direct analysis of the AAS Q̃(p), jointly with the two

lemmas, valid for any N > 2, allow to prove by hand Lemma A.7 for “not too
high” values of N , and thus, to prove for those N ’s Theorem 3.2. Unfortunately,
for the moment we cannot prove the theorem for all N > 2; cf. Conjecture 3.8.

Appendix B. Proof of Proposition 4.3 and Lemma 4.4

We prove Proposition 4.3 in Sects. B.1-B.6 and Lemma 4.4 in Sect. B.7.

B.1. Beginning of the Proof of Proposition 4.3

The proof of the proposition is somewhat cumbersome since we have to con-
sider a number of different terms and different cases. During the proof we will
often skip the upper index (0), so by writing a and as we will mean a(0) and a

(0)
s .

We will also skip the dependence on τ0 by writing c
(i)
s (τ ; τ0) and Δa

(i)
s (τ ; τ0)

as c
(i)
s (τ) and Δa

(i)
s (τ). Besides, for a complex function (ws1,...,sk

, sj ∈ Z
d
L) we

denote

◦
∑

s1,...,sk∈Z
d
L

ws1,...,sk
= L−kd

∑

s1,...,sk∈Z
d
L

ws1,...,sk
,

and we introduce the symmetrization

Ysym
s (u, v, w; t) =

L−d

3

∑

1,2,3

δ′12
3s δ(ω12

3s) (u1v2w̄3 + v1w2ū3 + w1u2v̄3) .

We recall that Qs,L is given by formula (4.30) and first consider the term
EΔa

(2)
s (τ)ās(τ0 + τ). Inserting the identity a(1)(τ0 + l) = c(1)(l)+Δa(1)(l) into

formula (4.27) for Δa
(2)
s , we obtain

EΔa(2)
s (τ)ās(τ0 + τ) = Ns + Ñs,

where

Ns := i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)3Ysym
s (a(τ0 + l), a(τ0 + l),Δa(1)(l)) dl

)

(B.1)

and

Ñs := i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)3Ysym
s (a(τ0 + l), a(τ0 + l), c(1)(l)) dl

)
.

Thus,

Qs,L = L2
(
E|Δa(1)

s (τ)|2 + 2RNs

+2REΔa(1)
s (τ)c̄(1)

s (τ) + 2RÑs

)
, s ∈ R

d. (B.2)

We will analyse the four terms above term by term.
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B.2. The First Term of Qs,L in (B.2)

Due to (4.27), we have

E|Δa(1)
s (τ)|2 = E

∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′)Ys(a(l))Ys(a(l′)).

(B.3)

Writing the functions Ys explicitly and applying the Wick theorem, in view of
(2.13) we find

E|Δa(1)
s (τ)|2 = 2L−2d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′)

Ea1(l)ā1(l′) Ea2(l)ā2(l′) Eā3(l)a3(l′),

and note that
∫ τ0+τ

τ0

dl

∫ τ0+τ

τ0

dl′ e−γs(2τ0+2τ−l−l′) ≤ τ2.

On account of (2.13), we can bound

E|Δa(1)
s (τ)|2 ≤ 2τ2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B123,

where B123 = B1B2B3. Since B123 with s3 = s−s1 −s2 is a Schwartz function
of s, s1, s2 then Theorem 3.2 with N = 2 applies and we find

E|Δa(1)
s (τ)|2 ≤ C#(s)L−2τ2. (B.4)

B.3. The Second Term of Qs,L in (B.2)

To study the term 2RNs, we use the same strategy as above. Namely, express-
ing in (B.1) the function 3Ysym

s via Ys, we write Ns as Ns = N1
s +2N2

s , s ∈ R
d,

where

N1
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l),Δa(1)(l)) dl
)
,

N2
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(Δa(1)(l), a(τ0 + l), a(τ0 + l)) dl
)
.

Term N1
s . Writing explicitly the function Ys and then Δā

(1)
3 , we get

N1
s = i L−d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl e−γs(τ−l)

× E
(
a1(τ0 + l)a2(τ0 + l)Δā

(1)
3 (l)ās(τ0 + τ)

)

= L−2d
∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′3 δ(ω12
3s)δ(ω1′2′

3′3 )
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ3(l−l′)

× E
(
a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l′)ā2′(τ0 + l′)a3′(τ0 + l′)ās(τ0 + τ)

)
.

(B.5)
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By the Wick theorem, we need to take the summation only over s1′ , s2′ , s3′

satisfying s1′ = s1, s2′ = s2, s3′ = s or s1′ = s2, s2′ = s1, s3′ = s. Since in
both cases we get δ′1′2′

3′3 = δ′12
3s and ω1′2′

3′3 = ω12
3s , we find

N1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)−γ3(l−l′)

× Ea1(τ0 + l)ā1(τ0 + l′) Ea2(τ0 + l)ā2(τ0 + l′) Eas(τ0 + l′)ās(τ0 + τ).

Arguing as in Sect. B.2 we find

|N1
s | ≤ C#(s)L−2τ2. (B.6)

Term N2
s . By literally repeating the argument we have applied to N1

s , we
find that

N2
s = i L−d

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl e−γs(τ−l)

× E
(
Δa

(1)
1 (l)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ)

)

= −L−2d
∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′1 δ(ω12
3s)δ(ω1′2′

3′1 )
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ1(l−l′)

× E
(
a1′(τ0 + l′)a2′(τ0 + l′)ā3′(τ0 + l′)a2(τ0 + l)ā3(τ0 + l)ās(τ0 + τ)

)
.

By the Wick theorem, we should take summation either under the condition
s1′ = s3, s2′ = s, s3′ = s2 or s1′ = s, s2′ = s3, s3′ = s2. Since in both cases
δ′1′2′
3′1 = δ′12

3s and ω1′2′
3′1 = −ω12

3s , then

N2
s = −2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ l

0

dl′ e−γs(τ−l)e−γ1(l−l′)

Ea2(τ0 + l)ā2(τ0 + l′) Ea3(τ0 + l′)ā3(τ0 + l) Eas(τ0 + l′)ās(τ0 + τ) .
(B.7)

Again we get

|N2
s | ≤ C#(s)L−2τ2. (B.8)

B.4. The Third Term of Qs,L in (B.2)

We have

EΔa(1)
s c̄(1)

s (τ) = E

∫ τ0+τ

τ0

e−γs(τ0+τ−l)Ys(a(l)) dl

∫ τ0

0

e−γs(τ0+τ−l′)Ys(a(l′)) dl′.

This expression coincides with (B.3) in which the integral
∫ τ0+τ

τ0
dl′ is replaced

by
∫ τ0
0

dl′. Then,

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ0+τ

τ0

dl

∫ τ0

0

dl′ e−γs(2τ0+2τ−l−l′)

Ea1(l)ā1(l′) Ea2(l)ā2(l′) Eā3(l)a3(l′),
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Expressing the correlations Eaj(l)āj(l′) through (2.13), we get

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B123

∫ τ

0

dl e−2γs(τ−l)−γ123sl

∫ τ0

0

dl′ e−γ123sτ0eγsl′
∏

j=1,2,3

(
eγj l′ − e−γj l′

)
.

For the integral in the first line, we have

Ts :=
∫ τ

0

dl e−2γs(τ−l)−γ123sl =

{
τe−2γsτ if 2γs = γ123s

e−2γsτ −e−γ123sτ

γ123s−2γs
elsewhere

. (B.9)

For the integral in the second line, let us denote

T j :=
∫ τ0

0

dl e−γ123sτ0eγj l
∏

k �=j

(
eγkl − e−γkl

)
, (B.10)

where j, k ∈ {1, 2, 3, s}. Then,

0 ≤ T j ≤ 1/γ123s. (B.11)

Due to (B.9) and (B.10) we get

EΔa(1)
s (τ)c̄(1)

s (τ) = 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B123TsT s. (B.12)

B.5. The Fourth Term of Qs,L in (B.2)

To study the term 2RÑs, as in Sect. B.3, we write Ñs as Ñs = Ñ1
s + 2Ñ2

s , s ∈
R

d, where

Ñ1
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(a(τ0 + l), a(τ0 + l), c(1)(l)) dl
)
,

Ñ2
s = i E

(
ās(τ0 + τ)

∫ τ

0

e−γs(τ−l)Ys(c(1)(l), a(τ0 + l), a(τ0 + l)) dl
)
.

Term Ñ1
s . Writing explicitly the function Ys and then c̄(1), we get

Ñ1
s = L−2d

∑

1,2

∑

1′,2′
δ′12
3s δ′1′2′

3′3 δ(ω12
3s)δ(ω1′2′

3′3 )
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)e−γ3(l−l′)

× E
(
a1(τ0 + l)a2(τ0 + l)ā1′(τ0 + l′)ā2′(τ0 + l′)a3′(τ0 + l′)ās(τ0 + τ)

)
.

Again, this is the same expression as (B.5), with the integration over dl′ ranging
from −τ0 to 0 instead of from 0 to l. Thus, by the Wick theorem, we obtain

Ñ1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)−γ3(l−l′)

× Ea1(τ0 + l)ā1(τ0 + l′) Ea2(τ0 + l)ā2(τ0 + l′) Eas(τ0 + l′)ās(τ0 + τ).
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Following the line of Sect. B.4, we express the correlations through (2.13) and
get

Ñ1
s = 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B12s

∫ τ

0

dl e−2γs(τ−l)−γ123sl

∫ τ0

0

dl′ e−γ123sτ0eγ3l′
(
eγsl′ − e−γsl′

) ∏

j=1,2

(
eγj l′ − e−γj l′

)

= 2 ◦
∑

1,2

δ′12
3s δ(ω12

3s)B12sTsT 3. (B.13)

Term Ñ2
s . Literally repeating the argument which we have applied to Ñ1

s ,
we find that the term Ñ2

s is given by the same expression as (B.7) with the
integral

∫ l

0
replaced by

∫ 0

−τ0
:

Ñ2
s = − 2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)
∫ τ

0

dl

∫ 0

−τ0

dl′ e−γs(τ−l)e−γ1(l−l′)

Ea2(τ0 + l)ā2(τ0 + l′) Ea3(τ0 + l′)ā3(τ0 + l) Eas(τ0 + l′)ās(τ0 + τ).

Again we get

Ñ2
s = −2 ◦

∑

1,2

δ′12
3s δ(ω12

3s)B23sTsT 1. (B.14)

B.6. End of the Proof

Inserting formulas (B.12), (B.13) and (B.14), as well as (B.4), (B.6), (B.8) in
(B.2), we get
∣
∣
∣
∣
∣
Qs,L − 4L2Ts ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
B123T s + B12sT 3 − 2B23sT 1

)
∣
∣
∣
∣
∣
≤ C#(s)τ2.

(B.15)

Note that the terms Zj defined in (4.14) can be written as

Zj =
T j

∏
k �=j(1 − e−2γkτ0)

. (B.16)

The relations (2.13)-(2.14) imply that for any permutation (k1, k2, k3, k4) of
(1, 2, 3, s) we have Bk1k2k3 = n

(0)
k1

n
(0)
k2

n
(0)
k3

/
∏

m=k1,k2,k3
(1 − e−2γmτ0), where

n
(0)
ki

= n
(0)
ki,L

(τ0). Together with (B.16), this implies

Bk1k2k3T k4 = Zk4n
(0)
k1

n
(0)
k2

n
(0)
k3

. (B.17)

By symmetry, the term 2B23sT 1 in (B.15) can be replaced by B23sT 1+B13sT 2.
Then, inserting (B.17) in (B.15) we get

|Qs,L − Xs| ≤
∣
∣
∣
∣
∣
4L2(Ts − τ) ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
T sB123 + T 3B12s − 2T sB23s

)
∣
∣
∣
∣
∣

+ C#(s)τ2,
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with Xs defined in (4.33). Finally, we point out that |(Ts − τ)T j | ≤ 3τ2, due
to (B.11) and since |Ts − τ | ≤ 3τ2γ123s. So, the bound
∣
∣
∣
∣
∣
L2(Ts − τ) ◦

∑

1,2

δ′12
3s δ(ω12

3s)
(
T sB123 + T 3B12s − 2T sB23s

)
∣
∣
∣
∣
∣
≤ C#(s)τ2,

is a consequence of Theorem 3.2. This concludes the proof of Proposition 4.3.

B.7. Proof of Lemma 4.4

Note that ∂sj
f(γj) = f ′(γj)∂sj

γj , where ∂sj
γj (as well as higher-order deriva-

tives of γj) have at most polynomial growth at infinity. Then, using the defi-
nition (4.14) of Zj we find

∣
∣∂μ

�s Zj(τ0, �s)∣∣ =
|μ|∑

n1+n2+n3+ns=1

P (�s;n1, . . . , ns)
∫ τ0

0

dl (τ0 − l)nj e−γj(τ0−l)

∏

m �=j

dnm

dγnm
m

(
sinh(γml)
sinh(γmτ0)

)

, (B.18)

where P (�s; a1, . . . , an) denotes a function of �s, dependent on parameters
(a1, . . . , an), having at most a polynomial growth at infinity. Using the re-
lation sinh(γl)

sinh(γτ0)
= e−γ(τ0−l)−e−γ(l+τ0)

1−e−2γτ0 we find by induction that

dn

dγn

(
sinh(γl)
sinh(γτ0)

)

=
∑

k+m+p=n

ck,m,pIk,m,p(l, τ0, γ),

where ck,m,p are constants,

Ik,m,p =
(
(τ0 − l)ke−γ(τ0−l) − (l + τ0)ke−γ(l+τ0)

) τm+p
0 e−2γmτ0

(1 − e−2γτ0)m+1

(B.19)

and p �= 0 only if m �= 0. For τ0 ≥ γ−1 the terms Ik,m,p are bounded in
absolute values by absolute constants Ck,m,p, where we recall that 0 ≤ l ≤ τ0

and γ ≥ 1. Let now τ0 ≤ γ−1. In this case, since k + m + p = n,

|Ik,m,p| ≤ 2
(l + τ0)kτm+p

0

(1 − e−2γτ0)m+1
≤ 2k+1 τn

0

(1 − e−2γτ0)m+1
.

So, in the case m ≤ n − 1 we have |Ik,m,p| ≤ Ck,m,p uniformly in τ0 ≤ γ−1. If
m = n (so k = p = 0) we use another estimate, following from (B.19):

|Ik,m,p| ≤ C
e−γ(τ0−l) − e−γ(l+τ0)

(1 − e−2γτ0)m+1
τm
0 =Cτm

0 e−γ(τ0−l) 1 − e−2γl

(1 − e−2γτ0)m+1
≤ Ck,m,p,

uniformly in τ0 ≤ γ−1.
We have seen that the product in (B.18) is bounded uniformly in �s, l and

τ0, so the integral over l is also bounded uniformly in �s and τ0.
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Appendix C. Proof of Proposition 2.1

The proof uses the theory of Feynman diagrams, presented in Sect. 2. For
N = 0 the assertion is trivial. For N ≥ 1 in Proposition 8.7 of [8] it is proven
that E

(
a
(m)
s (τ1)ā

(n)
s (τ2) − a

(m)
s (τ1)ā

(n)
s (τ2)

)
equals to

∑

F∈F+
m,n\Fm,n

cF Js(F) +
∑

F∈Fm,n

cF J 2
s (F), (C.1)

where F+
m,n is a certain (finite) set of extended Feynman diagrams,13 cF is a

complex number of unit norm and Js(F), J 2
s (F) are sums, similar to (2.19).

In Section 8.6.3 of [8] are established the following bounds for these sums:

|J 2
s (F)| ≤ C#(s)L−Nd

∑

z∈Z+(F):

zj=0 for some j,

ωF
k (z)=0 ∀1≤k≤N

C#(z), (C.2)

where

Z+(F) =

{

z ∈ (Zd
L)N : zk �= 0 ⇔

N∑

i=1

αF
kizi �= 0 ∀1 ≤ k ≤ N

}

while the quadratic forms ωF
k and the skew-symmetric matrix αF are defined

in Sect. 2.4. Note that possibly the diagram F does not belong to the set F true
m,n ,

so that the matrix αF may have zero columns and lines. On the other hand,

|Js(F)| ≤ C#(s)L−Nd
∑

z∈Z̃+(F):

ω̃F
k (z)=0 ∀1≤k≤Ñ

C#(z). (C.3)

Here Ñ = Ñ(F) < N , quadratic forms ω̃F
k (z) are defined by relations (2.17),

where N is replaced by Ñ and the matrix (αF
ij) – by a certain Ñ × Ñ -matrix

(α̃F
ji), also satisfying α̃F

ji = −α̃F
ij ∈ {0,±1} for all i, j. Accordingly the set

Z̃+(F) ⊂ (Zd
L)Ñ is defined as Z+(F) above, but with N and αF

ij replaced by
Ñ and α̃F

ij .
We first show that the term J 2

s (F) is bounded by the r.h.s. of (2.3). To
this end we write Z+(F) = ∪KZK, where the union is taken over all subsets
K ⊂ {1, . . . , N} and

ZK(F) =

{

z : zk =
N∑

i=1

αF
kizi = 0 ∀k ∈ K and zk �= 0,

N∑

i=1

αF
kizi �= 0 ∀k /∈ K

}

.

Then the r.h.s. of (C.2) takes the form

C#(s)L−Nd
∑

K�=∅

∑

z∈ZK(F):

ωF
k (z)=0 ∀1≤k≤N

C#(z). (C.4)

13These diagrams are defined similarly to the Feynman diagrams from Sect. 2.3.1, but now
we allow to couple leaves not only from different blocks but also from the same block.
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Note that on the set ZK(F) we have ωk(z) = 0 for all k ∈ K and ωk(z) =
2zk ·

∑
i/∈K αF

kizi for k /∈ K. Thus, the sum over z in (C.4) takes the form of
the sum in (3.2), where z = (zj)j /∈K and N is replaced by

N − κ, κ = #K.

We recall that N ≤ 4 and K �= ∅, so that N − κ takes values 0, 1, 2 or 3.
For the sets K satisfying N − κ = 0 we have ZK(F) = {0}, so the sum (C.3)
is bounded by C#(s)L−Nd. Since the matrix αF is skew-symmetric, then in
the case N − κ = 1 we have ZK(F) = ∅, so the sum (C.3) vanishes. When
N − κ = 2 or 3 we apply Theorem 3.2 and see that the sum over z in (C.4) is
bounded by CL−(N−κ)(1−d). So

|J 2
s (F)| ≤ C#(s)L−Nd

∑

K�=∅

L−(N−κ)(1−d) = C#(s)
∑

K�=∅

L−N+κ(1−d)

≤ C#
1 (s)L−N+1−d.

Same argument implies that the r.h.s. of (C.3) also is bounded by the
quantity C#(s)L−N+1−d (note that decomposing the r.h.s. of (C.3) as in (C.4)
we get a new term with K = ∅, but for it N − κ = N ≤ 4 and Theorem 3.2
still applies).

Appendix D. Case d = 2

A difference between the cases d ≥ 3 and d = 2 comes from Theorem 3.1
since in the asymptotic, given by the latter, an additional log-factor appears
when d = 2. To handle it we redefine the sum in (3.2), defining SL,N (Φ), by
multiplying it by (lnL)−N/2. So when d = 2 SL,N takes the form

SL,N (Φ) :=
LN(1−d)

(ln L)N/2

∑

z∈Z: ωj(z)=0 ∀j

Φ(z). (D.1)

Accordingly the (d = 2)-analogy of (3.5) reads
∣
∣
∣SL,2(Φ) − L2(1−d)

ln L

∑

z∈Z
2d
L : z1·z2=0

Φ(z)
∣
∣
∣ ≤ CL2−d

ln L
‖Φ‖0,d+1 =

C

ln L
‖Φ‖0,3.

(D.2)

This approximation, jointly with a modification of the Heath–Brown result
from [14], given in Theorem 1.4 of [10], implies the following version of Theo-
rem 3.1 for d = 2:

Theorem D.1. Let d = 2. Then there exist constants N1, N2 > 4 such that if
‖Φ‖N1,N2 < ∞,

∣
∣
∣
∣SL,2(Φ) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2)
∣
∣
∣
∣ ≤ K2

‖Φ‖N1,N2

ln L
, (D.3)

where C2 > 0 is a number-theoretical constant and K2 > 0.

Note that estimate (3.8) stays true when d = 2.
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Theorem D.2. In the case d = 2 assertion of Theorem 3.2 remains true, if the
sum SL,N is defined as in (D.1) and N2 is the constant from Theorem D.1.

Proof. The only difference with the proof of Theorem 3.2 comes from estimate
(3.18) since the latter is obtained by applying Theorem 3.1, and in the case
d = 2 we should apply Theorem D.1 instead. Namely, now the r.h.s. of (3.18)
takes the form CL2(d−1) ln L

[
R2d + RN2(ln L)−1

]
≤ C ′RN2L2(d−1) lnL. Since

Lemma 3.6 remains unchanged, then for d = 2 the r.h.s. of estimate (3.20),
which holds for irreducible matrices α, should be multiplied by lnL. In the case
of reducible matrix α we apply the latter estimate to each irreducible block,
which gives the factor (ln L)
N/2� in the r.h.s. of (3.12), since the number of
blocks does not exceed �N/2�. However, the final estimate of Theorem 3.2
remains unchanged because of the factor (ln L)−N/2 in the definition (D.1) of
the sum SL,N . �

Since in the case d = 2 we choose ρ = εL/
√

ln L, then the terms n
(k)
s,L are

given by formula (4.4), multiplied by (lnL)−k/2. The proof of Proposition 2.1
is analogous to that presented in Appendix C for d = 2. The only difference
being the use of Theorem D.2 in place of Theorem 3.2. Lemma 2.2 remains
unchanged, so the correlations Lk(ln L)−k/2

Ea
(m)
s ā

(n)
s (τ2), m + n = k, are

given by formula (2.18), multiplied by (lnL)−k/2 (recall that the sum of these
correlations makes n

(k)
s,L). We see that the correlations take the form (D.1), so

Theorems D.1 and D.2 apply to study them.
The rest of the proof of Theorem 5.8 literally repeats that for the case

d ≥ 3, except the appearance of the (ln L)−k/2 factors, coming from the new
definition of ρ. Now the estimates, using Theorem 3.1, should be relaxed since
the estimate provided by Theorem D.1 is slightly weaker than that of Theo-
rem 3.1. In particular, in the r.h.s. of (4.8), (4.11) and (4.12) the factor L−1/2

should be replaced by (lnL)−1. This results in the stronger lower bound for L

in Theorem 5.8: now it is L ≥ eε−1
instead of L ≥ ε−2 (see Theorem A).

Theorem 5.9, as Theorem 5.8, remains unchanged, except the lower bound
for L which is modified as above. Indeed, the theorem follows from Theorem 5.8
and Proposition 2.1, and the term χ2(L)−N+1 = (lnL)(N−1)/2, appearing in
estimate (2.3) for d = 2 does not change the assertion of Theorem 5.8.

D.1. Discussion of Remark 1.2

In fact, Theorem 1.4 from [10] provides more delicate information about SL,2

than what is stated in Theorem D.1. Namely, if d = 2 then due to [10],
∣
∣
∣
∣
∣
L2(1−d)

ln L

∑

z: z1·z2=0

Φ(z) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2) − σΦ
1 (L)
ln L

∣
∣
∣
∣
∣
≤ C

‖Φ‖N1,N2

L1/6
,

where σΦ
1 is a certain function satisfying |σΦ

1 (L)| ≤ C1‖Φ‖N1,N2 , uniformly in
L. See [10] for an explicit (but complicated) formula for σΦ

1 . Consequently,
∣
∣
∣
∣SL,2(Φ) − C2

∫

Σ0

Φ(z) μΣ0(dz1dz2) − σ̃Φ
1 (L)
ln L

∣
∣
∣
∣ ≤ C

‖Φ‖N1,N2

L1/6
,
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where

σ̃Φ
1 (L) := σΦ

1 (L) − L2(1−d)
∑

z: z1=0 or z2=0

Φ(z)

still satisfies |σ̃Φ
1 (L)| ≤ C‖Φ‖N1,N2 in view of (D.2). Then estimate (4.12)

refines as
∣
∣
∣n≤2

s − ns,L − f(τ, L)
ln L

∣
∣
∣ ≤ C#(s)ε2(L−1/6 + ε), (D.4)

where f(τ, L) := σ̃
Φ(τ)
1 (L) and Φ(τ) is the function satisfying n≤2

s,L(τ) =
SL,2(Φ(τ)) that comes from Corollary 2.3. By (2.22) and the estimate for σ̃Φ

1

above, the function f(τ, L) is bounded uniformly in τ . The rest of the proofs
of Theorems 5.8 and 5.9 remain unchanged while the estimate (D.4) leads to
the assertion of the remark.
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13453 Marseille
France
e-mail: serge.vladuts@univ-amu.fr

and

IITP RAS
19 B. Karetnyi
Moscow
Russia

Communicated by Claude-Alain Pillet.

Received: January 13, 2022.

Accepted: August 28, 2023.


	The Large-Period Limit for Equations of Discrete Turbulence
	Abstract
	1. Introduction
	1.1. The Setting
	1.2. The Limit of Discrete Turbulence
	1.3. The Main Result 
	1.4. Outline of The Proof: Feynman Diagrams and Number Theory

	2. Series Expansion: Approximating Equation and Diagrammatic Representation for Solutions
	2.1. Approximate a-Equation
	2.2. Diagrams for Solutions
	2.2.1. Construction of the Sets of Diagrams mathfrakDm and  overlinemathfrakDn.

	2.3. Feynmann Diagrams for Expectations
	2.3.1. Definition of Feynman diagrams

	2.4. Transformation, Resolving Linear Relations on Indices

	3. Main Estimates for The Sums
	3.1. Proof of Theorem 3.2
	3.2. On Extension of Theorem 3.2 to any N

	4. Quasisolutions
	4.1. Increments of the Energy Spectra nsleq2
	4.2. Proof of Theorem 4.1

	5. Kinetic Equation
	5.1. Kinetic Integrals
	5.2. Kinetic Equation
	5.3. Energy Spectra of Quasisolutions and Kinetic Equation

	Appendix A. Proof of Lemma 3.6
	A.1. Idea of the Proof and General Setting
	A.2. Finite Fields' Bezout Theorem
	A.3. Preliminary Result
	A.4. Main Estimate for N=3 and 4

	Appendix B. Proof of Proposition 4.3 and Lemma 4.4
	B.1. Beginning of the Proof of Proposition 4.3
	B.2. The First Term of Qs,L in (B.2)
	B.3. The Second Term of Qs,L in (B.2)
	B.4. The Third Term of Qs,L in (B.2)
	B.5. The Fourth Term of Qs,L in (B.2)
	B.6. End of the Proof
	B.7. Proof of Lemma 4.4

	Appendix C. Proof of Proposition 2.1
	Appendix D. Case d=2
	D.1. Discussion of Remark 1.2

	References




