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Abstract—The dynamics of two coupled neuron models, the Hindmarsh –Rose systems,
are studied. Their interaction is simulated via a chemical coupling that is implemented
with a sigmoid function. It is shown that the model may exhibit complex behavior: quasi-
periodic, chaotic and hyperchaotic oscillations. A phenomenological scenario for the formation
of hyperchaos associated with the appearance of a discrete Shilnikov attractor is described. It
is shown that the formation of these attractors leads to the appearance of in-phase bursting
oscillations.
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1. INTRODUCTION

Ensembles of oscillators are one of the most important objects of study in nonlinear dynamics.
The results of their investigation can find practical application in neurophysiology, cell biology,
quantum physics, information and telecommunication systems, and other interdisciplinary sci-
ences [1–7]. Their dynamics are rich and varied, due to a large number of nonlinear phenomena that
arise as a result of the interaction. One of the most significant nonlinear effects is the synchronization
phenomenon [5–7]. The theory of synchronization has been developing for many years, and new
aspects of classical problems appear, often in the simplest basic models, the solution of which
significantly enriches the fundamental ideas about the nonlinear dynamics of self-oscillating systems.

As a result of the interaction, the dynamics of the system can become more complex. For
example, hyperchaos [8] can arise in a system of coupled chaotic oscillators. Such a phenomenon
was found in the ring of Chua’s circuits [9], in two Rössler systems coupled by linear diffusion of
one variable [10–12], in Colpitts oscillators coupled by means of two linear resistors [13], and in
coupled antiphase driven Toda oscillators [14].

For some special conditions it is also possible to obtain the occurrence of hyperchaos for
interacting autooscillatory models with periodic regime. For instance, in the ring of unidirectionally
coupled identical Duffing oscillators which are in stable steady state without coupling, hyperchaos
can arise due to the presence of linear cross-diffusion coupling [15]. Another example is the ensemble
of three genetic repressilators interacting via a quorum-sensing mechanism [16]. In this model
oscillators are identical and strongly dissipative, but nonlinear coupling leads to a complexification
of the dynamics and even to the appearance of hyperchaos. Moreover, this type of complex behavior
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dominates for the model in parameter space. One more example is provided by the multi-circuit
generator, which represents the ensemble of van der Pol oscillators coupled via a mean field [17].
For such kind of interaction it is possible to observe multi-frequency quasi-periodic oscillations and
its destruction leading to hyperchaos.

In the present work, we consider the simplest ensemble of identical neuron models (two
coupled oscillators) that demonstrate periodic oscillations in the autonomous case. The coupling
of subsystems is organized through the sigmoid function, which has the physiological meaning of
the chemical interaction of neurons via a synapse. Ensembles of neurons are of great interest to
researchers due to their significance in applications [18–27]. In [28–32], it was shown that, given
various types of interaction between subsystems (excitatory, inhibitory chemical and electrical),
in-phase synchronization may occur. It is also shown that multistability between in-phase and
antiphase oscillations is possible in such a system. In the present work, we study several features of
irregular behavior resulting from the interaction. Computing the spectrum of Lyapunov exponents,
we classify various types of chaotic dynamics, localize areas of chaos and hyperchaos, study scenarios
for the emergence of hyperchaos and consider the characteristic features of the interaction of
models demonstrating various periodic oscillations. We have shown that the appearance of in-phase
synchronization of bursting oscillations is associated with hyperchaos formation via the absorption
of a synchronous manifold represented by a saddle cycle with a two-dimensional unstable manifold.

The paper is structured as follows. In Section 2 we describe the object under consideration,
present both autonomous and coupled models, their main parameters, and some dynamical regimes
in the autonomous model. In Section 3 we demonstrate results of numerical simulation of two
coupled neuron models, describe the scenario of hyperchaos occurrence, and explain how it is
reflected on time series of the system. In Section 4 we depict the structure of the parameter plane
of two coupled models for another value of parameters and discuss the universality of the results
obtained.

2. OBJECT OF INVESTIGATION: INTERACTING NEURON MODELS
WITH TWO TYPES OF CHEMICAL COUPLINGS

2.1. Autonomous System, Choice of Parameters

The Hindmarsh–Rose system is one of the well-known models that describe the dynamics of a
neuron and reproduce a characteristic for neurons dynamical regimes [36–38] which can be written
in the following form:

ẋ = ax2 − x3 − y − z,

ẏ = (a+ α)x2 − y,

ż = μ(bx+ c− z),

(2.1)

where x is the membrane potential, the variables y and z characterize the transport of ions through
the membrane through “fast” and “slow” ion channels, respectively, and a, b, c, α, μ are the model’s
parameters. The Hindmarsh –Rose system (2.1) exhibits a variety of oscillatory activity typical for
neuron models: silent state, spiking and bursting oscillations. Bursting oscillations are the most
interesting due to their significance for the functioning of neuron-like cells [33] and long-term
benefits of neural coding with bursts [34].

According to [22], different types of bursting attractors are possible: square-wave bursting
and plateau bursting attractors. Such kind of bursting attractors can also be observed in the
Hindmarsh –Rose model. Figure 1 shows examples of two types of bursting attractors for various
parameter values. The first column shows the three-dimensional phase portrait of the attractor,
and the second column shows the time series for the variable x. We fixed the parameter as in [31]:
α = 1.6, b = 9.0, c = 5.0, μ = 0.001; in this case, at a = 2.8, a periodic bursting attractor of square-
wave type is observed. Figure 1a clearly shows that one burst contains 9 spikes. These parameters
were studied in [31], where the authors showed the synergistic effect of the occurrence of in-phase
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Fig. 1. Attractors in 3D phase space and time series demonstrating the characteristic dynamical regimes of
the Hindmarsh –Rose model (2.1). Parameters: α = 1.6, b = 9.0, c = 5.0, μ = 0.001. (a) square-wave bursting
attractor, a = 2.8; (b) plateau bursting attractor a = 2.7.

bursting oscillations when two types of chemical coupling were taken into account. By slightly
reducing the parameter a, the type of the bursting attractor is changed. Figure 1b shows an example
of a plateau bursting attractor with a = 2.7. The attractor here is still bursting; however, we see
that the amplitude of oscillation in the bursts decreases. This change corresponds to the Andronov –
Hopf bifurcation in the “fast subsystem” which can be obtained by assuming the slow variable to
be constant. In the present work, we carry out a detailed analysis of interacting systems for the
first case, when a square-wave bursting attractor is observed in system (2.1). Also, we present
some illustrations for the second type of bursting attractor to demonstrate the versatility of the
above-mentioned scenarios and the picture of dynamical regimes.

2.2. Model of Two Coupled Hindmarsh –Rose Systems

The interaction of neurons is carried out in various ways. Two types of couplings are well known:
chemical and electrical. The chemical coupling is fast, and is implemented via a ligand. Electrical
connection is slow and requires direct cell contact (the so-called gap-junction) [35]. In [31, 32] it is
shown that the interaction through two types of chemical couplings, both excitatory and inhibitory,
leads to the appearance of in-phase bursting oscillations, which is atypical for such systems. Typical
synchronization is antiphase in accordance with the “winner-takes-all” principle [22]. Let us consider
in more detail the mechanisms of formation of various attractors and types of synchronization.

The model of the Hindmarsh –Rose systems interacting via two types of chemical coupling can
be written as follows:

ẋi = ax2i − x3i − yi − zi + F (xi, xj),

ẏi = (a+ α)x2i − yi,

żi = μ(bxi + c− zi),

(2.2)
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where i, j = 1, 2 are the numbers of interacting elements. The coupling function F (xi, xj) contains
two terms corresponding to two types of interactions:

F (xi, xj) = gexc(Vexc − xi)Γ(xj) + ginh(Vinh − xi)Γ(xj). (2.3)

Fast synaptic (chemical) coupling can be simulated by the sigmoid function:

Γ(xj) =
1

1 + e−λ(xj−ΘS)
. (2.4)

Here ΘS is the synaptic threshold, ΘS = −0.25. Vexc, Vinh are thresholds of excitatory and inhibitory
couplings; for Vexc = 2 > xi(t) and Vinh = −2 < xi(t) excitatory or inhibitory coupling occurs for
any xi(t), respectively. Thus, we have two parameters, using which we can control excitatory and
inhibitory interaction between neurons. We have fixed the other parameters in the following way:

a = 2.8, b = 9.0, c = 5.0, α = 1.6, λ = 10, μ = 0.001. (2.5)

In [39, 40] one can find results obtained for chemically coupled Hindmarsh –Rose models. Another
interesting result for different types of couplings and topologies of the ensemble is presented
in [39, 40].

3. INTERACTION OF NEURON MODELS
WITH THE SQUARE-WAVE BURSTING ATTRACTOR

As mentioned above, the main goal of this work is to analyze the complex behavior of
system (2.2), including chaotic and hyperchaotic ones. In this regard, the main tool for studying
system (2.2) will be the analysis of the spectrum of Lyapunov exponents and the chart of Lyapunov
exponents. These charts are constructed as follows. The parameter plane is scanned with some
step. For each point of the parameter plane, after reaching the attractor, the full spectrum of
Lyapunov exponents is calculated, and the point on the plane is assigned a color corresponding to
their values. The Lyapunov exponents were calculated using the algorithm presented in [41] and
the Gram-Schmidt orthogonalization. Table 1 shows the correspondence between the dynamical
regime, the signature of the Lyapunov exponent spectrum and the colors, which will be further
used in the Lyapunov exponent charts.

Table 1. Correspondence between the dynamical regimes, the signature of the spectrum of Lyapunov
exponents, and the color in the charts

Dynamical regime Signature of the Lyapunov exponents spectrum Color

Periodic oscillations Λ1 = 0, 0 > Λ2 > Λ3 > Λ4 > Λ5 > Λ6 red

Two-frequency quasi-periodic oscillations Λ1 = Λ2 = 0, 0 > Λ3 > Λ4 > Λ5 > Λ6 yellow

Three-frequency quasi-periodic oscillations Λ1 = Λ2 = Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 blue

Chaotic oscillations Λ1 > 0, Λ2 = 0, 0 > Λ3 > Λ4 > Λ5 > Λ6 grey

Hyperchaotic oscillations Λ1 > Λ2, Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 black

3.1. Main Dynamical Regimes

First, consider two interacting neurons with model parameters corresponding to a bursting
attractor of the square-wave type, which is observed for the set of parameters (2.5) (Fig. 1a).
Figure 2 shows the chart of Lyapunov exponents, the color palette is determined in accordance
with Table 1. The Neimark – Sacker bifurcation line (lNS) obtained using the XPPAUT numerical
bifurcation analysis software package [42] is also marked with a green line in the chart. Figures 2b–2e
show characteristic phase portraits and time series.
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Fig. 2. Chart of Lyapunov exponents and character phase portraits with time series for two coupled
Hindmarsh –Rose models (2.2) with (2.5); (b) in-phase complete synchronized spiking, ginh = −0.75, gexc =
0.75; (c) in-phase complete synchronized degenerated bursting, ginh = 0.75, gexc = 0.75; (d) quasi-periodic
spiking, ginh = −0.1, gexc = 0.75; (e) ginh = −0.1, gexc = −0.25. lNS is the line of the Neimark – Sacker
bifurcation.

In the chart, it is possible to identify areas of periodic self-oscillations that have a single-turn
attractor. This is region I, observed for negative values of the strength of the inhibitory coupling;
in this case, the excitatory coupling can be either positive or negative. Figure 2b shows an example
of an attractor in model (2.2) for ginh = −0.75, gexc = 0.75. The attractor is a period-1 limit cycle;
on the time series, we can distinguish the spike nature of oscillations. Note that the oscillations
in the subsystems are in-phase, in Figs. 2b and 2c, we have presented time series of each of the
subsystems, while they are completely identical. Thus, in region I, we observe complete in-phase
synchronization in model (2.2). In region II, periodic self-oscillations are also observed. Figure 2c
shows an example of a phase portrait and time series. In this case, periodic self-oscillations are
also observed, however, the shape of the limit cycle is more complex, and it can be considered as
a degenerate plateau bursting attractor. In this case, the observed dynamical regime also responds
to complete in-phase synchronization.

In the region of negative values of the inhibitory coupling ginh, one can see the Neimark –
Sacker (lNS) bifurcation line. The bifurcation occurs at negative values of the excitatory coupling
parameter, gexc, but also continues into the region of positive values of gexc, where it ends. As a
result of this bifurcation, the in-phase spike limit cycle loses stability and a stable torus is born,
which corresponds to quasi-periodic oscillations. Figure 2d shows an example of a phase portrait,
in which one can see a torus for ginh = −0.1, gexc = 0.75, as well as time series, where one can see
that the spike oscillations remained in-phase, but a modulation appeared that has a phase shift
for each of the oscillators. Along the Neimark – Sacker bifurcation line, one can distinguish the
characteristic tongues of synchronization. An increase in the inhibitory coupling strength ginh leads
to the destruction of the torus, and in the chart we see the formation of chaos, as well as hyperchaos,
which is observed with positive values of both inhibitory and excitatory couplings. The area of chaos
with increasing coupling strength is limited by the tongue of complete synchronization.
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Below regions I and II, periodic regimes corresponding to bursting oscillations, as well as
chaotic bursting, are observed. Figure 2e shows an example of a chaotic bursting attractor for
ginh = −0.1, gexc = −0.25. The behavior of the system is antiphase, chaos is characterized by one
positive Lyapunov exponent. Next, we will consider in more detail the features of the destruction
of the torus and the formation of hyperchaos.

3.2. Formation of Hyperchaos

Let us consider in more detail the area of multidimensional chaos and scenarios for its
development. Figure 3a shows an enlarged fragment of the chart of Lyapunov exponents in the
area of quasi-periodic regimes and hyperchaos. It is clearly seen that the destruction of a two-
frequency torus leads to the formation of chaos and hyperchaos. Two regions of hyperchaos can
be distinguished in the parameter plane: a region for positive values of the inhibitory coupling
parameter (Fig. 3b), while the excitatory coupling coefficient is also always positive, and a region
for negative values of the inhibitory coupling parameter. With a negative inhibitory coupling
strength, the excitatory coupling can be either positive or negative. Let us consider in more detail
the formation of chaos for the region where the values of the coupling parameters are positive
(gexc � 0, ginh � 0), since this is justified from the point of view of the physiological meaning of
these parameters.

Fig. 3. Enlarged fragments of the chart of Lyapunov exponents in the area of formation of multidimensional
chaos for two coupled Hindmarsh –Rose models (2.2) with (2.5).

Let us fix the excitation coupling parameter equal to one (gexc = 1) and trace the features of
the behavior of the model (2.2). Figure 4 shows the corresponding illustrations: bifurcation trees,
bifurcation diagrams, and graphs of Lyapunov exponents.

System (2.2) consists of two identical Hindmarsh –Rose models (2.1). In a coupled system when
the oscillators are completely identical it is possible to find a complete in-phase synchronization

solution. Such a solution is also called a synchronous manifold. The limit cycle C(5,0)1) represents
such kind of solution (see an example of an attractor in Fig. 2b). Figure 4a shows a bifurcation
diagram built using XPPAUT (the diagram shows the local maximum amplitude of the dynamical
variable x1, the scale is presented on the right side of panel (xmax

1 ), different colors indicate the
dimension of stable and unstable manifolds), which visualizes a synchronous solution for the coupled
system. At ginh ≈ −0.1077, the Neimark – Sacker bifurcation (TR) occurs, as a result of which the
limit cycle loses stability and becomes a saddle with a two-dimensional unstable manifold C(3,2).
Note that the synchronous manifold, despite the fact that it has lost stability, is preserved in the
system. The saddle cycle C(3,2) can be reached from identical initial conditions for subsystems, or

1)Using the symbol C(m,n) we denote the limit cycle, the indices in brackets indicate the dimension of the stable
(m) and unstable (n) manifolds of the corresponding point in the Poincaré section.
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Fig. 4. Formation of chaos in two coupled Hindmarsh –Rose models (2.2) with (2.5), gexc = 1.0. (a) bifurcation
tree with inherited initial conditions, bifurcation diagram for period-1 limit cycle C; (b) bifurcation tree with
fixed initial conditions (x10 = 1.12, y10 = 2.67, z10 = −0.42, x20 = −0.91, y20 = 3.54, z20 = −0.38), bifurcation
diagram for period-8 limit cycle; (c) graphs of the three largest Lyapunov exponents for fixed initial conditions.
Two-dimensional projections of the Poincaré map formed by the intersection with the plane x1 = 0, (d)
ginh = 0.0127; (e) ginh = 0.0145; (f) ginh = 0.015; (g) ginh = 0.016. LP is a saddle-node bifurcation line; PD
is a period-doubling bifurcation line; TR is a Neimark – Sacker bifurcation line.

by inheriting the initial conditions when constructing a bifurcation tree, as was done for Fig. 4a. In
Fig. 4a, together with the bifurcation diagram, a bifurcation tree is also shown in black (the tree
was built for the Poincaré section formed by the intersection with the plane x1 = 0, the scale for the
tree marked on the left side of panel yS1 , y

S
2 ). The saddle cycle corresponding to the synchronous

manifold exists with a further increase in the inhibitory coupling parameter; at ginh ≈ 0.04251,
it ungergoes a period-doubling bifurcation (PD), as a result of which the cycle transforms to
C(2,3). On the bifurcation tree, one can observe a cascade of period-doubling bifurcations and the
formation of a synchronous chaotic attractor. Moreover, this cascade forms a set of cycles with a
three-dimensional unstable manifold.

Figure 4b shows projections of bifurcation trees onto two dynamical variables y1 (red color)
and y2 (black color) depending on inhibitory coupling parameter built without inheritance from

nonidentical initial conditions2). This illustration makes it possible to identify nonsynchronous
dynamical regimes that arise in model (2.2). The bifurcation tree clearly shows that, as a result
of the Neimark – Sacker bifurcation of the synchronous cycle, a torus-attractor is born, which is
confirmed by two zero largest Lyapunov exponents in the graphs (Fig. 4c). The torus for each

2)In our numerical experiments, we used the fixed initial conditions: x10 = 1.12, y10 = 2.67, z10 = −0.42, x20 =
−0.91, y20 = 3.54, z20 = −0.38.
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subsystem has a slightly different amplitude, the bifurcation tree clearly shows that the components
of each subsystem are different from each other. Also, in Fig. 2d, we observed a phase shift between
the time series of each subsystem. With an increase in the parameter of inhibitory coupling, a
resonance is observed on the torus, a periodicity window is well traced on the tree, where the
limit cycle of period 8 is stable C1(5,0). For this cycle, we constructed a bifurcation diagram using
XPPAUT, which is shown in Fig. 4b. This cycle is born as a result of a saddle-node bifurcation, in a
pair with a saddle cycle C2(4,1). As the coupling increases further, both cycles undergo a Neimark –
Sacker bifurcation, a stable cycle C1 at ginh ≈ 0.01212, and a saddle cycle C2 at ginh ≈ 0.04361. The
bifurcation of a stable cycle is accompanied by the birth of a torus, which corresponds to 8 invariant
curves in the Poincaré section (8-component torus, see Fig. 4d). As a result of further increase in
coupling strength, one can observe resonances on the 8-component torus, then its destruction, the
formation of an 8-component chaos (Fig. 4e), and the merging of the components into a single
attractor (Fig. 4f). If we look at the graphs of the Lyapunov exponents, we can see that, as a result
of these bifurcations, chaos arises (Figs. 4e–4g), and then hyperchaos develops. At ginh ≈ 0.04361,
the hyperchaotic attractor undergoes a crisis and collapses, and in system (2.2), the main oscillatory
regime becomes the complete in-phase synchronous regime, which can also be chaotic, but with one
positive Lyapunov exponent.

Fig. 5. Formation of hyperchaos in two coupled Hindmarsh –Rose models (2.2) with (2.5), gexc = 1.0. Two-
dimensional projections of attractors in the Poincaré section formed by the intersection with the plane x1 = 0,
(a) ginh = 0.018; (b) ginh = 0.02; (c) ginh = 0.03; (d) ginh = 0.068.

The secondary Neimark – Sacker bifurcation creates a set of saddle cycles with a two-dimensional
unstable manifold C2(3,2), that can be absorbed by a chaotic attractor, which corresponds to the
formation of the Shilnikov attractor [43, 44], while many examples are widely known when the
attractor also became hyperchaotic [14, 45–49]. In the system of two coupled Hindmarsh –Rose
models (2.2), it is possible to observe such a phenomenon. To illustrate the Shilnikov attractors,
Figs. 4d–4g and 5 show a Poincaré map of chaotic attractors. In Figs. 4d–4g, 5, the red circles
mark fixed points that correspond to the Poincaré section of a saddle cycle of period 1 with a
two-dimensional unstable manifold. The attractors presented in Fig. 4 are well-distanced from the
saddle-focus cycle of period 1. It is also clearly seen that the chaotic attractor in Figs. 4e and 4f does
not absorb the period-8 limit cycle either, the chaotic attractor has characteristic regions which the
phase trajectory does not enter. The chaotic attractor in Fig. 4g has absorbed the period-8 cycle,
while it is combined into a single-component attractor, so hyperchaos does not arise.

An increase in the strength of the inhibitory coupling leads to the absorption of the period-1
saddle cycle with a two-dimensional unstable manifold and the development of hyperchaos. Figure 5
shows illustrations of chaotic attractors of this type. In Fig. 5a, a broken invariant curve is traced,
while the mapping points visit a small neighborhood of the fixed point of the saddle-focus cycle
of period 1. The characteristic areas are also clearly visible, the phase points are concentrated
more densely in the regions near fixed points of the period-8 cycle. As the coupling increases, the
attractor becomes more complicated and the invariant curve is completely destroyed. It is clearly
seen that the fixed points of both the period-8 cycle and period-1 cycle are absorbed by the chaotic
attractor.

The Poincaré maps presented above are projections, so we cannot be sure that the saddle cycle
is absorbed by the attractor. To check this feature, the minimal distance from the fixed point of the
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saddle cycle cross-section to the chaotic attractor was calculated according to the following rule:

ρmin = min(ρn),

ρn =
√
σi(x

S
i − xSiEP )

2 + (ySi − ySiEP )
2 + (zSi − zSiEP )

2
, (3.1)

where xSi , y
S
i , z

S
i are points of the chaotic attractor in the Poincaré section formed by the intersection

with the hyperplane x1 = 0 for each subsystem, i = 1, 2; xSiEP , y
S
iEP , z

S
iEP are the coordinates of

the fixed point of the saddle limit cycle in the Poicaré section, as the period-1 cycle is synchronous
we have xS1EP = xS2EP , y

S
1EP = yS2EP , z

S
1EP = zS2EP . The obtained data of minimal distances and the

values of Lyapunov exponents for the attractors shown in Figs. 4 and 5 are given in Table 2. The
data clearly prove that, for a hyperchaotic attractor, the minimal distance from the attractor to
the saddle cycle is very small, and we can conclude that the period-1 saddle-focus cycle is absorbed
by the chaotic attractor.

Table 2. The minimal distance from an attractor to a fixed point of the period-1 limit cycle in the
Poincaré section and Lyapunov exponents for chaotic attractors presented in Figs. 4 and 5

ginh Λ1 Λ2 Λ3 Λ4 ρmin

0.0127 0.0 0.0 −0.0004 −0.0219 0.4754

0.0145 0.001 0.0 −0.0041 −0.0157 0.3041

0.015 0.0021 0.0 −0.0037 −0.0152 00431

0.02 0.0063 0.0012 0.0 −0.0166 0.0053

0.03 0.0077 0.0014 0.0 −0.0194 0.0031

0.068 0.0095 0.0001 0.0 −0.0184 0.0007

3.3. Features of Time Series on a Threshold of Hyperchaos Occurence

Let us consider the features of time series and phase portraits of model (2.2) on a threshold and
after the formation of a hyperchaotic attractor, paying special attention to the analysis of in-phase
and antiphase oscillations of subsystems. To analyze the in-phase oscillations, it is convenient to
use the so-called Lissajous figures [50–53]. It is a phase portrait projected onto the plane of the
dynamical variable of each subsystem. Figure 6 shows examples of Lissajous figures projected onto
the (x1, x2) plane. For the case of complete in-phase synchronization of subsystems, the Lissajous
figure is a line corresponding to x1 = x2. If the oscillators are synchronized in antiphase, then the
Lissajous figure is a line x1 = −x2.

Figure 6a corresponds to the case where chaotic behavior is observed in the system of two
coupled Hindmarsh –Rose models (2.2). The Lissajous figure is elongated along the main diagonal,
but it is symmetrically turned aside from the main diagonal. The phase trajectories do not enter
the area of the main diagonal, while there are several points of trajectories intersecting it. On
the corresponding time series, we see that each subsystem exhibits spike oscillations, while the
amplitude and the period of the spikes change. It can be seen that the spikes themselves are almost
synchronous; this corresponds to the cross-section points lying on the main diagonal of the Lissajous
figures. Note that the minimum values of the dynamical variables are almost in antiphase. Thus,
the phase alternation of each subsystem is observed. As was shown earlier, with an increase in the
strength of the inhibitory coupling, the chaotic attractor absorbs a synchronous cycle with a two-
dimensional unstable manifold. Figure 6b shows an example of a Lissajous figure immediately after
absorption, which corresponds to weak hyperchaos. Figure 6c illustrates a developed hyperchaotic
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Fig. 6. Formation of in-phase bursting oscillations in two coupled Hindmarsh –Rose models (2.2) with (2.5)
associated with hyperchaos occurence, gexc = 1.0. Lissajous figures and times series, (a) ginh = 0.016;
(b) ginh = 0.03; (c) ginh = 0.06.

attractor, which also contains a saddle-focus cycle corresponding to a synchronous manifold. In the
Lissajous figures, we clearly see that trajectories appear that pass through the main diagonal. On
the time series in Fig. 6b, there is still an alternation of the phases of the oscillator, as well as
cross-sections where the oscillators are in phase. In Fig. 6c, in-phase burstings are formed.

Thus, the appearance of in-phase oscillations in coupled Hindmarsh –Rose oscillators occurs
as a result of absorption of the saddle-focus cycle with the two-dimensional unstable manifold
corresponding to the synchronous manifold. Moreover, this type of oscillation is hyperchaotic. This
feature can be used for diagnostics; in areas of hyperchaos, one can expect the appearance of
in-phase synchronization of bursting oscillations.

4. INTERACTION OF NEURON MODELS
WITH A PLATEAU BURSTING ATTRACTOR

To study the universality of the phenomena and the scenario described in Section 3, we analyzed
the behavior of coupled identical Hindmarsh –Rose systems with a change in the parameter of
autonomous subsystems. Figure 7 shows a chart of Lyapunov exponents for two chemically coupled
Hindmarsh –Rose models, when autonomous subsystems exhibit a plateau bursting bursting
attractor at a = 2.7 (see the attractor in Fig. 1b).

The structure of the chart of Lyapunov exponents (Fig. 7) is similar to the case of the interaction
of systems with square-wave bursting attractors. In the region of negative values of the inhibitory
coupling parameter, a synchronous spike cycle is observed, which undergoes a Neimark – Sacker
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Fig. 7. Chart of Lyapunov exponents and its enlarged fragment in the area of formation of multidimensional
chaos for two coupled Hindmarsh –Rose models (2.2) with a = 2.7, b = 9.0, c = 5.0, α = 1.6, λ = 10, μ = 0.001.

bifurcation and the birth of a torus. The destruction of the torus and the formation of Shilnikov
attractors leads to the appearance of hyperchaotic behavior. Also, two areas of hyperchaos are
localized on the parameter plane. The enlarged fragment (Fig. 7b) shows the region of positive
values of the coupling parameters. As can be seen in this case, the areas with hyperchaos have
decreased, but are still present. For positive values of the coupling parameter ginh, there are no
regions of quasi-periodic regime, so the destruction of the torus occurs already at negative values
of the coupling parameter.

5. CONCLUSIONS

A study of two identical models of neurons interacting through a chemical coupling is carried out.
As an example of the neuron model the Hindmarsh –Rose systems is used. It is shown that taking
into account two types of couplings can lead to the excitation of chaotic and hyperchaotic oscillations
in the ensemble. The structure of parameter planes depending on the coupling parameters is
described, on which the regions of chaos and hyperchaos are localized. The scenario of hyperchaos
formation is described. The basic dynamical regime is the synchronous spike limit cycle, which
undergoes a Neimark – Sacker bifurcation. As a result of this bifurcation, a stable torus is born,
which does not have the property of in-phase synchronization. The destruction of the torus occurs
via resonances and cascades of Neimark – Sacker bifurcations. Further development of chaos leads to
a homoclinic bifurcation, as a result of which an in-phase saddle-focus cycle with a two-dimensional
unstable manifold is absorbed by a chaotic attractor, which leads to the appearance of hyperchaos.
It is shown that the formation of hyperchaos leads to the appearance of in-phase synchronization
of bursting oscillations.

The picture of dynamical regimes described above is universal and is observed for another choice
of subsystems parameters, as well as a change of the type of the bursting attractor.
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