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1. BRIEF HISTORICAL REVIEW

1.1. Birth of Kipriyanov’s Fractional Calculus

Ivan Alexandrovich Kipriyanov was born on the Urals in the Chelyabinsk region. In 1945, Kipriyanov
entered the Faculty of Physics and Mathematics of the Chelyabinsk Pedagogical Institute. In 1949 he
was accepted to graduate school Steklov Mathematical Institute of the USSR Academy of Sciences, his
supervisor was M.V. Keldysh In 1954 Kipriyanov defended his Ph.D. thesis “On summation of Fourier
series and interpolation processes for functions of two variables”. In this work, Kipriyanov found a class
of functions of two variables, to which it is possible to completely transfer the results of S.M. Lozinsky
that, in a sense, every theorem on convergence and summation of a one-dimensional Fourier series
can be transferred to convergence and summation of the corresponding trigonometric interpolation
process with equally spaced nodes. Moreover, these results remain valid for more general approximating
processes. In his review of the dissertation, Professor Lozinsky noted the successful choice of a class
of functions of two variables. This choice, as Lozinsky wrote, required analytical insight and provided
the success of the work. In his review of the abstract of the dissertation, Professor L.V. Kantorovich
noted that, having familiarized himself with the work of Kipriyanov on the abstract and two reports
in Leningrad in November 1953 at the seminar on the theory of functions and functional analysis of
Leningrad University, he formed a very positive opinion about it. The work made a very favorable
impression on the other participants of the seminar, as its discussion showed. It should be noted that
the seminar was attended by Professors Kantorovich, Lozinsky, I.P. Natanson, etc.

In the late 1950s and early 1960s, active work was carried out on the study of various kinds of
functional spaces, important in themselves and also playing an important role in the modern theory
of partial differential equations and probability theory.

In 1958, Kipriyanov’s first work on fractional order derivatives appeared, in which the concept of
fractional order partial derivatives for functions given in a cube was introduced, starting from the frac-
tional integral in the sense of Marchaud and derivatives of the integer order in the sense of S.L. Sobolev,
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here we should note that the implemented approach was unique and distinctive in comparison with the
regular fractional calculus theory of the time. The definition of the Kipriyanov fractional derivative is
based upon some integral identity that relates to the Marchaud fractional derivative. The corresponding
integral representation is given, the definition of two functional spaces is given, and embedding theorems
and space completeness theorems are proved for them. One of these theorems in the one-dimensional
case significantly complements the well-known theorem of Hardy and Littlewood on fractional integrals.

In the next cycle of works from 1959 to 1961, Kipriyanov studied the fractional derivatives in
the direction introduced by him [1–4]. In 1960 Kipriyanov published a paper on the operator of
fractional differentiation [2], which is a fractional order operator with respect to a second-order elliptic
operator with smooth coefficients. It is remarkable that this operator allows us to study boundary value
problems for differential equations containing, in addition to partial derivatives, fractional derivatives.
Here, we should interrupt the description of Kipriyanov’s other achievements and focus on the specific
questions regarding his most significant scientific contribution—fractional calculus as an independently
constructed axiomatic theory.

1.2. Branches in Generalizations of the Riemann–Liouville an Marchaud Operators

The central point of fractional calculus is a concept of fractional differentiation. In this regard, we
should admit that the Riemann–Liouville operator of fractional differentiation is at the origin of the
concept and plays a special role in the science. Such operators as Caputo and Marchaud certainly
are worth mentioned in the context, the first one is not interesting for us since it is more like a reduction
of the Riemann–Liouville operator on smooth functions disappearing at the initial point (if we consider
the matter from the point of view that is of functional analysis), but the second one does completely
reflect a true mathematical nature of fractional derivative as a notion, since it has a representation in
terms of infinitesimal generator of the corresponding semigroup [5]. It is clear that considering such
an approach we are forced to deal with more general notions of the operator theory and in this way the
understanding of the notion of fractional derivative as a fractional power of infinitesimal generator is
harmoniously completed, on the one hand.

On the other hand, for a harmony of the narrative, we should referee an extract of the paper [6]
appealing to another generalization, if we interpret the fractional differential Riemann-Liouville operator
as a particular case of the derivative of the convolution operator for which the so called Sonin condition
holds [7]. We should note that the second direction in understanding the matter was developed by
mathematicians such as Rubin [8–10], Vakulov [11], Samko [12, 13], Karapetyants [14, 15]. Let us
remind that the so called mapping theorem for the Riemann–Liouville operator (the particular case of
the Sonin operator) were firstly studied by Hardy and Littlewood [16] and nowadays is known as the
Hardy–Littlewood theorem with limit index. However there was an attempt to extend this theorem on
some class of weighted Lebesgue spaces defined as functional spaces endowed with the following norm

||f ||Lp(I,β,γ) := ||f ||Lp(I,μ), μ(x) = ω β,γ(x) := (x− a)β(b− x)γ , β, γ ∈ R, I := (a, b).

In this direction the mathematicians such as Rubin and Karapetyants [14] had success, the following
problem was considered Iαa+ : Lp(I, β, γ) −→ ? However the converse theorem was not! All these create
the prerequisite to invent another approach for studying mapping properties of the Riemann–Liouville
operator or, more generally, integral operators. Thus, trying to solve (at least in particular) more general
problem, in the paper [17] we deal with mapping theorems for operators acting on Banach spaces in order
to obtain afterwards the desired results applicable to integral operators. In this regard the following
papers are worth noticing [18, 19], where in additional, a special technique based on the properties of
the Jacobi polynomials was introduced. Based on this approach, in the paper [6] we offer a method of
studying the Sonin operator [7], which is defined as a convolution operator sI

�
a+ϕ := � ∗a ϕ under some

conditions (the so called Sonin conditions) imposed on the kernel �, i.e., there exists a function ϑ such
that � ∗ ϑ = 1. The particular case of the Sonin kernel is a kernel of the fractional integral Riemman–
Liouville operator, many other examples can be found in papers [20, 21], the first one gives us a survey
considering various types of kernels such as the Bessel-type function, the power-exponential function,
the incomplete gamma function e.t.c., the main concept of the second one is to construct a widest class
of functions being a Sonin kernel. Here, we can partly close the matter at this point having noted that
there was a successful attempt to establish a criterion of the solvability of the Sonin–Abel Equation in
the Weighted Lebesgue Space [6].
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However, let us be back to the first understanding of the matter which is closely connected with the
notion of the Kipriyanov operator.

1.3. The Semigroup Approach and the Spectral Theory

The idea discussed in this paragraph relates to a model that gives us a representation of a composition
of fractional differential operators in terms of the semigroup theory. For instance we can represent a
second order differential operator as a some kind of a transform of the infinitesimal generator of a shift
semigroup. Continuing this line of reasonings we generalized a differential operator with a fractional
integro-differential composition in final terms to some transform of the corresponding infinitesimal
generator and introduced a class of transforms of m-accretive operators. Further, we used methods
obtained in the papers [22, 23] to study spectral properties of non-selfadjoint operators acting in a
complex separable Hilbert space, these methods alow us to obtain an asymptotic equivalence between
the real component of the resolvent and the resolvent of the real component of an operator. Due to such
an approach we obtain relevant results since an asymptotic formula for the operator real component
can be established in many cases (see [24, 25]). Thus, a classification in accordance with resolvent
belonging to the Schatten–von Neumann class was obtained, a sufficient condition of completeness of
the root vectors system was formulated.

The latter approach allows to construct an abstract model of a differential operator with a fractional
Kipriyanov integro-differential operator composition in final terms, where modeling is understood as an
interpretation of concrete differential operators in terms of the infinitesimal generator of a corresponding
semigroup. Moreover, we can consider an approach in contracting the space of fractionally-differentiable
functions which originates from the analog created by Kipriyanov and goes further up to the semigroup
theory generalizations. In this paper we deal with a more general operator—a differential operator with
a fractional integro-differential operator composition in final terms, which covers the corresponding
one-dimensional operator. Various types of fractional integro-differential operator compositions were
studied by such mathematicians as Prabhakar [26], Love [27], Erdelyi [28], McBride [29], Dimovskii and
Kiryakova [30], Nakhushev [31]. In particular the aim of this paper is to represent a description of the
previously obtained results under a specific point of view related with Kipriyanov’s fractional calculus.

1.4. Evolution Equations with the Operator Function in the Second Term

Having created a direction of the spectral theory of non-selfadjoint operators, we can consider
abstract theoretical results as a base for further research studying such mathematical objects as a
Cauchy problem for evolution equation of fractional order in the abstract Hilbert space. We consider in
the second term an operator function defined on a special operator class covering a generator transform
considered in [5] and discussed in the previous paragraph, where a corresponding semigroup is supposed
to be a C0 semigroup of contractions. In its own turn the transform reduces to a linear composition of
differential operators of real order in various senses such as the Riemann–Liouville fractional differential
operator, the Kipriyanov operator, the Riesz potential, the difference operator [2, 5, 32]. Moreover,
in the paper [33] we broadened the class of differential operators having considered the artificially
constructed normal operator that cannot be covered by the Lidskii results [34]. It should be noted that
the Kipriyanov operator is very useful in theoretical constructions as well as in applications since it
covers Euclidean spaces and can be considered as a term in a perturbation of a differential operator of
an arbitrary odd order acting in n-dimensional Euclidean space. This fact is based upon the the brilliant
idea of Kipriyanov to consider directional coordinates in the n-dimensional Euclidean space, the latter
approach is independent on dimension what is an enormous advantage for we can consider compositions
of operators having various nature.

The application part of the theory involving fractional integro-differential constructions appeals to
the results and problems which can be considered as particular cases of the abstract ones, the following
papers a worth noting within the context [35–37]. At the same time, we should admit that abstract
methods can be “clumsy” for some peculiarities can be considered only by a unique technique what
forms a main contribution of the specialists dealing with concrete differential equations. Here, we should
add that the relevance of the abstract problems can be expressed convexly by virtue of the application of
the fractional integro-differential compositions with the Kipriyanov operator in physics and engineering
sciences.
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Apparently, in the paper [38] we realized the idea to broaden the class of fractional integro-differential
compositions having considered a notion of operator function applicably to a Cauchy problem for an
abstract fractional evolution equation with an operator function in the second term not containing the
time variable, where the derivative in the first term is supposed to be of fractional order. Here, we
should note that regarding to functional spaces we have that an operator function generates a variety of
operators acting in a corresponding space. In this regard, even a power function gives us an interesting
result [33]. In the context of the existence and uniqueness theorems, a significant refinement that is
worth highlighting is the obtained formula for the solution represented by a series on the root vectors.
In the absence of the norm convergence of the root vector series, we need to consider a notion of
convergence in weaker Bari, Riesz, Abel–Lidskii senses [34, 39, 40].

In spite of the claimed rather applied objectives from the operator theory point of view, we admit
that the problem of the root vectors expansion for a non-selfadjoint unbounded operator still remains
relevant in the context of the paper. It is remarkable that the problem origins nearly from the first half of
the last century [5, 22, 23, 34, 39, 41–47]. However, we have a particular interest when an operator is
represented by a linear combination of operators where a so-called senior term is non-selfadjoint for a
case corresponding to a selfadjoint operator was thoroughly studied in the papers [41–46]. In this regard
the linear combination of the second order differential operator and the Kipriyanov operator represents a
relevant model class for which the obtained spectral theory results [23] created a prerequisite for further
abstract generalizations [5, 22].

2. ABSTRACT METHOD

2.1. Preliminaries

Let C,Ci, i ∈ N0 be positive constants. We assume that a value of C can be different in various
formulas and parts of formulas but values of Ci are certain.

Denote by FrM the set of boundary points of the set M. Everywhere further, if the contrary is not
stated, we consider linear densely defined operators acting on a separable complex Hilbert space H.

Denote by B(H) the set of linear bounded operators on H. Denote by L̃ the closure of an operator L.
We establish the following agreement on using symbols L̃i := (L̃)i, where i is an arbitrary symbol.

Denote by D(L), R(L), N(L) the domain of definition, the range, and the kernel or null space
of an operator L, respectively. The deficiency (codimension) of R(L), dimension of N(L) are denoted
by defL, nulL respectively. Assume that L is a closed operator acting on H, N(L) = 0, let us define a
Hilbert space

HL :=
{
f, g ∈ D(L), (f, g)HL

= (Lf,Lg)H
}
.

Consider a pair of complex Hilbert spaces H,H+, the notation H+ ⊂⊂ H means that H+ is dense in
H as a set of elements and we have a bounded embedding provided by the inequality ||f ||H ≤ C0||f ||H+ ,
C0 > 0, f ∈ H+, moreover, any bounded set with respect to the norm H+ is compact with respect to the
norm H.

Let L be a closed operator, for any closable operator S such that S̃ = L, its domain D(S) will be called
a core of L. Denote by D0(L) a core of a closeable operator L.

Let P(L) be the resolvent set of an operator L and RL(ζ), ζ ∈ P(L), [RL := RL(0)] denotes the
resolvent of an operator L. Denote by λi(L), i ∈ N the eigenvalues of an operator L.

Suppose L is a compact operator and N := (L∗L)1/2, r(N) := dim R(N); then the eigenvalues of the
operator N are called the singular numbers (s-numbers) of the operator L and are denoted by si(L),
i = 1, 2, ..., r(N). If r(N) < ∞, then we put by definition si = 0, i = r(N) + 1, 2, ....

Let ν(L) denotes the sum of all algebraic multiplicities of an operator L. Denote by n(r) a function
equals to the quantity of the elements of the sequence {an}∞1 , |an| ↑ ∞ within the circle |z| < r. Let A be
a compact operator, denote by nA(r), counting function a function n(r) corresponding to the sequence
{s−1

i (A)}∞1 .

Let Sp(H), 0 < p < ∞ be a Schatten–von Neumann class and S∞(H) be the set of compact
operators.
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Denote by S̃ρ(H) the class of the operators such that A ∈ S̃ρ(H) ⇒ {A ∈ Sρ+ε, A∈Sρ−ε, ∀ε > 0}.
In accordance with [47], we will call it Schatten–von Neumann class of the convergence exponent.

Suppose L is an operator with a compact resolvent and sn(RL) ≤ C n−μ, n ∈ N, 0 ≤ μ < ∞; then
we denote by μ(L) order of the operator L (see [45]).

Denote by

ReL := (L+ L∗) /2, ImL := (L− L∗) /2i

the real and imaginary Hermitian components of an operator L respectively. In accordance with the
terminology of the monograph [48], the set

Θ(L) := {z ∈ C : z = (Lf, f)H, f ∈ D(L), ||f ||H = 1}
is called the numerical range of an operator L.

An operator L is called sectorial if its numerical range belongs to a closed sector

Lι(θ) := {ζ : | arg(ζ − ι)| ≤ θ < π/2},

where ι is the vertex and θ is the semi-angle of the sector Lι(θ). If we want to stress the correspondence
between ι and θ, then we will write θι. An operator L is called bounded from below, if the following
relation holds

Re(Lf, f)H ≥ γL||f ||2H, f ∈ D(L), γL ∈ R,

where γL is called a lower bound of L.
An operator L is called accretive if γL = 0. An operator L is called strictly accretive if γL > 0. An

operator L is called m-accretive, if the next relation holds

(A+ ζ)−1 ∈ B(H), ||(A+ ζ)−1|| ≤ (Reζ)−1, Reζ > 0.

An operator L is called symmetric, if one is densely defined and the following equality holds

(Lf, g)H = (f, Lg)H, f, g ∈ D(L).

Consider a sesquilinear form s[·, ·] (see [48]) defined on a linear manifold of the Hilbert space H. Let
h = (s+ s∗)/2, k = (s− s∗)/2i be a real and imaginary component of the form s respectively, where
s∗[u, v] = s[v, u], D(s∗) = D(s). Denote by s[·] the quadratic form corresponding to the sesquilinear
form s[·, ·]. According to these definitions, we have h[·] = Re s[·], k[·] = Im s[·]. Denote by s̃ the closure
of a form s. The range of a quadratic form s[f ], f ∈ D(s), ||f ||H = 1 is called the range of the sesquilinear
form s and is denoted by Θ(s). A form s is called sectorial if its range belongs to a sector having a vertex
ι situated at the real axis and a semi-angle 0 ≤ θ < π/2. Due to Theorem 2.7 [48, p. 323] there exist
unique m-sectorial operators Ts, Th associated with the closed sectorial forms s, h respectively. The
operator Th is called a real part of the operator Ts and is denoted by ReTs.

Assume that Tt, (0 ≤ t < ∞) is a semigroup of bounded linear operators on H, by definition put

Af = − lim
t→+0

(
Tt − I

t

)
f,

where D(A) is a set of elements for which the last limit exists in the sense of the norm H. In accordance
with definition [49, p. 1] the operator −A is called the infinitesimal generator of the semigroup Tt.

Let ft : I → H, t ∈ I := [a, b], −∞ < a < b < ∞. The following integral is understood in the Rie-
mann sense as a limit of partial sums

n∑

i=0

fξiΔti
H−→

∫

I

ftdt, λ → 0,

where (a = t0 < t1 < ... < tn = b) is an arbitrary splitting of the segment I, λ := max
i

(ti+1 − ti), ξi is an

arbitrary point belonging to [ti, ti+1]. The sufficient condition of the last integral existence is a continuous
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property (see [50, p. 248]), i.e., ft
H−→ ft0 , t → t0, ∀t0 ∈ I. The improper integral is understood as a limit

b∫

a

ftdt
H−→

c∫

a

ftdt, b → c, c ∈ [−∞,∞].

Using notations of the paper [1], we assume that Ω is a convex domain of the n-dimensional
Euclidean space E

n, P is a fixed point of the boundary ∂Ω, Q(r, e) is an arbitrary point of Ω. Let
d := diamΩ, we denote by e a unit vector having a direction from P to Q, denote by r = |P −Q|
the Euclidean distance between the points P,Q, and use the shorthand notation T := P + et, t ∈ R.
We consider the Lebesgue classes Lp(Ω), 1 ≤ p < ∞ of complex valued functions. For the function
f ∈ Lp(Ω), we have

∫

Ω

|f(Q)|pdQ =

∫

ω

dχ

d(e)∫

0

|f(Q)|prn−1dr < ∞, (1)

where dχ is an element of solid angle of the unit sphere surface (the unit sphere belongs to E
n) and ω is

a surface of this sphere, d := d(e) is the length of the segment of the ray going from the point P in the
direction e within the domain Ω. Without loss of generality, we consider only those directions of e for
which the inner integral on the right-hand side of equality (1) exists and is finite. It is the well-known
fact that these are almost all directions. We use a shorthand notation P ·Q = P iQi =

∑n
i=1 PiQi for

the inner product of the points P = (P1, P2, ..., Pn), Q = (Q1, Q2, ..., Qn) which belong to E
n.

Denote by Dif a weak partial derivative of the function f with respect to a coordinate variable with
index 1 ≤ i ≤ n. We assume that all functions have a zero extension outside of Ω̄. Everywhere further,
unless otherwise stated, we use notations of the papers [1, 2, 32, 40, 48].

Below, we represent the conditions of Theorem 1 [5] that gives us a description of spectral properties,
in terms of the real part order, of a non-selfadjoint operator L acting in H.

(H1) There exists a Hilbert space H+ ⊂⊂ H and a linear manifold M that is dense in H+. The operator
L is defined on M.

(H2) |(Lf, g)H| ≤ C1||f ||H+ ||g||H+ , Re(Lf, f)H ≥ C2||f ||2H+
, f, g ∈ M, C1, C2 > 0.

Here, we should remark that since there is no general statement claiming that the intersection of the
domain of definitions of an operator and its adjoint is a dense set, then we cannot restrict the reasonings
considering Hermitian real component but compelled to involve the notion of the operator real part. This
is why it is rather reasonable to suggest the the issue should be undergone to a comprehensive analysis.

Consider a condition M ⊂ D(W ∗), in this case the real Hermitian component H := ReW of the
operator is defined onM, the fact is that H̃ is selfadjoint, bounded from bellow (see Lemma 3 [22]), where
H = ReW. Hence a corresponding sesquilinear form (denote this form by h) is symmetric and bounded
from bellow also (see Theorem 2.6 [48], p. 323). It can be easily shown that h ⊂ h, but using this fact we
cannot claim in general that H̃ ⊂ H (see [48], p. 330). We just have an inclusion H̃1/2 ⊂ H1/2 (see [48],
p. 332).

Note that the fact H̃ ⊂ H follows from a condition D0(h) ⊂ D(h) (see Corollary 2.4 [48], p. 323).
However, it is proved (see proof of Theorem 4 [22]) that relation H2 guaranties that H̃ = H.

Note that the last relation is very useful in applications, since in most concrete cases we can find a
concrete form of the operator H.
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2.2. Intrinsic Properties of the Kipriyanov Operator

Here, we study a case α ∈ (0, 1). Assume that Ω ⊂ E
n is a convex domain, with a sufficient smooth

boundary (C3 class) of the n-dimensional Euclidian space. For the sake of the simplicity we consider
that Ω is bounded, but the results can be extended to some type of unbounded domains. In accordance
with the definition given in the paper [51], we consider the directional fractional integrals. By definition,
put

(Iα0+f)(Q) :=
1

Γ(α)

r∫

0

f(P + te)

(r − t)1−α

(
t

r

)n−1

dt, (Iαd−f)(Q) :=
1

Γ(α)

d∫

r

f(P + te)

(t− r)1−α
dt,

f ∈ Lp(Ω), 1 ≤ p ≤ ∞.

The properties of these operators are described in detail in the papers [51, 52]. Similarly to the
monograph [32] we consider left-side and right-side cases. For instance, Iα0+ is called a left-side
directional fractional integral. We suppose I00+ = I. Nevertheless, this fact can be easily proved dy
virtue of the reasonings corresponding to the one-dimensional case and given in [32]. We also consider
integral operators with a weighted factor (see [32, p. 175]) defined by the following formal construction

(
Iα0+μf

)
(Q) :=

1

Γ(α)

r∫

0

(μf)(P + te)

(r − t)1−α

(
t

r

)n−1

dt,

where μ is a real-valued function.

We introduce the classes of functions representable by the directional fractional integrals.

Iα0+(Lp) :=
{
u : u(Q) = (Iα0+g)(Q)

}
, Iαd−(Lp) =

{
u : u(Q) = (Iαd−g)(Q)

}
,

g ∈ Lp(Ω), 1 ≤ p ≤ ∞.

Define the following auxiliary operators acting in Lp(Ω) and depended on the parameter ε > 0. In the
left-side case

(ψ+
ε f)(Q) =

⎧
⎪⎨

⎪⎩

r−ε∫

0

f(Q)rn−1−f(T )tn−1

(r−t)α+1rn−1 dt, ε ≤ r ≤ d,

f(Q)
α

(
1
εα − 1

rα

)
, 0 ≤ r < ε.

(2)

In the right-side case

(ψ−
ε f)(Q) =

⎧
⎪⎨

⎪⎩

d∫

r+ε

f(Q)−f(T )
(t−r)α+1 dt, 0 ≤ r ≤ d− ε,

f(Q)
α

(
1
εα − 1

(d−r)α

)
, d− ε < r ≤ d.

Using the definitions of the monograph [32, p. 181], we consider the following operators. In the left-side
case

(Dα
0+,εf)(Q) =

1

Γ(1− α)
f(Q)r−α +

α

Γ(1− α)
(ψ+

ε f)(Q).

In the right-side case

(Dα
d−,εf)(Q) =

1

Γ(1− α)
f(Q)(d− r)−α +

α

Γ(1− α)
(ψ−

ε f)(Q).

The left-side and right-side fractional derivatives are understood respectively as the following limits

D
α
0+f = lim

ε→0

(Lp)

D
α
0+,εf, D

α
d−f = lim

ε→0

(Lp)

D
α
d−,εf, 1 ≤ p < ∞.
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Consider the Kipriyanov fractional differential operator defined in the paper [2] by the formal expres-
sion

Dα(Q) =
α

Γ(1− α)

r∫

0

[f(Q)− f(T )]

(r − t)α+1

(
t

r

)n−1

dt+ C(α)
n f(Q)r−α, P ∈ ∂Ω,

where C(α)
n = (n− 1)!/Γ(n−α). It is remarkable that Theorem 2 [2] establishes the mapping properties

of the Kipriyanov operator, here we represent its statement in the explicit form: under the assumptions

lp ≤ n, 0 < α < l − n

p
+

n

q
, q > p,

we have that for sufficiently small δ > 0 the following inequality holds

||Dαf ||Lq(Ω) ≤
K

δν
||f ||Lp(Ω) + δ1−ν ||f ||Ll

p(Ω), f ∈ Ẇ l
p (Ω),

where

ν =
n

l

(
1

p
− 1

q

)
+

α+ β

l
.

The constant K does not depend on δ, f ; the point P ∈ ∂Ω; β is an arbitrarily small fixed positive
number. It is remarkable that Lemma 2.5 [51] establishes the connection between the fractional
differential operators, more precisely it establishes the following relation

(Dαf)(Q) =
(
Dα

0+f
)
(Q), f ∈ Ẇ l

p(Ω),

what leads us to the inclusion Dα ⊂ Dα
0+.

The following theorem [51] establishes the mapping properties of directional fractional integral
operators.

Theorem 1. The following estimates hold

||Iα0+u||Lp(Ω) ≤ Cα,d||u||Lp(Ω), ||Iαd−u||Lp(Ω) ≤ Cα,d||u||Lp(Ω), Cα,d = dα/Γ(α+ 1), 1 ≤ p < ∞.

The proof of the following so-called representation theorem given in [51] implements the scheme of
the proof corresponding to the one-dimensional case invented by B.S. Rubin [53, 54]. The author’s own
merit is a creation of the adopted version applicable to the Kipriyanov operator, we represent it in the
expanded form since it may be treated as the intersection of the classical fractional calculus with the
theory invented by Kipriyanov.

Theorem 2. Suppose f ∈ Lp(Ω), there exists lim
ε→0

ψ+
ε f or lim

ε→0
ψ−
ε f with respect to the norm

Lp(Ω), 1 ≤ p < ∞, then f ∈ Iα0+(Lp) or f ∈ Iαd−(Lp) respectively.

Proof. Let f ∈ Lp(Ω) and lim
ε→0

(Lp)

ψ+
ε f = ψ. Consider the function

(ϕ+
ε f)(Q) =

1

Γ(1− α)

{
f(Q)

rα
+ α(ψ+

ε f)(Q)

}
.

Taking into account (2), we can easily prove that ϕ+
ε f ∈ Lp(Ω). Obviously, there exists the limit

ϕ+
ε f → ϕ ∈ Lp(Ω), ε → 0. Taking into account Theorem 1, we can complete the proof, if we show

that

I
α
0+ϕ

+
ε f

Lp−→ f, ε → 0. (3)

In the case ε ≤ r ≤ d, we have

(Iα0+ϕ
+
ε f)(Q) · πr

n−1

sinαπ
=

r∫

ε

f(P + ye)yn−1−α

(r − y)1−α
dy
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+ α

r∫

ε

(r − y)α−1dy

y−ε∫

0

f(P + ye)yn−1 − f(T )tn−1

(y − t)α+1
dt

+
1

εα

ε∫

0

f(P + ye)(r − y)α−1yn−1dy = I.

By direct calculation, we obtain

I =
1

εα

r∫

0

f(P + ye)(r − y)α−1yn−1dy − α

r∫

ε

(r − y)α−1dy

y−ε∫

0

f(T )

(y − t)α+1
tn−1dt. (4)

Changing the variable in the second integral, we have

α

r∫

ε

(r − y)α−1dy

y−ε∫

0

f(T )

(y − t)α+1
tn−1dt = α

r−ε∫

0

(r − y − ε)α−1dy

y∫

0

f(T )

(y + ε− t)α+1
tn−1dt

= α

r−ε∫

0

f(T )tn−1dt

r−ε∫

t

(r − y − ε)α−1

(y + ε− t)α+1
dy = α

r−ε∫

0

f(T )tn−1dt

r∫

t+ε

(r − y)α−1(y − t)−α−1dy. (5)

Applying formula (13.18) [32, p. 184], we get
r∫

t+ε

(r − y)α−1(y − t)−α−1dy =
1

αεα
(r − t− ε)α

r − t
. (6)

Combining relations (4), (5), and (6), using the change of the variable t = r − ετ, we get

(Iα0+ϕ
+
ε f)(Q)

πrn−1

sinαπ
=

1

εα

⎧
⎨

⎩

r∫

0

f(P + ye)(r − y)α−1yn−1dy −
r−ε∫

0

f(T )(r − t− ε)α

r − t
tn−1dt

⎫
⎬

⎭

=
1

εα

r∫

0

f(T )
[
(r − t)α − (r − t− ε)α+

]

r − t
tn−1dt =

r/ε∫

0

τα − (τ − 1)α+
τ

f(P + [r − ετ ]e)(r − ετ)n−1dτ,

τ+ =

{
τ, τ ≥ 0;

0, τ < 0.
(7)

Consider the auxiliary function K defined in the paper [32, p. 105]

K(t) =
sinαπ

π

tα+ − (t− 1)α+
t

,

∞∫

0

K(t)dt = 1; K(t) > 0. (8)

Combining (7), (8) and taking into account that f has the zero extension outside of Ω̄, we obtain

(Iα0+ϕ
+
ε f)(Q)− f(Q) =

∞∫

0

K(t)
{
f(P + [r − εt]e)(1 − εt/r)n−1

+ − f(P + re)
}
dt. (9)

Consider the case 0 ≤ r < ε. Taking into account (2), we get

(Iα0+ϕ
+
ε f)(Q)− f(Q) =

sinαπ

πεα

r∫

0

f(T )

(r − t)1−α

(
t

r

)n−1

dt− f(Q)
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=
sinαπ

πεα

r∫

0

f(P + [r − t]e)

t1−α

(
r − t

r

)n−1

dt− f(Q). (10)

Consider the domains

Ωε := {Q ∈ Ω, d(e) ≥ ε}, Ω̃ε = Ω \ Ωε.

In accordance with this definition we can divide the surface ω into two parts ωε and ω̃ε, where ωε is the
subset of ω such that d(e) ≥ ε and ω̃ε is the subset of ω such that d(e) < ε. Using (9) and (10), we get

||(Iα0+ϕ+
ε f)− f ||pLp(Ω) =

∫

ωε

dχ

d∫

ε

∣∣
∣∣
∣∣

∞∫

0

K(t)[f(Q− εte)(1 − εt/r)n−1
+ − f(Q)]dt

∣∣
∣∣
∣∣

p

rn−1dr

+

∫

ωε

dχ

ε∫

0

∣
∣∣
∣∣
∣

sinαπ

πεα

r∫

0

f(P + [r − t]e)

t1−α

(
r − t

r

)n−1

dt− f(Q)

∣
∣∣
∣∣
∣

p

rn−1dr

+

∫

ω̃ε

dχ

d∫

0

∣
∣∣
∣∣
∣

sinαπ

πεα

r∫

0

f(P + [r − t]e)

t1−α

(
r − t

r

)n−1

dt− f(Q)

∣
∣∣
∣∣
∣

p

rn−1dr = I1 + I2 + I3.

Consider I1, using the generalized Minkowski inequality, we get

I
1
p

1 ≤
∞∫

0

K(t)

⎛

⎝
∫

ωε

dχ

d∫

ε

|f(Q− εte)(1 − εt/r)n−1
+ − f(Q)|prn−1dr

⎞

⎠

1
p

dt.

Let us define the function

h(ε, t) := K(t)

⎛

⎝
∫

ωε

dχ

d∫

ε

|f(Q− εte)(1− εt/r)n−1
+ − f(Q)|prn−1dr

⎞

⎠

1
p

dt.

It can easily be checked that the following inequalities hold

|h(ε, t)| ≤ 2K(t)||f ||Lp(Ω), ∀ε > 0; (11)

|h(ε, t)| ≤

⎛

⎝
∫

ωε

dχ

d∫

ε

∣
∣(1− εt/r)n−1

+ [f(Q− εte)− f(Q)]
∣
∣p rn−1dr

⎞

⎠

1
p

dt

+

⎛

⎝
∫

ωε

dχ

d∫

0

∣
∣f(Q)[1− (1− εt/r)n−1

+ ]
∣
∣p rn−1dr

⎞

⎠

1
p

dt = I11 + I12.

By virtue of the average continuity property of the functions belonging to Lp(Ω), we have ∀t > 0 : I11 →
0, ε → 0. Consider I12 and let us define the function

h1(ε, t, r) := |f(Q)|
∣
∣1− (1− εt/r)n−1

+

∣
∣ .

Apparently, the following relations hold almost everywhere in Ω

∀t > 0, h1(ε, t, r) ≤ |f(Q)|, h1(ε, t, r) → 0, ε → 0.

Applying the Lebesgue dominated convergence theorem, we get I12 → 0, ε → 0. It implies that

∀t > 0, lim
ε→0

h(ε, t) = 0. (12)
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Taking into account (11), (12) and applying the Lebesgue dominated convergence theorem again, we
obtain I1 → 0, ε → 0. Consider I2, using the Minkowski inequality, we get

I
1
p

2 ≤ sinαπ

πεα

⎛

⎝
∫

ωε

dχ

ε∫

0

∣∣
∣∣
∣
∣

r∫

0

f(Q− te)

t1−α

(
r − t

r

)n−1

dt

∣∣
∣∣
∣
∣

p

rn−1dr

⎞

⎠

1
p

+

⎛

⎝
∫

ωε

dχ

ε∫

0

|f(Q)|p rn−1dr

⎞

⎠

1
p

= I21 + I22.

Applying the generalized Minkowski inequality, we obtain

I21
π

sinαπ
= ε−α

⎛

⎝
∫

ωε

dχ

ε∫

0

∣∣
∣∣
∣∣

r∫

0

f(Q− te)

t1−α

(
r − t

r

)n−1

dt

∣∣
∣∣
∣∣

p

rn−1dr

⎞

⎠

1
p

≤ ε−α

⎧
⎪⎨

⎪⎩

∫

ωε

⎡

⎢
⎣

ε∫

0

tα−1

⎛

⎝
ε∫

t

|f(Q− te)|p
(
r − t

r

)(p−1)(n−1)

(r − t)n−1dr

⎞

⎠

1
p

dt

⎤

⎥
⎦

p

dχ

⎫
⎪⎬

⎪⎭

1
p

≤ ε−α

⎧
⎪⎨

⎪⎩

∫

ωε

⎡

⎢
⎣

ε∫

0

tα−1

⎛

⎝
ε∫

t

|f(P + [r − t]e)|p (r − t)n−1dr

⎞

⎠

1
p

dt

⎤

⎥
⎦

p

dχ

⎫
⎪⎬

⎪⎭

1
p

≤ ε−α

⎧
⎪⎨

⎪⎩

∫

ωε

⎡

⎢
⎣

ε∫

0

tα−1

⎛

⎝
ε∫

0

|f(P + re)|prn−1dr

⎞

⎠

1
p

dt

⎤

⎥
⎦

p

dχ

⎫
⎪⎬

⎪⎭

1
p

= α−1||f ||Lp(Δε),

where Δε := {Q ∈ Ωε, r < ε}. Note that messΔε → 0, ε → 0, therefore, I21, I22 → 0, ε → 0. It follows
that I2 → 0, ε → 0. In the same way, we obtain I3 → 0, ε → 0. Since we proved that I1, I2, I3 → 0,
ε → 0, then relation (3) holds. This completes the proof corresponding to the left-side case. The proof
corresponding to the right-side case is absolutely analogous. �

The following theorem proved in [51] establishes the strictly accretive property (see [48]) of the
Kipriyanov operator what gives us an opportunity to establish the numerical range of values of the
operator, the latter notion plays a significant role in the spectral theory. Denote by Lipλ, 0 < λ ≤ 1
the set of functions satisfying the Hölder–Lipschitz condition

Lipλ :=
{
ρ(Q) : |ρ(Q)− ρ(P )| ≤ Mrλ, P,Q ∈ Ω̄

}
.

Theorem 3. Suppose ρ(Q) is a real non-negative function, ρ ∈ Lipλ, λ > α; then the following
inequality holds

Re(f,Dαf)L2(Ω,ρ) ≥ Cα,ρ||f ||2L2(Ω,ρ), f ∈ H1
0 (Ω),

where

Cα,ρ =
1

2dα

{
1

Γ(1− α)
+

(n− 1)!

Γ(n− α)
− αMdλ

2Γ(1− α)(λ − α) inf ρ

}

.

Moreover, if we have in additional that for every fixed direction e the function ρ is monotonically
non-increasing, then

Cα,ρ =
1

2dα

{
1

Γ(1− α)
+

(n− 1)!

Γ(n− α)

}
.

Consider a linear combination of the uniformly elliptic operator, which is written in the divergence
form, and a composition of the fractional integro-differential operator, where the fractional differential
operator is understood as the adjoint operator regarding the Kipriyanov operator (see [1, 2, 23])

L := −T + I
σ
0+ρD

α
d−, σ ∈ [0, 1), D(L) = H2(Ω) ∩H1

0 (Ω),
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where T := Dj(a
ijDi·), i, j = 1, 2, ..., n, under the following assumptions regarding coefficients

aij(Q) ∈ C2(Ω̄), Reaijξiξj ≥ γa|ξ|2, γa > 0, Im aij = 0 (n ≥ 2), ρ ∈ L∞(Ω). (13)

Note that in the one-dimensional case the operator Iσ0+ρD
α
d− is reduced to a weighted fractional integro-

differential operator composition, which was studied properly by many researchers (see introduction,
[32], p. 175).

2.3. The Semi-Group Model

Bellow, we explore a special operator class for which a number of spectral theory theorems can
be applied. Further we construct an abstract model of a differential operator in terms of m-accretive
operators and call it an m-accretive operator transform, we find such conditions that being imposed
guaranty that the transform belongs to the class. As an application of the obtained abstract results we
study a differential operator with a fractional integro-differential operator composition in final terms on a
bounded domain of then-dimensional Euclidean space. One of the central points is a relation connecting
fractional powers of m-accretive operators and fractional derivative in the most general sense. By virtue
of such an approach we express fractional derivatives in terms of infinitesimal generators, in this regard
the Kipriyanov operator is considered.

We represent propositions devoted to properties of accretive operators and related questions. For
the reader convenience, we would like to establish well-known facts of the operator theory under an
appropriate point of view.

Lemma 1. Assume that A is a closed densely defined operator, the following condition holds

||(A + λ)−1||R→H ≤ 1

λ
, λ > 0,

where a notation R := R(A+ λ) is used. Then, the operators A,A∗ are m-accretive.
In accordance with the definition given in [50], we can define a positive and negative fractional powers

of a positive operator A as follows

Aα :=
sinαπ

π

∞∫

0

λα−1(λ+A)−1Adλ; A−α :=
sinαπ

π

∞∫

0

λ−α(λ+A)−1 dλ, α ∈ (0, 1). (14)

This definition can be correctly extended on m-accretive operators, the corresponding reasonings can be
found in [48]. Thus, further we define positive and negative fractional powers of m-accretive operators by
formula (14). The following lemma reflects the property of the fractional powers of m-accretive operators
what gives us the invaluable technique to deal with the infinitesimal generators.

Lemma 2. Assume that α ∈ (0, 1), the operator J is m-accretive, J−1 is bounded, then

||J−αf ||H ≤ C1−α||f ||H, C1−α = 2(1− α)−1||J−1||+ α−1, f ∈ H. (15)

Consider a transform of an m-accretive operator J acting in H

Zα
G,F (J) := J∗GJ + FJα, α ∈ [0, 1), (16)

where symbols G,F denote operators acting in H. Further, using a relation L = Zα
G,F (J) we mean that

there exists an appropriate representation for the operator L. The following theorem gives us a tool to
describe spectral properties of transform (16), as it will be shown further it has an important application
in fractional calculus since allows to represent fractional differential operators as a transform of the
infinitesimal generator of a semigroup.

Theorem 4. Assume that the operator J is m-accretive, J−1 is compact, G is bounded,
strictly accretive, with a lower bound γG > Cα||J−1|| ||F ||, D(G) ⊃ R(J), F ∈ B(H), where Cα is a
constant (15). Then, Zα

G,F (J) satisfies conditions H1–H2.

Consider the shift semigroup in a direction acting on L2(Ω) and defined as follows Ttf(Q) =
f(Q+ et), where Q ∈ Ω, Q = P + er. Bellow, we represent the complete proof of the lemma proved
in [5] to show the reader some techniques related to the shift semigroup.

Lemma 3. The semigroup Tt is a C0 semigroup of contractions.
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Proof. By virtue of the continuous in average property, we conclude that Tt is a strongly continuous
semigroup. It can be easily established due to the following reasonings, using the Minkowski inequality,
we have

⎧
⎨

⎩

∫

Ω

|f(Q+ et)− f(Q)|2dQ

⎫
⎬

⎭

1
2

≤

⎧
⎨

⎩

∫

Ω

|f(Q+ et)− fm(Q+ et)|2dQ

⎫
⎬

⎭

1
2

+

⎧
⎨

⎩

∫

Ω

|f(Q)− fm(Q)|2dQ

⎫
⎬

⎭

1
2

+

⎧
⎨

⎩

∫

Ω

|fm(Q)− fm(Q+ et)|2dQ

⎫
⎬

⎭

1
2

= I1 + I2 + I3 < ε,

where f ∈ L2(Ω), {fn}∞1 ⊂ C∞
0 (Ω); m is chosen so that I1, I2 < ε/3 and t is chosen so that I3 < ε/3.

Thus, there exists such a positive number t0 that ||Ttf − f ||L2 < ε, t < t0, for arbitrary small ε > 0.
Using the assumption that all functions have the zero extension outside Ω̄, we have ||Tt|| ≤ 1. Hence we
conclude that Tt is a C0 semigroup of contractions (see [49]). �

The following theorem represented in [51] is formulated in terms of the infinitesimal generator −A of
the semigroup Tt. It is a central point in the application of the spectral theory methods to the abstract
integro-differential constructions.

Theorem 5. We claim that L = Zα
G,F (A). Moreover, if γa is sufficiently large in comparison with

||ρ||L∞ , then L satisfies conditions H1–H2, where we put M := C∞
0 (Ω), if we additionally assume

that ρ ∈ Lipλ, λ > α, then H̃ = H.

The meaning of the following lemma is rather significant since it establishes a very useful property
of the infinitesimal generator −A of the semigroup Tt, using which we can construct a Hilbert space
corresponding to the operator A let alone the secondary fact establishing the core of the operator A.

Lemma 4. We claim that A = Ã0, N(A) = 0, where A0 is a restriction of A on the set C∞
0 (Ω).

In the following paragraph, we study generalized constructions originated from the shift semigroup,
they may be also interesting due to the applications related to the multidimensional case as well as being
themselves non-standard constructions demonstrating one more class for which hypotheses H1 and H2
hold.

2.4. Further Generalizations

Consider a linear space Ln
2 (Ω) := {f = (f1, f2, ..., fn), fi ∈ L2(Ω)} , endowed with the inner prod-

uct

(f, g)Ln
2
=

∫

Ω

(f, g)EndQ, f, g ∈ L
n
2 (Ω).

It is clear that this pair forms a Hilbert space and let us use the same notation L
n
2 (Ω) for it. Consider a

sesquilinear form

t(f, g) :=
n∑

i=1

∫

Ω

(f, ei)En(g, ei)EndQ, f, g ∈ L
n
2 (Ω),

where ei corresponds to Pi ∈ ∂Ω, i = 1, 2, ..., n (i.e., Q = Pi + eir). The proofs of the propositions
represented in this paragraph are given in [55].

Lemma 5. The points Pi ∈ ∂Ω, i = 1, 2, ..., n can be chosen so that the form t generates an inner
product.

Consider a pre Hilbert space Ln
2 (Ω) := {f : f ∈ L

n
2 (Ω)} endowed with the inner product

(f, g)Ln
2
:=

n∑

i=1

∫

Ω

(f, ei)En(g, ei)EndQ, f, g ∈ L
n
2 (Ω),
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where ei corresponds to Pi ∈ ∂Ω, i = 1, 2, ..., n, the following condition holds

Δ =

∣∣
∣
∣∣
∣∣
∣∣
∣∣
∣

P11 P12 ... P1n

P21 P22 ... P2n

... ... ... ...

Pn1 Pn2 ... Pnn

∣∣
∣
∣∣
∣∣
∣∣
∣∣
∣

�= 0,

where Pi = (Pi1, Pi2, ..., Pin). The following theorem establishes a norm equivalence.

Theorem 6. The norms || · ||Ln
2

and || · ||Ln
2

are equivalent.

Consider a pre Hilbert space

H̃
n
A :=

{

f, g ∈ C∞
0 (Ω), (f, g)

˜Hn
A
=

n∑

i=1

(Aif,Aig)L2

}

,

where −Ai is the infinitesimal generator corresponding to the point Pi. Here, we should point out that
the form (·, ·)

˜Hn
A

generates an inner product due to the fact N(Ai) = 0, i = 1, 2, ..., n proved in Lemma 4.

Let us denote a corresponding Hilbert space by Hn
A.

Corollary 1. The norms || · ||Hn
A

and || · ||H1
0

are equivalent, we have a bounded compact
embedding

Hn
A ⊂⊂ L2(Ω).

Below, we aim to represent an operator in terms of the infinitesimal generator of the shift semigroup
in a direction with the purpose to apply the results [22, 38, 47] to the established representation. In this
way we come to natural conditions in terms of the infinitesimal generator of the shift semigroup in a
direction what gives us the desired result represented in [5]. The following theorem allows us to express
the construction of the partial differential operator in terms of the semigroup theory (having chosen the
shift semigroup in the direction) what reveals a mathematical nature of the operator −T .

Theorem 7. We claim that −T = 1
n

n∑

i=1
A∗

iGiAi, the following relations hold

−Re(T f, f)L2 ≥ C||f ||Hn
A
; |(T f, g)L2 | ≤ C||f ||Hn

A
||g||Hn

A
, f, g ∈ C∞

0 (Ω),

where Gi are some operators corresponding to the operators Ai.

Thus, by virtue of Corollary 1 and Theorem 7, we are able to claim that hypotheses H1, H2 [5] hold
for the operator −T . It is rather reasonable to represent analog of Theorem 5 which reflects connection
between the operator −T and its perturbation by the Kipriyanov operator.

Theorem 8. We claim that L = 1
n

n∑

i=1
A∗

iGiAi + FAα
1 , where F is a bounded operator, P1 := P,

and Gi are the same as in Theorem 7. Moreover, if γa is sufficiently large in comparison with
||ρ||L∞ , then the following relations hold

Re(Lf, f)L2 ≥ C||f ||Hn
A
; |(Lf, g)L2 | ≤ C||f ||Hn

A
||g||Hn

A
, f, g ∈ C∞

0 (Ω).

The theorem reveals a remarkable fact the perturbation preserves the property being in the class sat-
isfying hypotheses H1 and H2 what makes the perturbed operator interesting itself from the theoretical
point of view let alone a prospective applications determined by convenience, from the technical point of
view, in dealing with the invented operator construction in the multidimensional space.
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3. INTEGRO-DIFFERENTIAL CONSTRUCTIONS

3.1. Abel–Lidskii Root Vectors Series Expansion

In this section, we represent a theorem valuable from theoretical and applied points. It is based upon
the modification of the Lidskii method, this is why following the the classical approach we divided it
into three statements that can be claimed separately. The first statement (Theorem 3 [38]) establishes a
character of the series convergence having a principal meaning within the whole concept. The second
statement (Theorem 3 [38]) reflects the name of convergence—Abel–Lidskii since the latter can be
connected with the definition of the series convergence in the Abel sense, more detailed information
can be found in the monograph by Hardy [56]. The third statement (Theorem 4 [38]) is a valuable
application of the first one, it is based upon suitable algebraic reasonings having been noticed by the
author and allowing to involve a fractional derivative in the first term. We should note that previously, a
concept of an operator function represented in the second term was realized in the paper [33], where a
case corresponding to a function represented by a Laurent series with a polynomial regular part was
considered. Bellow, we consider a comparatively more difficult case obviously related to the infinite
regular part of the Laurent series and therefore requiring a principally different method of study.

It is a well-known fact that each eigenvalue μq, q ∈ N of the compact operator B generates a set of
Jordan chains containing eigenvectors and root vectors. Denote by m(q) a geometrical multiplicity
of the corresponding eigenvalue and consider a Jordan chain corresponding to an eigenvector eqξ ,
ξ = 1, 2, ...,m(q), we have

eqξ , eqξ+1, ..., eqξ+k(qξ), (17)

where k(qξ) indicates a number of elements in the Jordan chain, the symbols except for the first one
denote root vectors of the operator B. Note that combining the Jordan chains corresponding to an
eigenvalue, we obtain a Jordan basis in the invariant subspace generated by the eigenvalue, moreover,
we can arrange a so-called system of major vectors {ei}∞1 (see [34]) of the operator B having combined
Jordan chains. It is remarkable that the eigenvalue μ̄q of the operator B∗ generates the Jordan chains of
the operator B∗ corresponding to (17). In accordance with [47], we have

gqξ+k(qξ), gqξ+k(qξ)−1, ..., gqξ ,

where the symbols except for the first one denote root vectors of the operator B∗. Combining Jordan
chains of the operator B∗, we can construct a biorthogonal system {gn}∞1 with respect to the system
of the major vectors of the operator B. This fact is given in detail in the paper [47]. The following
construction plays a significant role in the theory created in the papers [33, 47, 57] and, therefore,
deserves to be considered separately, denote

Aν(ϕ, t)f :=

Nν+1∑

q=Nν+1

m(q)∑

ξ=1

k(qξ)∑

i=0

eqξ+icqξ+i(t),

where {Nν}∞1 is a sequence of natural numbers,

cqξ+i(t) = e−ϕ(λq)t

k(qξ)−i∑

j=0

Hj(ϕ, λq, t)cqξ+i+j, i = 0, 1, 2, ..., k(qξ),

cqξ+i = (f, gqξ+k−i)/(eqξ+i, gqξ+k−i), λq = 1/μq is a characteristic number corresponding to eqξ ,

Hj(ϕ, z, t) :=
eϕ(z)t

j!
lim

ζ→1/z

dj

dζ j

{
e−ϕ(ζ−1)t

}
, j = 0, 1, 2, ....

More detailed information on the considered above Jordan chains can be found in [47].
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3.2. Decomposition Theorem

Denote by H the abstract separable Hilbert space and assume that the hypotheses H1 and H2 hold
for the operator W acting in H. We should point out that such chose of the operator class justified by
both abstract theoretical relevance related to the spectral properties of non-selfadjoint operators and the
concrete applications including ones involving the Kipriyanov operator. Denote by

ϕ(W ) :=

k∑

n=l

cnW
n, −∞ ≤ l, k ≤ ∞ (18)

a formal construction called by an operator function, where cn are the coefficients corresponding to the
function of the complex variable ϕ. Here, we ought to make a bibliographic digression and remind that
the case l = −∞, k < ∞ was considered in [57]. In this case, the complex function ϕ was supposed to
have a decomposition into the Laurent series about the point zero with the coefficients cn satisfying the
additional assumption

max
n=0,1,...,k

(|argcn|+ nθ) < π/2, (19)

where θ is the semi-angle of the sector containing the numerical range of values of the operator W.
We should note that the problem connected with the representation (18) can be divided on two parts
l ≥ −∞, k = 0 and l = 0, k ≤ ∞, thus the first one was properly studied in [57], the second one was
studied in [38], with the following assumptions (we represent a technical variant, the expended variant
can be found in [38]): the complex function ϕ of the order less than a half maps the ray arg z = θ0 within
a sector L0(ζ), 0 < ζ < π/2, the condition holds

Reϕ(z) > eaH(θ0)r� , arg z = θ0, 0 < a < 1, (20)

where H(θ0) is a positive number in accordance with the Lemma 1 [38]. Taking into account the above,
we can consider a function represented by a Laurent series with the arbitrary principal part and the
regular part satisfying (19), (20) respectively to the finite, infinite cases. This statement can be proved
by repetition of the reasonings represented in Lemma 5 [57], thus we leave the proof to the reader.

Below, we consider a Hilbert space consists of element-functions u : R+ → H, u := u(t), t ≥ 0, we
understand the differentiation and integration operations in the generalized sense, i.e., the derivative is
defined as a limit in the sense of the norm etc. (see [47, 50]). Combining the operations, we can define
a generalized fractional derivative in the Riemann–Liouville sense (see [32, 33]), in the formal form, we
have

D
1/α
− f(t) := − 1

Γ(1− 1/α)

d

dt

∞∫

0

f(t+ x)x−1/αdx, α ≥ 1,

here we should note that facts D1
−f(t) = −du/dt, D0

−f(t) = f(t) can be obtained due to the definition
of the operator (see [32]). In terms of the expression (18), consider a Cauchy problem

D
1/α
− u = ϕ(W )u, u(0) = f ∈ D(W n), n = 1, 2, ..., k. (21)

Taking into account the above, combining results [38, 57], we can formulate the following theorem.
Theorem 9. Assume that conditions (19), (20) hold respectively to the cases corresponding

to the finite, infinite regular part of the series (18), then there exists a solution of the Cauchy
problem (21) in the form

u(t) =
∞∑

ν=0

Aν(ϕ
α, t)f,

∞∑

ν=0

||Aν(ϕ
α, t)f || < ∞.

Moreover, the existing solution is unique if the operator D1−1/α
− ϕ(W ) is accretive.

Proof. To avoid any kind of repetition, we do not represent the complete proof having restricted
reasonings by the scheme appealing to Lemma 5, Theorem 1 [57], Lemma 3, Theorem 4 [38]. Thus, the
detailed calculation is left to the reader. �
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Further, considering an operator function, we will assume that conditions (19), (20) hold respectively
to the case. Now, consider transform (16)

Zα
G,F (J) = J∗GJ + FJα, α ∈ [0, 1),

assuming that the conditions of Theorem 6 hold, we can consider a Cauchy problem involving the
transform which represents an integro-differential construction in the generalized sense. The latter
problem appeals to a plenty of concrete evolution equations which form a base for the modern en-
gineering sciences. Let us contemplate then a magnificent representative of the generators creating
the transform—the directional derivative which fractional power is the Kipriyanov operator. Consider a
Cauchy problem

D
1/α
− u =

k∑

n=l

cnL
nu, u(0) = f ∈ C∞

0 (Ω), n = 1, 2, ..., k, (22)

where we are dealing with the following integro-differential construction with the sufficiently smooth
coefficients for which the conditions (13) hold

L := −T + I
σ
0+ρD

γ
d−, σ, γ ∈ [0, 1).

Thus, we can easily see that the case σ = 0, γ = 0, −∞ < l, k < ∞ leads to the class of integro-
differential equations of the integer order and the obtained results give us a method to solve the
corresponding Cauchy problems (22). Certainly, we can consider a closure of the defined operator
function on the set C∞

0 (Ω), the fact that it admits closure is proved in [58]. The case corresponding
to arbitrary values of σ, γ within the range, requires more peculiar technique that was considered in
paragraph 3.1 [33]. However, Theorem 9 becomes relevant in solving evolution equations with an
integro-differential operator in the second term to say nothing on the far reaching generalizations
corresponding to an operator function with the infinite principal or regular part of its Laurent series.

4. CONCLUSIONS

In the paper, there was represented a historical survey devoted to the achievements of Kipriyanov,
where the exclusively constructed fractional calculus theory was discussed convexly. We produced a
comparison analysis in the framework of ways and means related to further prospective generalizations
of fractional derivative as a notion. The qualitative properties of the Kipriyanov fractional differential
operator were studied by the methods of the classical fractional calculus theory in contrast to the
exclusive approach invented by Kipriyanov. Having taken as a basis the concept of multidimensional
generalization of the fractional differential operator in the sense of Marchaud, we adapted the previously
known technique of the proofs related to the theory of fractional calculus of one variable. Along with the
previously known definition of a fractional derivative introduced by Kipriyanov we used a new definition of
a multidimensional fractional integral in the direction what allows to describe the range of the Kipriyanov
adjoint operator. A number of statements having analogues in the theory of fractional calculus of
one variable and previously proved by the author were discussed. In particular the classical result—a
sufficient condition for representability by a fractional directional integral in the direction was observed.
The strictly accretive property of the Kipriyanov operator, being an outstanding author’s result, was
observed. On the base of the given technique, there were developed methods of the semigroup theory
and the spectral theory of non-selfadjoint operators what leads us to significant applications to the
abstract evolution equations in the Hilbert space. The latter gives us an opportunity to solve a whole
class of problems related to integro-differential equations of the real order wherein the one related to the
semigroup connected with the Kipriyanov operator was studied properly.
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