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Abstract. One of many manifestations of a deep relation between the topology of the moduli
spaces of algebraic curves and the theory of integrable systems is a recent construction of Arsie,
Lorenzoni, Rossi, and the first author associating an integrable system of evolutionary PDEs to
an F-cohomological field theory (F-CohFT), which is a collection of cohomology classes on the
moduli spaces of curves satisfying certain natural splitting properties. Typically, these PDEs
have an infinite expansion in the dispersive parameter, which happens because they involve
contributions from the moduli spaces of curves of arbitrarily large genus. In this paper, for
each rank N ≥ 2, we present a family of F-CohFTs without unit, for which the equations of the
associated integrable system have a finite expansion in the dispersive parameter. For N = 2,
we explicitly compute the primary flows of this integrable system.

1. Introduction

The fact that integrable systems provide an appropriate tool for the description of the topol-
ogy of the moduli spaces Mg,n of stable algebraic curves of genus g with n marked points
was first observed by Witten [Wit91] in his famous conjecture, proved by Kontsevich [Kon92].
This result says that the generating series of integrals over Mg,n of monomials in psi-classes
(the first Chern classes of tautological line bundles) is controlled by a special solution of the
Korteweg–de Vries (KdV) hierarchy. Various versions of Witten’s conjecture were proposed
(see, e.g., [DZ04, OP06, Wit93, FSZ10]), when it was realized that integrable systems appear
in a very general context, where the central role is played by the notion of a cohomological
field theory (CohFT) introduced by Kontsevich and Manin [KM94]. CohFTs are systems of
cohomology classes on the moduli spaces Mg,n that are compatible with natural morphisms
between the moduli spaces. There is a general result [BPS12] saying that the generating series
of correlators of an arbitrary semisimple CohFT is controlled by a special solution of a certain
integrable system, determined by the CohFT uniquely. This integrable system is called the
hierarchy of topological type or the Dubrovin–Zhang (DZ) hierarchy.

Remark 1.1. Since the concept of an integrable system can be interpreted in various ways, we
would like to clarify that for the purposes of this paper we define an integrable system as an
infinite collection of pairwise commuting evolutionary flows.

It was first observed by Dubrovin and Zhang [DZ01] that the hierarchies of topological type
form a wide class of integrable systems that can be conjecturally described independently of the
geometry, using only the language of integrable systems (see further developments in [DLYZ16,
LWZ21]). Thus, the topology of the moduli spaces of algebraic curves can be viewed as a tool
for constructing integrable systems.

There is another construction of an integrable system, the so-called double ramification (DR)
hierarchy, associated to a CohFT, suggested in [Bur15]. For a semisimple CohFT, the DR
hierarchy is conjecturally Miura equivalent to the DZ hierarchy. The advantage of the DR
hierarchy is that its equations are constructed very explicitly in terms of certain integrals
over Mg,n. Moreover, the DR hierarchy is defined for objects that are more general than
CohFTs: for the so-called F-cohomological field theories (F-CohFTs) [ABLR21, ABLR23].
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Typically, the equations of the DR hierarchy associated to an F-CohFT have an infinite ex-
pansion in the dispersive parameter. This happens because the equations involve contributions
from Mg,n with arbitrarily large g. So it is natural to try to determine F-CohFTs, for which the
associated DR hierarchy is of finite type, meaning that all the equations have a finite expansion
in the dispersive parameter. For CohFTs associated to simple singularities, the DR hierarchy is
of finite type. For the partial CohFTs associated to these CohFTs [LRZ15], the DR hierarchy
is also of finite type. However, as far as we know, no other examples of F-CohFTs for which
the associated DR hierarchy is of finite type have been found.

In this paper, for each N ≥ 2, we present a family of F-CohFTs without unit of rank N ,
depending on a vector G ∈ CN and a strictly upper triangular N × N matrix R1 satisfying
R2

1 = 0, and prove that the associated DR hierarchy is of finite type. Finally, for N = 2, we
compute explicitly the primary flows ∂

∂t10
and ∂

∂t20
of the DR hierarchy.

Notation and conventions.

• Throughout the text we use the Einstein summation convention for repeated upper and
lower Greek indices.

• When it doesn’t lead to a confusion, we use the symbol ∗ to indicate any value, in the
appropriate range, of a sub- or superscript.

• For a topological space X let H∗(X) denote the cohomology ring of X with coefficients
in C.

Acknowledgements. The work of A. B. is supported by the Mathematical Center in Akadem-
gorodok under agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Edu-
cation of the Russian Federation. A. B. is grateful to A. Mikhailov, P. Rossi, and V. Sokolov for
motivating discussions about the finiteness of the integrable systems associated to F-CohFTs.

2. F-cohomological field theories without unit and DR hierarchies

2.1. F-cohomological field theories without unit. An F-cohomological field theory without
unit (F-CohFT without unit) is a system of linear maps

cg,n+1 : V
∗ ⊗ V ⊗n → Heven(Mg,n+1), 2g − 1 + n > 0,

where V is an arbitrary finite dimensional vector space, such that the following axioms are
satisfied.

(i) The maps cg,n+1 are equivariant with respect to the Sn-action permuting the n copies of V
in V ∗ ⊗ V ⊗n and the last n marked points in Mg,n+1, respectively.

(ii) Fixing a basis e1, . . . , edimV in V and the dual basis e1, . . . , edimV in V ∗, the following
property holds:

gl∗cg1+g2,n1+n2+1(e
α0 ⊗⊗n1+n2

i=1 eαi
) = cg1,n1+2(e

α0 ⊗⊗i∈Ieαi
⊗ eµ)⊗ cg2,n2+1(e

µ ⊗⊗j∈Jeαj
)

for 1 ≤ α0, α1, . . . , αn1+n2 ≤ dimV , where I ⊔ J = {2, . . . , n1+n2+1}, |I| = n1, |J | = n2,
and gl : Mg1,n1+2 ×Mg2,n2+1 → Mg1+g2,n1+n2+1 is the corresponding gluing map. Clearly
the axiom doesn’t depend on the choice of a basis in V .

The dimension of V is called the rank of the F-CohFT without unit.

An F-CohFT is an F-CohFT without unit endowed with a nonzero vector e ∈ V , called the
unit, such that the following additional property is satisfied:

(iii) π∗cg,n+1(ω ⊗ ⊗n
i=1vi) = cg,n+2(ω ⊗ ⊗n

i=1vi ⊗ e) for ω ∈ V ∗ and v1, . . . , vn ∈ V , where
π : Mg,n+2 → Mg,n+1 is the map that forgets the last marked point. Moreover, c0,3(ω ⊗
v ⊗ e) = ω(v) for ω ∈ V ∗ and v ∈ V .
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An F-CohFT is called an F-topological field theory (F-TFT) if cg,n+1(ω⊗⊗n
i=1vi) ∈ H0(Mg,n+1)

for all ω ∈ V ∗ and v1, . . . , vn ∈ V .

2.2. DR hierarchy. Let us fix N ≥ 1 and let u1, . . . , uN be formal variables. To the formal
variables uα we attach formal variables uαd with d ≥ 0 and introduce the ring of differential
polynomials A := C[[u∗]][u∗≥1]. We identify uα0 = uα and also denote uαx := uα1 , u

α
xx := uα2 , . . . .

An operator ∂x : A → A is defined by ∂x :=
∑

n≥0 u
α
n+1

∂
∂uα

n
. The extended space of differential

polynomials is defined by Â := A[[ε]].

Denote by ψi ∈ H2(Mg,n) the first Chern class of the line bundle over Mg,n formed by the
cotangent lines at the i-th marked point of stable curves. Denote by E the rank g Hodge vector
bundle over Mg,n whose fibers are the spaces of holomorphic one-forms on stable curves. Let
λj := cj(E) ∈ H2j(Mg,n).

For any a1, . . . , an ∈ Z,
∑n

i=1 ai = 0, let DRg(a1, . . . , an) ∈ H2g(Mg,n) be the double ramifi-

cation (DR) cycle. The DR cycle is the pushforward, through the forgetful map to Mg,n, of the
virtual fundamental class of the moduli space of projectivized stable maps to CP1 relative to 0
and ∞, with ramification profile a1, . . . , an at the marked points (see, e.g., [BSSZ15] for more
details). More precisely, the pushforward itself lies in H2(2g−3+n)(Mg,n), while its Poincaré dual

cohomology class lies in H2g(Mg,n). By abuse of notation, we will denote both the pushfor-
ward and its Poincaré dual by DRg(a1, . . . , an). The crucial property of the DR cycle is that
for any cohomology class θ ∈ H∗(Mg,n) the integral

∫
Mg,n+1

λgDRg (−
∑
ai, a1, . . . , an) θ is a

homogeneous polynomial in a1, . . . , an of degree 2g (see, e.g., [Bur15]).

Let us recall two splitting properties that we will often use. Consider the gluing map
gl : Mg1,n1+1 × Mg2,n2+1 → Mg,n, where g = g1 + g2 and n = n1 + n2, that glues the last
marked points on curves from Mg1,n1+1 and Mg2,n2+1, and then shifts the labels of the first n2

marked points on curves from Mg2,n2+1 by n1. Then we have

gl∗(λg) = λg1 ⊗ λg2 ,(2.1)

gl∗(DRg(a1, . . . , an)) = DRg1

(
a1, . . . , an1 ,−

n1∑
i=1

ai

)
⊗DRg2

(
an1+1, . . . , an,

n1∑
i=1

ai

)
.(2.2)

The first formula is well known in the theory of moduli spaces Mg,n. The second formula can
be proved in several ways, see, e.g., [BR22, Proposition 4.6] (one should also use there that
2−gP g

g (a1, . . . , an) = DRg(a1, . . . , an) and P
>g
g (a1, . . . , an) = 0).

Consider now an arbitrary F-CohFT without unit of rank N and define differential polyno-

mials Pα
β,d ∈ Â, 1 ≤ α, β ≤ N , d ≥ 0, by

Pα
β,d :=

∑
g,n≥0, 2g+n>0

k1,...,kn≥0∑n
j=1 kj=2g

ε2g

n!
Coef(a1)k1 ...(an)kn

(∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2cg,n+2(e

α ⊗ eβ ⊗⊗n
j=1eαj

)

)
n∏

j=1

u
αj

kj
.

The DR hierarchy is the following system of evolutionary PDEs:

∂uα

∂tβd
= ∂xP

α
β,d, 1 ≤ α, β ≤ N, d ≥ 0.(2.3)

Theorem 2.1. All the equations of the DR hierarchy are compatible with each other, namely,

∂

∂tβ2

d2

(
∂uα

∂tβ1

d1

)
=

∂

∂tβ1

d1

(
∂uα

∂tβ2

d2

)
, 1 ≤ α, β1, β2 ≤ N, d1, d2 ≥ 0.
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Proof. For F-CohFTs, the theorem is proved in [BR21, Theorem 5.1] (see more details in [ABLR21,
Theorem 2]), however, the existence of a unit is never used there. So the same proof works for
F-CohFTs without unit. □

Example 2.2. Consider the trivial F-CohFT given by V = C, e1 = e = 1 ∈ C = V , and

ctrivg,n+1(e
1 ⊗ e⊗n

1 ) := 1 ∈ H0(Mg,n+1).

Then the corresponding DR hierarchy is the KdV hierarchy [Bur15, Section 4.3.1] (we denote
ud := u1d and td := t1d)

∂u

∂td
= ∂xP

KdV
d ,

where

PKdV
0 = u, PKdV

1 =
u2

2
+
ε2

12
uxx, PKdV

2 =
u3

6
+
ε2

24
(2uuxx + u2x) +

ε4

240
uxxxx,

and a general formula for PKdV
d is

∂xP
KdV
d =

ε2d+2

2(2d+ 1)!!

[(
Ld+ 1

2

)
+
, L

]
, L = ∂2x + 2ε−2u.

3. A family of F-CohFTs without unit and the finiteness of the DR hierarchy

3.1. R-matrices. Let us briefly recall a group action on F-CohFTs without unit constructed
in [ABLR23, Section 4.1].

Let us fix a finite dimensional vector space V of dimension N and consider the group G+

of End(V )-valued formal power series of the form R(z) = Id +
∑

i≥1Riz
i. Let us denote by

R−1(z) the inverse element to R(z) and by R(z)t the transposed End(V ∗)-valued power series.
We refer to such an element of G+ as an R-matrix.

Let Γ be a stable graph of genus g with n marked legs (see [PPZ15, Section 0.2] for the
definition) and V (Γ), E(Γ) be its sets of vertices and edges, each vertex v ∈ V (Γ) marked with
a genus g(v) and with valence n(v). We denote by E[v] the set of edges incident to v. Let
ξΓ :

∏
v∈V (Γ)Mg(v),n(v) → Mg,n be the natural map whose image is the closure of the locus of

stable curves whose dual graph is Γ.

By stable tree we mean a stable graph Γ with the first Betti number b1(Γ) equal to zero.
Let STg,n+1 be the set of stable trees of genus g with n + 1 marked legs. Then T ∈ STg,n+1

can be seen as a rooted tree where the root is the vertex to which leg 1 is attached and each
edge e ∈ E(T ) is splitted into two half-edges e′ and e′′, where e′ is closer to the root and e′′

is farther from the root. Consider a function lT : V (T ) → Z≥1 that is uniquely determined by
the condition that its value on the root is equal to 1 and that if a vertex v is the mother of a
vertex v′, then lT (v

′) = lT (v) + 1. The number lT (v) is called the level of a vertex v ∈ V (T ).
The number deg(T ) := maxv∈V (T ) lT (v) is called the degree of T .

The action of R(z) ∈ G+ on an F-CohFT without unit cg,n+1 : V
∗ ⊗ V ⊗n → Heven(Mg,n+1)

is the system of maps
(3.1)

(R(z)c)g,n+1 :=
∑

T∈STg,n+1

ξT∗

 ∏
v∈V (T )

cg(v),n(v)R(−ψ1)
t

n+1∏
k=2

R−1(ψk)
∏

e∈E(T )

Id−R−1(ψe′)R(−ψe′′)

ψe′ + ψe′′

 .
In [ABLR23, Theorem 4.3] the authors proved that (R(z)c)g,n+1 is again an F-CohFT without
unit.
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3.2. DR hierarchies of finite type. Let N ≥ 2, V = CN , and e1, . . . , eN ∈ CN be the
standard basis in CN . Following [ABLR23, Section 4.4], consider the following F-TFT, param-
eterized by a vector G = (G1, . . . , GN) ∈ CN :

ctriv,Gg,n+1(e
i0 ⊗⊗n

j=1eij) :=

{
(Gi0)g, if i0 = i1 = . . . = in,

0, otherwise.

Theorem 3.1. Consider an arbitrary vector G = (G1, . . . , GN) ∈ CN and a strictly upper
triangular N × N matrix R1 such that R2

1 = 0. Then the DR hierarchy corresponding to the
F-CohFT without unit

(
(Id +R1z)c

triv,G
)
g,n+1

is of finite type, i.e., all the differential polyno-

mials Pα
β,d from (2.3) are polynomials in ε.

Proof. Since (Id +R1z)
−1 = Id−R1z, we have

(
(Id +R1z)c

triv,G
)
g,n+1

=
∑

T∈STg,n+1

ξT∗

 ∏
v∈V (T )

ctriv,Gg(v),n(v)(Id−Rt
1ψ1)

n+1∏
k=2

(Id−R1ψk)
∏

e∈E(T )

R1

 .
(3.2)

Note that in this formula each cg(v),n(v) is fed by a covector eα1(v) and vectors eα2(v), . . . , eαn(v)(v),

and the result is zero unless α1(v) = . . . = αn(v)(v). Suppose that this equality is satisfied and
denote α(v) := αi(v). Since the matrix R1 is strictly upper triangular, we see that the result is
zero unless α(v′) > α(v) if a vertex v is the mother of a vertex v′. We conclude that only stable
trees T with deg(T ) ≤ N can give a nontrivial contribution on the right-hand side of (3.2).

Consider the DR hierarchy corresponding to the F-CohFT without unit
(
(Id +R1z)c

triv,G
)
g,n+1

.

The coefficients of a differential polynomial Pα
β,d are determined by the integrals∫

DRg(−
∑n

j=1 aj ,0,a1,...,an)

λgψ
d
2

(
(Id +R1z)c

triv,G
)
g,n+2

(eα ⊗ eβ ⊗⊗n
j=1eαj

).

The contribution of a stable tree T ∈ STg,n+2 is given by∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2ξT∗

 ∏
v∈V (T )

ctriv,Gg(v),n(v)(Id−Rt
1ψ1)

n+1∏
k=2

(Id−R1ψk)
∏

e∈E(T )

R1

 =

=

∫
∏

v∈V (T ) Mg(v),n(v)

 ∏
v∈V (T )

ctriv,Gg(v),n(v)(Id−Rt
1ψ1)

n+1∏
k=2

(Id−R1ψk)
∏

e∈E(T )

R1

×

× ξ∗T

[
DRg

(
−

n∑
j=1

aj, 0, a1, . . . , an

)
λgψ

d
2

]
.

Denote by ṽ the vertex of T incident to the leg number 2. Using the splitting properties (2.1)
and (2.2), we see that this integral is equal to a linear combination of the products

∏
v∈V (T ) IT (v)

of integrals IT (v) of the form

IT (v) =

{∫
DRg(v)(b1,...,bn(v))

λg(v)
∏n(v)

i=1 ψ
li
i , if v ̸= ṽ,∫

DRg(v)(0,b2,...,bn(v))
λg(v)ψ

d
1

∏n(v)
i=1 ψ

li
i , if v = ṽ,

where 0 ≤ li ≤ 1. Degree counting immediately gives that IT (v) = 0 unless g(v)+
∑n(v)

i=1 (1−li) =
3 + δv,ṽd. This implies that IT (v) = 0 unless g(v) + |E[v]| ≤ 3 + δv,ṽd.

Lemma 3.2. Let N ≥ 2. Consider a rooted tree T (without half-edges) endowed with a function
g : V (T ) → Z≥0 and a chosen vertex ṽ ∈ V (T ) such that deg(T ) ≤ N and for any v ∈ V (T )
we have g(v) + |E[v]| ≤ 3 + δv,ṽd. Then

∑
v∈V (T ) g(v) ≤ (d+ 3)2N−1.
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Proof. Elementary combinatorial considerations show that a unique tree T̃ satisfying the con-
ditions from the statement of the lemma and having the maximal total genus

∑
v∈V (T ) g(v) can

be described as follows:

• deg(T̃ ) = N ;

• the root of T̃ is of genus 0 and has exactly 3 + d direct descendents;

• each vertex v with 2 ≤ lT̃ (v) ≤ N −1 is of genus 0 and has exactly 2 direct descendents;

• each vertex v with lT̃ (v) = N is of genus 2;

and we have
∑

v∈V (T̃ ) g(v) = (d+3)2N−1. Indeed, if a tree T has deg(T ) ≤ N − 1, then we can
attach a new vertex of genus 2 to a vertex of T of maximal level, probably having to decrease its
genus by 1, but the total genus increases after that. Then, if deg(T ) = N and there is a vertex
v ∈ V (T ) with lT (v) ≤ N −1 and g(v) ≥ 1, then one can increase the total genus by decreasing
the genus of v by one and attaching a new vertex of genus 2 to it. This shows that one should
look for a tree with the maximal total genus only among the trees T with deg(T ) = N and

such that g(v) = 0 if lT (v) ≤ N − 1, and g(v) = 2 if lT (v) = N . Clearly, T̃ has the maximal
number of vertices of level N among such trees. □

This lemma clearly completes the proof of the theorem. □

4. The primary flows in the case of rank 2

The goal of this section is to compute explicitly the primary flows ∂
∂tα0

of the DR hierarchy

from Theorem 3.1 in the case N = 2. So the matrix R1 has the form

R1 =

(
0 ξ
0 0

)
, ξ ∈ C.(4.1)

Theorem 4.1. For G = (G1, G2) ∈ C2 and R1 given by (4.1), consider the F-CohFT without
unit

(
(Id +R1z)c

triv,G
)
g,n+1

and the corresponding DR hierarchy.

1. After the Miura transformation

ũ1 = u1 + ξ
(u2)2

2
+
ε2

24
∂2x

(
ξG2u2 +

G1

1 + ξu2

)
, ũ2 = u2,(4.2)

the flows ∂
∂t10

and ∂
∂t20

of the DR hierarchy become

∂ũ1

∂t10
=∂x

[
ũ1

1 + ξũ2

]
,

∂ũ2

∂t10
=0,

∂ũ1

∂t20
=ξ∂x

[
ũ1ũ2

1 + ξũ2
− 1

2

(ũ1)2

(1 + ξũ2)2
− ε2G1

12

(((
ũ1

1 + ξũ2

)
x

1

1 + ξũ2

)
x

1

1 + ξũ2

)]
,

∂ũ2

∂t20
=ũ2x.

2. Moreover, we have ∂ũ2

∂t1d
= 0 and ∂ũ2

∂t2d
= ∂xP

KdV
d

∣∣
un=ũ2

n, ε 7→
√
G2ε

.

Proof. The differential polynomials Pα
β,d of our DR hierarchy are given by the integrals∫

DRg(−
∑n

j=1 aj ,0,a1,...,an)

λgψ
d
2

(
(Id +R1z)c

triv,G
)
g,n+2

(eα ⊗ eβ ⊗⊗n
j=1eαj

).(4.3)

Using formula (3.2), we express the class
(
(Id +R1z)c

triv,G
)
g,n+2

(eα ⊗ eβ ⊗⊗n
j=1eαj

) as a sum

over stable trees T from STg,n+2. As we already explained in the proof of Theorem 3.1, in
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0
...(−ξψe1)⊗n

e1

e1

e1 0

0

...(−ξψe1)⊗n

e1

e2e2

e1

ξe2 ⊗ e1

1
...(−ξψe1)⊗n

e1

e1 0

1

...(−ξψe1)⊗n

e1

e2

e1

ξe2 ⊗ e1

Figure 1. Stable trees contributing to P 1
1,0

formula (3.2), at each vertex v of a stable tree T , the class cg(v),n(v) is fed by a covector eα1(v)

and vectors eα2(v), . . . , eαn(v)(v), and the result is zero unless α1(v) = . . . = αn(v)(v). Moreover,

in order to get a nontrivial result, we should necessarily have α(v) < α(v′) for any two vertices v
and v′ with lT (v) < lT (v

′).

Computation of the differential polynomials P 2
β,d. In the computation of a differential polyno-

mial P 2
β,d, at the root v0 of T the class cg(v0),n(v0) is fed by the covector (Id − Rt

1ψ1)e
2 = e2.

If β = 1, then at some vertex v the class cg(v),n(v) is fed by the vector (Id − R1ψ2)e1 = e1,
which implies that the result is zero. Therefore, P 2

1,d = 0. If β = 2, then at some vertex v
the class cg(v),n(v) is fed by the vector (Id − R1ψ2)e2 = e2 − ξψ2e1. Feeding by e1, as in the
case β = 1, immediately gives zero. Therefore, cg(v),n(v) must be fed by e2, which immediately
implies that if the result is nonzero, then T consists of just one vertex and, thus,∫

DRg(−
∑n

j=1 aj ,0,a1,...,an)

λgψ
d
2

(
(Id +R1z)c

triv,G
)
g,n+2

(e2 ⊗ e2 ⊗⊗n
j=1eαj

) =

=

∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2c

triv,G
g,n+2(e

2 ⊗ e2 ⊗⊗n
j=1eαj

) =

=(G2)g
∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2 .

This shows that P 2
2,d = PKdV

d

∣∣
un=u2

n, ε 7→
√
G2ε

and completes the proof of Part 2 of the proposition.

Computation of the differential polynomial P 1
1,0. Using arguments analogous to the ones from

above, and also the degree counting argument from the proof of Theorem 3.1, it is easy to see
that the stable trees shown on Figure 1 are the only stable trees contributing to the integral (4.3)
with α = β = 1 and d = 0. On the figure, we put in a box the vector corresponding to the
second marked point, which also corresponds to the point of multiplicity zero in the double
ramification cycle.

Consider the contribution of the trees of genus 0. Note that
∫
M0,n+3

ψ1ψ2 · · ·ψn = n!. The

first tree of genus 0 on Figure 1 contributes to the integral∫
DR0(−

∑n+1
j=1 aj ,0,a1,...,an+1)

(
(Id +R1z)c

triv,G
)
0,n+3

(e1 ⊗ e⊗2
1 ⊗ e⊗n

2 )
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as (−ξ)nn!. The second tree of genus 0 on Figure 1 contributes to the integral∫
DR0(−

∑n+2
j=1 aj ,0,a1,...,an+2)

(
(Id +R1z)c

triv,G
)
0,n+4

(e1 ⊗ e1 ⊗ e
⊗(n+2)
2 )

as (
n+ 2

2

)
ξ

(∫
M0,n+3

ctriv,G0,n+3

(
e1 ⊗ e

⊗(n+2)
1

)
(−ξ)nψ3 · · ·ψn+2

)(∫
M0,3

ctriv,G0,3

(
e2 ⊗ e⊗2

2

))
=

=(−1)nξn+1 (n+ 2)!

2
,

where the binomial coefficient
(
n+2
2

)
is the number of nonisomorphic stable trees of the form

under consideration. Indeed, we see that the legs marked by 1 and 2 are attached to the root,
and the marking of the remaining n + 2 legs is uniquely determined by a choice of marking
of the two legs attached to the vertex of level 2, which gives the binomial coefficient

(
n+2
2

)
.

Therefore,

Coefε0P
1
1,0 =

u1 + ξ(u2)2

2

1 + ξu2
.

Consider now the contribution of the trees of genus 1 from Figure 1. The first tree of genus 1
on Figure 1 contributes to the integral∫

DR1(−
∑n

j=1 aj ,0,a1,...,an)

λ1
(
(Id +R1z)c

triv,G
)
0,n+2

(e1 ⊗ e1 ⊗ e⊗n
2 )

as

G1(−ξ)n
∫
DR1(−

∑n
j=1 aj ,0,a1,...,an)

λ1ψ3 · · ·ψn+2︸ ︷︷ ︸
Pn(a1,...,an):=

.

Note that Pn is a symmetric polynomial in a1, . . . , an of degree 2 satisfying

Pn|an=0 =

∫
DR1(−

∑n−1
j=1 aj ,0,a1,...,an−1,0)

λ1ψ3 · · ·ψn+2 =

=(n+ 1)

∫
DR1(−

∑n−1
j=1 aj ,0,a1,...,an−1)

λ1ψ3 · · ·ψn+1 =

=(n+ 1)Pn−1.

Therefore,
Pn

(n+ 1!)

∣∣∣∣
an=0

=
Pn−1

n!
,

which implies that there exist constants α and β such that

Pn

(n+ 1!)
= αm(2)(a1, . . . , an) + βm(1,1)(a1, . . . , an),

where, for a partition λ, we denote by mλ(a1, . . . , an) the monomial symmetric function (see,
e.g., [Mac95, Section 2]). In order to determine α and β, it is sufficient to compute P2. We
have

P2 =

∫
DR1(−a1−a2,0,a1,a2)

λ1ψ3ψ4 =

∫
DR1(−a1−a2,a1,a2)

λ1(ψ2 + ψ3).

Using that (see, e.g., [BR16, Section 4.1])∫
DR1(−b1−b2,b1,b2)

λ1ψ1 =
b21 + b22
24

,
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0 e2

−ξψe2

e2

e2 0
...(−ξψe1)⊗n

e1

−ξψe1

e1e1

0

0

...(−ξψe1)⊗n

e1

e2e2

e1

−ξψe1

ξe2 ⊗ e1

0

0

...(−ξψe1)⊗n

e1

e2

e1

e2

ξe2 ⊗ e1

0

0 0

...(−ξψe1)⊗n

e1

e2e2 e2e2

−ξψe1

ξe2 ⊗ e1 ξe2 ⊗ e1

0

0 0

...(−ξψe1)⊗n

e1

e2e2 e2e2

ξe2 ⊗ e1 ξe2 ⊗ e1

Figure 2. Stable trees of genus 0 contributing to P 1
2,0

we obtain

P2 =
1

24
(2(a1 + a2)

2 + a21 + a22) =
1

24
(3(a21 + a22) + 4a1a2).

Therefore, α = 1
48
, β = 1

36
, and

Pn =
(n+ 1)!

48
m(2) +

(n+ 1)!

36
m(1,1).(4.4)

Thus, the first tree of genus 1 on Figure 1 gives the following contribution to the differential
polynomial P 1

1,0:

ε2G1
∑
n≥1

(−ξ)nn(n+ 1)

48
u2xx(u

2)n−1 + ε2G1
∑
n≥2

(−ξ)n (n− 1)n(n+ 1)

72
(u2x)

2(u2)n−2 =

=− ε2
ξG1

24

u2xx
(1 + ξu2)3

+ ε2
ξ2G1

12

(u2x)
2

(1 + ξu2)4
.

The second tree of genus 1 on Figure 1 contributes to the integral∫
DR1(−

∑n+1
j=1 aj ,0,a1,...,an+1)

λ1
(
(Id +R1z)c

triv,G
)
0,n+3

(e1 ⊗ e1 ⊗ e
⊗(n+1)
2 )

as

G2(−1)nξn+1n!
n+1∑
j=1

∫
DR1(−aj ,aj)

λ1 =
G2(−1)nξn+1n!

24
m(2)(a1, . . . , an+1),

which gives the following contribution to the differential polynomial P 1
1,0:

ε2
ξG2

24

u2xx
1 + ξu2

.

This completes the computation of the differential polynomial P 1
1,0. It is clear that after the

Miura transformation (4.2) we obtain the formulas for the flow ∂
∂t10

in the variables ũ1, ũ2 from

the statement of the theorem.

Computation of the differential polynomial P 1
2,0. All the stable trees of genus 0 contributing to

the differential polynomial P 1
2,0 are shown on Figure 2, and their contributions are the following:
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1

−ξψe2

e2e2

1
...(−ξψe1)⊗n

e1

−ξψe1

e1

1

0

...(−ξψe1)⊗n

e1

e2e2

−ξψe1

ξe2 ⊗ e1

1

0

...(−ξψe1)⊗n

e1

e2e2

ξe2 ⊗ e1

0

1

...(−ξψe1)⊗n

e1

e2

e1

−ξψe1

ξe2 ⊗ e1

0

1

...(−ξψe1)⊗n

e1

e1

e2

ξe2 ⊗ e1

0

1 0

...(−ξψe1)⊗n

e1

e2 e2e2

−ξψe1

ξe2 ⊗ e1 ξe2 ⊗ e1

0

1 0

...(−ξψe1)⊗n

e1

e2 e2e2

ξe2 ⊗ e1 ξe2 ⊗ e1

0

0 1

...(−ξψe1)⊗n

e1

e2e2 e2

ξe2 ⊗ e1 ξe2 ⊗ e1

Figure 3. Stable trees of genus 1 contributing to P 1
2,0.

− ξ
(u2)2

2
, − ξ

(u1)2

2

1

(1 + ξu2)2
− ξ2

u1(u2)2

2

1

(1 + ξu2)2
,

ξu1u2
1

1 + ξu2
, − ξ3

(u2)4

8

1

(1 + ξu2)2
, ξ2

(u2)3

2

1

1 + ξu2
.

All the stable trees of genus 1 contributing to the differential polynomial P 1
2,0 are shown on

Figure 3. In order to compute the contributions of stable trees number 2, 3, and 4, we have to
compute the integral ∫

DR1(−
∑n+1

j=1 aj ,an+1,a1,...,an)

λ1ψ3 · · ·ψn+2.(4.5)

When an+1 = 0, we have already done that above, see equation (4.4). A computation in the
case of arbitrary an+1 is analogous, and we obtain∫

DR1(−
∑n+1

j=1 aj ,an+1,a1,...,an)

λ1ψ3 · · ·ψn+2 = (n+ 1)!

(
1

48
m(2) +

1

36
m(1,1) +

an+1

24
m(1) +

a2n+1

24

)
,

where mλ = mλ(a1, . . . , an). As a result, the contributions of the stable trees on Figure 3 to
Coefε2P

1
2,0 are the following:

tree number 1: − ξG2

24
u2xx
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2

−ξψe2

e2

2
...(−ξψe1)⊗n

e1

−ξψe1

1

1

...(−ξψe1)⊗n

e1

e2

−ξψe1

ξe2 ⊗ e1

1

1

...(−ξψe1)⊗n

e1

e2

ξe2 ⊗ e1

0

1 1

...(−ξψe1)⊗n

e1

e2 e2

−ξψe1

ξe2 ⊗ e1 ξe2 ⊗ e1

0

1 1

...(−ξψe1)⊗n

e1

e2 e2

ξe2 ⊗ e1 ξe2 ⊗ e1

Figure 4. Stable trees of genus 2 contributing to P 1
2,0.

trees number 2 and 3:
ξ2G1

8

(
u1 + ξ(u2)2

2

)
u2xx

(1 + ξu2)4
− ξ3G1

3

(
u1 + ξ(u2)2

2

)
(u2x)

2

(1 + ξu2)5

+
ξ2G1

4

(
u1 + ξ(u2)2

2

)
x
u2x

(1 + ξu2)4
− ξG1

12

(
u1 + ξ(u2)2

2

)
xx

(1 + ξu2)3

tree number 4:
ξG1

24

u2xx
(1 + ξu2)3

− ξ2G1

12

(u2x)
2

(1 + ξu2)4

trees number 5 and 7: − ξ2G2

24

(
u1 + ξ(u2)2

2

)
u2xx

(1 + ξu2)2

trees number 6 and 8: 0

tree number 9:
ξ2G2

24

u2u2xx
1 + ξu2

where for the trees number 6 and 8 we get zero, because DRg(0, . . . , 0) = (−1)gλg and λ2g = 0
for g ≥ 1.

All the stable trees of genus 2 contributing to the differential polynomial P 1
2,0 are shown on

Figure 4, and their contributions to Coefε4P
1
2,0 are the following:

tree number 1: 0

tree number 2: (G1)2
(
ξ2

288

u2xxxx
(1 + ξu2)5

− 29ξ3

1152

(u2xx)
2

(1 + ξu2)6
− 11ξ3

288

u2xxxu
2
x

(1 + ξu2)6

+
5ξ4

24

u2xx(u
2
x)

2

(1 + ξu2)7
− 49ξ5

288

(u2x)
4

(1 + ξu2)8

)
tree number 3: G1G2

(
ξ3

192

(u2xx)
2

(1 + ξu2)4
− ξ4

72

u2xx(u
2
x)

2

(1 + ξu2)5
+
ξ3

96

u2xxxu
2
x

(1 + ξu2)4
− ξ2

288

u2xxxx
(1 + ξu2)3

)
tree number 4: 0

tree number 5: − ξ3(G2)2

1152

(u2xx)
2

(1 + ξu2)2

tree number 6: 0
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where the formula for the contribution of the tree number 2 is based on the computation of the
integral

∫
DR2(−

∑n
i=1 ai,a1,...,an)

λ2ψ2 · · ·ψn+1 = (n+ 2)!

(
m(4)

6912
+

29m(2,2)

69120
+

11m(3,1)

34560
+
m(2,1,1)

1728
+

7m(1,1,1,1)

8640

)
,

(4.6)

withmλ = mλ(a1, . . . , an). This computation is similar to the computation of the integral (4.5).
The integral (4.6) is a homogeneous polynomial in a1, . . . , an of degree 4, which we denote by
Qn(a1, . . . , an). Then using the dilaton equation we observe that

Qn(a1, . . . , an−1, 0)

n+ 2
= Qn−1(a1, . . . , an−1),

which implies that

Qn(a1, . . . , an)

(n+ 2)!
= αm(4) + βm(2,2) + γm(3,1) + δm(2,1,1) + ζm(1,1,1,1),

for some constants α, β, γ, δ, ζ that do not depend on n. In order to determine them, it is
enough to compute the polynomial Q4: we did it using the formula for the intersection of a
psi-class with the DR cycle from [BSSZ15, Theorem 4] and with the help of Mathematica.

Collecting all the computed contributions to the differential polynomial P 1
2,0 and doing the

Miura transformation (4.2), again with the help of Mathematica, we obtain the equations for
the flow ∂

∂t20
in the variables ũ1, ũ2 from the statement of the theorem. □
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