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Abstract. The method of Chernoff approximation is a powerful and flexible tool of func-
tional analysis that in many cases allows expressing exp(tL) in terms of variable coefficients of
linear differential operator L. In this paper we prove a theorem that allows us to apply this
method to find the resolvent of operator L. We demonstrate this on the second order differential
operator. As a corollary, we obtain a new representation of the solution of an inhomogeneous
second order linear ordinary differential equation in terms of functions that are the coefficients
of this equation playing the role of parameters for the problem. For Chernoff function based
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1 Introduction

Linear operators and their resolvents are one of the most basic and important objects in func-
tional analysis. We use standard definitions, but recall them to make the paper self-contained.
They are available from any textbook on the subject, e.g. [3].

Linear operators. We say that a linear operator (L,D(L)) in Banach space F over the field
F ∈ {R,C} is given iff D(L) is a linear subspace in F , and L : D(L) → F is a function that
satisfies L(f + g) = L(f) +L(g), L(af) = aL(f) for all f, g ∈ D(L) and all a ∈ F. It is possible
to prove that L is continuous on D(L) iff ‖L‖ = supf∈D(L),‖f‖=1 ‖Lf‖ <∞, in this case L is also
called bounded. Operator (L,D(L)) is called closed iff its graph GL = {(f, Lf)|f ∈ D(L)} is a
closed subset in F × F , here (f, Lf) denotes the ordered pair with first element f and second
element Lf , and topology in F×F is provided by the standard norm ‖(x, y)‖ = (‖x‖2+‖y‖2)1/2.
If the closure of GL is a graph of a single-valued function, then this function is linear and is
called the closure of L, defined as GL = GL; operator (L,D(L)) in this case is called closable.
Operator (L,D(L)) is called densely defined iff D(L) is dense in F .

Resolvents. Let’s consider a linear operator (L,D(L)) in Banach space F over the field C,
and use the symbol I to denote the identity operator with D(I) = F . Number λ ∈ C is called
a regular point (also regular number) for (L,D(L)) iff both conditions hold: (λI−L) : D(L)→
F is a bijection, and linear operator (λI − L)−1 : F → D(L) is bounded. The set of all
regular points for (L,D(L)) is denoted ρ(L) and is called the resolvent set for (L,D(L)), the
set σ(L) = C \ ρ(L) is called the spectrum of (L,D(L)), and the operator (λI − L)−1 with
D((λI − L)−1) = F is called the resolvent operator (or just the resolvent) for (L,D(L)). If we
already know that (L,D(L)) is closed, and that (λI−L) : D(L)→ F is a bijection, then linear
operator (λI − L)−1 : F → D(L) is automatically bounded as a corollary from the Banach
closed graph theorem. It is possible to prove that if (L,D(L)) is not closed, then it has no
regular points and σ(L) = C, this is why resolvents are defined only for closed linear operators.

The straightforward way to find the resolvent is to study (for given λ ∈ C) if the equation
λf − Lf = g has for each g ∈ F a unique solution f ∈ D(L). If we know that (L,D(L)) is
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closed then this is enough, but if not then we must also check that f depends on g continuously.
In case of success we have f = (λI −L)−1g. For example, if F is one of the subsets of space of
all functions f : R→ C, and Lf = af ′′ + bf ′ + cf is a differential operator defined by constant
coefficients a, b, c ∈ C, then this task is not difficult. Indeed λf − Lf = g is a second order
differential equation λf(x) − af ′′(x) − bf ′(x) − cf(x) = g(x), x ∈ R, with only one variable
coefficient g, and there are standard formulas in ODE books to solve this equation using the
variation of parameters method. But if a, b, c are not constants, but functions that depend on
x then the situation becomes much worse because there are no standard formulas for solution
of equation λf(x)− a(x)f ′′(x)− b(x)f ′(x)− c(x)f(x) = g(x), x ∈ R.

However, if (L,D(L)) holds one additional property, then we can use a non-straightforward
method of finding the resolvent, this method is the main result of the paper. The property is
that (L,D(L)) is the generator of a C0-semigroup, which informally means that exponent etL

exists as a linear bounded operator, and depends on t ∈ [0,+∞) continuously in some sense. If
(L,D(L)) is a linear bounded operator with D(L) = F then this condition holds automatically,
but if (L,D(L)) is not bounded then there is a beautiful theory around it, see e.g. [1, 2, 8, 14].
In most interesting cases (e.g. if L is a differential operator with variable coefficients) it is
difficult to calculate etL directly because power series etL =

∑∞
n=0(tL)n/n! is useless in case of

unbounded operator L. Yet it is possible to find etL approximately using the Chernoff theorem,
this theorem will be discussed below. After that, having etL we calculate the resolvent via well
known [8] formula (λI − L)−1f =

∫∞
0
e−λtetLfdt. The method may look complicated because

of the many steps it has, however all these steps are supported by known methods, and so our
proposed method may still be much simpler than considering the equation λf − Lf = g.

Brief history and overview of the results obtained up to 2017 in constructing Chernoff
approximations of etL for several classes of operators L can be found in [5]. Several papers
on the topic showing the diversity of cases studied are [24, 25, 26, 27, 28, 29, 30, 31], see also
[22, 32]. Speed of convergence of Chernoff approximations were studied in [33, 23, 13, 15, 12, 34,
35, 7]. It is also interesting to compare an approach to Feynman-Kac formula without Chernoff
approximations [9] with the way of obtaining Feynman-Kac formulas as a corollary of Feynman
formulas which were proven with the use of the Chernoff theorem [4]. See also paper [17] which
numerically investigates the efficiency of the Monte Carlo method based on the application of
the Chernoff theorem, and papers [18, 18] that mathematically substantiate such an approach
to the Chernoff approximations.

Summing up, we can say that the method of Chernoff approximation is an extremely effective
tool for expressing etL in terms of variable coefficients of operator L. The present paper shows
that this method can be also be used for expressing (λI−L)−1 in terms of variable coefficients of
operator L, and for finding the solution of the corresponding differential equation λf −Lf = g.
As an example we consider second order linear ODE with variable coefficients.

Limits of multiple integral as multiplicity tends to infinity (such expressions are called
Feynman formulas [25]) are one of the ways (which actually was used originally by Richard
Feynman [10, 11]) to define Feynman path integral [20]. So in theorem 5 a solution of an ODE
is in the first time in history of science represented via Feynman formula, which can also be
interpreted as Feynman integral if one wishes to do. Such theoretical step is novel and may
lead to some unexpected applications in the future.

2 Operator semigroups and their Chernoff approxima-

tions

Let us recall some relevant definitions and facts of C0-semigroup theory following [8].
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Definition 1. Let F be a Banach space over the field R or C. Let L (F) be the set of all
bounded linear operators in F . Suppose we have a mapping V : [0,+∞) → L (F), i.e. V (t)
is a bounded linear operator V (t) : F → F for each t ≥ 0. The mapping V , or equivalently
the family (V (t))t≥0, is called a strongly continuous one-parameter semigroup of linear bounded
operators (or just a C0-semigroup) iff it satisfies the following three conditions:

1) V (0) is the identity operator I, i.e. V (0)ϕ = ϕ for each ϕ ∈ F ;
2) V maps the addition of numbers in [0,+∞) into the composition of operators in L (F),

i.e. for all t ≥ 0 and all s ≥ 0 we have V (t + s) = V (t) ◦ V (s), where for each ϕ ∈ F the
notation (A ◦B)(ϕ) = A(B(ϕ)) = ABϕ is used;

3) V is continuous with respect to the strong operator topology in L (F), i.e. for all ϕ ∈ F
vector V (t)ϕ depends on t continuously, i.e. the function [0,+∞) 3 t 7−→ V (t)ϕ ∈ F is
continuous.

Remark 1. The definition of a C0-group (V (t))t∈R is obtained by substituting [0,+∞) with R
in the definition above.

Definition 2. Let (V (t))t≥0 be a C0-semigroup in Banach space F . Its infinitesimal generator
(or just generator) is defined as the operator L : D(L)→ F with the domain

D(L) =

{
ϕ ∈ F : there exists a limit lim

t→+0

V (t)ϕ− ϕ
t

}
⊂ F ,

and

Lϕ = lim
t→+0

V (t)ϕ− ϕ
t

.

Remark 2. It is known [8] that for each C0-semigroup (V (t))t≥0 in Banach space F , the set
D(L) is a dense linear subspace of F . Moreover, (L,D(L)) is a closed linear operator that
uniquely defines the semigroup (V (t))t≥0. Also for each C0-semigroup (V (t))t≥0 in Banach
space there exist constants M ≥ 1 and ω ∈ R such that ‖V (t)‖ ≤Meωt for all t ≥ 0.

Remark 3. Very often the notation V (t) = etL is used. This is a good notation for several
reasons. First, properties e0·L = I and e(t+s)L = etLesL are consistent with the case when L
is a number or a matrix. Second, if L is a bounded linear operator then the exponent can be
defined via the standard power series etL =

∑∞
n=0(tL)n/n! that converges in the operator norm.

Finally, in general case we have etLf = (I + tL)f + o(t) for all f ∈ D(L) which again retains
properties of the exponent in number and matrix case.

Now we are ready to state the Chernoff theorem. From several options (see [8, 6, 3, 16]),
we choose the one given in [3] (in equivalent formulation):

Theorem 1 (P.R. Chernoff (1968), cf. [8, 6, 3, 16]). Suppose that the following three
conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is given, such that for
some w ≥ 0 the inequality ‖etL‖ ≤ ewt holds for all t ≥ 0.

2. There exists a strongly continuous mapping S : [0,+∞)→ L (F) such that S(0) = I and
the inequality ‖S(t)‖ ≤ ewt holds for all t ≥ 0.

3. There exists a dense linear subspace D ⊂ F such that for all f ∈ D there exists a limit
S ′(0)f := limt→+0(S(t)f − f)/t. Moreover, S ′(0) on D has a closure that coincides with
the generator (L,D(L)).

Then the following statement holds:
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(C) for every f ∈ F , as n → ∞ we have S(t/n)nf → etLf locally uniformly with respect to
t ≥ 0, i.e. for each T > 0 and each f ∈ F we have

lim
n→∞

sup
t∈[0,T ]

‖S(t/n)nf − etLf‖ = 0.

Above S(t/n)n = S(t/n) ◦ · · · ◦ S(t/n)︸ ︷︷ ︸
n

is the composition of n copies of linear bounded operator

S(t/n) defined everywhere on F .

Definition 3. Let C0-semigroup (etL)t≥0 with generator L in Banach space F be given. The
mapping S : [0,+∞) → L (F) is called a Chernoff function for operator L iff it satisfies the
condition (C) of Chernoff theorem 1. In this case expressions S(t/n)n are called Chernoff
approximations to the semigroup etL.

There is also a variant of the Chernoff theorem that allows us to prove the existence of the
semigroup.

Theorem 2. (Chernoff-type theorem, corollary 5.3 from theorem 5.2 in [8]) Let F be a Banach
space, and L (F) be the space of all linear bounded operators on F . Suppose there is a function
S : [0,+∞)→ L (F), meeting the condition S(0) = I, where I is the identity operator. Suppose
there are numbers M ≥ 1 and ω ∈ R such that ‖S(t)k‖ ≤ Mekωt for every t ≥ 0 and every

k ∈ N. Suppose the limit limt→+0
S(t)ϕ−ϕ

t
=: Lϕ exists for every ϕ ∈ D ⊂ F , where D is a dense

subspace of F . Suppose there is a number λ0 > ω such that (λ0I − L)(D) is a dense subspace
of F .

Then the closure L of the operator L is a generator of a strongly continuous semigroup of
operators (eL)t≥0 given by the formula eLϕ = limn→∞ S(t/n)nϕ where the limit exists for every

ϕ ∈ F and is uniform with respect to t ∈ [0, T ] for every T > 0. Moreover (eL)t≥0 satisfies the

estimate ‖eL‖ ≤Meωt for every t ≥ 0.

Remark 4. There are several theorems that help to find out if some linear operator (or the
closure of it) generates a C0-semigroup. Most general are Hille-Yosida theorem and Feller-
Miyadera-Phillips theorem. Unfortunately both heavily use properties of the resolvent which
is a kind of circulus vitiosus because we start all this activity to find the resolvent but need its
properties to do it.

However there are several results that only use properties of the operator to prove that it
generates a C0-semigroup:

� Stone’s generation theorem: if A is a self-adjoint operator in Hilbert space, then iA
generates a C0-semigroup; even more, this is a C0-group of unitary operators.

� Lumer-Phillips theorem: linear, closed, densely defined in Banach space, dissipative oper-
ator A with a property that A−λ0I is surjective for some λ0 > 0, generates a C0-semigroup
of contraction operators.

� A. Yu. Neklyudov’s inversion of Chernoff’s theorem [21].

Remark 5. Chernoff’s theorem is a deep result of functional analysis and is designed for dealing
with infinite-dimensional spaces F . However, it can be illustrated in one-dimensional setting in
two ways, which helps to build intuition. First, one-dimensional version of Chernoff’s theorem,
when F = L (F) = R, says that if s : [0,+∞)→ R, l ∈ R and s(t) = 1+tl+o(t) as t→ 0, then
limn→∞(s(t/n))n = etl, which is a simple fact of calculus. Second, one can see that Chernoff’s
theorem is an infinite-dimensional analogue of the forward Euler method for solving ordinary
differential equations numerically.
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3 Main result

Theorem 3. Let F be real or complex Banach space, and let L (F) be the set of all linear
bounded operators in F . Suppose that linear operator L : F ⊃ D(L) → F generates C0-
semigroup (etL)t≥0 satisfying for some constants M ≥ 1 and ω ≥ 0 inequality ‖etL‖ ≤ Meωt

for all t ≥ 0. Suppose that function S : [0,+∞) → L (F) is given and ‖S(t)k‖ ≤ Meωtk

for all t ≥ 0 and all k = 1, 2, 3, . . . Let us denote the resolvent of (L,D(L)) by the symbol
Rλ = (λI−L)−1 for all λ ∈ ρ(L). Suppose that the number λ ∈ C is given and Reλ > ω. Then
λ ∈ ρ(L) and:

1. If for all T > 0 we have limn→∞ supt∈[0,T ]
∥∥etLf − (S(t/n))nf

∥∥ = 0 for all f ∈ F , then
for all f ∈ F we have

lim
n→∞

∥∥∥∥Rλf −
∫ ∞
0

e−λt(S(t/n))nfdt

∥∥∥∥ = 0. (1)

2. If for all T > 0 we have limn→∞ supt∈[0,T ]
∥∥etL − (S(t/n))n

∥∥ = 0, then we have

lim
n→∞

∥∥∥∥Rλ −
∫ ∞
0

e−λt(S(t/n))ndt

∥∥∥∥ = 0. (2)

Proof. Integrals in (1) and (2) can be understood as improper Riemann integrals because for
each n integrands are continuous functions of t. Moreover ‖e−λt(S(t/n))n‖ ≤ e−tReλMe(t/n)ωn =
Met(ω−Reλ) with ω − Reλ < 0, so both integrals converge. Theorem II.1.10 from [8] says that
λ ∈ ρ(L) and Rλf =

∫∞
0
e−λtetLfdt for each f ∈ F with ‖Rλ‖ ≤M/(Reλ− ω).

Let us prove item 1. Suppose ε > 0 and f ∈ F are given. Let us prove that there exists
n0 ∈ N such that for all n > n0 the estimate

∥∥Rλf −
∫∞
0
e−λt(S(t/n))nfdt

∥∥ < ε holds.
Integral in (1) and

∫∞
0
e−λtetLfdt both converge hence the integral on the right hand side

of the equality

Rλf −
∫ ∞
0

e−λt(S(t/n))nfdt =

∫ ∞
0

e−λt(etLf − (S(t/n))nf)dt

converges. Moreover, it convergences uniformly in n ∈ N due to the estimate

‖e−λt(etL−(S(t/n))n))‖ ≤ e−Reλt(‖etL‖+‖(S(t/n))n‖) ≤ e−Reλt(Meωt+Me(t/n)ωn)) ≤ 2Met(ω−Reλ)

with ω −Reλ < 0.
Let us use the so-called ε/2-method to prove that

∫∞
0

< ε, using representation
∫∞
0

=∫ T
0

+
∫∞
T

. First, using ε, we find such T > 0 that
∫∞
T
≤ ε/2 for all n, and then for this T we

find such n0 that for all n > n0 we have
∫ T
0
< ε/2. This will give us

∫∞
0
< ε. Indeed, we have∥∥∥∥∫ ∞

T

e−λt(etLf − (S(t/n))nf)dt

∥∥∥∥ ≤ ∫ ∞
T

2Met(ω−Reλ)dt = 2M
1

Reλ− ω
eT (ω−Reλ) ≤ ε/2

for all n ∈ N and all T satisfying inequality T ≥ max
(

0, 1
Reλ−ω ln 4M

(Reλ−ω)ε

)
. Suppose that such

number T is selected.
Next, thanks to the conditions of the theorem we have limn→∞ supt∈[0,T ]

∥∥etLf − (S(t/n))nf
∥∥ =

0, so there exists n0 such that for all n > n0, we have∥∥∥∥∫ T

0

e−λt(etLf − (S(t/n))nf)dt

∥∥∥∥ ≤ ∫ T

0

e−tReλ‖etLf − (S(t/n))nf‖dt ≤

≤ T max
t∈[0,T ]

e−tReλ sup
t∈[0,T ]

∥∥etLf − (S(t/n))nf
∥∥ < ε/2.
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So we proved that for arbitrary ε > 0 there exists n0 such that for all n > n0 we have∥∥∥∥Rλf −
∫ ∞
0

e−λt(S(t/n))nfdt

∥∥∥∥ < ε.

Item 1 is proved. Proof of item 2 is obtained by deleting f from the proof of item 1.

4 Corollary: Feynman formula for the resolvent

Definition 4. Consider functions a, b, c : R → R on R. Assume that a(x) > 0 for all x ∈ R.
Assume that there exists such β ∈ (0, 1] that function c is bounded and Hölder continuous with
Hölder exponent β, and functions a, x 7→ 1/a(x), b are bounded and Hölder continuous with
Hölder exponent β with derivatives of order one and two.

Consider Banach space C0(R,R) of all continuous functions f : R→ R vanishing at infinity
(i.e. lim‖x‖→∞ f(x) = 0), with the uniform norm ‖f‖ = supx∈R |f(x)|. Consider space C2

c (R,R)
of all compactly-supported functions that are continuous with derivatives of order one and two;
note that this space is a dense linear subspace in C0(R,R).

For all f ∈ C2
c (R,R) define linear operator H via the formula

(Hf)(x) = a(x)f ′′(x) + b(x)f ′(x) + b(x)f(x). (3)

Assume that the closure (H,D(H)) of operator H : D(H) = C2
c (R,R) → C0(R,R) exists

and generates a C0-semigroup (etH)t≥0 in C0(R,R); this assumption is fulfilled, e.g. if a(x) ≥ a0
for some constant a0 > 0, and b, c only satisfy already mentioned conditions. Now operator
(H,D(H)) is well defined.

Remark 6. Following [4], let us consider operator-valued functions S1, S2, S3, S that are defined
on [0,∞) and take values in L (C0(R,R)). For all x, y ∈ R, t > 0 define

(S1(t)f)(x) =
1√

4πta(x)

∫
R

exp

(
−(x− y)2

4ta(x)

)
f(y)dy,

(S2(t)f)(x) =
1√

4πta(x)

∫
R

exp

(
−(x− y)2

4ta(x)
− b(x)(x− y)

2a(x)

)
f(y)dy,

(S3(t)f)(x) = exp

(
t

(
c(x)− b(x)2

4a(x)

))
f(x), S(t) = S3(t)S2(t). (4)

It is proved in [4] that for all f ∈ C2
c (R,R) and t→ 0 we have

(S1(t)f)(x) = f(x) + ta(x)f ′′(x) + o(t),

(S(t)f)(x) = f(x) + t[a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x)] + o(t),

and inequality ‖S(t)‖ ≤ ew·t holds for all t ≥ 0 with w = max(0, supx∈RC(x)). Operator H
generates a C0-semigroup, so all conditions of the Chernoff theorem are fulfilled. Hence

(etHf)(x) =
(

lim
n→∞

S(t/n)nf
)

(x), for all t > 0, x ∈ R, f ∈ C0(R,R)

locally uniformly in t, i.e. for all T > 0 we have limn→∞ supt∈[0,T ]

∥∥∥etHf − (S(t/n))nf
∥∥∥ = 0.

The expression for S(t/n)nf can be rewritten as follows:

(etHf)(x0) = lim
n→∞

∫
R
· · ·
∫
R︸ ︷︷ ︸

n

exp

(
t

n

n∑
j=1

(
c(xj−1)−

b(xj−1)
2

4a(xj−1)

))
exp

(
n∑
j=1

b(xj−1)(xj − xj−1)
2a(xj−1)

)
×
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×
( √

n√
4πt

)n(n−1∏
j=0

a(xj)

)−1/2
exp

(
− n

4t

n−1∑
j=0

(xj − xj+1)
2

a(xj)

)
f(xn)dx1 . . . dxn.

Now we can apply theorem 3 and obtain a formula for the resolvent of H.

Theorem 4. Under notation and assumptions from definition 4 and remark 6, the resolvent
Rλ = (λI − H)−1 is given for all λ ∈ C satisfying Reλ > w, all g ∈ C0(R,R), all x0 ∈ R by
the following formula:

(Rλg)(x0) = lim
n→∞

∫ ∞
0

e−λt

[∫
R
· · ·
∫
R︸ ︷︷ ︸

n

exp

(
t

n

n∑
j=1

(
c(xj−1)−

b(xj−1)
2

4a(xj−1)

))
exp

(
n∑
j=1

b(xj−1)(xj − xj−1)
2a(xj−1)

)
×

×
( √

n√
4πt

)n(n−1∏
j=0

a(xj)

)−1/2
exp

(
− n

4t

n−1∑
j=0

(xj − xj+1)
2

a(xj)

)
g(xn)dx1 . . . dxn

]
dt,

where the limit lim
n→∞

exists uniformly in x0 ∈ R.

Proof. Let us check conditions of theorem 3. Set F = C0(R,R) with the uniform norm ‖f‖ =
supx∈R. Consider L = H defined via (3), D(L) = D(H), ω = w, M = 1. Consider S(t)
defined in (4). We already have ‖S(t)‖ ≤ ewt, which implies ‖S(t)k‖ ≤ ewtk. Condition

limn→∞ supt∈[0,T ]

∥∥∥etHf − (S(t/n))nf
∥∥∥ = 0 for all f ∈ F and all T > 0 is true thanks to [4],

where the Chernoff theorem is used. The proof is finished due to item 1 of theorem 3.

Remark 7. Note that for an arbitrary linear operator (L,D(L)) the resolvent (λI −L)−1 and
the semigroup etL, if they exist, are defined by (L,D(L)) uniquely. Meanwhile, there are many
Chernoff functions for the same operator (L,D(L)), so there are many Chernoff approximations
for (λI − L)−1 and etL. This gives us some freedom in constructing such approximations. The
representation for the resolvent proposed in theorem 4 is only one of the representations that
can be obtained via the Chernoff theorem.

5 Corollary: representing solution of ODEs via Fynman

formula

There is no standard well known method of expressing the solution of ODE −a(x)f ′′(x) −
b(x)f ′(x)−c(x)f(x)+λf(x) = g(x), x ∈ R in terms of variable coefficients a, b, c, g and constant
λ. Meanwhile, our method gives a formula for the solution, because f = (λI−L)−1g for L given
by (Lf)(x) = a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x). We will rewrite λf −Lf = g as Lf −λf = −g
because it is easier to follow the idea. Please allow us to make the statement of the theorem a
bit wordy to keep it self-contained.

Theorem 5. Consider second order ordinary differential equation for function f : R→ R

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R, (5)

where functions a, b, c, g : R → R are known parameters and number λ ∈ C is also a known
parameter. Assume that there exists constant a0 > 0 such that a(x) > a0 for all x ∈ R. Assume
that there exists β ∈ (0, 1] such that function c is bounded and Hölder continuous with Hölder
exponent β, and functions a, x 7→ 1/a(x), b are bounded and Hölder continuous with Hölder
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exponent β with derivatives of order one and two. Assume that function g is continuous and
vanishes at infinity. Assume that R 3 λ > max(0, supx∈R c(x)).

Then for (5) there exists a unique continuous and vanishing at infinity solution f given for
all x0 ∈ R by the formula

f(x0) = lim
n→∞

∫ ∞
0

e−λt

[∫
R
· · ·
∫
R︸ ︷︷ ︸

n

exp

(
t

n

n∑
j=1

(
c(xj−1)−

b(xj−1)
2

4a(xj−1)

))
exp

(
n∑
j=1

b(xj−1)(xj − xj−1)
2a(xj−1)

)
×

×
( √

n√
4πt

)n(n−1∏
j=0

a(xj)

)−1/2
exp

(
− n

4t

n−1∑
j=0

(xj − xj+1)
2

a(xj)

)
g(xn)dx1 . . . dxn

]
dt,

where the limit lim
n→∞

exists uniformly in x0 ∈ R.

Proof. In theorem 4 set f = Rλg.

Remark 8. This reasoning also works in the multi-dimensional situation for x ∈ Rd, where we
have an elliptic PDE instead of ODE.

6 Corollary: translation-based formula as a method of

solving ODEs

Another Chernoff approximations for the same semigroup are known, these approximations do
not involve multiple integrals but use multiple shifts instead [30]. For these approximations
error bounds are known. Rate of convergence of Chernoff approximations is given in [13]
for the general case of arbitary semigroup, and also in this particular case of translation-
based approximations [12] for the semigroup that is discussed in the next theorem. The word
”translation” is used because for a(x) = a0 ≡ const operator f 7→ [x 7→ f(x + 2

√
a(x)t)] is

indeed a translation (shift) of f by the value 2
√
a0t.

Let us use symbol UCb(R) to denote Banach space of all bounded and uniformly continuous
functions f : R→ R with the uniform norm ‖f‖ = supx∈R |f(x)|. Let us use symbol C∞b (R) for
the subspace of UCb(R) consisting of all infinitely differentible functions that are bounded and
have bounded derivatives of all orders.

Theorem 6. Suppose that functions a, b, c ∈ UCb(R) are bounded with their derivatives up to
order 3, and there exists such a constant a0 > 0 that estimate infx∈R a(x) ≥ a0 > 0 is satisfied
for all x ∈ R. For each function φ ∈ C∞b (R) = D(A) define Aφ = aφ′′ + bφ′ + cφ. For each
t ≥ 0, each x ∈ R and each f ∈ UCb(R) define

(S(t)f)(x) =
1

4
f
(
x+ 2

√
a(x)t

)
+

1

4
f
(
x− 2

√
a(x)t

)
+

1

2
f
(
x+ 2b(x)t

)
+ tc(x)f(x). (6)

Assume also that R 3 λ > supx∈R |c(x)| = ‖c‖. Then:
1. Closure A of operator A generates a C0-semigroup in UCb(R).
2. For each g ∈ UCb(R) the solution f : R→ R of the equation

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R, (7)

exists, is unique in UCb(R) and is given for all x ∈ R by the formula

f(x) =

∫ ∞
0

e−λt
(
eAg
)

(x)dt = lim
n→∞

∫ ∞
0

e−λt ((S(t/n))ng) (x)dt, (8)
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where S(t/n) is obtained by substitution of t with t/n in (6), and (S(t/n))n is the composition
of n copies of linear bounded operator S(t/n).

Suppose additionally that function g is bounded with derivatives up to order 5. Then:
3. There exist nonnegative constants C0, C1, . . . , C4 such that for all t > 0 and all n ∈ N

the following inequality holds:

‖S(t/n)ng − etAg‖ ≤ t2e‖c‖t

n

(
C0‖g‖+ C1‖g′‖+ C2‖g′′‖+ C3‖g′′′‖+ C4‖g(IV )‖

)
. (9)

4. Error bound in (8) for all n ∈ N is given by inequality

sup
x∈R

∣∣∣∣f(x)−
∫ ∞
0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg
n · (λ− ‖c‖)3

,

where Cg = C0‖g‖+ C1‖g′‖+ C2‖g′′‖+ C3‖g′′′‖+ C4‖g(IV )‖.
5. Integral in item 2 can be calculated over [0, T ] instead of [0,∞) with controlled level of

error. This means that for each ε > 0 there exists T = max
(

0, 1
λ−‖c‖ ln 2

(λ−‖c‖)ε

)
such that for

all n ∈ N we have

sup
x∈R

∣∣∣∣f(x)−
∫ T

0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg
n · (λ− ‖c‖)3

+ ε.

Proof. Item 1 follows from theorem 4.2 in [12]. Item 2 is a particular case of the main result of
the paper, theorem 3. Item 3 follows is example 4.2 in [12]. Item 4 follows from items 2 and 3
with simple estimate∥∥∥∥∫ ∞

0

e−λt
(
eAg
)

(x)dt−
∫ ∞
0

e−λt ((S(t/n))ng) (x)dt

∥∥∥∥ ≤
≤
∫ ∞
0

e−λt
∥∥∥eAg − (S(t/n))ng

∥∥∥ dt ≤ ∫ ∞
0

e(‖c‖−λ)t
t2

n
Cgdt =

2Cg
n · (λ− ‖c‖)3

.

Item 5 (by repeating the reasoning in the first part of the proof of theorem 3) folows from item

4 and the well known fact that the semigroup (etA)t≥0 is a quasi-contraction, i.e. in estimate

for norm ‖etA‖ ≤Meωt it is possible to set M = 1, ω = ‖c‖.

Remark 9. Independently of Chernoff function used (is it based on integral operators as in
theorem 5 or on translation operators as in theorem 6), Chernoff approximations are allowing
to calculate value of the solution in only one point of the domain of solution (in one point x ∈ R
in our examples). Meanwhile methods based on a computational grid calculate values of the
solution in all points of the computational grid. Moreover, values of Chernoff approximations
at different points of the domain can be calculated in parallel, using multi-core processors and
GPU which is an advantage of this approach.
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