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Abstract—The set of vertices of a graph is called distance-k independent if the distance
between any two of its vertices is greater than some integer k ≥ 1. In this paper, we de-
scribe n-vertex trees with a given diameter d that have the maximum and minimum possible
number of distance-k independent sets among all such trees. The maximum problem is solvable
for the case of 1 < k < d ≤ 5. The minimum problem is much simpler and can be solved for
all 1 < k < d < n.
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INTRODUCTION

An independent set of a graph is an arbitrary subset of its pairwise nonadjacent vertices.
A Distance-k Independent Set (abbreviated as k-DIS) of a graph is a subset of its vertices any
two of which are at a distance of more than k ≥ 1 from each other. In particular, a 1-DIS is an or-
dinary independent set. The diameter diam (G) of a connected graph G is the maximum possible
distance between two of its vertices. By ik(G) we denote the number of different k-DIS’s that the
graph G contains. An n-vertex tree of diameter d is said to be (ik, d, n)-maximal ((ik, d, n)-minimal)
if it contains the maximally (minimum) possible number of k-DIS’s among all such trees.

We denote by Sd,n the n-vertex tree of diameter d obtained from the path Pd by attach-
ing n− d leaves to one of its ends. Obviously, the star Sn isomorphic to S2,n is the only (i1, 2, n)-
maximal tree. It is shown in [1] that for all 2 < d < n the only (i1, d, n)-maximal tree is the
graph Sd,n. On the other hand, (i1, d, n)-minimal trees are much more complicated, and the prob-
lem of describing them in the case of d ≥ 8 remains open. The paper [2] describes (i1, d, n)-minimal
trees for d ≤ 4 and an arbitrary n, as well as for d = 5 and all sufficiently large n. Some important
properties of (i1, d, n)-minimal trees for d ≥ 6 are proved and the structure of (i1, 6, n)-minimal trees
is partially described in [3]. The recent paper [4] describes (i1, 6, n)-minimal and (i1, 7, n)-minimal
trees for n > 160 and n > 400, respectively.

To date, relatively few results related to k-DIS’s in graphs are known. In [5–9], estimates were
obtained for the number of distance-k independence of a graph (i.e., for the largest cardinality of
its k" DIS). The k-DIS’s of a simple path Pn are listed under some additional constraints in [10].

In this paper we study (ik, d, n)-maximal and (ik, d, n)-minimal trees in the case of k ≥ 2. It
is clear that for k ≥ d each n-vertex tree of diameter d contains exactly n + 1 k-DIS’s (in this
case, each k-DIS contains at most one vertex of the tree), so only the nontrivial case of k < d is of
interest. For all 1 < k < d ≤ 5 and n ≥ 120, we find the (ik, d, n)-maximal tree T̂k,d,n and prove
that it is unique. In addition, for all 1 < k < d < n, the (ik, d, n)-minimal tree Tk,d,n is found and
all triples (k, d, n) for which this tree is unique are indicated.
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Fig. 1. Trees M8 and M3,1
2,0,0,2.

1. SOME DEFINITIONS AND NOTATION

As usual, N [v] denotes the closed neighborhood of vertex v, i.e., a set consisting of v and all
vertices adjacent to it. For s ≥ 1 we denote by Ns[v] the set of all vertices located at a distance of
at most s from vertex v.

A vertex of a tree T is called preleaf if it is adjacent to at least one of its leaves and central if it
is located at a distance of at most

⌊
diam (T )+1

2

⌋
from all its leaves. As is well known, trees of even

diameter contain exactly one central vertex, and trees of odd diameter, exactly two. The diametrical
path of a tree T is its simple path containing diam (T ) + 1 vertices. Let us call a leaf of tree T that
is the endpoint of a diametrical path T diametrical .

Recall that ik(G) denotes the number of distinct k-DIS’s that the graph G contains. By i+k (G, v)
(i−k (G, v)) we denote the number of k-DIS’s of the graph G containing (not containing) vertex v.
It is easy to see that for all n ≥ 2 and k ≥ 1 the strict inequality i+k (T, v) < i−k (T, v) holds for
any n-vertex tree T and any of its vertices v. Indeed, let us denote by u an arbitrary neighbor of v.
Then

i−k (T, v) ≥ ik
(
T \N1[v]

)
+ i+k (T, u) > ik

(
T \Nk[v]

)
= i+k (T, v).

Let M l
a,b denote a tree of diameter 4 whose central vertex is adjacent to l leaves, a paths P2,

and b central vertices of paths P3. Let Mp,q
a,b,c,d′ denote the tree of diameter 5 obtained from the

forest Mp
a,b ∪M q

c,d′ by connecting the central vertices of its two subtrees. We will use the nota-
tion Ma,b for the tree M0

a,b and Mn, for the n-vertex tree Ma,b, where a ≤ 2 (see Fig. 1). In addition,
by M ′

a,b,c,d′ we denote the tree M1,0
a,b,c,d′ and by Ma,b,c,d′ , the tree M0,0

a,b,c,d′ .
We will call an (ik, d, n)-maximal ((ik, d, n)-minimal) tree simply maximal (minimal) if the values

of the parameters k, d, and n are clear from the context.

2. CASE OF (i2k′ , 2k′ + 1, n)-MAXIMAL TREES

Consider a tree T of diameter 2k′ + 1 with central vertices u and v. Let us denote by Tu the
inclusion-maximal subtree of T containing the vertex u and not containing the vertex v. Let us
define a subtree Tv in a similar way. Let us denote by lu and lv the number of diametrical leaves
of T contained in the subtrees Tu and Tv, respectively.

Theorem 1. For all n ≥ 2k′ + 2 and k′ ≥ 1, each (i2k′ , 2k′ + 1, n)-maximal tree is unique and
isomorphic to the path P2k′ to the ends of which

⌊
n−2k′+1

2

⌋
and

⌊
n−2k′

2

⌋
leaves, respectively, are

attached.

Proof. It is obvious that each 2k′-DIS of the tree T contains at most one vertex of the subtree
Tu and at most one vertex of the subtree Tv. Moreover, if it contains exactly two vertices, then
both of them are diametrical leaves of T . Then there exists (lu + 1)(lv + 1) k-DIS’s (including the
empty set) all elements of which are diametrical leaves. In addition, there exist (n− lu− lv) k-DIS’s
consisting of one vertex that is not a diametrical leaf. Thus,

i2k′(T ) = (n− lu − lv) + (lu + 1)(lv + 1) = n+ lulv + 1.

It is clear that the quantity lulv will take the greatest value in the case where T contains the
minimum possible number of nonleaf vertices and |lu − lv| ≤ 1. This means that T is isomorphic
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Fig. 2. Trees T̂2,3,10 and T̂4,5,10.

to a simple path P2k′ with lu and lv leaves attached to its endpoints, respectively. We assume
that lu ≥ lv; then lu = ⌊n−2k′+1

2
⌋ and lv = ⌊n−2k′

2
⌋. The proof of Theorem 1 is complete. □

Thus, this section describes (i2, 3, n)-maximal trees T̂2,3,n and (i4, 5, n)-maximal trees T̂4,5,n (see
Fig. 2). It is shown that for all admissible values of n such trees are unique up to isomorphism.

3. CASE OF (ik, 4, n)-MAXIMAL TREES

Recall that the graph S4,n is the only (i1, 4, n)-maximal tree up to isomorphism [1]. In this
section, we will show that for k ∈ {2, 3} and n ≥ 53 the graph Mn is the only (ik, 4, n)-maximal
tree.

3.1. Variant d = 4, k = 2

Let the central vertex u of a tree T of diameter 4 be adjacent to l leaves, as well as to m ≥ 2
preleaf vertices u1, . . . , um. Let us introduce the notation L =

∏m

i=1 deg(ui).

Lemma 1. The following relation holds:

i2(T ) = 1 +

m∑
i=1

L
deg(ui)

+ (l + 1) · L.

Proof. It is easy to see that there exist L 2-DIS’s all of whose elements are diametrical leaves.
Then there exist (l+1) · L 2-DIS’s that do not contain any nonleaf vertices of the tree. In addition,
for each 1 ≤ i ≤ m there exist L

deg(ui)
2-DIS’s containing the vertex ui, and each of them does

not contain other vertices from the neighborhood N [u]. Finally, there exists a unique 2-DIS {u}
containing the central vertex u. The proof of Lemma 1 is complete. □

For trees of the form M l
a,b we have the relation L = 2a · 3b, and hence

i2
(
M l

a,b

)
= 1 + a · 2a−1 · 3b + b · 2a · 3b−1 + (l + 1) · 2a · 3b.

Theorem 2. For all n ≥ 53 the only (i2, 4, n)-maximal tree is the tree Mn.
Proof. Consider some (i2, 4, n)-maximal tree T and prove step by step that it coincides with Mn.

Step 1. Let us show that T has the form M l
a,b. Let it not be the case. Then its central vertex u is

adjacent to at least one vertex u0 of degree q0 ≥ 4. Let us denote by w1 and w2 two arbitrary
leaves adjacent to u0. By T1 we denote the tree obtained by removing these leaves from T ,
and by T2, the tree obtained by removing the vertex u0 and all leaves adjacent to it from T .
In the tree T we replace the edges u0w1 and u0w2 by uw1 and w1w2 and denote the resulting
tree as T ′. It is easy to see that

i2(T ) = i2(T1) + i+2 (T,w1) + i+2 (T,w2) = i2(T1) + 2 · i−2 (T2, u),

i2(T
′) = i2(T1) + i+2 (T

′, w2) + i+2 (T
′, w1) ≥ i2(T1) + i−2 (T1, u) + 1.

Denote by w3 an arbitrary leaf adjacent to u0 in T1. Then

i−2 (T1, u) ≥ (q0 − 2) · i+2 (T1, w3) ≥ (q0 − 2) · i−2 (T2, u),

and hence i2(T
′) > i2(T ); this contradicts the maximality of T .
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Step 2. Let us show that T has the form Ma,b. Suppose that this is not the case. Then T has the
form M l

a,b, where l > 0. If a > 0, then consider the tree M l−1
a−1,b+1. We have the relations

i2
(
M l

a,b

)
= 1 + a · 2a−1 · 3b + b · 2a · 3b−1 + (l + 1) · 2a · 3b,

i2
(
M l−1

a−1,b+1

)
= 1 + (a− 1) · 2a−2 · 3b+1 + (b+ 1) · 2a−1 · 3b + l · 2a−1 · 3b+1.

It is easy to check that for a, b, l ≥ 0 the inequality

i2
(
M l−1

a−1,b+1

)
> i2

(
M l

a,b

)
is equivalent to the inequality 3a+ 2b+ 6l > 15, which holds true for all n ≥ 53.
If, however, a = 0, then T has the form M l

0,b and i2
(
M l

0,b

)
= 1 + b · 3b−1 + (l + 1) · 3b. Then

for all b, l ≥ 1 we have

i2
(
M l−1

2,b−1

)
= 1 + 4 · 3b−1 + 4 · (b− 1) · 3b−2 + 4 · l · 3b−1 > i2

(
M l

0,b

)
.

Thus, for l > 0 the tree M l
a,b is not maximal.

Step 3. Let us show that T is isomorphic to Mn. It is sufficient to prove that the inequality
i2(Ma,b) < i2(Ma−3,b+2) holds true for n ≥ 53 and a ≥ 3. We have

i2(Ma,b) = 1 + a · 2a−1 · 3b + b · 2a · 3b−1 + 2a · 3b,
i2(Ma−3,b+2) = 1 + (a− 3) · 2a−4 · 3b+2 + (b+ 2) · 2a−3 · 3b+1 + 2a−3 · 3b+2.

Since we have 3a+ 2b ≥ 40 for n ≥ 53 and a ≥ 3—the required inequality is satisfied.
The proof of Theorem 1 is complete. □

Note that for n = 52 the theorem is false, since

i2(M3,15) = i2(M0,17).

3.2. Variant d = 4, k = 3

The object of our study is still the tree T of diameter 4 with the central vertex u adjacent to
leaves, as well as to the preleaf vertices u1, . . . , um, with L =

∏m

i=1 deg(ui).

Lemma 2. One has the relation i3(T ) = 1 + deg(u) + L.
Proof. It is clear that there exist exactly 1 + deg(u) 3-DIS’s containing at least one vertex

from the neighborhood N [u]. In addition, there exist L 3-DIS’s that do not contain any vertices
from N [u]; this implies the required relation. The proof of Lemma 2 is complete. □

Theorem 3. For n ≥ 5 and n ̸= 7, the only (i3, 4, n)-maximal tree is the tree Mn. For n = 7,
the trees M7 and M3,0 are the only (i3, 4, n)-maximal trees.

Proof. For 5 ≤ n ≤ 7, the validity of the conditions in the theorem can be easily veri-
fied by searching through all n-vertex trees of diameter 4. Suppose that for n ≥ 8 there exists
an (i3, 4, n)-maximal tree T not isomorphic to Mn. Similar to the previous theorem, we will carry
out the proof step by step.
Step 1. Let us show that T has the form M l

a,b. Suppose that this is not the case. Then its central
vertex u is adjacent to some vertex u0 such that deg(u0) = q0 ≥ 4. We denote by u1, . . . , um

the other neighbors of the vertex u and set L′ =
∏m

i=1 deg(ui). Let us denote by w1 and w2 two
arbitrary leaves adjacent to u0. In T we replace the edges u0w1 and u0w2 with the edges uw1

and w1w2 and denote the resulting tree by T ′. Then

i3(T
′) = 1 +

(
deg(u) + 1

)
+ 2 · (q0 − 2) · L′ > 1 + deg(u) + q0 · L′ = i3(T );

this contradicts the T being maximal.
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Step 2. Let us show that T has the form Ma,b. Let it not be the case. Then T has the form M l
a,b,

where l ≥ 1, i.e., the vertex u is adjacent to at least one leaf w. In this case, i+3 (T,w) = 1,
since all vertices of the tree T are located at a distance of at most 3 from w. Consider some
diametrical path w1u1uu2w2 in T , replace the edge uw with the edge u1w, and denote the
resulting tree by T ′. It is clear that the set {w,w2} is a 3-DIS in T ′, whence i+3 (T

′, w) ≥ 2.
On the other hand, i−3 (T,w) = i−3 (T

′, w) = i3(M
l−1
a,b ), whence i3(T ) < i3(T

′); this contradicts
the maximality of T .

Step 3. Let us show that T is isomorphic to Mn. Let it not be so. Then T is isomorphic to the
tree Ma,b, where a ≥ 3. Let us show that i3(Ma,b) < i3(Ma−3,b+2). Since 2a−3 · 3b > 1 is true
for n ≥ 8 and a ≥ 3, we have

i3(Ma,b) = 1 + (a+ b) + 2a · 3b < 1 + (a+ b− 1) + 2a−3 · 3b+2 = i3(Ma−3,b+2);

this is a contradiction with the T being maximal.
The proof of Theorem 3 is complete. □

4. CASE OF (ik, 5, n)-MAXIMAL TREES

4.1. Variant d = 5, k = 2

Let T ′′ denote the tree M1,1
a,b,c,d′ with the central vertices u and v that are adjacent to the leaves u′

and v′, respectively. Denote by T ′ the result of removing the leaf v′ from T ′′ and by T the result
of removing the leaf u′ from T ′. Note that the trees T and T ′ are isomorphic to the trees Ma,b,c,d′

and M ′
a,b,c,d′ , respectively.

Lemma 3. The following relations hold:

i−2 (Tu, u) = 2a · 3b + a · 2a−1 · 3b + b · 2a · 3b−1,

i−2 (Tv, v) = 2c · 3d
′
+ c · 2c−1 · 3d

′
+ d′ · 2c · 3d

′−1,

i2(T ) = 2a · 3b + 2c · 3d
′
+ i−2 (Tu, u) · i−2 (Tv, v),

i2(T
′) = i2(T ) + 2a · 3b · i−2 (Tv, v),

i2(T
′′) = i2(T

′) + 2c · 3d
′
· i−2 (Tu, u) + 2a+c · 3b+d′

.

Proof. The first two equalities follow from Lemma 1. Let us prove the third equality. If
some 2-DIS I of the tree T contains its central vertex u (respectively v), then all other vertices I
are diametrical leaves of the subtree Tv (Tu). Moreover, for every 2-DIS Iu of the tree Tu and
every 2-DIS Iv of the tree Tv not containing the vertices u and v, respectively, the set Iu∪Iv is a 2-DIS
of the tree T . The fourth equality follows from the relations i−2 (T ′, u′) = i2(T ) and i+2 (T

′, u′) = 2a·3b·
i−2 (Tv, v). Similarly, the fifth equality follows from the relations i−2 (T ′′, v′) = i2(T

′) and i+2 (T
′′, v′) =

2c · 3d′ · i−2 (Tu, u) + 2a+c · 3b+d′
. The proof of Lemma 3 is complete. □

Lemma 4. For n ≥ 120, each (i2, 5, n)-maximal tree has the form Ma,b,c,d′ .
Proof. Assume that there exists an (i2, 5, n)-maximal tree T for which the lemma is false. Let

us consider four cases.
Case 1. At least one of the central vertices T (we assume that it is the vertex u) is adjacent to the

vertex u0 of degree q0 ≥ 4. In this case, we proceed similarly to Step 1 in Theorem 2. Let us
denote by w1 and w2 two arbitrary leaves adjacent to u0. Let T1 denote the tree obtained by
removing these leaves from T . Let T2 denote the tree obtained by removing the vertex u0 and
all leaves adjacent to it from T . In the tree T we replace the edges u0w1 and u0w2 by uw1

and w1w2 and denote the resulting tree by T ′. It’s not hard to see that

i2(T ) = i2(T1) + i+2 (T,w1) + i+2 (T,w2) = i2(T1) + 2 · i−2 (T2, u),

i2(T
′) = i2(T1) + i+2 (T

′, w2) + i+2 (T
′, w1) ≥ i2(T1) + (q0 − 2) · i−2 (T2, u) + 1.

Thus, i2(T ′) > i2(T ); this contradicts the maximality of T .
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Case 2. At least one of the central vertices T (we assume that this is the vertex u) is adjacent to
two different leaves u′ and u′′. Let us remove the edge uu′′, add the edge u′u′′, and denote
the resulting tree by T ′. It is obvious that i−2 (T, u

′′) = i−2 (T
′, u′′). Moreover, any 2-DIS of

the tree T containing the vertex u′′ is a 2-DIS of the tree T ′ since it does not contain the
vertices u and u′. However, the set {u′′, v} is a 2-DIS of T ′ but is not a 2-DIS of T , whence
i+2 (T

′, u′′) > i+2 (T, u
′′) and i2(T

′) > i2(T ); this contradicts the maximality of T .

Case 3. The tree T has the form M1,1
a,b,c,d′ . Recall that u and v denote its central vertices, and u′

and v′ denote the leaves adjacent to them. Let us denote the result of removing these leaves
from T by T̂ . By Lemma 3 we have

i2(T ) = i2(T̂ ) + 2a · 3b · i−2 (T̂v, v) + 2c · 3d
′
· i−2 (T̂u, u) + 2a+c · 3b+d′

.

Consider the tree T ′ obtained from the tree T by replacing the edge vv′ with u′v′. Then

i2(T
′) = i2(T̂ ) + i+2 (T

′, v′) + i+2 (T
′, u′) = i2(T̂ ) + i−2 (T̂ , u) + 2a · 3b · i−2 (T̂v, v).

Let us show that i2(T
′) > i2(T ). Assume that n ≥ 120; threby 2 · (a+ c) + 3 · (b+ d′) ≥ 118.

In this case, we have the inequality

i−2 (T̂ , u) > i−2 (T̂u, u) · i−2 (T̂v, v) = 2a+c · 3b+d′
·
(
1 +

a

2
+

b

3

)
·
(
1 +

c

2
+

d′

3

)
> 2a+c · 3b+d′

·
(
2 +

a

2
+

b

3

)
= 2c · 3d

′
· i−2 (T̂u, u) + 2a+c · 3b+d′

.

Thus, i2(T ) < i2(T
′); this contradicts the maximality of T .

Case 4. The tree T has the form M ′
a,b,c,d′ . Consider all possible variants and let us show that in

each of them T is not maximal.

Variant b ≥ 1. Consider the tree Ma+2,b−1,c,d′ . We have

i2(M
′
a,b,c,d′) = 2a · 3b + 2c · 3d

′

+ (2a+1 · 3b + a · 2a−1 · 3b + b · 2a · 3b−1) · i−2 (Tv, v),

i2(Ma+2,b−1,c,d′) = 2a+2 · 3b−1 + 2c · 3d
′

+
(
2a+2 · 3b−1 + (a+ 2) · 2a+1 · 3b−1 + (b− 1) · 2a+2 · 3b−2

)
· i−2 (Tv, v).

Then for all b ≥ 1 one has i2(M
′
a,b,c,d′) < i2(Ma+2,b−1,c,d′).

Variant a ≥ 3, b = 0. Consider the tree Ma−1,1,c,d′ . We have

i2(M
′
a,0,c,d′) = 2a + 2c · 3d

′
+ 2a−2 · (2a+ 8) · i−2 (Tv, v),

i2(Ma−1,1,c,d′) = 3 · 2a−1 + 2c · 3d
′
+ 2a−2 · (3a+ 5) · i−2 (Tv, v).

Then for all a ≥ 3 one has i2(M
′
a,0,c,d′) < i2(Ma−1,1,c,d′).

Variant a ≤ 2, b = 0, c = 1. Consider the tree M ′
a+1,0,0,d′ . We have

i2(M
′
a,0,1,d′) = 2a + 2 · 3d

′
+ 2a−1 · 3d

′−1 · (a+ 4) · (2d′ + 9),

i2(M
′
a+1,0,0,d′) = 2a+1 + 3d

′
+ 2a−1 · 3d

′−1 · (2a+ 10) · (d′ + 3).

Then for all a ≤ 2 and d′ ≥ 7 one has i2(M
′
a,0,1,d′) < i2(M

′
a+1,0,0,d′).

Variant a ≤ 2, b = 0, c = 2. Consider the tree M ′
a+2,0,0,d′ . We have

i2(M
′
a,0,2,d′) = 2a + 4 · 3d

′
+ 2a−1 · 3d

′−1 · (a+ 4) · (4d′ + 24),

i2(M
′
a+2,0,0,d′) = 2a+2 + 3d

′
+ 2a−1 · 3d

′−1 · (4a+ 24) · (d′ + 3).

Then for all a ≤ 2 and d′ ≥ 7 one has i2(M
′
a,0,2,d′) < i2(M

′
a+2,0,0,d′).
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Variant a ≤ 2, b = 0, c ≥ 3. Consider the tree M ′
a,0,c−3,d′+2. We have

i2(M
′
a,0,c,d′) = 2a + 2c · 3d

′
+ 2c−4 · 3d

′−1 · (48 + 24c+ 16d′) · i−2 (Tu, u),

i2(M
′
a,0,c−3,d′+2) = 2a + 2c−3 · 3d

′+2 + 2c−4 · 3d
′−1 · (27c+ 18d′ + 9) · i−2 (Tu, u).

Since a ≤ 2, one has 3c+ 2d′ ≥ 40, and hence i2(M
′
a,0,c,d′) > i2(M

′
a,0,c−3,d′+2).

Variant a = 1, b = c = 0. Consider the tree M0,3,0,d′−2. We have

i2(M
′
1,0,0,d′) = 2 + 3d

′
+ 5 · (3d

′
+ d′ · 3d

′−1),

i2(M0,3,0,d′−2) = 27 + 3d
′−2 + 54 ·

(
3d

′−2 + (d′ − 2) · 3d
′−3

)
.

Then for all d′ ≥ 12 one has i2(M
′
1,0,0,d′) < i2(M0,3,0,d′−2).

Variant a = 2, b = c = 0. Consider the tree M1,3,0,d′−2. We have

i2(M
′
2,0,0,d′) = 4 + 3d

′
+ 12 · (3d

′
+ d′ · 3d

′−1),

i2(M1,3,0,d′−2) = 54 + 3d
′−2 + 135 ·

(
3d

′−2 + (d′ − 2) · 3d
′−3

)
.

Then for all d′ ≥ 3 one has i2(M
′
2,0,0,d′) < i2(M1,3,0,d′−2).

The proof of Lemma 4 is complete. □

Lemma 5. Let an (i2, 5, n)-maximal tree T be of the form Ma,b,c,d′ . If 3a+2b ≥ 40, then a ≤ 2.
If, however, 3c+ 2d′ ≥ 40, then c ≤ 2.

Proof. Assume that 3a+ 2b ≥ 40 and a ≥ 3. By Lemma 3 we have the relations

i2(Ma,b,c,d′) = 2a · 3b + 2c · 3d
′
+ 2a · 3b ·

(
1 +

a

2
+

b

3

)
· i−2 (Tv, v),

i2(Ma−3,b+2,c,d′) = 2a−3 · 3b+2 + 2c · 3d
′
+ 2a−3 · 3b+2 ·

(
1

6
+

a

2
+

b

3

)
· i−2 (Tv, v).

It is easy to check that the inequality i2(Ma,b,c,d′) < i2(Ma−3,b+2,c,d′) holds in the case
of 3a+ 2b ≥ 40; this contradicts the maximality of T . The case of 3c+2d′ ≥ 40 is treated similarly.
The proof of Lemma 5 is complete. □

Lemma 6. If n ≥ 120, then each (i2, 5, n)-maximal tree has the form Ma,b,c,d′ with
|(3a+ 2b)− (3c+ 2d′)| ≤ 2.

Proof. By Lemma 4, each maximal tree has the form Ma,b,c,d′ . Assume that 3a+2b+3 ≤ 3c+2d′.
If d′ = 0, then c ≤ 13 by Lemma 5, whence 3a+2b ≤ 36 and n < 120; this contradicts the condition
in the lemma. If d′ ≥ 1, then consider the tree Ma,b+1,c,d′−1. We have

i2(Ma,b,c,d′) = 2a · 3b + 2c · 3d
′
+ 2a+c · 3b+d′

·
(
1 +

a

2
+

b

3

)
·
(
1 +

c

2
+

d′

3

)
,

i2(Ma,b+1,c,d′−1) = 2a · 3b+1 + 2c · 3d
′−1 + 2a+c · 3b+d′

·
(
4

3
+

a

2
+

b

3

)
·
(
2

3
+

c

2
+

d′

3

)
.

These relations imply the inequality

i2(Ma,b+1,c,d′−1)− i2(Ma,b,c,d′) > 2a+c−1 · 3b+d′−2(3c+ 2d′ − 3a− 2b− 2)− 2c+1 · 3d
′−1.

We assume that 2a+ 3b+ 2c+ 3d′ ≥ 118 and 3c+ 2d′ ≥ 3a+ 2b+ 3. Then, as is easy to check,
at least one of the inequalities 2a−2 · 3b−1 ≥ 1 and 3c + 2d′ ≥ 3a + 2b + 14 is satisfied, whence
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i2(Ma,b+1,c,d′−1) > i2(Ma,b,c,d′); this contradicts the extremality of Ma,b,c,d′ . The proof of Lemma 6
is complete. □

Theorem 4. For all n ≥ 120, the maximal tree T̂2,5,n is unique with

T̂2,5,n =



M1,p−1,1,p−1 if n = 6p

M1,p−1,0,p if n = 6p+ 1

M0,p,0,p if n = 6p+ 2

M2,p−2,0,p+1 if n = 6p+ 3

M1,p−1,0,p+1 if n = 6p+ 4

M0,p+1,0,p if n = 6p+ 5.

Proof. We call a tree of the form Ma,b,c,d′ suitable if the conditions |(3a+ 2b)− (3c+ 2d′)| ≤ 2

and max(a, c) ≤ 2 are satisfied. Let us show that for n ≥ 120 the desired tree T̂2,5,n is suitable. It
is sufficient to check the condition max(a, c) ≤ 2. If 3a+ 2b ≤ 39, then 3c+ 2d′ ≤ 41 by Lemma 6.
Then 2a+3b+2c+3d′ ≤ 117; this contradicts the assumption. The case of 3c+2d′ ≤ 39 is treated
similarly. If min(3a+2b, 3c+2d′) ≥ 40, then max(a, c) ≤ 2 by Lemma 5; this is what was required.
We assume that c ≤ a ≤ 2 and, if a = c, then b ≥ d′ (since the trees Ma,b,c,d′ and Ma,d′,c,b coincide
in this case).
Case of n = 6p. Here the sum 2a + 3b + 2c + 3d′ + 2 is a multiple of 3; hence a + c = 2. There

exist three suitable trees: M1,p−1,1,p−1, M2,p−2,0,p, and M2,p−3,0,p+1. Then

i2(M1,p−1,1,p−1) = 4 · 3p−1 + (3p + 2 · (p− 1) · 3p−2)2,

i2(M2,p−2,0,p) = 13 · 3p−2 + (8 · 3p−2 + 4 · (p− 2) · 3p−3) · (3p + p · 3p−1),

i2(M2,p−3,0,p+1) = 85 · 3p−3 + (8 · 3p−3 + 4 · (p− 3) · 3p−4) · (4 · 3p + p · 3p).

It is easy to check that for all p ≥ 20 the tree M1,p−1,1,p−1 will be the only (i2, 5, 6p)-maximal
tree.

Case of n = 6p+ 1. Here a+c ∈ {1, 4}. There exist two suitable trees: M1,p−1,0,p and M2,p−1,2,p−2.
It can readily be checked i2(M1,p−1,0,p) > i2(M2,p−1,2,p−2) for p ≥ 20.

Case of n = 6p+ 2. In this case a+c∈{0, 3}. There exist two suitable trees: M0,p,0,p and M2,p−2,1,p.
It can readily be checked that i2(M0,p,0,p) > i2(M2,p−2,1,p) for p ≥ 20.

Case of n = 6p+ 3. Here a+ c = 2, the trees M1,p,1,p−1 and M2,p−2,0,p+1 are suitable, and it can
readily be checked that i2(M2,p−2,0,p+1) > i2(M1,p,1,p−1) for p ≥ 20.

Case of n = 6p+ 4. In this case a + c ∈ {1, 4}. There exist two suitable trees: M1,p−1,0,p+1

and M2,p−1,2,p−1. It can readily be checked that i2(M1,p−1,0,p+1) > i2(M2,p−1,2,p−1) for p ≥ 20.
Case of n = 6p+ 5. Here a+ c ∈ {0, 3}, the trees M0,p+1,0,p and M2,p−1,1,p are suitable, and it can

readily be checked that i2(M0,p+1,0,p) > i2(M2,p−1,1,p) for p ≥ 20.
The proof of Theorem 4 is complete. □

4.2. Variant d = 5, k = 3

The object of our study is still the tree T of diameter 5 with the central vertices u and v
that are adjacent to the vertices u1, . . . , up and v1, . . . , vq respectively. Let us introduce the nota-
tion Lu =

∏p

i=1 deg(ui) and Lv =
∏q

i=1 deg(vi).

Lemma 7. One has the relation

i3(T ) = 2 +
(
deg(u)− 1

)
· Lv +

(
deg(v)− 1

)
· Lu + Lu · Lv.
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Proof. It is clear that there exist exactly two 3-DIS’s containing at least one of the central
vertices of T . In addition, there exist (deg(u) − 1) · Lv 3-DIS’s containing at least one of the
vertices u1, . . . , up and (deg(v)− 1) · Lu of the 3-DIS containing at least one of the vertices v1, . . . , vq.
Finally, there exist Lu · Lv 3-DIS’s all of whose elements are diametrical leaves of T . The proof of
Lemma 7 is complete. □

Note that for the tree Ma,b,c,d′ we have the relation

i3(Ma,b,c,d′) = 2 + (a+ b) · 2c · 3d
′
+ (c+ d′) · 2a · 3b + 2a+c · 3b+d′

.

Lemma 8. Each (i3, 5, n)-maximal tree T has the form Ma,b,c,d′ with max(a, c) ≤ 2.
The proof will again be carried out step by step.

Step 1. Let us show that T has the form Mp′,q′

a,b,c,d′ . Suppose that this is not the case. Then there
exists at least one preleaf vertex u0 of degree q0 ≥ 4 adjacent to one of the central vertices
(we assume that to the vertex u). We denote the neighbors of u different from v and u0

by u1, . . . , up and the neighbors of v different from u, by v1, . . . , vq. Let L′
u =

∏p

i=1 deg(ui)
if p ≥ 1 and L′

u = 1 if p = 0. Let us denote by w1 and w2 two arbitrary leaves adjacent to u0.
In the tree T we replace the edges u0w1 and u0w2 with the edges uw1 and w1w2, and denote
the resulting tree by T ′. Then

i3(T ) = 2 +
(
deg(u)− 1

)
· Lv +

(
deg(v)− 1

)
· q0 · L′

u + q0 · L′
u · Lv,

i3(T
′) = 2 + deg(u) · Lv +

(
deg(v)− 1

)
· 2 · (q0 − 2) · L′

u + 2 · (q0 − 2) · L′
u · Lv.

Since q0 ≥ 4, we have i3(T
′) > i3(T ) and T is not maximal; this is a contradiction.

Step 2. Let us show that T has the form Ma,b,c,d′ . Let us assume that this is not the case and
that at least one of the central vertices (say, the vertex u) is adjacent to the leaf u′. In the
tree T , we consider some diametrical path u2u1uvv1v2. Let us remove the edge uu′, add the
edge u1u

′, and denote the resulting tree by T ′. It is clear that i−3 (T, u
′) = i−3 (T

′, u′). Since
every 3-DIS of the tree T containing u′ does not contain other vertices of the subtree Tu

and vertices from the neighborhood N [v], it is a 3-DIS of the tree T ′ . On the other hand, the
set {u′, v1} is not a 3-DIS of the tree T , but is a 3-DIS of the tree T ′, whence i3(T ) < i3(T

′);
this is a contradiction.

Step 3. Let us show that max(a, c) ≤ 2. Assume that a ≥ 3. Then

i3(Ma,b,c,d′) = 2 + (a+ b) · 2c · 3d
′
+ (c+ d′) · 2a · 3b + 2a+c · 3b+d′

,

i3(Ma−3,b+2,c,d′) = 2 + (a+ b− 1) · 2c · 3d
′
+ (c+ d′) · 2a−3 · 3b+2 + 2a+c−3 · 3b+d′+2.

It is clear that i3(Ma−3,b+2,c,d′) > i3(Ma,b,c,d′) for a ≥ 3 and min(c, d′) > 0; this contradicts
the maximality of T . The case of c ≥ 3 is treated similarly.

The proof of Lemma 8 is complete. □

Lemma 9. For all n ≥ 13, each (i3, 5, n)-maximal tree has the form Ma,b,c,d′ with either
min(a, c) = 0 and min(b, d′) = 1 or min(b, d′) = 0.

Proof. Suppose that some maximal tree T has the form Ma,b,c,d′ and in this case, either
min(a, c) = 0 and min(b, d′) ≥ 2 or min(a, b, c, d′) ≥ 1 and max(a, b, c, d′) ≥ 2. Let us introduce the
notation

j3(Ma,b,c,d′) = i3(Ma,b,c,d′)− 2− 2a+c · 3b+d′
= (a+ b) · 2c · 3d

′
+ (c+ d′) · 2a · 3b.

By assumption, the trees Ma,b−1,c,d′+1 and Ma,b+1,c,d′−1 exist and have diameter 5. Moreover, since
the tree Ma,b,c,d′ is maximal, we have

i3(Ma,b,c,d′) ≥ max
(
i3(Ma,b−1,c,d′+1), i3(Ma,b+1,c,d′−1)

)
,
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thereby j3(Ma,b,c,d′) ≥ max(j3(Ma,b−1,c,d′+1), j3(Ma,b+1,c,d′−1)) and the following system of inequal-
ities holds: 2c3d

′
(a+ b) + 2a3b(c+ d′) ≥ 2c3d

′+1(a+ b− 1) + 2a3b−1(c+ d′ + 1)

2c3d
′
(a+ b) + 2a3b(c+ d′) ≥ 2c3d

′−1(a+ b+ 1) + 2a3b+1(c+ d′ − 1).

Transforming this system, we obtain(2c+ 2d′ − 1) · 2a · 3b−1 ≥ (2a+ 2b− 3) · 2c · 3d′

(2a+ 2b− 1) · 2c · 3d′−1 ≥ (2c+ 2d′ − 3) · 2a · 3b.

This implies the inequality
2a+ 2b− 1

2c+ 2d′ − 3
≥ 9 · 2a+ 2b− 3

2c+ 2d′ − 1
.

Since min(a+b, c+d′) ≥ 2, this inequality has solutions only in the case of a+b = c+d′ = 2. By
assumption, this is only possible for a = c = 0 and b = d′ = 2. In this case, i3(M0,2,0,2) < i3(M2,0,1,2).
Thus, every tree Ma,b,c,d′ that does not satisfy the conditions in the lemma is not maximal, as
required. The proof of Lemma 9 is complete. □

Theorem 5. For all n ≥ 11, the maximal tree T̂3,5,n is unique, and moreover,

T̂3,5,n =


M2,0,0,q−2 if n = 3q

M1,0,0,q−1 if n = 3q + 1

M2,0,1,q−2 if n = 3q + 2.

Proof. Let us call a maximal tree suitable if it has the form Ma,b,c,d′ , where c ≤ a ≤ 2 and either
min(a, c) = 0 and min(b, d′) = 1 or min(b, d′) = 0. By Lemmas 8 and 9, for n ≥ 13 the required
tree T̂3,5,n is suitable. We assume that if a = c, then b ≤ d′ (since the trees Ma,b,c,d′ and Ma,d′,c,b

coincide in this case).
Case of n = 3q.

Variant q = 4. By Lemma 4, every (i3, 5, 12)-maximal tree has the form Ma,b,c,d′ , where
max(a, c) ≤ 2. Since the number of vertices in the tree is even, we have b + d′ ∈ {0, 2},
whence b+ d′ = a+ c = 2. Since

i3(M2,0,0,2) > max
(
i3(M1,1,1,1), i3(M1,0,1,2), i3(M2,1,0,1)

)
,

the tree M2,0,0,2 is the only (i3, 5, 12)-maximal one.
Variant q ≥ 5. If a = c = 1, then the only suitable tree is M1,0,1,q−2 with i3(M1,0,1,q−2) =

2·3q−1+2q. If a = 2 and c = 0, then there exist three suitable trees: M2,0,0,q−2, M2,q−3,0,1,
and M2,1,0,q−3. In this case, i3(M2,0,0,q−2) = 2 ·3q−1+4q−6, i3(M2,q−3,0,1) = 16 ·3q−3+2q
and i3(M2,1,0,q−3) = 5 · 3q−2 + 12q − 34. Since for all q ≥ 5 we have the inequality

i3(M2,0,0,q−2) > max
(
i3(M1,0,1,q−2), i3(M2,q−3,0,1), i3(M2,1,0,q−3)

)
,

the tree M2,0,0,q−2 is the only (i3, 5, 3q)-maximal one.

Case of n = 3q + 1. If a = 1 and c = 0, then there exist three suitable trees: M1,0,0,q−1, M1,q−2,0,1,
and M1,1,0,q−2, while i3(M1,0,0,q−1) = 3q +2q, i3(M1,q−2,0,1) = 8 · 3q−2 +2q and i3(M1,1,0,q−2) =
8 · 3q−2 + 6q−10. If a = c = 2, then the only suitable tree is M2,0,2,q−3 with i3(M2,0,2,q−3) =
8 · 3q−2 + 4q − 2. Since for q ≥ 4 we have

i3(M1,0,0,q−1) > max
(
i3(M1,q−2,0,1), i3(M1,1,0,q−2), i3(M2,0,2,q−3)

)
,

the tree M1,0,0,q−1 is the only (i3, 5, 3q + 1)-maximal one.
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Case of n = 3q + 2.

Variant q = 3. By Lemma 8, every (i3, 5, 11)-maximal tree has the form Ma,b,c,d′ , where
max(a, c) ≤ 2. Since the number of vertices in the tree is odd, we have b + d′{1, 3};
then a+ c ∈ {0, 3}. We conclude that

i3(M2,0,1,1) > max
(
i3(M0,1,0,2), i3(M2,1,1,0)

)
,

and hence the tree M2,0,1,1 is the only (i3, 5, 11)-maximal one.
Variant q ≥ 4. If a = c = 0, then the only suitable tree is M0,1,0,q−1 with i3(M0,1,0,q−1) =

4 · 3q−1 + 3q − 1. If a = 2 and c = 1, then there exist two suitable trees: M2,q−2,1,0

and M2,0,1,q−2, while i3(M2,q−2,1,0) = 4 ·3q−1+2q+2 and i3(M2,0,1,q−2) = 4 ·3q−1+4q−2.
Since

i3(M2,0,1,q−2) > max
(
i3(M0,1,0,q−1), i3(M2,q−2,1,0)

)
,

the tree M2,0,1,q−2 is the only (i3, 5, 3q + 2)-maximal one.

The proof of Theorem 5 is complete. □

Note that the condition in the theorem is not satisfied for n = 10, since i3(M2,0,2,0) > i3(M1,0,0,2).

5. CASE OF (ik, d, n)-MINIMAL TREES

Recall that the problem of describing (i1, d, n)-minimal trees remains open for d ≥ 8. In this
section, for all 1 < k < d < n, a (ik, d, n)-minimal tree Tk,d,n is constructed and all triples (k, d, n)
for which it is unique are indicated. In addition, all minimal trees are described in the case
of 1 < k < d ≤ 5.

It follows from the definition of k-DIS that for n, k ≥ 1 we have the relation

ik(Pn) = ik(Pn−1) + ik(Pn−k−1),

where ik(P−s) = 1 for 0 ≤ s ≤ k. Note that ik(Pn) = n+ 1 for 0 ≤ n ≤ k + 1.

Lemma 10. Let k ≥ 2 and 1 ≤ m ≤ n− 1. Then

ik(Pn) < ik(Pm) · ik(Pn−m).

Proof. Induction on n for a fixed k ≥ 2. The basis of induction n ≤ k + 1 is obvious. By the
induction assumption, the following relations hold:

ik(Pn−1)

ik(Pn−m−1)
≤ ik(Pm),

ik(Pn−k−1)

ik(Pn−m−k−1)
≤ ik(Pm).

The first inequality becomes an equality only in the case of m = n− 1, but then, obviously, the
second inequality is strict. Thus, we have the strict inequality

ik(Pn)

ik(Pn−m)
=

ik(Pn−1) + ik(Pn−k−1)

ik(Pn−m−1) + ik(Pn−m−k−1)
< ik(Pm).

The proof of Lemma 10 is complete. □

We denote by Tk,d,n the tree obtained from the path Pd+1 by joining n − d − 1 leaves either to
its kth vertex from the end if d > 2k − 2 or to its central vertex if d ≤ 2k − 2. Let us define the
tree T ′

k,d,n as follows. If d is even, then T ′
k,d,n is obtained from the path Pd+1 by attaching n− d− 1

leaves to one of the vertices adjacent to the central path vertex (see Fig. 3). If d is odd, then T ′
k,d,n

is obtained from the path Pd+1 by attaching a leaf to one of its central vertices and n−d−2 leaves,
to the other of its central vertices.

Theorem 6. For all 1 < k < d < n, the tree Tk,d,n is (ik, d, n)-minimal. Moreover, it is the only
minimal one if and only if one of the following conditions is satisfied:
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Fig. 3. Trees T4,6,10 and T ′
4,6,10.

1. n = d+ 1.
2. n = d+ 2 and d ≥ 2k − 3.
3. n ≥ d+ 3 and either d = 2k − 2 or d ≥ 3k − 3.
Proof. Consider three cases.

Case of n = d+ 1. The only (d + 1)-vertex tree of diameter d is the path Pd+1, which coincides
with the tree Tk,d,d+1. Thus, this is the only (ik, d, d+ 1)-minimal tree.

Case of n ≥ d+ 3. Consider two variants.

Variant d ≤ 2k − 2. By the definition of the tree Tk,d,n, all of its leaves that do not lie on
the diametrical path are adjacent to one of the central vertices. Then each of these leaves
is located at a distance of at most k from all other vertices of the tree and

ik(Tk,d,n) = ik(Pd+1) + (n− d− 1).

Let us prove that ik(T ) ≥ ik(Tk,d,n) for any n-vertex tree T of diameter d. Let us fix some
diametrical path P in the tree T . It is clear that T contains exactly ik(Pd+1) k-DIS’s
containing only vertices of P and at least n−d−1 k-DIS’s containing at least one vertex
not from P , which would immediately imply the required inequality.
If d = 2k − 2, then the equality ik(T ) = ik(Tk,d,n) is possible only if all vertices of T
not belonging to P are leaves adjacent to the central vertex of T . Since for even value
of d the central vertex is unique, the tree Tk,d,n is the only minimal one. If d < 2k − 2,
then ik(Tk,d,n) = ik(T

′
k,d,n), and the trees Tk,d,n and T ′

k,d,n do not match. This means that
the tree Tk,d,n is not the only minimal one.

Variant d > 2k − 2. Since for each leaf of the tree Tk,d,n not lying on its diametrical path,
vertices at a distance more than k from it form the path Pd−2k+2, we have the relation

ik(T
′
k,d,n) = ik(Pd+1) + (n− d− 1) · ik(Pd−2k+2).

Let us prove that ik(T ) ≥ ik(Tk,d,n) for any n-vertex tree T of diameter d. Let us fix some
diametrical path P in T . For any vertex u that is not on P , there exist at least d− 2k + 2
vertices in P at a distance of more than k from u. Moreover, such vertices form either
one simple path or two simple paths. Then by Lemma 10 we have

ik(T ) ≥ ik(Pd+1) + (n− d− 1) · min
0≤m≤d−2k+2

(ik(Pm) · ik(Pd−2k+2−m))

= ik(Pd+1) + (n− d− 1) · ik(Pd−2k+2) = ik(Tk,d,n).

The equality ik(T ) = ik(Tk,d,n) means that every vertex T not lying on P is a leaf located
at a distance k from one of the endpoints of P , and all such leaves are located at a distance
of at most k from each other. For d > 2k− 2, the path P contains two different vertices
located at a distance of k − 1 from one of its endpoints; we denote them by v1 and v2.
Then every leaf T not lying on P is adjacent to one of these vertices. Moreover, if T is
not isomorphic to Tk,d,n, then min(deg(v1), deg(v2)) ≥ 3. Since the distance between v1
and v2 does not exceed k − 2, the path P contains at most 3k − 3 vertices and T has
a diameter of at most 3k − 4. This means that for d ≥ 3k − 3 the tree Tk,d,n is unique;
this is what was required.
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Fig. 4. Two pairwise nonisomorphic (i3, 5, 10)-minimal trees.

Case of n = d+ 2.

Variant d > 2k − 2. It follows from the reasoning in the previous case that the only
(ik, d, d + 2)-minimal tree is obtained from the path Pd+1 by attaching a leaf to its kth
vertex from the end. This means that it coincides with the tree Tk,d,d+2.

Variant d ∈ {2k − 2, 2k − 3}. It is clear that ik(Tk,d,d+2) = ik(Pd+1) + 1. Consider an ar-
bitrary (d + 2)-vertex tree T of diameter d. It consists of a diametrical path Pd+1 and
some leaf u not lying on it. Moreover, if T does not coincide with Tk,d,d+2, then the
leaf u is not adjacent to the central vertex of the path, meaning that i+k (T, u) > 1
and ik(T ) > ik(Tk,d,d+2); then the tree Tk,d,d+2 is the only minimal one.

Variant d < 2k − 3. Let us denote by T ′′
k,d,d+2 the tree obtained from the path Pd by attach-

ing a leaf to its vertex that is adjacent to one of the central vertices. Then ik(Tk,d,d+2) =
ik(T

′′
k,d,d+2) = ik(Pd+1) + 1 and the tree Tk,d,d+2 is minimal but not unique.

The proof of Theorem 6 is complete. □

Let us give an explicit description of all (ik, d, n)-minimal trees in the case of 1 < k < d ≤ 5.

Corollary 1. For all n ≥ 4, the only (i2, 3, n)-minimal tree is the graph S3,n with i2(S3,n) =
2n− 2.

Corollary 2. For all n ≥ 5, the following assertions hold true.

1. The only (i2, 4, n)-minimal tree is the graph S4,n with i2(S4,n) = 3n− 6.
2. The only (i3, 4, n)-minimal tree is Mn−5

2,0 with i3(M
n−5
2,0 ) = n+ 2.

Corollary 3. For all n ≥ 6, the following assertions hold true.

1. The only (i2, 5, n)-minimal tree is the graph S5,n with i2(S5,n) = 4n− 11.
2. For k ∈ {3, 4} each (ik, 5, n)-maximal tree has the form Mp,q

1,0,1,0 , where p + q = n − 6,
with i3

(
Mp,q

1,0,1,0

)
= 2n− 2 and i4

(
Mp,q

1,0,1,0

)
= n+ 2.

Note that the number of pairwise nonisomorphic (ik, 5, n)-maximal trees for k ∈ {3, 4} grows
linearly with n (see Fig. 4).
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