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GRADIENT-LIKE DIFFEOMORPHISMS

AND PERIODIC VECTOR FIELDS

V.Z. GRINES AND L.M. LERMAN

To Yulij on the occasion of his jubilee.

We value and remember well the Yulij’s role in the clear and detailed explanation
of the orbit method, used in this paper, at the MSU seminar in the beginning of this century.

Abstract. A class of gradient-like nonautonomous vector fields (NVFs)
on a smooth closed manifold M is studied and the following problems
are solved: 1) can a gradient-like NVF be constructed by means of the
nonautonomous suspension over a diffeomorphism of this manifold, and
if so, under what conditions on the diffeomorphism? 2) let a diffeomor-
phism f be gradient-like (see the definition in the text) and diffeotopic to
the identity map idM , when the NVF obtained by means of the nonau-
tonomous suspension over f be gradient-like? Necessary and sufficient
conditions to this have been found in the paper. All these questions
arise, when studying NVFs on M admitting the uniform classification
and a description via combinatorial type invariants.
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1. Introduction

The aim of the paper is a construction of nonautonomous vector fields (NVFs,
for a brevity) on a smooth closed manifold M by means of the nonautonmous
suspension [20], [21] over gradient-like diffeomorphisms diffeotopic to the identity.
One of the problem here is the clarification of those conditions, when the periodic
vector field obtained be gradient-like one (see [12], [10], [11] and Section 3 below).

A nonautonomous vector field on M is an uniformly continuous map v : R →
V k(M), where V k(M) is the Banach space of Ck-smooth vector fields on M , en-
dowed with Ck-norm. Such NVF has solutions whose graphs in the extended phase
space M × R, i.e., integral curves (ICs), define an orientable foliation Lv. One
may to transform the NVF into the autonomous vector field on M × R, adding
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the equation ṫ = 1, but we lose here all standard methods of studying dynamics,
since all orbits of the vector field obtained are noncompact with empty limit sets.
Moreover, the orbit structure of such vector field is topologically equivalent to that
of the trivial vector field ẋ = 0, x ∈M.

Nonetheless, the study of the foliation into ICs from the standpoint of the theory
of dynamical systems is possible, but then one needs to include solutions of the NVF
into a greater autonomous system, called usually the extension or the skew product,
that is defined on a rather complicated phase space. This approach was introduced
by Bebutov [1] and now it is being developed mainly for almost periodic vector
fields [17], [12], [3].

Here we follow to the approach to the theory of NVFs proposed in [12] and de-
veloped further in [10], [11], where the foliation into ICs is examined by itself on the
base of the notion of the uniform equivalence of such foliations. This allows for some
classes of of NVFs to get a classification using some invariants of a combinatorial
type [10], [11].

In the Section 2 we remind [20], [21] the construction of nonautonomous sus-
pension over a diffeomorphism of a smooth closed manifold and present the proof
of a theorem, when such construction gives a periodic in time vector field on the
manifold. In Section 3 the conditions are formulated, when an NVF on a smooth
closed manifold is gradient-like. Here we specify the conditions formulated first in
[10] and used later in [11], [5], [6] at the study of different classes of NVFs. In the
Section 4 the main theorem is proved, which gives the necessary and sufficient con-
ditions when a gradient-like diffeomorphism on M generates a gradient-like NVF
on M .

2. Nonautonomous Suspension

Let M be a smooth (C∞) closed manifold and f : M → M be some C∞-dif-
feomorphism. Following [20], [21], the nonautonomous suspension over f is a pair
(M×R, Lf ), where the metric on M×R and the foliation Lf on M×R are defined
by the diffeomorphism f using the autonomous suspension over f . According to
[19], the autonomous suspension is a smooth closed manifold Mf of the dimension
dimM + 1 with a flow on it defined as follows. Consider the manifold M ×R with
the action F of the group Z due to the rule: for any m ∈ Z the iteration Fm acts
as Fm(x, s) = (fm(x), s−m). This action is free and discrete (any its action orbit
has not accumulation points). Hence the factor-manifold Mf = (M ×R)/F is C∞-
smooth manifold being a smooth bundle over the circle S1 = R/Z, p : Mf → S1,
with the leaf M . On Mf a vector field is generated by the constant vector field
V = (0, 1) on M ×R (its orbits are lines (x, t), t ∈ R). After factorization one gets
a smooth vector field vf on Mf with a global cross-section. As such cross-section
any submanifold Ms = p−1(s), s ∈ S1 can be taken. The Poincaré map, generated
by the flow of the vector field on this cross-section, is conjugated to the diffeomor-
phism f. This construction allows one to build vector field with a dynamics similar
to that of the iterations of the diffeomorphism [19].

To construct the nonautonomous suspension we consider a covering manifold
M̃f for Mf , generated by the standard covering R → S1 = R/Z, which gives a
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commutative diagram

M̃f
ẽxp−−−−→ Mfyp̃ yp

R exp−−−−→ S1

(1)

The manifold M̃f is homeomorphic to M × R, since R is a contractible space.

Let us endow Mf with a smooth Riemannian metric and lift this metric to M̃f

by the covering map ẽxp. Since ẽxp is a local diffeomorphism, we get a Riemannian
metric on M̃f for which ẽxp is the local isometry. With this covering the foliation

in Mf on the orbits of the vector field vf is lifted into M̃f as a smooth foliation Lf
consisting of infinite curves1.

Thus the nonautonomous suspension (M̃f , Lf ) is generated by the diffeomor-
phism f . Let us emphasize, the foliation Lf be homeomorphic to the foliation (x, t),
t ∈ R onto straight-lines in the manifold M × R but, generally speaking, it is not
equimorphic to this foliation2. For instance, this is the case, when M = T 2 = R2/Z2

and f is an Anosov diffeomorphism (see details in [21]).
The nonautonomous suspension was introduced [20] in order to construct non-

trivial examples of NVFs. But it was discovered that the construction does not
always give a foliation generated by a NVF on M . Therefore both necessary and
also sufficient conditions were derived when two diffeomorphisms f, g on M lead to
equimorphic suspensions [21], [11]. In particular, the following assertion was proved
there

Proposition 1. Let f, g : M →M be diffeomorphisms. Then

• Nonautonomous suspensions over f and fn are equimorphic.
• If f and g are conjugated, then their nonautonomous suspensions are equi-

morphic.

Also the following question turned out important: whether a nonautonomous
vector field v on M exists such that in M×R endowed with the metric of the direct
product its foliation Lv into ICs is equimorphic to the foliation Lf into infinite

curves in the nonautonomous suspension (M̃f , Lf )? This gives a meaning to the
definition introduced in [21]

Definition 1. A nonautonomous vector field v reproduces the structure of a dif-
feomorphism f , if its foliation Lv in M × R is equimorphic to the foliation Lf in

the nonautonomous suspension (M̃f , Lf ).

To keep the exposition self-contained, we present the statement and the proof
of a theorem from [5] that provides sufficient conditions on a diffeomorphism f

1In fact, to construct a nonautonomous suspension it is sufficient to endow M × R with the
structure of a uniform space [9] instead of a Riemannian metric. The compact manifold Mf has

the unique uniform structure compatible with the topology [9]. The uniform structure in M̃f is

given by lifting the uniform structure from Mf by means of the map ẽxp.
2An equimorhism of two metric spaces (respectively, uniform spaces) X, Y is a uniformly

continuous homeomorphism h : X → Y that has a uniformly continuous inverse mapping.
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implying the existence of an NVF that reproduces the structure of f . First we
formulate an evident lemma.

Lemma 1. Let f be diffeotopic to idM . Then there is a diffeotopy Ft : M → M ,
t ∈ [0, 1], joining idM and f such that diffeomorphisms Ft depend smoothly on t
and for some ε > 0 small enough the relations hold : Ft ≡ idM for t ∈ [0, ε], and
ft ≡ f for t ∈ [1− ε, 1].

Now we pass to the theorem.

Theorem 1. Suppose for some n ∈ N diffeomorphism fn : M → M is diffeotopic
to idM . Then

(1) the manifold Mfn is leafwise3 diffeomorphic to M × S1;
(2) there exists a periodic vector field v on M which reproduces the structure

of f .

Proof. To simplify the exposition, we assume that f itself is diffeotopic to idM .
For |n| > 2 we prove the assertion for g = fn, and then a fact is used that a
periodic vector field w on M , existing due to the item 2 of the theorem for g, has
its foliation into ICs in M×R being equimorphic to the nonautonomous suspension
over g = fn. But, by the Proposition 1 above the nonautonomous suspensions over
f and fn are equimorphic, i.e., w reproduces the structure of f .

Let us show first that the manifold Mf is diffeomorphic to the direct product.
To this purpose we construct on Mf two transverse foliations. The first is given by
leaves of the bundle p : Mf → S1, its leaves are diffeomorphic to M . Closed curves,
as leaves of the second foliation, will be defined as follows. Let Fs : M → M ,
s ∈ [0, 1] = I, is the diffeotopy joining idM and f , therefore F0 = idM and F1 = f.
According to Lemma 1, we can assume that diffeomorphisms Fs smoothly depend
on s, Fs = idM for s ∈ [0, ε] and Ft = f for s ∈ [1−ε, 1], where ε ∈ (0, 1/3). For any
point x ∈ p−1(0) = M0 we define a smooth curve through the point (x, 0) ∈M ×I,
it is given as (F−1s (x), s) for s ∈ [0, 1], and then we employ the factor map using
the identification (x, s) = (f(x), s− 1).

The extreme point for the curve in M × I with the initial point (x, 0) is

(F−11 (x), 1) = (f−1(x), 1)

at s = 1. Under the identification this point becomes (f ◦ f−1(x), 0) = (x, 0).
Thus, all constructed curves in Mf are closed, 1-periodic and provide a smooth
foliation in Mf . Diffeomorphism h : Mf → M × S1 is defined as follows. For any
point a ∈Mf denote as la a closed curve of the second foliation passing through the
point a. Define the map p1 : Mf →M0 as p1(a) = la ∩M0 and the map h is given
by the formula h(a) = (p1(a), p(a)). Lemma 1 above guarantees that if f : M →M
is diffeotopic to idM , then a diffeotopy Ft, joining idM and f , exists such that the
curves constructed above give a smooth foliation, that is, curves are smooth and
their dependence on a point is also smooth, so that the map p1 is smooth. Indeed,
it is enough for proving this to verify this property locally near arbitrary point

3The term “leafwise” means the existence of a diffeomorphism Ψ: Mfn → M × S1 acting as

(x, s)→ (ψ(x, s), s).
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a ∈ Mf . Since Mf is a smooth locally trivial bundle over S1 and the coordinate
s is introduced on S1, then near the point a coordinates (u, s) can be introduced,
where u are coordinates in the leaf p(a) = s0. In these coordinates a smooth family
of diffeomorphisms Fs is written as us = R(u, s), where us are u-coordinates in the
leaf Ms, and R(u, s) is smooth in s family of smooth vector-functions of u which
have derivatives up to the order r > 1 and all Jacobians ∂R/∂u do not vanish.
Differentiation in s at each point (u, s) gives a smooth vector field (Rs, 1) on Mf ,
whose orbits provide smooth foliation on the curves due to the standard theorems
of the theory of ordinary differential equations. This proves the first part of the
theorem.

To prove the second statement of the theorem, we construct a periodic vector
field v on M such that its foliation Lv onto ICs is equimorphic to the foliation Lf in

M̃f onto the infinite curves. The defined above diffeomorphism h : Mf → M × S1

allows us to identify Mf and M ×S1. Therefore the vector field of the autonomous
suspension is given as (V (x, s), r(x, s)), where r 6= 0, it has a global cross-section
s = 0. The Poincaré map g : M0 → M0 generated on this section is evidently
conjugated to f . Hence, one can consider diffeomorphism g instead of f on M .
According to the item 2 of the Proposition 1, the nonautonomous suspensions
over f, g are equimorphic, since f, g are topologically conjugated. Let us define a
periodic vector field on M , as v(x, t) = V (x, t)/r(x, t). Integral curves in M×R of
the periodic vector field are unfoldings of orbits of the vector field (V (x, t), r(x, t))
in Mf , since they are obtained by the change of variables being bounded from above
and below. So, the theorem has been proved completely. �

3. Gradient-Like NVFs: Definitions

Nonautonomous gradient-like vector fields were introduced first on two-dimen-
sional closed surfaces in [12], and later in more details and in a more convenient form
in [10]. The structure of such NVFs and invariants providing the classification were
studied in the two-dimensional case in [10, Chapter 3], and for a one-dimensional
case (NVFs on S1) in [11]. In the concentrated form these conditions were formu-
lated in the overview [6]. The main goal that is pursued when distinguishing this
class of NVFs is a possibility of their description and classification using invariants
of a combinatorial type as well as an opportunity to prove their structural stabil-
ity. Below we recall the assumptions which single out the gradient-like NVFs on a
smooth closed manifold M [6].

Assumption 1. Any integral curve of a NVF v possesses an exponential dichotomy
on both semi-axes R+ and R−, types of these dichotomies can be different.

The notion of exponential dichotomy goes back to Perron [16] and in the explicit
form was introduced by Maizel [14], later on it was studied thoroughly in [15], [4].
Main definitions and corollaries can be found in [5].

Condition 1 implies the existence of global stable and unstable manifolds which
are defined for any IC with this property [8], [2]. Such manifold is a smooth immer-
sion J of the space Rk×R such that the restriction of J on the section Rkt = Rk×{t}
is a smooth immersion of Rk into Mt = M×{t}, uniformly continuously depending
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on t on compact sets. By the type (p, q) of an exponential dichotomy on R+ for an
IC we understand the dimension p of the trace of its stable manifold on M0, then
q = dim M − p. Similarly, by the type (p, q) of an exponential dichotomy on R−
for an IC, we understand the dimension q of the trace of its unstable manifold on
M0, then p = dim M − q. Recall [15], [4] that for an IC possessing an exponential
dichotomy on R+ its stable manifold is defined uniquely, the same is true for an
IC possessing an exponential dichotomy on R−: its unstable manifold is defined
uniquely.

Any two ICs, lying on the same stable (respectively, unstable) manifold, asymp-
totically approach to each other as t → ∞ (respectively, as t → −∞). Therefore
the whole extended phase manifold M × R is partitioned into stable manifolds:
M × R =

⋃
αW

s
α, here index α belongs to some set of indexes. The same holds

true for the partition into global unstable manifolds Wu
β : M × R =

⋃
βW

u
β with

the set of indexes of other cardinality. It is worth remarking that no relations exist
between partitions into stable and unstable manifolds, if the NVF v has not any
recurrence in time.

Assumption 2. Both partitions are finite, i.e., the sets of indexes α and β are
finite.

The experience of studying autonomous and periodic vector fields suggests that
a necessary condition of their structural stability is the transversality of intersection
for stable and unstable manifolds. Let M0 be the section t = 0.

Assumption 3. For any pair {W s
α, W

u
β } the intersection W s

α ∩Wu
β is transversal.

Moreover, if the sum of dimensions dim(W s
α ∩M0) + dim(Wu

β ∩M0) is equal to
dimM0, then W s

α ∩ Wu
β consists of finitely many ICs, but if this sum is greater

than dimM0, then W s
α ∩ Wu

β ∩ M0 consists of finitely many compact connected

submanifolds (possibly, this number is zero) and a finite number of noncompact
submanifolds, whose closures are compact manifolds with boundaries (possibly, this
number is zero).

As an illustration we remark that if dimM = 2, then any one-dimensional un-
stable manifold Wu consists of alone IC γ with the type of dichotomy (2, 0) on
R−. Then transversality of Wu with any stable manifold W s is possible only if
dimW s = 3, and hence the trace W s ∩M0 is an open two-dimensional disk con-
taining the point γ∩M0. Also, here the transversality condition prohibits the inter-
section of one-dimensional stable manifold with one-dimensional or two-dimensional
unstable manifolds.

Different types of intersections of traces of stable and unstable manifolds on the
section M0 for NVFs given on a three-dimensional manifold are shown on Fig. 1
and Fig. 2. On Fig. 1 a case of noncompact intersection is shown and on Fig. 2 the
case of compact intersection is presented.

The next condition concerns with a mutual disposition of stable (unstable) man-
ifolds of different dimensions. The clue here is the notion of the Smale boundary
for a given global stable (respectively, unstable) manifold W s [19]. We reformulate
it for the case of NVFs.
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Figure 1. Traces of stable and unstable manifolds for a noncom-
pact intersection. Letters wsi , w

u
j ,
′wsi ,

′wuj , i, j ∈ {0, 1, 2, 3}, de-
note traces on M0 of the related stable or unstable manifolds of
the dimension i+ 1, j + 1, respectively.

Figure 2. Traces of stable and unstable manifolds for a compact
intersection. Upper picture shows the traces of stable manifolds
on M0 denoting as wsi , w

u
j ,
′wsi ,

′wuj , i, j ∈ {0, 1, 2, 3}. Also this
picture presents the trace wu2 of 3-dimensional unstable manifold
shaded by grey. The lower picture shows traces of only unstable
manifolds of different dimensions. Five circles denote intersections
of traces stable and unstable 3-dimensional manifolds.
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As follows from the stable manifold theorem, the intersection of W s with any
section Mt = M×{t} is the image of the immersion Jt : Rk →Mt, k = dim W s−1.
These immersions depend uniformly continuously in t in Cr-topology on compact
sets in Rk. The Smale boundary for the trace wst = W s ∩Mt is the set ∂wst =
clos(wst ) \ wst , here clos(A) denotes the closure of the set A. The Smale boundary
∂W s for the manifold W s itself we call the union of all ICs passing through the set
∂ws0 = clos(ws0) \ ws0.

A characteristic feature of gradient-like systems is the decrease of the dimensions,
when passing to the Smale boundary of stable (respectively, unstable) manifolds.
Therefore, we require

Assumption 4. For any stable manifold W s its Smale boundary ∂W s consists
of the whole stable manifolds of the lesser dimensions. The same holds for any
unstable manifold.

On the Fig. 3 possible violations of this Assumption are shown, when a NVF
on a two-dimensional manifold is considered. On the left picture the boundary
contains wholly another manifold of the same dimension, on the right picture the
dimension preserves, when passing to the Smale boundary, but the limiting set of
a stable manifold do not consists of the whole stable manifold.

Figure 3. Possible types of limiting sets for the trace of a stable manifold

Finally, to formulate the last condition 5, we consider the partition of M×R into
stable manifolds of a NVF v, assuming all previous Assumptions be fulfilled. As
was said above, we endow the manifold M ×R with the Riemannian metric of the
direct product of some metric in M and the standard metric in R. By a cylindric
ε-neighborhood of the integral curve Γ one understands its neighborhood U(ε) in
the manifold M × R such that for the pair (Γ, U(ε)) an equimorphism h : U(ε)→
D(ε)×R exists with D(ε) being the n-dimensional disk in Rn: x21 + · · ·+ x2n < ε2,
h(Γ) = {0} × R, and for any t ∈ R the distance between ∂U(ε) ∩Mt and Γ ∩Mt

is uniformly in t bounded by positive constants c(ε) < C(ε) from below and above,
both functions c(ε), C(ε) are of the order ε at ε = 0.

Let us choose one IC from each stable manifold and denote them by Γ+
1 , . . . , Γ+

k .
They are separated in M × R+ in the sense that an ε > 0 exists such that the
cylindric ε-neighborhoods Ui(ε) of these ICs do not intersect each other in M×R+.
Such neighborhoods can be constructed using Lyapunov functions.

For any i the boundary ∂Ui(ε) possesses the following properties. It consists
of three parts: the entrance set Se, where ICs intersect transversely the boundary
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∂Ui(ε), entering inside of Ui(ε) as time increases, the exit set Sl, where ICs intersect
transversely the boundary ∂Ui(ε), going out Ui(ε), as time increases, and the set
Sτ = Se∩Sl, containing a finite number of connected components of the dimension
lesser than n and possessing the property: any IC, passing through a point z of
the set Sτ , does not intersect more this set at the times from a sufficiently small
neighborhood of the time tz, corresponding to the point z.

Consider an IC passing through a point m from the set (M ×R+) \
⋃k
i=1 Ui(ε).

The connected piece of this IC between neighboring points of intersection with
either the boundary of the set ∪ki=1Ui(ε), or with M0, has the temporal length,
which we denote as Tm(ε).

Assumption 5. For any ε small enough there is T (ε) > 0 such that for any integral
curve the temporal interval Tm(ε) is bounded from above by the constant T (ε). The
same holds true for the union of ICs Γ−1 , . . . , Γ−r , taken by one from the partition
into unstable manifolds for M × R−.

Those NVFs, which satisfy to Assumptions 1–5, are called gradient-like.

4. Gradient-Like Diffeomorphisms and Periodic Vector Fields

Recall the notion of gradient-like diffeomorphism on a smooth closed manifold
M (see details in [7]).

Definition 2. A Morse–Smale diffeomorphism on M is called gradient-like if for
any two different periodic points σ1, σ2 with the property W s

σ1
∩ Wu

σ2
6= ∅ the

inequality dimWu
σ1
< dimWu

σ2
holds.

For a multidimensional case dimM > 3 a gradient-like diffeomorphism f can
have pairs of saddle periodic points whose stable and unstable manifolds intersect
each other both along compact and noncompact connected components. A compact
component is iterated along the stable (as well as along unstable one) manifold and
the orbit of this component consists of countably many components. In case if
the dimension of manifold is three, noncompact connected components are called
heteroclinic curves, see Fig. 4.

Figure 4. Intersections of invariant manifolds of a gradient-like diffeomorphism
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The main result of this paper is the following theorem.

Theorem 2. Let f : M → M be a diffeotopic to the identity gradient-like diffeo-
morphism f of a smooth three-dimensional closed manifold M . Then a gradient-like
NVF on M , reproducing the structure of f , exists if and only if the intersection of
any stable and unstable manifolds of different periodic points for f has no compact
connected components.

Proof. Necessity. Suppose the contrary, i.e., let f be a gradient-like diffeotopic to
the identity diffeomorphism of a smooth closed manifold M , dim M = 3, and the
nonwandering set of f contains a pair of saddle periodic points p, q such that their
transversal intersection W s

p ∩Wu
q has a compact connected component being here

a closed curve l0. Set ln = fn(l0), then we get a collection of disjoint closed curves
{ln}, whose topological limit, as n→ +∞, is the point p, and as n→ −∞ it is the

point q. In the manifold Mf = M × S1 on the cross-section M0 we get a curve l̂n
that corresponds to the curve ln. The curve l̂n is the directrix of the infinite cylinder
consisting of those orbits of the suspension flow which pass at t = n through the

closed curve l̂n. The closure of this cylinder contains periodic orbits Lp and Lq,
defined by periodic points p, q for f .

When going to the nonautonomous suspension over f , the manifold Mf is cut
along the section M0 and the countable copies of the manifold with the boundary
M0 ∪M0 are glued in accordance with the identification (x, 1) ∼ (f(x), 0). There
the infinite cylinder in Mf is cut into the countably many pieces Cn with bound-

aries l̂n, l̂n+1. When gluing, Cn is glued to Cn−1 along the curve l̂n and to Cn+1

along the curve l̂n+1. Thus, a periodic vector field vf that is constructed via the
nonautonomous suspension, has in the manifold M × R infinitely many disjoint

invariant cylinders Cn, containing correspondingly the directrix l̂n and lying in the
intersection of Wu(Lp) and W s(Lq). This contradicts to the Assumption 3 of a
gradient-like NVF.

Sufficiency. Since f is diffeotopic to the identity map, in virtue of the Theorem 1,
there is a periodic vector field vf on M , reproducing the structure of f . Let us show
that vf is gradient-like NVF, i.e., it satisfies to Assumptions 1–5. The nonwandering
set of f is finite and hyperbolic, this implies M to partition into the union of stable
manifolds of the finite set of hyperbolic periodic points of f . Similar partition of
M is provided by unstable manifolds of the same periodic points. The diffeotopy
with the identity map for f allows one to regard the manifold Mf to be M × S1

and hyperbolic periodic orbits of the suspension flow be finite-fold coverings of
S1 in the bundle M × S1 → S1. When going to the nonautonomous suspension,
each hyperbolic periodic orbit unfolds in M ×R into periodic integral curve of the
periodic vector field. These periodic ICs have period one, if the related periodic
points of f are fixed points, and they have period k, if k was the period of the
related periodic point of f . Thus, in view to the hyperbolicity of periodic orbits of
the suspension flow, periodic ICs obtained possess an exponential dichotomy of the
type corresponding to the type of the periodic point. Because M is partitioned into
stable (unstable) manifolds, M ×R will also be partitioned into a finite number of
stable or, respectively, unstable manifolds. In particular, in this case the partition
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into stable (unstable) manifolds consists of stable (respectively, unstable) manifolds
of periodic ICs.

Now let us verify, if the Assumption 3 fulfills. The transversality condition for
any pairs of stable and unstable manifolds holds, since it holds for the gradient-like
diffeomorphism f . Let us notice first that from the condition of gradient-likeness
for f follows that if Wu(p) ∩W s(q) 6= ∅ for two periodic points p, q, then no a
saddle periodic point r exists (distinct from p, q) such that W s(r) ∩Wu(p) 6= ∅,
Wu(r)∩W s(q) 6= ∅. Let us delete from M all one-dimensional stable and unstable
manifolds of saddle periodic points and their closures, i.e., sinks and sources, as
well as isolated sources and sinks, if they exist. Denote the remaining set as V . By
construction, V does not contain periodic points, hence all its points are wandering.
Then consider the space of orbits V̂ for the restriction of f on V , i.e., we introduce
the equivalence relation on V : x ∼ y, if y = fn(x) and factorize V according to
this relation. Denote π : V → V̂ the natural projection. At the factorization the
manifolds Wu(p), W s(q) become smooth two-dimensional tori or Klein bottles, and
if a heteroclinic curve γ ⊂Wu(p)∩W s(q) with limit points p, q exists, it transforms
to the closed curve which belongs to the transverse intersection of these smooth tori
or Klein bottles, consisting of a finite number connected components. This implies
that the intersection Wu(p)∩W s(q) consists also of a finite number of heteroclinic
curves.

Keeping this in mind, we consider again the autonomous suspension Mf = M ×
S1 over f with its suspension flow. If periodic points p, q with the least periods
Np, Nq, have Wu(p) ∩ W s(q) 6= ∅, in the suspension hyperbolic periodic orbits
Lp, Lq correspond to them, being respectively Np, Nq-covering of the base S1.
Each heteroclinic curve γ1, . . . , γs of f , joining points p and q, corresponds in Mf

to an open annulus being an invariant set of the suspension flow, its boundaries
are closed orbits Lp, Lq, respectively. More precisely, some of these curves γj can
belong under iteration of f to the same orbit, then the set of heteroclinic curves
consists of several orbits and in the autonomous suspension such orbit generates a
cylinder which covers several times S1 when projecting on the base.

When going to the nonautonomous suspension, such cylinder, covering l times
the base, is cut into l rectangles and after gluing gives l different infinite strips
foliated into ICs. Boundaries of such strip are a pair of periodic ICs with the
dichotomy of the type (1, 2) and (2, 1), obtained under unfolding periodic orbits
Lp and Lq, respectively. Every such strip belongs to the transverse intersection of
three-dimensional unstable and two-dimensional stable manifolds of these periodic
ICs. There exists a finite number of these strips. Therefore, the Assumption 3
holds for the NVF.

Assumptions 4 and 5 hold as well, which follows immediately from the gradient-
likeness of f and the construction of the nonautonomous suspension. The theorem
has been proved. �
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