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ON THE TOPOLOGY OF PLANAR REAL
DECOMPOSABLE CURVES OF DEGREE 8

I. M. Borisov and G. M. Polotovsky UDC 512.772, 515.165.4

Abstract. We consider the problem of topological classification of arrangements in the real projective
plane of the union of nonsingular curves of degrees 2 and 6 under certain conditions of maximality and
general position. We list admissible topological models of such arrangements by the Orevkov method
based on the theory of braids and links and prove that most of these models cannot be realized by
curves of degree 8.
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1. Introduction and statement of the problem. The problem of a systematic study of the
topology of real algebraic curves decomposing into the product of two nonsingular curves was first
posed by D. A. Gudkov in 1969 in the preface to the monograph [5] for the case of decomposing curves
of degree 6, i.e., in the first (lowest-degree) nontrivial case. This problem, directly related to the
topology of nonsingular curves of degree 6 (16th Hilbert’s problem) was solved by G. M. Polotovsky
in [25, 26] under natural conditions of maximality and general position of factor curves. Subsequently,
a similar problem was stated for curves of degree 7. However, this problem turned out to be more
difficult; its solution required the use of new methods (see [1–3, 6–12, 14–24, 27–31]). Apparently, the
solution is close to completion.

In this paper, we begin a similar study of decomposing curves of degree 8. Namely, we discuss the
topological classification of curves of degree 8 decomposing into the product of a nonsingular curve of
degree 2 (conic) and a nonsingular curve of degree 6 (sextics) under some additional conditions.

We recall the basic definitions and facts from the theory of planar algebraic curves.

Definition 1. A planar real projective algebraic curve Cm of degree m is a homogeneous polynomial
Cm(x0, x1, x2) with real coefficients of degree m in three variables x0, x1, x2 considered up to a nonzero
constant factor.

Definition 2. The set RCm (CCm) of points (x0 : x1 : x2) ((z0 : z1 : z2)) of the real (complex) projec-
tive plane RP 2 (CP 2) satisfying the equation Cm(x0, x1, x2) = 0 is called the set of real (respectively,
complex ) points of the curve Cm.

Definition 3. A curve Cm is said to be nonsingular if the first partial derivatives of the polynomial
Cm(x0, x1, x2) with respect to the variables x0, x1, and x2 do not vanish simultaneously (in CP 2).

Each connected component of the set RCm of real points of a nonsingular curve Cm (briefly, the
real branch of the curve) is homeomorphic to a circle. If the degree of the curve is even, then each
such circle is called an oval ; each oval divides RP 2 into two domains: one domain is homeomorphic to
a disk and the other domain is homeomorphic to the Möbius strip. For a given oval, the domain of the
first type is considered to be internal, and the area of the second type is considered to be external. If
the degree of the curve Cm is odd, then among connected components of the set RCm, there is exactly
one branch embedded in RP 2 one-sidedly; it is called the odd branch.

The following classical theorem yields an estimate for the possible number of real branches of a
nonsingular curve.
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Theorem (Harnack’s theorem, 1876). Let N be the number of connected components of the set of real
points of a planar real projective curve of degree m. Then

N ≤ 1

2
(m− 1)(m− 2) + 1;

this estimate is exact for all m.

The set RCm considered up to an isotopy in RP 2 is called the real scheme of the curve Cm.
A set of s pairwise disjoint topological circles in RP 2, where 0 ≤ s ≤ (m− 1)(m− 2)/2 + 1, is called

a formal scheme of degree m.
A real scheme of a nonsingular curve (and, similarly, a formal scheme) can be described by a graph

whose vertices correspond to the ovals of the curve and two vertices are connected by an edge if and
only if the corresponding ovals are located one inside the other and are not separated by any third
oval. The odd branch does not bound a domain in RP 2 and hence it is not necessary to include it in
the description; we only must remember that in the case of an odd degree, there is exactly one such
branch. It is easy to see that the real scheme of a nonsingular curve is a forest graph in which each
outer oval (i.e., an oval that does not lie in the inner domain of any other oval) corresponds to its own
tree.

Curves with the maximal possible number of branches (admitted by Harnack’s theorem) are called
M -curves. Schemes with such a number of ovals (both M -curves and formal schemes) are called M -
schemes. It is well known that the real scheme of a nonsingular conic is either empty or consists of
one vertex. Harnack’s theorem implies that the numbers of vertices of M -schemes of degrees 6 and 8
are equal to 11 and 22, respectively.

The problem of topological classification of nonsingular planar real algebraic curves stated by
D. Hilbert in the first part of his 16th problem, can now be formulated as follows: For each natu-
ral m, find a list of formal schemes of degree m that can be realized as real schemes of some curves of
degree m.

At present, the complete answer to this problem is known for m ≤ 7. In the first nontrivial case
m = 6, specially indicated by Hilbert, the answer was obtained by D. A. Gudkov in [5]. A fragment
of Gudkov’s classification concerning the case of M -curves can be formulated as follows.

Theorem (Gudkov’s theorem, 1969). Nonsingular curves of degree 6 realize only the M -schemes 1
19,

5
15, and

9
11.

Following Gudkov, we use the following encoding of schemes: α
1β means a scheme consisting of β+1

ovals outside each other, inside one of which lie other α ovals outside each other. This encoding can
be easily generalized to forests with taller trees (see, e.g., [22]).

Thus, the set of real points of each M -curve of degree 6 contains exactly one nonempty oval (i.e.,
an oval with another oval in its inner domain); it is denoted by 1 in the “denominator” of the code;
in what follows, a nonempty oval of a degree-6 curve is said to principal and ovals located inside and
outside the principal oval are said to be internal and external, respectively.

We say that an oval containing s ovals in its inner domain, which sequentially surround each other,
has weight s+ 1. A scheme consisting of an outer oval (i.e., not lying inside other ovals) of weight s+ 1
and all ovals inside is called a nest of weight s+ 1. Thus, an empty outer oval is considered to be a
nest of weight 1, and one can say that an M -curve of degree 6 is the union of one nest of weight 2 and
nests of weight 1.

Based on his results, D. A. Gudkov formulated (as a hypothesis) the following theorem, which was
proved by V. I. Arnold for the special case (modulo 4) and later by V. A. Rokhlin in the general case.

Theorem (Gudkov’s congruence, 1969). The Euler characteristics χ(B+) of the oriented part B+ of
the complement in RP 2 to the set of real parts of an M -curve of degree 2k satisfies the congruence
relation χ(B+) ≡ k2 (mod 8).

It is easy to see that an M -curve is determined by an irreducible polynomial. Consider decomposable
curves.
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Fig. 1.

Definition 4. A curve Cm is called an M -decomposable curve of degree m if the following conditions
are fulfilled:

(i) Cm(x0, x1, x2) = Ck(x0, x1, x2) · Cm−k(x0, x1, x2), where k ∈ {1, 2, . . . , [m/2]};
(ii) Ck and Cm−k are M -curves;
(iii) the set RCk ∩ RCm−k consists of k · (m− k) pairwise distinct points;
(iv) all points of the set RCk∩RCm−k lie on the same branch of the curve Ck and on the same branch

of the curve Cm−k;
(v) for a certain choice of directions of bypassing the intersecting branches, the intersection points

(i.e., the points of the set RCk ∩ RCm−k) lie on them in the same order.

Ovals of the curves Cm−k and Ck that do not have intersection points are called free ovals.
The problem of topological classification of decomposable curves of degree m is formulated as

follows: Find a topological classification of triples (RP 2,RCm,RCk), where

Cm(x0, x1, x2) = Ck(x0, x1, x2) · Cm−k(x0, x1, x2).

In this paper, we consider this problem for the case where m = 8 and k = 2 under the condition that
the curve C8 is an M -decomposable curve, i.e., the conditions (i)–(v) of Definition 4 are fulfilled.

Usually, to solve a classification problem for algebraic curves of a certain class, one first lists admis-
sible (i.e., not prohibited by currently known restrictions) topological models of curves of this class.
Then, one tries to realize each admissible model by an algebraic curve of the class under consideration
(“to construct”) or prove that such a construction is impossible (“to prohibit”). Below, for the problem
formulated above, we present admissible models and prohibitions found by using the Orevkov method
based on the theory of braids and links.

2. Admissible models. We begin with the formulation of the classical theorem on the indepen-
dence of perturbations of singular points of a simple curve.

Theorem (Brusotti’s theorem, 1921). Assume that a curve Cm has no multiple components and all
its singular points are simple double points. Then using sufficiently small changes in the coefficients
of the curve Cm, one can obtain a real curve of degree m, which in a neighborhood of each cross-type
singular point (i.e., a transversal intersection of branches) has one of the types A, B, and C, and in
a neighborhood of each solitary singular point has one of the types A′, B′, C ′ (see Fig. 1).

Now we recall the well-known facts about M -schemes of curves of degree 8.

1. Fue to Harnack’s theorem, an M -curve of degree 8 consists of 22 ovals.
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Type I Type II

Fig. 2. Types of arrangement of intersecting ovals and notation of domains

2. Due to topological consequences of Bésout’s theorem applied to the intersection of a degree-8 curve
with a straight line and a conic, an M -curve of degree 8 can have only one of the following real
schemes:
(a) the union of nests of weight 1 and mo more than three nests of weight 2;
(b) the union of nests of weight 1 and one nest of weight 3.

3. An M -curve of degree 8 satisfies Gudkov’s congruence relation for k = 4; in particular, this implies
that all 22 ovals of an M -curve of degree 8 cannot be located outside of each other.

The above conditions allow 89 pairwise distinct formal M -schemes of degree 8; 83 of them have
been implemented by M -curves of degree 8 by now. The realizability problem for the remaining six
schemes remains open. A list of all 89 schemes can be found in [19].

The location of two simple closed curves that intersect at 12 points lying on these curves in the
same order can belong to one of the nonequivalent types I and II shown in Fig. 2. In this figure, the
bold line shows the conic and the thin line shows the nonfree oval of the scheme of degree 6; by Greek
letters, we mark domains in which free ovals of a degree-6 scheme can a priori lie.

Now for each of the cases I and II, it is necessary to enumerate admissible distributions of 10 free
ovals in the domains marked with Greek letters for each of the M -schemes 1

19,
5
15, and

9
11 of degree 6;

we assume that the nonfree oval is either outer, or principal, or inner. The idea of this enumeration is
as follows.

Let us add to an arrangement of type I or II (see Fig. 2) 10 free ovals of a scheme of degree 6
distributed over the domain in some way. Then, bearing in mind Brusotti’s theorem, eliminate all
double points on the arrangement and obtain a scheme with the maximal possible number of ovals
(i.e., we turn each digon into an oval; in the case I, intersecting ovals form the scheme 11

1 and in
the case II we obtain 12 ovals outside each other). As a result, we get an M -scheme of degree 8.
If this scheme is not included in the above list of 89 M -schemes of degree 8, then the corresponding
arrangement of free ovals cannot be realized. Otherwise, the question on the realizability of the scheme
of the decomposable curve must be examined further.

A. Arrangements of type I.

A1. Nonfree oval is outer. The domains α and αi do not contain ovals since the nonfree oval is outer.
The domains βi also cannot contain ovals, otherwise we get a scheme, which does not satisfy the
condition 2 on the types of M -schemes of degree 8.

Consider a scheme of degree 6 of the form 1
19. Then the following possibilities remain: in one of

the domains β or γ, free ovals form the scheme 1
1 t and in the other the form the scheme “8− t ovals
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Table 1. Type I, outer nonfree oval

No.
Scheme

of degree 6 β γ M-T F-M

1 1
19

1
13 5

Hilbert’s
construction

2 —"— �1
1 7 1 � ×

3 —"— 7 1
11 no M -pencils

4 —"— 3 1
15 no M -pencils

5 5
15

�5
1 3 1 � �

6 —"— 3 5
11 no M -pencils

outside each other,” where 0 ≤ t ≤ 8. It is easy to verify that Gudkov’s congruence relation is valid
only for t ∈ {3, 7}, where the nest 1

1 is located in the domain β, and for t ∈ {1, 5}, where the nest 1
1

is located in the domain γ .
These results are contained in the lines 1–4 of Table 1; the meaning of the symbol � and the last

columns in this and the following tables will be explained below in Sec. 4.
Schemes of degree 6 of the form 5

15 and 9
11 are examined similarly. The lines 5 and 6 of Table 1

correspond to the first of them, and there are no admissible possibilities for the second.

A2. Non-free oval is principal. In this case, inner ovals of a scheme of degree 6 must be distributed
between the domains α and α1–α6. Note that the domains αi and α7−i, i ∈ {1, 2, 3}, have the same
properties due to symmetry. Moreover, due to the condition 2 on the types of M -schemes of degree 8,
only one of the domains αi can be nonempty.

A3. Nonfree oval is outer. In this case, the principal oval encircles the whole configuration of two
intersecting ovals shown in Fig. 2 on the left (Type I). The domains β1–β5 cannot contain ovals due
to the condition 2: otherwise, a nest of weight 4 is formed.

The unique possibility for the scheme 1
19 is as follows: nine free ovals outside each other lie in the

domain γ; this contradicts the condition 3 for M -schemes of degree 8.
For the other two schemes, 5

15 and 9
11, we denote by γ1 and γ2 the parts of the domain γ located,

respectively, inside and outside the principal oval (in the case considered, the principal oval is not
shown in Fig. 2). As above, we obtain the results shown in Table 3.

B. Arrangements of type II.

B1. Non-free oval is outer. Since in this case the nonfree oval is empty, free ovals can only lie in the
domains βi, 1 ≤ i ≤ 6, and β. At the same time, due to the condition 2, if the principal oval lies in βi
then the other domains βi must be empty, and if the main oval lies in the domain β, then at most two of
the domains βi may be nonempty. Recall that all domains βi have the same properties. Also note that in
the case where two of the domains βi are nonempty, there are three pairwise nonequivalent possibilities
in the order of bypassing the oval of the conic: nonempty domains are either adjacent, or separated by
one empty domain, or separated by two empty domains. We get a list of valid arrangements prsented
given in table 4.

B2. Nonfree oval is principal. As in the previous case, the domains αi have the same properties and
the domains βi also have the same properties. Due to the condition 2, at most three of these 12 domains
can contain ovals at the same time. If exactly two of them are nonempty (i.e., contain free ovals), then,
as in the previous case, up to cyclic order of domains (i.e., along the oval of the conic), there are three
pairwise distinct cases for numbers i and j of these domains: (i, j) ∈ M1 = {(1, 2), (1, 3), (1, 4)}. If
three domains of the same type are nonempty (i.e., all three domains from αi or all three from βi),
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Table 2. Type I, principal nonfree oval

No.
Scheme

of degree 6 α α1 � α2 � α3 β1 � β2 � β3 β γ M-T F-M

1 1
19 1 � 5 3 1 × —

2 —"— 1 � 4 3 2 × —

3 —"— 1 � 3 3 3 × —

4 —"— 1 � 2 3 4 × —

5 —"— 1 � 1 3 5 × —

6 —"— 1 � 1 7 1 × —

7 —"— 1 7 2 no M -pencils

8 —"— 1 3 6 no M -pencils

9 —"— � 1 8 1 × —

10 —"— � 1 4 5 � �
11 —"— � 1 9 × —

12 5
15 5 � 1 3 1 × —

13 —"— 5 3 2 no M -pencils

14 —"— 4 � 1 4 1 × —

15 —"— 4 � 1 5 × —

16 —"— 3 � 2 1 4 × —

17 —"— 2 � 3 2 3 � ×
18 —"— 1 � 4 3 2 × —

19 —"— � 5 4 1 × —

20 —"— � 5 5 × —

21 9
11 8 � 1 1 � ×

22 —"— 4 � 5 1 × —

23 —"— 0 � 9 1 × —

Table 3. Type I, inner nonfree oval

No.
Scheme

of degree 6 β γ1 γ2 M-T F-M

1 5
15 � 2 2 5 � �

2 9
11 � 2 6 1 × —

3 9
11 6 2 1

Hilbert’s
construction
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Table 4. Type II, outer nonfree oval

No.
Scheme

of degree 6 β β1 βj, j = 2 � 3 � 4 M-T F-M

1 1
19

1
16 2 0 no M -pencils

2 —"— —"— 1 1 —"—

3 —"— 1
12 6 0 —"—

4 —"— —"— 5 1 —"—

5 —"— —"— 3 3 —"—

6 —"— 6 1
12

Hilbert’s
construction

7 —"— 2 �1
1 6 � �

8 5
15

5
12 2 0 no M -pencils

9 —"— —"— 1 1 —"—

10 —"— 2 �5
1 2 � �

then there are also three possibilities: (i, j, k) ∈ M2 = {(1, 2, 3), (1, 2, 4), (1, 3, 5)}. If two domains of
one type and one domain of another type are nonempty (for example, αi, αj, and βk), then there are
9 pairwise nonequivalent possibilities:

(i, j, k) ∈ M3 =
{
(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3)

}
.

Admissible possibilities for the case considered are listed in Tables 5 and 6; note that the headers
of these tables contain only one element (i.e., a set of index values) from each of the sets M1, M2,
and M3 indicated above since calculations in Sec. 4 and their results are independent of the choice of
these elements.

Note that in the case of a set of indices from the set M2, if the numbers of ovals in each of the three
nonempty domains corresponding to these indices are the same, then the corresponding lines of the
table (for example, the line 3 of Table 5) correspond to three pairwise nonisotopic arrangements. If
only two of these three numbers coincide (e.g., as in the line 7 of Table 5), then there are 5 pairwise
different possibilities (up to the cyclic order of domains along the oval of the conic). Recall that for
the sets M2 and M3 the situation where these three numbers are all different does not occur in the
tables. Similarly, for the case of a set M3, if the numbers of ovals in two nonempty domains of the
same type are the same, then the corresponding lines of the table (for example, the lines 11 and 14 of
Table 5) correspond to nine pairwise nonisotopic arrangements, whereas these numbers do not match
(e.g., as in the line 13 of Table 5), then there are 15 pairwise different possibilities.

B3. Nonfree oval is inner. As in the case of an inner nonfree oval for an arrangement of type I (the
case A3 above), the principal oval encircles the whole configuration of two intersecting ovals, and free
ovals may lie only in one of the domains βi, 1 ≤ i ≤ 6 (recall that they have the same properties), and
the parts β′ (inside the principal oval) and β′′ (outside the principal oval) of the domain β. The list
of admissible possibilities is given in Table 7.

3. Orevkov’s method. Orevkov’s method used below for prohibiting isotopic types of algebraic
curves using the theory of braids and links has been repeatedly stated in the literature (except for
the fundamental work [17], see, e.g., [9, 19, 21]), so here we give only a summary necessary for further
understanding.
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Table 5. Type II, principal nonfree oval, schemes 1
19 and 5

15

No.
Scheme

of degree 6 α α1 α2 α3 β β1 β2 β3 M-T F-M

1 1
19 1 6 3

Hilbert’s
construction

2 —"— � 1 6 2 1 � ×
3 —"— � 1 6 1 1 1 � ×
4 —"— � 1 2 7 × —

5 —"— � 1 2 6 1 × ×
6 —"— � 1 2 5 2 × ×
7 —"— � 1 2 5 1 1 × —

8 —"— � 1 2 4 3 × ×
9 —"— � 1 2 3 3 1 × —

10 —"— 1 7 2 no M -pencils

11 —"— 1 7 1 1 no M -pencils

12 —"— 1 3 6 no M -pencils

13 —"— 1 3 5 1 no M -pencils

14 —"— 1 3 3 3 no M -pencils

15 5
15 � 5 2 3 × ×

16 —"— � 5 2 2 1 × ×
17 —"— � 5 2 1 1 1 × ×
18 —"— � 4 1 3 2 × —

19 —"— � 4 1 3 1 1 � ×
20 —"— � 3 2 4 1 � �
21 —"— � 3 2 5 � ×
22 —"— � 3 1 1 4 1 � ×
23 —"— � 3 1 1 5 × ×
24 —"— � 2 3 5 � ×
25 —"— � 2 3 1 4 � ×
24 —"— � 2 3 1 3 1 � ×
25 —"— � 2 2 1 5 � ×
26 —"— � 2 1 1 1 5 � ×
27 —"— � 1 4 2 3 � ×
28 —"— � 1 3 1 2 3 � ×
29 —"— 5 3 2 no M -pencils

30 —"— 5 3 1 1 no M -pencils
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Table 6. Type II, principal nonfree oval, scheme 9
11

No.
Scheme

of degree 6 α α1 α2 α3 β β1 β2 β3 M-T F-M

31 9
11 � 7 2 1 � ×

32 —"— � 7 1 1 1 × —

33 —"— 6 3 1
Hilbert’s

construction

34 —"— � 6 2 1 1 � �
35 —"— � 6 1 1 1 1 � ×
36 —"— � 3 6 1 � ×
37 —"— � 3 5 1 1 � ×
38 —"— � 3 3 3 1 � ×
39 —"— � 2 7 1 � ×
40 —"— � 2 6 1 1 × —

41 —"— � 2 5 2 1 � ×
42 —"— � 2 5 1 1 1 � ×
43 —"— � 2 4 3 1 × —

44 —"— � 2 3 3 1 1 � ×

Table 7. Type II, inner nonfree oval

No.
Scheme

of degree 6 β1 β′ β′′ M-T F-M

1 5
15 � 1 3 5 � �

2 9
11 � 1 7 1 � ×

3 9
11 5 3 1

Hilbert’s
construction

Let Cm be a curve whose singularities are nondegenerate double points. Assume that there exists a
point p ∈ RP 2 \RCm such that the pencil Lp of straight lines centered at this point has the following
properties:

(a) there exists a straight line l0 in Lp intersecting the curve RCm at m distinct points (the maximal
line);

(b) any straight line l ∈ Lp intersects the curve RCm at least at m− 2 distinct points;
(c) each straight line of the pencil has no more than one point of double intersection with RCm, i.e.,

each of such critical lines either touches RCm or intersects RCm at its double point transversally.

A pensil satisfying the conditions (a)–(c)is said to be maximal. Note that the condition (c) can always
be satisfied by a small perturbation of the center of the pencil.

We choose affine coordinates (x, y) so that the line l0 (and hence the point p) is located at infinity
and the pencil Lp turns into a pencil of parallel lines {lt} (see Fig. 3(a)), where lt is the straight line
given by the equation x = t.

Let {lt1 , . . . , lts} be the set of all critical straight lines ordered so that the numbers ti increase. The
scheme of the arrangement of the curve RCm relative to the pencil Lp is encoded by the word u1 . . . us,
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(a) (b)

Fig. 3.

Fig. 4. Symbols of the ×-code and standard generators of the braid group

where the letter ui characterizes the location of the curve RCm in a neighborhood of the line lti and
takes one of the values ⊃k, ⊂k, or ×k (k ∈ {1, . . . ,m− 1}) according to Fig. 41. A pair of consecutive
symbols ⊂k, ⊃k is replaced by a single symbol ok (“a free oval in the (k − 1)th strip counting from
below”), the coding word is called the ×-code.

In the complex projective plane CP 2, consider the set M = CCm ∩ CLp, where CLp is a pencil of
complex straight lines Cl. The set M is homeomorphic to a set of circles, some of which are pairwise
glued together at double points of the curve RCm and at the points of tangency of lines of the pencil Lp

with this curve (see Fig. 3(b)2).
Having eliminated all gluing points in some standard way (see Fig. 5; for details, see [17, 21]), we

obtain a linkK(Cm, p). Let b(Cm, p) be a braid ofm threads whose closure coincides withK(Cm, p). For
what follows, it is important that, due to the assumption that the pencil is maximal, the braid b(Cm, p)
is uniquely determined (up to conjugacy in the group Bm of braids with m threads) by the mutual
position of the curve RCm and the pencil Lp in RP 2.

Recall that the group Bm has the following presentation by standard generators σk:〈
σ1, . . . , σm−1

∣∣∣ σiσj = σjσi for |i− j| > 1, σiσjσi = σjσiσj for |i− j| = 1
〉
.

It is well known (see [13]) that the braid b(Cm, p) obtained by the method described above is
quasi-positive, i.e., can be represented in the form

k∏
j=1

ωjσijω
−1
j ,

1Figure 4 is taken from [21].
2This drawing is conditional: the “imaginary axis” V is two-dimensional.
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Fig. 5.

where ωj , j ∈ {1, 2, . . . , k}, are some words in the alphabet {σ1, . . . , σm−1, σ
−1
1 , . . . , σ−1

m−1}. Therefore,
if for the topological model of a hypothetic curve RCm, the braid b(Cm, p) is not quasi-positive for
each possible mutual arrangement of the pencil Lp and this model, then the model cannot be realized
by an algebraic curve of degree m.

As a necessary condition for quasi-positivity, S. Yu. Orevkov suggested to use the Murasugi–Tristram
inequality in [17] and, later, then the Fox–Milnor condition in [19, 20].

Murasugi–Tristram inequality. If b =
∏

σki
i is a quasi-positive braid of m threads, then its closure

satisfies the inequality
|σ(b)|+m− e(b)− n(b) ≤ 0,

where σ(b) and n(b) are the signature and the closure defect of the braid b and e(b) =
∑

kj is the
algebraic degree of the braid b.

Fox–Milnor condition. Let b be a quasi-positive braid of m threads. If e(b) = m−1, then there exists
a polynomial f(t) ∈ Z[t] such that the Alexander polynomial ΔL(t) of the closure L of the braid b is
represented in the form

ΔL(t)
.
= f(t) · f(t−1),

where
.
= means equality up to multiplication by units of the ring Z[t, t−1]; if e(b) < m − 1, then the

equality ΔL(t) = 0 holds (for details, see [27]).

Proposition 1. The Alexander polynomial satisfies the Fox–Milnor condition if its value at t = −1
is the square of an integer.

Proposition 2. If the decomposition of the Alexander polynomial into irreducible factors contains a
symmetric polynomial to an odd degree, then the Alexander polynomial cannot be represented in the
form specified in the Fox–Milnor condition.

4. Prohibitions of mutual positions of a conic and a sextic using the Orevkov method.
Let us illustrate the application of the Orevkov method in our problem with examples and describe
the results obtained.

Example 1. Consider the hypothetical arrangement of a conic and a sextic indicated in the line 1 of
Table 2 (see Fig. 6, where p is the center of the maximum pencil, a is the maximal line in l0, the outer
circle is the boundary of the model of the projective plane, i.e., diametrically opposite points of this
circle are considered identified).

Let us choose the center p of the maximal pencil inside one of the ovals lying in the domain β1.
Next, as the straight line l0, we choose the line a passing through the point p and a point inside one
of the ovals lying in the domain β (see Fig. 6).

Remark. As was noted above, in the presence of a maximum pencil, the braid b(Cm, p) is uniquely
determined by the “real picture” (i.e., by the mutual arrangement of the curve RCm and the pencil Lp

in RP 2). For a nonmaximal beam, it is not seen how the threads intertwine in the imaginary domain.
In the cases where it was not possible to find a maximum pencil of lines, investigations were not
carried out; these cases are indicated noted in the tables. Although, in principle, Orevkov’s method
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Fig. 6.

is also applicable in these cases (see [17, 19]), consideration of the available possibilities here is rather
complicated and requires large calculations.

Now, choosing an affine coordinate system as described in Sec. 3, we obtain an unfolding of the
curve shown in Fig. 6; this unfolding is shown in Fig. ??, where Latin letters with indices mark areas
in which free ovals can be located, and in the caption to the figure, the notation |U | means the number
of ovals in the area U ; moreover, the conditions for these numbers corresponding to the example
considered are presented. The ×-code for Fig. 7, which does not take into account (undrawn) free
ovals, has the form

⊃5 o5o5 ⊂5 ×6×4 ⊃5⊂4 ×10
3 ⊃2⊂3,

where ×10
3 means the character ×3 repeated consecutively ten times.

Now we must enumerate logically possible distributions of free ovals over the domains indicated
by letters and insert the necessary symbols oi into the corresponding places of the ×-code. Next, for
each ×-code from the resulting list of ×-codes, we verify the Murasugi–Tristram inequality for the
corresponding link. If this inequality is not satisfied for each case, then the arrangement considered
cannot be realized by any curve of degree 8. The calculation for the example considered lead to this
result. The fact that an arrangement is prohibited is noted by × in the corresponding cells in the
columns “M-T” of the tables in Sec. 2. In these cases, we did not verify the Fox–Milnor condition; this
fact is indicated by a dash in the corresponding cells of the column “F-M.”

If the Murasugi–Tristram inequality did not prohibit an arrangement (see Example 2 below), i.e.,
this inequality is satisfied for at least one distribution of ovals, then the corresponding cells of the col-
umn “M-T” is filled with the symbol�. In such cases, we calculated the Alexander polynomial and ver-
ified the Fox–Milnor condition; the results of calculations are marked similarly in the columns “F-M.”

Example 2. Consider the hypothetical arrangement of a conic and a sextic indicated in the line 2 of
Table 7 (see Fig. 8, where p is the center of the maximum pencil, a is the maximum line of l0, and the
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Fig. 7. |A1 ∪A2 ∪ A3 ∪A4 ∪B1 ∪B2| = 1, |C1 ∪ C2 ∪C3 ∪ C4 ∪ C5| = 1,
|D1 ∪D2 ∪D3 ∪D4 ∪D5| = 4; by virtue of Bezout’s theorem, ovals cannot be
located in vertical strips that do not contain areas indicated by letters

Fig. 8. Fig. 9. |A1 ∪A2 ∪B1 ∪B2| = 7

outer circle is the boundary of the model of the projective plane). The unfolding for Fig. 8 is presented
in Fig. 9.

Here we have 120 pairwise different distributions of seven ovals in the domains A1, A2, B1, and B2.
Calculations show that for each of them, the corresponding link satisfies the Murasugi–Tristram in-
equality. Then we apply the Fox–Milnor condition, i.e., we calculate the Alexander polynomial for each
of these links. In 68 cases, the value of the Alexander polynomial at the point −1 is not the square of
an integer; hence the corresponding arrangements cannot be realized by curves of degree 8 (see Propo-
sition 1). In each of the other 52 cases, calculations show that the factorization of the Alexander
polynomial contains a symmetric polynomial to an odd degree, so the Fox–Milnor condition is not

537



Fig. 10.

satisfied due to Proposition 2. Thus, the arrangement from the line 2 of Table 7 is prohibited; this
fact is indicated by the symbol × in the column “F-M.”

The choice of the center of a pencil and the construction of an arrangement for constructing the
initial ×-code are done manually. The symbol � in the tables next to the number indicating the number
of ovals in the given domain means that the center of the pencil was chosen inside this or one of these
ovals. In this case, it does not matter for calculations in which of the ovals (if the number is greater
than one) and in which domain (if the domain is indicated ambiguously) the center of the pencil was
chosen.

All other calculations are performed using a computer. Namely, the enumeration of admissible
arrangements of free ovals for each layered arrangement, the calculation of the corresponding braids
from the ×-codes, the calculation of all link invariants involved in the Murasugi–Tristram inequality
were performed by a software created by M. A. Gushchin and repeatedly used earlier (see, e.g., [9,
10]) for the classification of other classes of decomposable curves.

The calculation of the Alexander polynomial of the link and the verification of its properties from
Propositions 1 and 2 were performed by a software created by I. M. Borisov.

5. Statistics of results. In total, there are 323 pairwise nonisotopic schemes of curves of the form
considered in the paper. Six of them can be realized by curves of degree 8 in the process of constructing
nonsingular curves of even degree by Hilbert’s method. Since constructions by the Hilbert method have
been repeatedly described in the literature (see, e.g., [4, 22, 32]), we restrict ourselves to indicating
“Hilbert’s construction” in the tables.

Among the remaining 317 schemes, a maximum pencil exists for 245 schemes, of which 231 are
prohibited in this paper, and for 14 schemes shown in Fig. 10, the question of realizability is open.
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