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We study topological properties of automorphisms of a 6-dimensional torus T 6 generated 
by integer matrices with simple eigenvalues being symplectic with respect to either the 
standard symplectic structure in R6 or a nonstandard symplectic structure given by an 
integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a 
partially hyperbolic automorphism of the torus, if its eigenvalues lie both outside and on 
the unit circle. We study transitive and decomposable cases possible here and present a 
classification in both cases.
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1. Introduction

The aim of this paper is the investigation of the topological dynamics of automorphisms on a 6-dimensional torus 
generated by an integer symplectic transformation of R6 in the case of partial hyperbolicity. The hyperbolic case is rather 
well understood already [1,10,26,18].

There are many results about partially hyperbolic diffeomorphisms [8,13–15] starting from the seminal paper [7]. Con-
cerning partially hyperbolic automorphisms on a torus Tn , the most detailed study was done in [15], which solved the 
question on their stable ergodicity posed in [16]. Recall that stable ergodicity of a Cr -smooth diffeomorphism f of a man-
ifold M , being ergodic with respect to a smooth Lebesgue measure on M , means the existence of a neighborhood U of f
in the space of Cr -smooth diffeomorphisms such that each g ∈ U is ergodic. Our goal here is to classify, with respect to 
topological conjugacy, possible types of orbit behavior of symplectic automorphisms of T 6. We trust this will be useful as 
a source of interesting examples.

Consider the standard torus Tn = Rn/Zn as the factor group of the abelian group Rn with respect to its discrete 
subgroup Zn of integer vectors. Denote by p : Rn → Tn the related covering map, which is also a group homomorphism. 
The standard coordinates in the space Rn will be denoted by x = (x1, . . . , xn). Let A be a unimodular matrix with integer 
entries. Since the linear mapping L A : x → Ax maps the subgroup Zn onto itself, such a matrix generates a diffeomorphism 
f A of the torus Tn called an automorphism of the torus [1,2,10]. Topological properties of such maps are the classical object 
of research (see, for example, [1,10,18,26]). Because this toral automorphism also preserves the standard volume element 
dx1 ∧ · · · ∧ dxn on the torus carried over from Rn , its ergodic properties have also been the subject of research [5,12,28]. 
The following classical theorem of Halmos holds for automorphisms of a torus [12].
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Theorem 1.1 (Halmos). A continuous automorphism f of a compact abelian group G is ergodic (and mixing) if and only if the induced 
automorphism on the character group G∗ has no finite orbits.

In the case of the abelian group Tn =Rn/Zn , this theorem is equivalent to the statement that the automorphism L A is 
ergodic if and only if none of the eigenvalues of the matrix A are roots of unity [12]. This implies, in particular, that Anosov 
automorphisms are ergodic, since all eigenvalues of A are outside of the unit circle.

In fact, the following assertions are equivalent [19]:

• the automorphism f A is ergodic with respect to Lebesgue measure;
• the set of periodic points of f A coincides with the set of points in Tn with rational coordinates;
• none of the eigenvalues of the matrix A is a root of unity;
• the matrix A has at least one eigenvalue of absolute value greater than one and has no eigenvector with all rational 

coordinates;
• all orbits of the dual map A∗ :Zn →Zn , besides the zero orbit, are infinite.

One more result about toral automorphisms is due to Bowen [5] and allows one to calculate its topological entropy.

Theorem 1.2 (Bowen). If L A :Rn →Rn is a linear map generated by a unimodular integer matrix A with eigenvalues λ1, . . . , λn, then

hd( f A) =
∑

|λi |>1

log |λi|.

When the dimension of the torus is even, n = 2m, then we can introduce the standard symplectic structure on T 2m

using coordinates in R2m : � = dx1 ∧ dxm+1 + · · · + dxm ∧ dx2m and consider symplectic automorphisms of the torus which 
preserve this symplectic structure. A symplectic automorphism f A is then defined by a symplectic matrix A with integer 
entries. Such matrices satisfy the identity A� J0 A = J0, where the skew-symmetric matrix J0 has the form

J0 =
(

O E
−E O

)
(1.1)

where E is m × m identity matrix. The identity A� J0 A = J0 implies the product of two symplectic matrices and the 
inverse matrix of a symplectic matrix be symplectic, i.e. symplectic matrices form a subgroup of GL(n, R), which is denoted 
Sp(n, R). This is one of the standard matrix Lie groups [9].

Another (non-standard) symplectic structure on T 2m can also be defined as follows. Choose a real non-degenerate skew-
symmetric 2m ×2m matrix J : J� = − J . Then we have a bilinear 2-form [x, y] = ( J x, y) on R2m , where (·, ·) is the standard 
coordinate inner product. This form is called sometimes the skew inner product [3]. Then a linear map S : R2m → R2m is 
called symplectic, if for all x, y ∈ R2m the equality [Sx, S y] = [x, y] holds. Using the representation of the skew inner 
product via J and properties of the inner product, we obtain the following identity for the matrix S of the symplectic map: 
S� J S = J . This construction allows one to define some symplectic structures on the torus.

Remark 1.3. This way of constructing symplectic structures on the torus T 2m by means of its covering space R2m is not 
unique. One may define a symplectic structure on T 2m choosing any symplectic 2-form on R2m being invariant w.r.t. the 
translations by the group Z2m and projecting this form via p : R2m → Z2m . Symplectic structures on T 2m defined by 
means of the constant non-degenerate skew-symmetric matrices J can be called homogeneous. Due to the standard linear 
Darboux theorem [3], all homogeneous symplectic structures on R2m are equivalent. However, these forms become different 
when lowered them onto the torus T 2m . Simplest discriminating invariant is the volume of the torus w.r.t. the cube of the 
symplectic 2-form. Also, invariants are integrals over 2-dimensional sub-tori being basic in the homology group H2(T 4, Z).1

The unimodularity of S follows from its symplecticity. Then a symplectic 2-form on the torus is given and the map 
S defines a symplectic automorphism of the torus with respect to this symplectic form. For example, let B be any non-
degenerate integer matrix. Having the standard skew inner product ( J0x, y) in R2m with J0 as (1.1), we can define the 
new skew inner product [x, y] = ( J Bx, B y) = (B� J Bx, y). Since the matrix B� J B has integer entries and is non-degenerate 
and skew-symmetric, this new skew inner product generates a symplectic 2-form on the torus. Later on, we study the case 
n = 6, i.e. T 6.

Let P (x) = λ6 + aλ5 + bλ4 + cλ3 + bλ2 + aλ + 1 be an integer self-reciprocal polynomial being irreducible over the field 
Q. The companion matrix [17] of this polynomial P is of the form

1 We are thankful to Prof. A. Bolsinov for the explanation us this point.
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A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 −a −b −c −b −a

⎞
⎟⎟⎟⎟⎟⎠

This matrix is unimodular (det A = 1) but not always symplectic with respect to the standard symplectic 2-form [x, y] =
( J0x, y) for x, y ∈R6 with (1.1) as J0. Let us show, however, that A is symplectic with respect to the nonstandard symplectic 
structure on R6 defined by [x, y] = ( J x, y) for x, y ∈ R6 with some integer non-degenerate skew-symmetric matrix J . 
Rewrite the matrix identity A� J A = J (with an unknown J ) as A� J − J A−1 = 0. A solution J of this matrix equation is

J =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0
0 0 a a + 1 a + 1 1

−1 −a 0 a + b − c a + 1 1
−1 −a − 1 −a − b + c 0 a 1
−1 −a − 1 −a − 1 −a 0 0
0 −1 −1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (1.2)

Its determinant det J = (a + b − c − 2)2 is non-degenerate, if a + b − c �= 2, then A is symplectic with respect to this 
nonstandard symplectic structure. This will be used later on.

Recall the notion of partially hyperbolic diffeomorphisms of a smooth manifold M , they were first introduced and studied 
in [7]. Here we use a modification of the definition like in [15]. Let L be a linear transformation between two normed linear 
spaces. The norm, respectively co-norm, of L are defined as

||L|| := sup
||v||=1

||Lv||, m(L) := inf||v||=1
||Lv||.

Definition 1.4. A diffeomorphism f : M → M is partially hyperbolic, if there is a continuous D f -invariant splitting T M =
Eu ⊕ Ec ⊕ Es in which Eu and Es are nontrivial sub-bundles and

m(Du f ) > ||Dc f || ≥ m(Dc f ) > ||ds f ||, m(Du f ) > 1 > ||Ds f ||,
where Dσ f is the restriction of D f to Eσ for σ = s, c or u.

A well known class of partially hyperbolic diffeomorphisms are hyperbolic or Anosov diffeomorphisms introduced and 
studied by Anosov [1]. For such diffeomorphism Ec = {0} for any x ∈ M but both Es, Eu are not empty. Hyperbolic automor-
phisms on the torus Tn are defined by an integer unimodular hyperbolic matrix A, its eigenvalues are all outside of the 
unit circle in C. A particular example of such automorphism on T 2 was proposed earlier by Thom, as an example of a (pre-
sumably) structurally stable diffeomorphism with countable set of periodic points. More details on Anosov diffeomorphisms 
can be found in [10].

In [24], we presented a classification of automorphisms f A of the four-dimensional torus T 4 generated by symplectic 
integer matrices A ∈ Sp(4, Z). These automorphisms can possess either a transitive unstable one-dimensional foliation or 
they are decomposable. In the first case two such automorphisms are (topologically) conjugate, if their matrices are in-
tegrally similar (conjugate in Mn(Z)).2 In the second case, a decomposable f A is conjugate to the direct product of two 
2-dimensional automorphisms acting on T 2 × T 2, one of which is an Anosov automorphism of the 2-torus and another 
one is periodic on a 2-torus.

It is natural to extend these results to the higher-dimensional case. This is more involved problem because several 
different possibilities can occur: the dimensions of a center sub-bundle and stable/unstable sub-bundles can vary even for 
a torus of a fixed dimension. For instance, for symplectic automorphisms on T 6, which we study in this paper, there are 
symplectic partially hyperbolic integer matrices with

• dim W c = 4, dim W s, W u = 1;
• dim W c = 2, dim W s, W u = 2.

A symplectic integer matrix generates a partially hyperbolic automorphism of the torus, if its eigenvalues are both outside 
the unit circle and on the unit circle. The topological classification of such automorphisms is determined in the first turn by 
the topology of a foliation generated by unstable (stable) leaves of the automorphism, since this foliation is invariant with 
respect to the action of f , and also by the action of f on the local center submanifold and its extension. Hence, the structure 

2 In [24] it was erroneously asserted that two such automorphisms are topologically conjugate, if they have the same characteristic polynomial.
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of stable and unstable foliations has to be investigated in the first turn for the classification problem. Recall how stable, 
unstable and center foliation are generated for the case of symplectic automorphisms of T 6. A symplectic 6 × 6 matrix 
A has a decomposition of its spectrum into three parts: Sp(A) = σs ∪ σc ∪ σu where eigenvalues in σs lie within the unit 
circle, of σc on the unit circle and those in σu are out of the unit circle. We assume below that all eigenvalues are simple. 
Therefore in the first case above the projection of the subspace W u ⊂ R6 onto the torus T 6 gives an embedded line. The 
subspace W u is also a one-parametric subgroup of R6, hence its shifts by vectors of R6 gives other affine lines representing 
other classes of the factor-group R6/W u . Their projections on the torus give unstable foliation of the automorphism f A , its 
leaves are embedded infinite lines. Similar construction gives the stable foliation and the center foliation. More details on 
the structure of these foliations will be presented in Sec. 2.

For the second case the subspace W u is two-dimensional and this commutative subgroup has two generators. Here there 
are two different cases: 1) σu consists of two simple real eigenvalues λ1,2, |λi| > 1, with the related independent real eigen-
lines; 2) σu consists of two complex conjugate eigenvalues λ, λ∗ |λ| > 1, and W u is the invariant subspace w.r.t. the action 
of L A , as generators of this subgroup one can choose real and imaginary parts of the complex eigenvector of the matrix A.

The projection of W u onto the torus gives an embedded plane (it is the unstable manifold of the fixed point Ô ), other 
classes of R6/W u are affine 2-planes, their projections give the unstable foliation of f A . Analogously we get the stable 
foliation and the center foliation. More details on the structure of these foliations will be presented in Sec. 3.

The automorphism f A is an isomorphism of the abelian group Tn = Rn/Zn . Every isomorphism of the topological 
group Tn in standard angular coordinates is given by an integer unimodular matrix. The topological classification of auto-
morphisms of the group Tn is determined by the similarity of the related matrices, due to Arov’s theorem [4].

Theorem 1.5 (Arov). Two automorphisms T and P of a compact abelian group G are topologically conjugate if and only if they are 
isomorphic, that is, there is an isomorphism Q : G → G such that Q ◦ T = P ◦ Q .

To check that two integer matrices are similar via an unimodular integer matrix is not an easy problem, the discussion 
is postponed till the last section. For the case of the group Tn the necessity to be unimodular for a conjugating matrix 
leads to the possibility that two integer matrices can be similar over Q but not over Z. This holds true even for the case 
of Anosov automorphisms on the 2-torus. For instance, consider two automorphisms of T 2 generated by matrices

A =
(

4 3
5 4

)
and C =

(
0 1

−1 8

)
,

where C is the companion matrix of the characteristic polynomial χ(λ) = λ2 − 8λ + 1 of A. Two matrices A, C are rationally 
similar T A = C T (since their minimal and characteristic polynomials are equal) but not integrally similar. Clearing a common 
denominator of the entries of a conjugating rational matrix allows us to get the set of integer matrices

P =
(

m n
4m + 5n 3m + 4n

)
, m,n ∈Z,

for which det P = 3m2 − 5n2 �= 0. Since determinant of this matrix is not equal to ±1, it generates not an isomorphism but 
a monomorphism of the group h : Z2 → Z2 with the image being some subgroup G of Z2 with two integer vectors as 
generators. The parallelogram formed by these generators is the fundamental domain with the area | det P | for the factor-
group R2/G being the torus. The number of integer points in the fundamental domain is the same | det P |. Topologically, 
this means that topological semi-conjugacy holds: the diagram

T 2 f A−−−−→ T 2

P

⏐⏐� P

⏐⏐�
T 2 fC−−−−→ T 2

,

is commutative but P is not an isomorphism of the torus T 2: it is a | det P |-fold covering of T 2. A general assertion in this 
case is as follows

Proposition 1.6. Suppose A be an integer real unimodular matrix with simple eigenvalues. Then this matrix is rationally similar to the 
companion matrix C of its characteristic polynomial. Automorphisms f A, fC of the torus Tn generated by these matrices are semi-
conjugate, i.e. there is an integer non-degenerate matrix T such that the relation T A = C T holds and f T f A = fC f T . The mapping f T

is the k-fold covering map f T :Tn →Tn with k equal to the determinant | det T |.

Below we present automorphisms which have a transitive unstable (and stable) foliation, i.e. all its leaves are dense 
in T 6. Then a natural question arises: suppose the unstable foliation of an automorphism f A is transitive, whether the 
automorphism f A itself is transitive, that is, is there a dense orbit for f A ? In this direction the following assertion is valid.
4
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Proposition 1.7. An automorphism f A with the transitive unstable foliation is transitive as a diffeomorphism of T 6.

Proof. Because a leaf through the fixed point Ô is transitive, then all leaves are transitive, since they are obtained by the 
shifts on the group T 6. In order to prove the transitivity of f A , we need for any two open sets U , V in T 6 to find some 
m ∈ Z such that f m

A (U ) ∩ V �= ∅. Since A has no eigenvalues being roots of unity, the periodic orbits of f A coincides with 
Qn (the set of points in T 6 with rational coordinates) and therefore they form a dense set. Hence there is a periodic point 
s ∈ U , let k be its period. The unstable leaf W u(s) is dense in T 6 and so intersects V . Let q ∈ V ∩ W u(s), then the sequence 
f −kn

A (q), n ∈N , tends to s, as n → ∞, and f −kN
A (q) ∈ U for N large enough, so f kN

A (U ) ∩ V �= ∅, we can set m = kN . �
Remark 1.8. It worth remarking that the proof works for any partially hyperbolic automorphism of Tn , n ≥ 2, with transitive 
unstable foliation.

The structure of the paper is as follows. In Section 2 we describe invariant foliations related to automorphisms of the 
first class, both transitive and decomposable. In Section 2.1 we show the existence of partially hyperbolic symplectic auto-
morphisms with transitive unstable foliations. In Section 3 we describe the case of automorphisms with two-dimensional 
unstable (and stable) foliations. Classification problems are discussed in Section 4. The Addendum is devoted to the expla-
nations of the interrelations between integral conjugacy in Mn(Z) and ideal classes.

2. Partially hyperbolic automorphisms with one-dimensional unstable foliations

Here we study symplectic partially hyperbolic automorphisms defined by symplectic matrices having two (simple) real 
eigenvalues λ, λ−1, |λ| > 1, outside of the unit circle and two pairs of complex conjugate eigenvalues on the unit circle. The 
corresponding eigenspaces ls, lu ⊂R6 and the center subspace W c , when projecting on the torus and shifting them to any 
point on T 6, give the required decomposition of the partial hyperbolicity definition.

Let us investigate a possible behavior of projections onto the torus of eigenspaces ls, lu . We assume later on that λ is 
positive, otherwise we may consider A2. In the space R6 we have the following orbit structure for the linear map L A

generated by the matrix A. Recall that in the case of a symplectic linear map with a 2-elliptic fixed point O (having two 
pairs of simple eigenvalues on the unit circle and a pair of reals), there is a four-dimensional center invariant subspace W c

corresponding to two pairs of eigenvalues on the unit circle ν1, ν2, ν̄1, ν̄2, ν1 = exp[iα1], ν2 = exp[iα2]. If αi/2π �=Q, i = 1, 2
(this is equivalent to νn

i �= 1 for any n ∈Z), the subspace W c is foliated into invariant 2-tori everywhere except two invariant 
2-planes corresponding to pairs ν1, ν̄1 and ν2, ν̄2 which are foliated into closed invariant curves. This follows from the fact 
that the restriction of the map L A on W c has two quadratic positive definite invariant functions (integrals) whose joint 
levels are invariant tori. The restriction of the map L A to any such torus is conjugated to the shift θ1 = θ + α1 (mod 2π), 
θ2 = θ + α2 (mod 2π). If mα1 + nα2 �= k for any integer (m, n, k), then the shift on the torus is transitive, but if there is the 
only integer triple (up to a factor) that gives the equality, then the torus itself is foliated into closed invariant curves. For 
the case if none νi is a root of the unity, these invariant curves are defined correctly and the shift on each such curve is 
transitive.

In addition to the indicated invariant stable/unstable lines and the center subspace, there are more two five-dimensional 
invariant subspaces in R6 spanned, respectively, by vectors from subspaces W c and ls (the center-stable 5-plane W cs) and 
vectors from W c and lu (the center-unstable 5-plane W cu). The factor-classes R6/W cu and R6/W cs define two invariant 
foliations in R6 into five-dimensional affine planes. Here, the invariance is understood in the following sense: the image 
with respect to L A of a leaf of the foliation coincides with some (possibly another one) leaf of the same foliation. All orbits 
of L A , not lying in the union W cs ∪ W cu , go to infinity for both positive and negative iterations of L A . In particular, the 
mapping L A has no other five-dimensional invariant subspaces except those two W cs and W cu . If exp[iα1], exp[iα2] are not 
roots of unity, then subspaces W cs, W cu are foliated into three-dimensional submanifolds T 2 ×R being stable (respectively, 
unstable) invariant manifolds of invariant tori on the center plane W c .

The projection of the eigenlines ls, lu onto the torus can lead to different situations. To understand this, it is necessary 
to clarify what is a projection of a subspace in R6 onto the torus T 6 = R6/Z6. Since T 6 is a commutative Lie group, its 
tangent space at zero possesses the structure of the commutative Lie algebra, this is identified with R6 in the standard way. 
Then the projection p : R6 → T 6 is the exponential map of the Lie algebra onto the Lie group. One-dimensional subspace 
lu (or ls) coincides with the one-parameter subgroup tγ u generated by the vector γ u , and its projection is the image under 
the exponential mapping of the algebra into the group. This subgroup is included into orbits of the constant vector field 
on T 6 invariant under group shifts. In angular coordinates θ on T 6 induced by coordinates in R6 we get the vector field 
θ̇ = γ u . Any trajectory of this vector field coincides with a leaf of the unstable (respectively, stable) invariant foliation on 
the torus which consists of projections of all straight lines corresponding to the factor-classes R6/lu (respectively, R6/ls). 
Its orbit structure depends on the number of rationally independent integer solutions of the equation (m, γ u) = 0, m ∈Z6. 
This number can take values 0, 1, 2, 3, 4, 5. In the first case, as is known, the related orbits of the constant vector field are 
transitive in T 6 (it is a partial case of the Kronecker theorem, see, for instance, [6] and Section 3).

The one-parameter subgroup in T 6 generated by γ u is an invariant subset with respect to the automorphism f A (this 
is simultaneously the strong unstable curve of the fixed point Ô = p(O )). Therefore, its closure is also an invariant subset, 
5
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here it is a smooth invariant torus of some dimension in T 6 [6]. As was said above, the dimension of this torus depends on 
the number of integer linear independent relations of the form (m, γ u) = 0. If there are such relations, vector γ u is called 
resonant.

In the case if the only integer relation (m, γ u) = 0 exists, the linear 5-dimensional subspace in R6, defined by the 
equation (m, x) = 0, is projected onto a 5-torus in T 6, and the straight-line spanned by vector γ u does not contain points 
of its integer sub-lattice of this subspace. Therefore, this line is projected into a transitively immersed line on this 5-torus.

Similarly, for the case of two integer relations, the corresponding subspace is four-dimensional, it is projected onto a 
4-torus in T 6. The straight-line, spanned by vector γ u , is projected into a transitively immersed line in this 4-torus, etc. In
the case, when five independent integer relations exist, the related straight line necessarily passes through an integer point 
in R6 and therefore it is projected onto a simple closed curve in T 6. Obviously, the eigen-line lu corresponding to λ > 1 (ls

for λ < 1) can not intersect the integer lattice Z6. If, on the contrary, this is the case, the projection on the torus of this 
straight-line is a closed invariant curve for the map f A and the restriction of this map to this curve gives a diffeomorphism 
on the circle with the only unstable (respectively, stable) fixed point that is impossible.

Thus, the closure of any trajectory of the constant vector field on the torus is a smooth torus of some dimension, its 
dimension is equal to 6 − r where r is the number of rationally independent linear relations for the components of the 
vector γ u : (m, γ u) = 0, m ∈Z6. In fact, there are more restrictions.

Proposition 2.1. The closure of the unstable leaf of the fixed point Ô for f A is either the whole T 6, or a four-dimensional torus, or a 
two-dimensional torus, in the first case the leaf is transitive.

Proof. We should exclude the possible cases of 5- and 3-dimensional tori as the closure. Assume the closure of the unstable 
manifold of a fixed point Ô on T 6 to form a 5-dimensional torus T 5. This means the eigenvector γ u to satisfy the only 
integer relation (m, γ u) = 0, m ∈Z6. Consider 5-dimensional hyperplane in R6 defined by co-vector m: (m, x) = 0, T 5 is 
the projection of this hyperplane.

Let us show in this case the stable one-dimensional manifold of the fixed point Ô be transversal to T 5. Torus T 5

contains the fixed point Ô of f A . Since the torus is smooth invariant manifold with respect to the map f A (as the closure 
of its invariant set), the tangent space to the torus at the fixed point is invariant with respect to differential D f A = L A . So, 
T 5 is the projection of the hyperplane in R6 passing through the fixed point O of the map L A . This plane is invariant with 
respect to L A , but linear partially hyperbolic map L A has no other invariant 5-planes through O except for W cs, W cu . Only 
the second of them contains the eigen-line spanned by the vector γ u . So, the torus T 5 is a projection of the center-unstable 
plane W cu . But then the stable eigenvector γs is transversal to this plane, therefore the projection of the stable eigen-line 
onto T 6 is a smooth curve being transversal to the torus T 5 at the point Ô . Since T 5 is a smooth embedded submanifold 
in T 6, there is a neighborhood V of the point Ô such that all points in V , lying on the stable curve W s(Ô ), do not belong 
to T 5.

Due to transversality of T 5 and W s(Ô ) at Ô , they must intersect each other at more than one point in T 6 (in fact, at 
infinitely many points), since the eigen-line, being the covering of this curve, intersect in R6 infinitely many 5-dimensional 
planes being integer shifts of W cu . Stable invariant curve is given as tγ s (modd 1), it contains a point z other than Ô which 
belongs to T 5. Since z belongs to W s(Ô ), its forward iterations f n

A(z) must lie on the stable curve near the point Ô for 
positive n large enough. As a consequence, these points do not belong to T 5 for such iterations. On the other hand, the 
torus T 5 is invariant with respect to f A , therefore, all iterations of z should lie on it. This contradiction proves that the 
closure of an unstable curve cannot be a 5-torus.

Now suppose the closure of the unstable manifold of a fixed point Ô on T 6 be a 3-dimensional torus T 3. This means the 
eigenvector γ u to satisfy three rationally independent relations (n, γ u) = 0, (m, γ u) = 0, (l, γ u) = 0, where integer vectors 
n, m, l ∈Z6 are linearly independent over Q.

The torus T 3 is a smooth invariant manifold for f A containing a fixed point Ô . The tangent plane to T 3 at Ô is the in-
variant 3-plane w.r.t. differential D f A . In the covering space R6 the pre-image of this 3-plane w.r.t. the projection p, passing 
through the origin O , is an invariant 3-plane for L A . There are only four such invariant 3-planes: 1) W ∗

1 , that is spanned by 
subspaces lu (for λ) and 2-plane corresponding to eigenvalues exp[±iα1]; 2) W ∗

2 , generated by lu and 2-planes correspond-
ing to eigenvalues exp[±iα2]; 3) W ∗

3 , generated by ls (for λ−1) and 2-plane corresponding to eigenvalues exp[±iα1]; 4) W ∗
4 , 

generated by ls and 2-plane corresponding to eigenvalues exp[±iα2]. Only the first two of them contain γ u , so W ∗
1 , W ∗

2
can be these planes. Thus we get two possible cases of splitting the space R6 into two 3-dimensional invariant subspaces: 
1) W ∗

1 ⊕ W ∗
4 ; 2) W ∗

2 ⊕ W ∗
3 . Since these cases are similar, it is sufficient to examine the first case only. The p-projection of 

the plane W ∗
1 to T 6 is the 3-dimensional torus T 3, therefore W ∗

1 contains three linear independent integer vectors. The 
lattice generated by these three integer vectors does not intersect the eigen-line lu , because its projection is everywhere 
dense on T 3. This implies the restriction of f A to this invariant torus be a map which is generated by the restriction of L A

onto invariant 3-plane W ∗
1 .

In the space R6 the linear map L A is generated by the integer unimodular matrix A. Since W ∗
1 is its invariant subspace, 

we consider the linear transformation LB , induced by L A on this invariant subspace. It is given by 3 × 3 matrix B in the 
basis made up of three integer vectors. Thus, B has rational coefficients and the characteristic polynomial Q of the matrix 
B will also have rational coefficients. The space R6 splits into the direct sum of subspaces R6 = W ∗ ⊕ W ∗ . Therefore the 
1 4

6
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following statement holds [25]: If the space splits into a direct sum of subspaces invariant with respect to a linear transformation L A, 
then the characteristic polynomial of L A is equal to the product of the characteristic polynomials induced by the transformation L A in 
invariant subspaces. Thus, we obtain the characteristic polynomial P of the transformation L A be equal to the product of two 
polynomials of the third degree P = Q S , where Q corresponds to the induced transformation in the invariant subspace W ∗

1 , 
and S , respectively, to W ∗

4 . Since P has integer coefficients and Q has rational coefficients, then, by Euclidean algorithm, 
we get S also to have rational coefficients.

On the other hand, the eigenvalues of the matrix B are λ, exp[±iα1]. Then the characteristic polynomial Q is represented 
in the form

Q = (x − λ)(x − exp[iα1])(x − exp[−iα1]) = (x − λ)(x2 + 2x cosα1 + 1) =
x3 + (2 cosα1 − λ)x2 + (1 − 2λ cosα1)x − λ.

We conclude λ be a rational number, therefore the eigenvector γ u can be chosen as an integer vector, but the straight-line 
lu cannot pass through an integer point. �

The cases of two and four rationally independent relations for partially hyperbolic matrix are indeed possible. The related 
examples are presented at the end of this Section. Notice that in these cases the characteristic polynomial of such a matrix is 
the product of two monic polynomials, one of the second degree and the other of the fourth degree with integer coefficients.

2.1. Examples of automorphisms on T 6 with transitive unstable 1-dimensional foliations

In order to construct examples of symplectic partially hyperbolic automorphisms of a torus with one-dimensional stable 
foliation having different dynamic properties, we need to find a matrix in Sp(6, Z) which has two pairs complex conjugate 
eigenvalues and two real eigenvalues λ and λ−1, |λ| > 1. Moreover, we would like to obtain an automorphism of the torus 
whose one-dimensional unstable foliation is transitive. To find such a matrix, we start, following [20], with an irreducible 
over rational numbers cubic polynomial P (z) with integer coefficients having three roots, one greater than 2 and two others 
being less than 2 in modulus. We make a change of variable z = x + x−1 in this polynomial and obtain a self-reciprocal 
polynomial of the sixth degree that serves as the characteristic polynomial of the matrix with the desired properties. This 
polynomial is also irreducible over Q.

For example, let us start with the cubic polynomial P (z) = z3 − 2z2 − z + 1 that gives the polynomial Q (x) = x6 − 2x5 +
2x4 − 3x3 + 2x2 − 2x + 1 which is irreducible over the field Q. Its companion matrix of Q (x) is

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 2 −2 3 −2 2

⎞
⎟⎟⎟⎟⎟⎠ .

This matrix possesses the required properties for its eigenvalues. However, A is not symplectic with respect to the standard 
symplectic 2-form [x, y] = (Ix, y) on R6 (see (1.1)): A� I A �= I . Acting as before, we construct a skew-symmetric integer 
non-degenerate matrix J which provides this structure defined as [x, y] = ( J x, y) for x, y ∈R6. The matrix J is as follows

J =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0
0 0 −2 −1 −1 1

−1 2 0 3 −1 1
−1 1 −3 0 −2 1
−1 1 1 2 0 0
0 −1 −1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Real eigenvalues of matrix A are

λ ≈ 1.6355, λ−1 ≈ 0.6114.

The eigenvector corresponding to eigenvalue λ is γ u = (1, λ, λ2, λ3, λ4, λ5)� . Factor-classes R6/lu , generated by this 
eigenspace lu , form a foliation into affine lines being invariant under L A . These lines are projected onto T 6 as trajecto-
ries of the vector field

ẋ1 = 1, ẋ2 = λ, ẋ3 = λ2, ẏ1 = λ3, ẏ2 = λ4 ẏ3 = λ5.

To prove the orbit of this vector field be transitive in T 6, we need to verify the vector γ u be incommensurate, i.e. 
(m, γ u) �= 0 for any nonzero integer vector m ∈Z6. The number λ is an algebraic number of the degree six being the root 
of the irreducible sixth degree polynomial with integers coefficients.
7
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Recall a number ξ ∈C is called an algebraic number, if it is a root of a nonzero polynomial with rational coefficients, and 
it is called an algebraic integer, if it is the root of a polynomial with integral coefficients and unitary leading coefficient (a 
monic polynomial). The degree of an algebraic integer ξ is the degree of the minimal polynomial of ξ (a monic polynomial 
of the lowest degree with integer coefficients and ξ as a root).

The polynomial Q (x) above has degree six due to the following theorem.

Theorem 2.2. Let ξ be an algebraic number with minimal polynomial p(x). Then

1. the polynomial p(x) is irreducible over Q;
2. the polynomial p(x) is unique;
3. if ξ is a root of a polynomial f over Q, then f is divided by p.

The last statement of the theorem implies that the number λ, being a root of the irreducible polynomial Q (x) of degree 
six, is not a root of a polynomial of smaller degree with rational (integer) coefficients.

Now we can prove

Lemma 2.3. The vector γ is incommensurate.

Proof. Suppose, on the contrary, the vector γ be commensurate. Then an integer vector (m1, m2, m3, m4, m5, m6) exists 
such that the equality m1 + m2λ + m3λ

2 + m4λ
3 + m5λ

4 + m6λ
5 = 0 holds, i.e. λ is a root of the polynomial P of the fifth 

(or lesser) degree with integer coefficients. So Q divides P and Q is reducible. �
2.2. Decomposable automorphisms with one-dimensional unstable foliations

Here we present automorphisms with one-dimensional unstable and stable foliations which we call decomposable. They 
are characterized by the property: the closure of their unstable (stable) leaves are tori of a dimension lesser than six. 
It follows from Proposition 2.1 that in the decomposable case the closure of the unstable (stable) leaf is either a two-
dimensional or four-dimensional torus.

The case, when the closure of the unstable (stable) leaf is a four-dimensional torus, is indeed possible. It is sufficient to 
choose, for example, a block-diagonal integer matrix S1 composed of two integer blocks, one of which (4 × 4)-block has 
eigenvalues λ, λ−1, exp[iα1], exp[−iα1], λ > 1, that generates a partially hyperbolic transitive automorphism of T 4, and the 
second (2 × 2)-block has two complex conjugate eigenvalues exp[iα2], exp[−iα2] (then α2/2π = 1/3, 1/4, 1/6) [24]. As an 
example one can take the matrix

S1 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 2 1 0 0
1 1 1 1 0 0
0 2 1 1 0 0
2 −2 1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Its reducible characteristic polynomial χ1(λ) = (λ4 − 4λ3 + λ2 − 4λ + 1)(λ2 − λ + 1) of the related symplectic matrix S1 has 
the roots:

λ1,2 = 1 +
√

5

2
±

√
5 + 4

√
5

2
, λ3,4 = 1 −

√
5

2
± i

√
4
√

5 − 5

2
, λ5,6 = 1

2
± i

√
3

2
.

The case, when the closure of the unstable (stable) leaf is a two-dimensional torus, can also be realized. Two different 
cases are possible here. In the first case, it is sufficient to choose, for example, a block-diagonal integer matrix S2 composed 
of two integer blocks, one of which (2 × 2)-block generates an Anosov automorphism, and the second (4 × 4)-block has 
two pairs complex conjugate eigenvalues exp[iα1], exp[−iα1], exp[iα2], exp[−iα2] on the unit circle. Since the characteristic 
polynomial of this (4 × 4)-matrix has integer coefficients and monic, its eigenvalues are in fact roots of unity [23]. An 
example is given by the matrix

S2 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
1 1 0 0 0 0
0 0 −1 −3 2 1
0 0 −1 −2 1 1
0 0 −3 −2 1 2
0 0 0 −7 4 1

⎞
⎟⎟⎟⎟⎟⎠ . (2.1)
8
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The characteristic polynomial χ2(λ) = (λ2 − 3λ + 1)(λ4 + λ3 + λ2 + λ + 1) of the related symplectic matrix S2 is reducible 
with roots:

λ1,2 = −1

4
−

√
5

4
± i

√
5

8
−

√
5

8
, λ3,4 = −1

4
+

√
5

4
± i

√
5

8
+

√
5

8
, λ5,6 = 3 ± √

5

2
,

the eigenvalues on the unit circle are roots of unity of degree 10.
In the second case, we choose a block-diagonal integer matrix S3 composed of three integer blocks, one of which (2 ×2)-

block generates an Anosov automorphism, and the second and third (2 ×2)-blocks have pairs complex conjugate eigenvalues 
exp[iα1], exp[−iα1] and exp[iα2], exp[−iα2] on the unit circle, respectively (then αi/2π = 1/3, 1/4, 1/6, i = 1, 2 [24]) 
provided that α1/2π �= α2/2π . This case is almost the same as previous one, the difference is that the roots of unity here are 
only of degrees {3, 4, 5}. This leads to other structures of a periodic transformation on the center manifold T 4 =T 2 ×T 2

of the fixed point Ô .
An example is provided by the matrix

S3 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 −1 −1 0 0
0 0 0 0 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial χ3(λ) = (λ2 − 3λ + 1)(λ2 + λ + 1)(λ2 − λ + 1) of the related symplectic matrix S3 has roots:

λ1,2 = 3

2
±

√
5

2
, λ3,4 = −1

2
± i

√
3

2
, λ5,6 = 1

2
± i

√
3

2
.

3. Automorphisms with 2-dimensional unstable foliation

In this section we study the case, when the dimension of W u (and W s) equals two. This corresponds to those symplectic 
(6 × 6)-matrices which have two eigenvalues λ1, λ2 outside of the unit disk in C, two eigenvalues λ−1

1 , λ−1
2 inside of this 

disk and two complex conjugate eigenvalues on the unit circle. In its turn, these λ1, λ2 can be either two different real ones 
or a pair of complex conjugate numbers. Respectively, W u is spanned either by two independent real eigenvectors γ u

1 , γ u
2

of real eigenvalues, or it is an invariant 2-dimensional real subspace corresponding to complex conjugate eigenvalues. In 
the latter case the invariant subspace is generated by real and complex parts γ u

r , γ u
i of the complex eigenvector γ u

r + iγ u
i , 

these are two independent real vectors.
Projection by p of W u on T 6 generates related unstable foliation in T 6. In order to determine how leaves of this 

foliation behave in T 6, we observe that this foliation is formed by orbits of the action of the group R2 on T 6 generated by 
two commuting constant vector fields on T 6 given as γ u

1 · ∂/∂θ and γ u
2 · ∂/∂θ , θ = (θ1, . . . , θ6). The related orbits are given 

as

θ(t1, t2) = t1γ
u

1 + t2γ
u

2 + θ0 (modd 1).

In particular, for θ0 = Ô we have the orbit through the fixed point Ô of the automorphism. The action and the shift on the 
torus commute.

Recall the Kronecker theorem [22] (see also [6], chapter VII-1 and [11]) and its corollary. In their formulations we use 
the common notations: (·, ·) for the standard inner product in Rn and || · || for the maximum norm of a vector in Rn .

Theorem 3.1 (Kronecker). Let m vectors ai , 1 ≤ i ≤ m, and a vector b in Rn be given. In order for any ε > 0 there exist m numbers 
ti ∈R and an integer vector p ∈Zn such that

||
m∑

i=1

tiai − p − b|| ≤ ε,

it is necessary and sufficient that for any integer vector r ∈Zn , such that all m equalities (r, ai) = 0 hold, the relation (r, b) = 0 also 
holds.

Let us briefly discuss the geometric sense of this theorem. To be closer to the case under consideration, we assume 
vectors ai be independent, in particular, m ≤ n. The linear combination 

∑
i tiai ∈ Rn with real ti , 1 ≤ i ≤ m, belongs to the 

linear subspace of Rn generated by the vectors {a1, . . ., am}. When m-tuple t = (t1, . . . , tm) runs all Rm , we get the whole 
subspace. Adding (or subtracting) vectors p ∈ Zn shifts this subspace to any point of the lattice Zn ⊂ Rn . When p run all 
9
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Zn , this gives some set La in Rn and the question is: if vectors of La approximates a given vector b ∈Rn with an arbitrary 
preciseness? Or, in other words, when b belongs to the closure La? The Kronecker’s theorem gives the exhausting answer 
to this question: if there is an integer vector r ∈ Zn such that all (r, ai) = 0, 1 ≤ i ≤ m, then b has to belong to the plane 
(r, x) = 0. If there are several independent such vectors r, then b has to belong to all of them.

Observe that the equality (r, x) = 0, x ∈R6 , with integer vector r defines a torus T 5 ⊂T 6. So, any such equality defines 
a torus. If there are two such equalities with independent r1 and r2 over Q, then two 5-dimensional planes in R6 inter-
sect each other transversely along a 4-dimensional plane, therefore related 5-dimensional tori in T 6 intersect each other 
transversely and provide a 4-dimensional torus. Orbits of the action of R2 lie in this 4-torus.

If such integer vector r exists, we can call the equality as a resonance relation for the collection {a1, . . ., am}. The number 
of linearly independent (over Q) such relations can be called the degree of the degeneration for the resonance. So, if none 
such relations exist, one can take any b ∈Rn and the following statement is valid

Corollary 3.2. In order for any x ∈Rn and any ε > 0 there exist m real numbers t1, . . . , tm and an integer vector p such that∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

tiai − p − x

∣∣∣∣∣
∣∣∣∣∣ ≤ ε,

it is necessary and sufficient that there is no nonzero integer vector r ∈Zn such that (r, ai) = 0 for all i.

This corollary simultaneously gives the criterion when the leaves of the unstable foliation are transitive in T 6. Indeed, 
suppose the conditions of the corollary to hold for two independent vectors a1, a2 in W u . Then the subspace in R6 gener-
ated by these two vectors, along with all its shifts by Z6, is dense in R6 and hence p(W u) is dense when projecting onto 
T 6.

For the classification problem we have to prove an analog of the Proposition 2.1. As we know, the leaves of the unstable 
foliation are simultaneously orbits of the action of the group R2 generated by two commuting vector fields corresponding 
to either eigenvectors of two real eigenvalues greater than one or vectors being the real and imaginary parts of the complex 
eigenvector of the eigenvalue greater in modulus than one.

Proposition 3.3. The closure of the 2-dimensional unstable leaf of the fixed point Ô for f A is either the whole T 6, or a four-
dimensional torus, in the first case the leaf is transitive.

Proof. Let us consider first the case of complex conjugate complex greater in modulus than one. In this case, the closure of 
the leaf of the fixed point Ô for f A cannot be either a three-dimensional torus or a five-dimensional torus, since the linear 
map L A in R6 has neither five-dimensional nor three-dimensional invariant subspaces.

In the case of two real eigenvalues greater than one, the proof of the fact that the closure of the fixed point Ô for f A

cannot be either a three-dimensional torus or a five-dimensional torus is similar to the proof of Proposition 2.1. �
3.1. Automorphisms on T 6 with transitive two-dimensional unstable foliations

These two subsections are devoted to constructing examples of both transitive and decomposable automorphisms. We 
start again with a degree three monic real polynomial with integer coefficients a, b, c being irreducible over field Q: P =
z3 + az2 + bz + c. Two different cases are considered. In the first case this polynomial should have one real root z1 lesser 
than two in absolute value and a pair of different real roots z2, z3 being greater than two in absolute values. In the second 
case this polynomial should have one real root z1 lesser than two in absolute value and a pair of complex conjugate roots 
z2, z∗

2 with |z2| > 2.
Having such degree three polynomial, we make the change z = x +x−1 and multiply the function obtained at x3, therefore 

we get the sixth degree integer polynomial

Q = x6 + ax5 + (3 + b)x4 + (2a + c)x3 + (3 + b)x2 + ax + 1.

Its roots are two complex conjugate numbers x1,2 being the roots of the quadratic polynomial x2 − z1x + 1, they belong 
to the unit circle in C. Four other roots for the first case are four real roots x3, x−1

3 , x4, x−1
4 being roots of the quadratic 

equations x2 − z2x + 1 = 0 and x2 − z3x + 1 = 0. Since |zi | > 2, the absolute values of x j , j = 3, 4, are greater than one. As an 
example, we take the irreducible third order polynomial P = z3 − 2z2 − 8z + 1 [20]. It has two real roots of absolute value 
larger than two, and a real root of absolute value lesser than two. Its self-reciprocal polynomial is

Q (x) = x6 − 2x5 − 5x4 − 3x3 − 5x2 − 2x + 1, (3.1)

which is irreducible over Q, has four real roots λ1, λ2, λ−1
1 , λ−1

2 , |λ1,2| > 1, and a pair of complex conjugate roots of 
absolute value 1. All these numbers are algebraic and Q is their minimal polynomial. Its companion matrix A has two-
dimensional subspaces W u, W s and generates a partially hyperbolic action on T 6 with two-dimensional unstable and 
10
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stable foliations, and two-dimensional center foliation. Matrix A can be made symplectic w.r.t. the nonstandard symplectic 
structure generated skew symmetric nondegenerate matrix J in (1.2) with a = −2, b = −5, c = −3, then det J = 36.

For the second case complex root z2 = u + iv , uv �= 0, can be represented as u = (ρ + ρ−1) cosα, u = (ρ − ρ−1) sinα, 
where x3,4 = ρ exp[±iα], ρ > 1, x−1

3,4 = ρ−1 exp[∓iα]. From these equalities we get the system for finding ρ, α at the given 
u, v:

u2

ρ2 + ρ−2 + 2
+ u2

ρ2 + ρ−2 − 2
= 1, tanα = u(ρ2 + 1)

v(ρ2 − 1)
.

Introducing variable s = ρ2 + ρ−2 > 2, we come to the quadratic equation for s

s2 − (u2 + v2)s − 4 + 2(u2 − v2) = 0.

The monic polynomial P = z3 + az2 + bz + c has a unique real root of absolute value less than 2, two other roots have 
to be complex conjugate. As an example, one can take the polynomial P = z3 − 3z2 + 6z − 1 with z1 ≈ 0.182, z2,3 ≈
1.409 ± 1.871i or P = z3 − z − 1 with z1 ≈ 1.325, z2,3 ≈ −0.662 ± 0.562i. This gives two reciprocal sixth degree integer 
irreducible polynomial

x6 − 3x5 + 9x4 − 7x3 + 9x2 − 3x + 1 and x6 + 2x4 − x3 + 2x2 + 1 (3.2)

Consider now the automorphism in R6 generated by the companion matrix of the polynomial (3.1). Its eigenvectors of 
real roots have the form

fλ = (1, λ,λ2, λ3, λ4, λ5)�, λ = λ1,2.

Thus, no integers vectors n can exist such that (n, fλk ) = 0, k = 1, 2, otherwise, at least one of λk is a root of a monic integer 
polynomial of degree five or lesser.

For the case of the polynomial (3.2) we have for its companion matrix complex conjugate eigenvalues λ, λ∗ with |λ| > 1
with two complex conjugate eigenvectors

fλ = (1, λ,λ2, λ3, λ4, λ5)�, f∗λ.

Their real and imaginary parts provide two real independent vectors gr, gi , fλ = gr + igi . Suppose there is an integer nonzero 
vector n ∈Z6 such that (n, gr) = 0 and (n, gi) = 0. This implies the equality

(n,gr + igi) = n1 + n2λ + n3λ
2 + n4λ

3 + n5λ
4 + n6λ

5= 0,

i.e. λ is the algebraic number of the degree five or lesser. We come to the contradiction. So, in both cases the leaves of the 
unstable foliation are dense in T 6.

One more example of an automorphism on T 6 with transitive unstable two-dimensional foliation is given as follows. 
Take a block-diagonal integer matrix S4 composed of two integer blocks, one of which (4 × 4)-block has eigenvalues 
λ, λ−1, exp[iα1], exp[−iα1], λ > 1, that generates a partially hyperbolic transitive automorphism on T 4, and the second 
(2 × 2)-blocks that generates an Anosov automorphism on T 2

S4 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 2 1 0 0
1 1 1 1 0 0
0 2 1 1 0 0
2 −2 1 0 0 0
0 0 0 0 2 1
0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Characteristic polynomial χ4(λ) = (λ4 − 4λ3 + λ2 − 4λ + 1)(λ2 − 3λ + 1) of the related symplectic matrix S4 is reducible 
with roots

λ1,2 = 1 +
√

5

2
±

√
5 + 4

√
5

2
, λ3,4 = 1 −

√
5

2
± i

√
4
√

5 − 5

2
, λ5,6 = 3

2
±

√
5

2
.

Here the two-dimensional unstable foliation is generated by real eigenvectors of real eigenvalues λ1 and λ5. Let us ver-
ify that the Corollary 3.2 holds here. Indeed, eigenvectors of these eigenvalues have the form: e1 = (a, b, c, d, 0, 0)� and 
e2 = (0, 0, 0, 0, f, g). Assume, on the contrary, there is an integer vector r such that both equalities (r, e1) = 0 and (r, e2) = 0
hold. Then the second of them gives r5 f + r6 g = 0, that says the ratio f /g is rational. But it is impossible for the Anosov 
automorphism on T 2 [20]. Therefore, the unstable foliation is transitive.
11
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3.2. Decomposable automorphisms with 2-dimensional unstable foliations

Here we present automorphisms with 2-dimensional unstable and stable foliations which we call decomposable. They 
are characterized by the property the closure of their unstable (stable) leaves be tori of a dimension lesser than six. As was 
proved in the Proposition 3.3, the closure of a leaf of the unstable foliation can be a four-dimensional torus. Let us construct 
corresponding examples.

Three different cases are possible here. In the first case, we select a block-diagonal integer matrix S5 composed of 
two integer blocks, one of which (4 × 4)-block with eigenvalues λ1, λ−1

1 , λ2, λ−1
2 , λi > 1, i = 1, 2, generates an Anosov 

automorphism on T 4 with transitive two-dimensional unstable foliation, and the second (2 × 2)-block has two complex 
conjugate eigenvalues exp[iα], exp[−iα] (then α/2π = 1/3, 1/4, 1/6 [24]). For instance, the following matrix suits

S5 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−1 −4 12 −4 0 0
0 0 0 0 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial χ5(λ) = (λ4 +4λ3 −12λ2 +4λ +1)(λ2 −λ +1) of the related symplectic matrix S5 is reducible 
with roots

λ1 = −1 + 3
√

2
2 +

√
6
√

3−2
√

2
2 ≈ 1.629, λ2 = −1 + 3

√
2

2 −
√

6
√

3−2
√

2
2 ≈ 0.614,

λ3 = −1 − 3
√

2
2 +

√
6
√

3+2
√

2
2 ≈ −0.165, λ4 = −1 − 3

√
2

2 −
√

6
√

3+2
√

2
2 ≈ −6.078,

λ5,6 = 1
2 ± i

√
3

2 .

This matrix has a pair of negative eigenvalues λ3,4. If one wish to get the case when all eigenvalues outside of the unit 
circle are positive, one needs to take the square of this (4 × 4)-block.

In the second case, it is sufficient to choose, for example, a block-diagonal integer matrix S6 composed of two inte-
ger blocks, one of which (4 × 4)-block has two pairs complex conjugate eigenvalues ρ exp[iα],ρ exp[−iα], ρ−1 exp[iα],
ρ−1 exp[−iα] outside the unit circle (it is also an Anosov automorphism on T 4 with two-dimensional unstable and stable 
foliations), and another (2 × 2)-block has a pair complex conjugate eigenvalues exp[iα], exp[−iα] on the unit circle (then 
α/2π = 1/3, 1/4, 1/6 [24]).

S6 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−1 5 −9 5 0 0
0 0 0 0 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial χ6(λ) = (λ4 − 5λ3 + 9λ2 − 5λ + 1)(λ2 −λ + 1) of the related symplectic matrix S6 is reducible 
with roots

λ1,2 = 5
4 − i

√
3

4 ±
√

2
√

3−i5
√

3
4 ≈ 0.378 ± i0.188,

λ3,4 = 5
4 + i

√
3

4 ±
√

2
√

3+i5
√

3
4 ≈ 2.122 ± i1.054,

λ5,6 = 1
2 ± i

√
3

2 .

The first multiplier is irreducible polynomial that is deduced from the second order polynomial z2 − 5z + 7 by means of 
the change z = λ + 1/λ. Both roots (5 ± i

√
3)/2 are greater than two in modulus.

The third case is generated by a block-diagonal integer matrix S7 composed of three integer blocks, two of which 
(2 × 2)-blocks generate Anosov automorphisms on T 2, and the third block has a pair complex conjugate eigenvalues 
exp[iα], exp[−iα] on the unit circle (then α/2π = 1/3, 1/4, 1/6, [24]):
12
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S7 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
1 1 0 0 0 0
0 0 5 3 0 0
0 0 3 2 0 0
0 0 0 0 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial χ7(λ) = (λ2 − 3λ + 1)(λ2 − 7λ + 1)(λ2 −λ + 1) of the related symplectic matrix S7 is reducible 
with roots

λ1,2 = 3

2
±

√
5

2
, λ3,4 = 7

2
± 3

√
5

2
, λ5,6 = 1

2
± i

√
3

2
.

This case is similar, in a sense, to the first and second ones, since the related unstable foliation for f S7 is two-dimensional 
and transitive on T 2 ×T 2. Indeed, related eigenvectors of the real eigenvalues, that are greater than one, obey the condi-
tions of the Corollary 3.2. Nevertheless, we distinguish this case since such automorphisms do not topologically conjugate 
to any automorphism of the first or second cases.

4. On classification of partially hyperbolic automorphisms

At the study of partially hyperbolic symplectic automorphisms a natural question arises: when two such automorphisms 
are topologically conjugate. Recall that two homeomorphisms f1, f2 of a metric space M are called topologically conjugate, 
if there is a homeomorphism h : M → M such that h ◦ f1 = f2 ◦ h.

Note, that classification of ergodic automorphisms of the torus from the measure theory point of view is given by their 
entropy [21], which is equal to the sum of logarithms of the absolute values for eigenvalues greater than the unity of the 
matrix A. This follows from the Ornstein isomorphism theorem [27] and the fact that every ergodic automorphism of a 
torus is Bernoulli one with respect to the Lebesgue measure [21].

The Arov’s theorem (see above) provides a topological conjugation of two automorphisms f A, f B on Tn . Any isomor-
phism of the group Tn in cyclic coordinates θ is given by an integer unimodular matrix. The existence of a conjugating 
homeomorphism h : T 6 → T 6 for two automorphisms f A, f B , i.e. h ◦ f A = f B ◦ h, implies the relation H ◦ A = B ◦ H in 
the fundamental group Z6 of the torus, where H is the linear isomorphism in Z6 generated by h. Thus, matrices A, B are 
integrally similar by H . Conversely, if two integer unimodular matrices A, B are integrally similar, i.e. there is an integer 
unimodular matrix H such that H A = A′H , then H induces the automorphism h = f H of the torus T 6. The covering map 
for h ◦ f A is LH L A = LH A and for f A′ ◦ h is L A′ LH = L A′ H . Hence, LH L A = L A′ LH and the relation h ◦ f A = f A′ ◦ h holds. 
So, for classification of partially hyperbolic automorphisms on T 6 the following theorem, being reformulation of the Arov’s 
theorem, holds

Theorem 4.1. Two symplectic partially hyperbolic automorphisms f A, f B on T 6 are topologically conjugate if and only if their matri-
ces A, B are integrally similar.

Similar matrices A, B have the same integer characteristic polynomial. As we have seen, the constructions of proper 
examples of automorphisms are easier using companion matrices of the characteristic polynomials. Suppose now that there 
are two integer symplectic partially hyperbolic matrices A, B having the same characteristic polynomial. When two auto-
morphisms f A, f B are topologically conjugate? We have seen on examples above that these two automorphisms can be not 
conjugated, since their matrices are not integrally similar, though rationally similar. So, we need to determine whether these 
two integer matrices are integrally similar, the related discussion we postpone till the Section 5.

In particular, as was shown above, there are two cases of automorphisms on T 6 with a transitive unstable two-
dimensional foliation. In the first case the characteristic polynomial is irreducible over Z, but it is reducible over Z into 
the product of monic integer polynomials of a fourth and second order in the second case. Automorphisms of the first and 
second case lead to automorphisms being non conjugated, since they have different characteristic polynomials.

To distinguish automorphisms being not topologically conjugate, it is useful to have some simple features that guarantee 
this. The following statement is one of them.

Proposition 4.2. Let f A be a symplectic partially hyperbolic automorphism of a 6-dimensional torus T 6 with 1-dimensional unsta-
ble/stable foliations and matrix A has simple eigenvalues. Then f A has transitive one-dimensional unstable (stable) foliation if and only 
if the characteristic polynomial of the matrix A is irreducible over Q.

Proof. Let A have irreducible characteristic polynomial and assume the unstable foliation is not transitive. Then by Propo-
sition 2.1 the closure of the unstable leaf of the fixed point Ô is a torus of the dimension four or two. In both case, as was 
proved in this Proposition, the characteristic polynomial is reducible, that is a contradiction.

Suppose now, this polynomial is reducible over Q into two real polynomials with rational coefficients. Then four cases 
are possible.
13
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• Characteristic polynomial is decomposed into the product of two polynomials, the first degree one corresponding to 
the eigenvalue λ, and the fifth degree, corresponding to four eigenvalues lying on the unit circle and λ−1. Then we 
conclude λ ∈Q. In this case there is an eigenvector γ for λ with rational coordinates that is impossible: multiplication 
at the least common denominator makes this vector integer and the projection p(tγ ) is a closed invariant curve with 
the unique unstable point. The same holds, if the linear multiplier corresponds to λ−1.

• Characteristic polynomial is the product of two ones: of the second degree, corresponding to the eigenvalues of λ, λ−1, 
and of the fourth degree, corresponding to four eigenvalues on the unit circle. The characteristic polynomial has the 
form P = x6 +a1x5 +a2x4 +a3x3 +a2x2 +a1x +1 = (x2 +ax +1)(x4 +bx3 +cx2 +bx +1) with rational a, b, c. Then λ is the 
root of the second degree polynomial x2 +ax + 1 with rational a. Since eigenvalues of A are all simple, the minimal and 
characteristic polynomials of matrix A coincide and A is conjugated by means of a rational non-degenerate matrix T to 
the companion matrix B of the characteristic polynomial of the matrix A, A = T −1 BT . The eigenvector of the matrix B , 
corresponding to eigenvalue λ, is ρ = (1, λ, λ2, λ3, λ4, λ5)� . Because λ is the root of the second degree polynomial, four 
rational linearly independent relations for the corresponding vector ρ exist: (mi, ρ) = 0, where i = 1, 2, 3, 4, namely 
m1 = (1, a, 1, 0, 0, 0)� , m2 = (0, 1, a, 1, 0, 0)�, m3 = (0, 0, 1, a, 1, 0)� , m4 = (0, 0, 0, 1, a, 1)� . If a = p/q with co-prime 
integers p, q, then we get four linear independent integer vectors.
We have T A = BT with rational non-degenerate matrix T , hence multiplication at the common denominator of entries 
of T gives the integer non-degenerate matrix T1 satisfying the relation T1 A = BT1. The vector T1γ

u is the eigen-vector 
of B with eigenvalues λ: BT1γ

u = T1 Aγ u = λT1γ
u . Since λ is a simple eigenvalue, we have T1γ

u = cρ . Now we get 
four independent integer vectors T ∗

1mi , i = 1 − 4, which satisfy to relations (T ∗
1 mi, γ u) = (mi, T1γ

u) = c(mi, ρ) = 0. 
Thus, we obtain that the closure of an unstable manifold is a torus of smaller dimension, namely two-dimensional. This 
contradicts to the transitivity of f A on T 6.

• Suppose that the characteristic polynomial is the product of two polynomials of the third degree corresponding to the 
eigenvalues λ, exp[±iαk] and λ−1, exp[±iα j], where i, j = 1, 2 and i �= j. Then the polynomial of the third degree with 
rational coefficients has the form

(x − λ)(x − exp[iα1])(x − exp[−iα1]) = (x − λ)(x2 + 2x cosα1 + 1) =
x3 + (2 cosα1 − λ)x2 + (1 − 2λ cosα1)x − λ.

We conclude λ be a rational number. But then there is again an eigenvector with rational coefficient, hence a contra-
diction.

• Suppose that the characteristic polynomial is decomposed into the product of two polynomials, one of which is a 
polynomial of the fourth degree corresponding to the eigenvalues of λ, λ−1, exp[±iαk], and of the second degree cor-
responding to the eigenvalues of exp[±iα j], j �= k. The characteristic polynomial has the form P = x6 + a1x5 + a2x4 +
a3x3 + a2x2 + a1x + 1 = (x2 + ax + 1)(x4 + b1x3 + b2x2 + b1x + 1). Since a, bl ∈ Q, l = 1, 2, then bl = pl

ql
, where pl, ql

are relatively prime integers. Denote by N the common denominator for bl, l = 1, 2. Thus λ is a root of a polynomial of 
the fourth degree with rational coefficients. Reasoning as in the item 2, we conclude that there are two integer rela-
tions for the eigenvector γ u : (mi, γ u) = 0, where i = 1, 2, namely, m1 = N(1, b1, b2, b1, 1, 0)�, m2 = N(0, 0, 0, 0, b1, 1)� . 
Thus, we obtain that the closure of an unstable manifold is a torus of smaller dimension, namely four-dimensional. This 
contradicts transitivity.

So, the proposition has been proved. �
Now we prove

Proposition 4.3. If f A is a symplectic partially hyperbolic automorphism of T 6 with the transitive unstable one-dimensional foliation, 
then its stable and center foliations have also dense leaves.

Proof. Let γ u, γ s be eigenvectors for λ, λ−1 and the projection of the line tγ u into T 6 is dense. Then the characteristic 
polynomial of A is irreducible. Suppose the closure of the projection of tγ s in T 6 is either a two-dimensional torus or 
four-dimensional torus. It implies the characteristic polynomial of A is reducible, that is a contradiction.

Now we show that the central foliation is also dense in T 6, provided that the unstable foliation is dense. The character-
istic polynomial of the matrix A is irreducible. Suppose the closure of the projection of the center subspace W s is not dense 
and, being a torus, forms a four-dimensional torus in T 6. This torus is a smooth invariant manifold for f A (as the closure of 
an invariant set) containing a fixed point Ô . The tangent plane to T 4 at Ô is the invariant 4-plane w.r.t. differential D f A . In 
the covering space R6 the p-pre-image of this 4-plane passing through the origin O , is the invariant 4-plane w.r.t. L A . There 
is the only such 4-plane W c for which the restriction of L A onto this invariant plane has eigenvalues exp[±iα1], exp[±iα2]. 
Because the projection of this plane to T 6 is the invariant 4-dimensional torus T 4, there exist four linear independent 
integer vectors in W c .

Since W c is an invariant subspace, we consider the induced linear transformation LB of the transformation L A to this 
invariant subspace, which is given by 4 × 4 matrix B in the basis made up of integer vectors. Thus, matrix B has rational 
14
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coefficients. Hence, the characteristic polynomial Q of the matrix B also has rational coefficients. The space R6 splits into 
a direct sum of two invariant w.r.t. linear transformation L A subspaces. Then the characteristic polynomial is equal to the 
product of the characteristic polynomials induced by the transformation L A in invariant subspaces. So, the characteristic 
polynomial the transformation L A is reducible, that is a contradiction.

Now suppose the closure of p(W c) be a five-dimensional torus T 5 in T 6. This torus is also a smooth invariant manifold 
for f A containing a fixed point Ô . The tangent plane to T 5 at Ô is the invariant 5-plane w.r.t. differential D f A = L A . 
In the covering space R6 the pre-image of this 5-plane w.r.t. the projection p, that passes through the origin O , is the 
invariant 5-plane w.r.t. L A . There are only two such invariant 5-planes W cs, W cu , for which the restriction of L A onto the 
invariant plane possesses eigenvalues exp[±iα1], exp[±iα2]. But the plane W cu contains γ u and we get that the closure of 
the projection of tγ u belongs to T 5, but this cannot be the case, since it contradicts the condition of transitivity of tγ u . 
Similarly, reasoning about W cs , we get a contradiction, since we showed above that the closure of γ s is dense on T 6. �

Now we turn to the classification of automorphisms f A of T 6 which we called decomposable. In fact, the Arov’s theorem 
works in this case as well. Nevertheless, one can say about the conjugating automorphism more. Recall that the automor-
phism f A and the automorphism fC generated by the companion matrix C of its characteristic polynomial are connected 
by the semi-conjugation 1.6.

We consider first those f A which have one-dimensional unstable foliation. Let f A be generated by matrix A (symplectic 
w.r.t. a standard or nonstandard symplectic structure) with one-dimensional unstable foliation and being decomposable. 
This means that the closure of any unstable leaf is a torus of a dimension lesser than six. Then the following statement 
holds.

Proposition 4.4. If f A has one-dimensional unstable foliation being decomposable, then the integer characteristic polynomial χ(λ) of 
A is reducible over Q.

Proof. Since the closure of the infinite line p(tγ u) forms a torus of a dimension lesser than six (four or two), therefore the 
eigenvector γ u of the matrix A with the eigenvalue λu > 1 is resonant, i.e. there are nontrivial integer relations (m, γ u) = 0
with nonzero vector m ∈ Z. Suppose, on the contrary, that the polynomial χ(λ) of A is irreducible over Q. This implies 
λu to be an algebraic number of degree six, not lesser. Since all eigenvalues of A are simple and A is an integral matrix, 
it is rationally similar to its companion matrix C : AT = T C with non-degenerate rational T . As we know, the eigenvector 
ρ of matrix C corresponding to real eigenvalue λu is of the form (1, λu, . . . , λ5

u)�: Cρ = λuρ . Hence the vector Tρ is an 
eigenvector of the matrix A: ATρ = T Cρ = λu Tρ . Since λu is the simple eigenvalue, we get Tρ = cγ u . Thus, we get for the 
integer vector m ∈Z6: (m, Tρ) = c(m, γ u) = 0. So, for the integer non-degenerate vector T ∗m we have (T ∗m, ρ) = 0. Thus, 
there is a nonzero polynomial of the degree five or lesser with integer coefficients such that λu is its root. This contradicts 
to that λu is an algebraic number of degree six. So, the characteristic polynomial χ(λ) is reducible over Q. �

The polynomial χ(λ) of the integer symplectic matrix A can be decomposed into real polynomials with rational coeffi-
cients by only two ways: 1) χ(λ) = P4(λ)Q 2(λ) with irreducible P4 of the degree four or 2) χ(λ) = P2(λ)Q 2(λ)R2(λ) with 
irreducible polynomials of the second degree. Otherwise, if to assume χ(λ) be a product of two rational polynomials of the 
odd degrees, then, as before, we conclude that there is a rational root and therefore, an integer eigenvector, this leads to 
the existence of an invariant circle in T 6 with the only unstable fixed point, i.e. to a contradiction.

A distribution of roots among these polynomials can be as follows: λ, λ−1, exp[±iα1] for P4 and exp[±iα2] for Q 2, or 
exp[±iα1], exp[±iα2] for P4 and λ, λ−1 for Q 2, for the first case, for the second case the eigenvalues are pair-wisely λ, λ−1, 
exp[±iα1], exp[±iα2] for every polynomial.

Keeping this in mind, we have the following classification theorems.

Theorem 4.5. Let a symplectic automorphism f A of T 6 with one-dimensional unstable foliation be decomposable and the closure of 
the unstable (stable) leaf is a four-dimensional torus. Then the matrix A is rationally similar to a block-diagonal matrix (H, I) with 
blocks 4 × 4 for H and 2 × 2 for I being companion matrices of its reducible characteristic polynomials P4 and Q 2 , respectively. 
Two such block-diagonal matrices (H, I), (H ′, I ′) generate topologically conjugate decomposable automorphisms on T 4 ×T 2 if and 
only if partially hyperbolic integer matrices H and H ′ are integrally similar and periodic matrices I, I ′ have the same period k from 
k ∈ {3, 4, 6}.

Theorem 4.6. Let f B be a decomposable symplectic automorphism T 6 with one-dimensional unstable leaves such that the closure of 
the unstable (stable) leaf is a two-dimensional torus. Then B is rationally similar to a block-diagonal matrix (H, I) whose blocks are 
either companion 2 × 2 and 4 × 4 matrices H, I for the related polynomials-multipliers P2, Q 4 , or three 2 × 2 matrices (H, I1, I2) for 
related polynomials-multipliers P2, Q 2, R2 .

In the first case, two such block-diagonal matrices (H, I), (H ′, I ′) generate topologically conjugate decomposable automorphisms 
on T 2 ×T 4 if and only if their hyperbolic integer matrices H and H ′ are integrally similar and periodic matrices I, I ′ have the same 
period k.
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In the second case, two collections of block-diagonal matrices (H, I1, I2), (H ′, I ′1, I ′2) generate topologically conjugate decompos-
able automorphisms on T 2 ×T 2 ×T 2 if and only if hyperbolic integer matrices H and H ′ are integrally similar and periodic matrices 
I1, I ′1 have the same period k1 and I2, I ′2 have the same period k2, ki = 3, 4, 6, i = 1, 2 provided that k1 �= k2 .

Remark 4.7. When dealing with the first case of the two-dimensional torus as a result of the closure, we get a companion 
matrix I for T 4 that should have an integer characteristic self-reciprocal polynomial with two pairs of simple complex 
roots on the unit circle. As follows from the Kronecker’s theorem [22], in this case all four roots are roots of unity. If 
λ4 +aλ3 +bλ2 +aλ +1 be such polynomial with integers a, b, then a = −2(cosα1 +cosα2), b = 2 +4 cosα1 cosα2. Therefore, 
|a| ≤ 4, |b − 2| ≤ 4, hence there are 81 possible polynomials. Among them there are reducible, for instance, λ4 + λ3 + 2λ2 +
λ + 1 = (λ2 + 1)(λ2 + λ + 1), λ4 + 2λ3 + 3λ2 + 2λ + 1 = (λ2 + λ + 1)2, but irreducible polynomials with roots on the unit 
circle also exist. For example, the polynomial λ4 − λ3 + λ2 − λ + 1 is cyclotomic and has roots on the unit circle

√
5 + 1 ± i

√
10 − 2

√
5

4
= cos(π/5) ± i sin(π/5),

1 − √
5 ± i

√
10 + 2

√
5

4
= cos(3π/5) ± i sin(3π/5).

All they are roots of unity of degree ten. Of course, not all of 81 polynomials have only roots on the unit circle, some of 
them have roots out of the unit circle: these inequalities on a, b are only necessary but not sufficient.

But if all eigenvalues of the matrix I are roots of the unity, some degree of the matrix has only unity as its eigenvalues. 
Because all eigenvalues of I are simple, the unity is the multiple eigenvalue with four 1-dimensional Jordan boxes, so 
it is the identity matrix and I is periodic matrix. It is a funny problem to investigate the orbit structure of the related 
automorphisms f I on T 4.

Similar to decomposable symplectic automorphisms on T 6 with one-dimensional unstable foliation, the classification 
theorems for decomposable automorphisms on T 6 with two-dimensional unstable foliation hold. Nevertheless, there is a 
difference here: an analog of the Proposition 4.2 is not valid. Indeed, consider the matrix S4 in the Section 3. Its unstable 
two-dimensional foliation is transitive, but its characteristic polynomial is reducible over Z. We classify different classes of 
the topological conjugation using another approach.

We know from the corollary of the Halmos theorem (see above) that the automorphism f A on T 6 is ergodic, if and only 
if, when among eigenvalues of A no roots of unity exist. All eigenvalues of A are algebraic integer numbers of some degree 
being, due to symplecticity, an even integer, six or lesser. Among them only two complex conjugate ones lie on the unit 
circle. So, remaining four eigenvalues outside of the unit circle are algebraic numbers of some degree, they form either a 
complex quadruple or they break into two different real pairs λ1, λ−1

1 and λ2, λ−1
2 , λ1,2 > 1, λ1 �= λ2. Thus, we come to the 

following distributions of eigenvalues in dependence of degrees of algebraic eigenvalues for decomposable automorphisms.

• the set of eigenvalues breaks into two subsets: fourth order algebraic numbers λ1, λ−1
1 , λ2, λ−1

2 and second order num-
bers exp[±iα] (χ(λ) is reducible over Z into the product of monic integer polynomials of the fourth and second order);

• the set of eigenvalues breaks into two subsets: fourth order algebraic numbers composing the quadruple ρ exp[iα],
ρ exp[−iα], ρ−1 exp[iα],ρ−1 exp[−iα], ρ > 1, and second order numbers exp[±iα] (χ(λ) is reducible over Z into the 
product of monic integer polynomials of the fourth and second order);

• there are three pairs of eigenvalues being algebraic numbers of the second orders: λ1, λ−1
1 , λ2, λ−1

2 , exp[±iα] (χ(λ) is 
reducible over Z into the product of three monic quadratic integer polynomials).

In these cases stable and unstable two-dimensional foliations have leaves whose closures are four-dimensional tori (de-
composable automorphisms), the center foliation is a two-dimensional torus with a periodic automorphism of the periods 
{3, 4, 6} [24] as the restriction of f A .

Keeping this in mind, we have the following classification theorems.

Theorem 4.8. Let f A be a decomposable symplectic automorphism of T 6 for which the closure of any two-dimensional unstable 
(stable) leaf is a four-dimensional torus, and the matrix A has either a quadruple of complex conjugate eigenvalues outside the unit 
circle, or two different pairs of real eigenvalues outside the unit circle. Then A is rationally similar to a block-diagonal matrix S whose 
blocks are 4 × 4 and 2 × 2 companion matrices (H, I) of factors for the characteristic polynomial. Two such block-diagonal matrices 
(H, I), (H ′, I ′) generate topologically conjugate decomposable automorphisms on T 4 ×T 2 if and only if hyperbolic integer matrices 
H and H ′ are integrally similar and periodic matrices I, I ′ have the same period k from k ∈ {3, 4, 6}.

Theorem 4.9. Let f B be a decomposable symplectic automorphism T 6 such that the closure of the two-dimensional unstable (stable) 
leaf is a four-dimensional torus, and its characteristic polynomial is the product of three monic polynomials of the second order. Then 
B is rationally similar to a block-diagonal matrix S whose blocks are 2 × 2, 2 × 2 and 2 × 2 factor matrices (H1, H2, I) for the 
characteristic polynomial. Two such block-diagonal matrices (H1, H2, I), (H ′ , H ′ , I ′) generate topologically conjugate decomposable 
1 2
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automorphisms on T 6 , if and only if hyperbolic integer matrices H1 and H ′
1 are integrally similar, hyperbolic integer matrices H2 and 

H ′
2 are integrally similar and integer matrices I, I ′ have the same period k, k = 3, 4, 6.

5. Addendum

In this section we construct examples of four- and six-dimensional linear symplectic integer matrices being not in-
tegrally conjugate to its companion matrix. This demonstrates that the conditions of integral similarity in the classifica-
tion theorems are essential. Recall that a symplectic matrix S in the standard linear symplectic space with coordinates 
(x, y) = (x1, x2, y1, y2) satisfy the relation S� I S = I . If S is represented in the form of four (2 ×2) integer matrices A, B, C, D

S =
(

A B
C D

)
,

then these matrices obey the relations

A�C = C� A, B�D = D�B, A�D − C�B = E, (5.1)

with E being the unitary (2 × 2) integer matrix. Let us denote entries of these four matrices as follows

A =
(

a b
c d

)
, B =

(
α β

γ δ

)
, C =

(
x y
z w

)
, D =

(
ξ η
ζ ω

)
.

Then relations in (5.1) are reduced to the six equalities

bx − ay + dz − cw = 0, βξ − αη + δζ − γω = 0,

aξ + cζ − αx − γ z = 1, aη + cω − βx − δz = 0,

bξ + dζ − αy − γ w = 0, bη + dω − β y − δw = 1.

(5.2)

Thus we have 6 equations for 16 variables, hence 10 free variables exist. The last four equations can be grouped into two 
sets of two linear equations with respect to those variables which matrix entries compose a nonzero determinant. Suppose, 
for instance, that det B = � �= 0. Then variables (x, y, z, w) can be expressed via the remaining variables as follows

x = δ(aξ + cζ ) − δ − γ (aη + cω)

�
, y = δ(bξ + dζ ) + γ − γ (bη + dω)

�
,

z = α(aη + cω) + β − β(aξ + cζ )

�
, w = α(bη + dω) − α − β(bξ + dζ )

�
.

If we insert these expressions for (x, y, z, w) into the first relation in (5.2), then we get with the account of the second 
equality in (5.2) the relation bδ + aγ − dβ − cα = 0. Hence, instead of two first relations in (5.2) we can use two relations

βξ − αη + δζ − γω = 0, bδ + aγ − dβ − cα = 0,

where coefficients are the set (α, β, γ , δ).
To get an example, let us set α = γ = δ = 1, β = 0. Then � = 1 and calculations give c = a + b, ζ = η + ω. So, we have 

six arbitrary parameters a, b, d, ξ, η, ω.
If we set α = 2, β = γ = δ = 1, then, as easily verified, one can choose

A =
(

1 1
0 2

)
, C =

(
1 −1

−1 6

)
, D =

(
2 0
1 3

)
,

and corresponding symplectic matrix has the characteristic polynomial χ(λ) = λ4 − 8λ3 + 17λ2 − 8λ + 1 being reducible 
over Z: χ(λ) = (λ2 − 5λ + 1)(λ2 − 3λ + 1). Thus we get the Anosov automorphism on T 4 with two-dimensional unstable 
and stable foliations but it is decomposable, since the closure of a one-dimensional unstable foliations generated by each 
eigenvector greater than one (λ1 = (5 + √

21)/2, and λ1 = (3 + √
5)/2) gives an invariant two-dimensional torus.

Next choice is when matrices A, B, C, D are as follows

A =
(

2 1
1 1

)
, B =

(
2 1
1 1

)
, C =

(
0 2
2 −2

)
, D =

(
1 1
1 0

)
.

The characteristic polynomial χ(λ) = λ4 − 4λ3 + λ2 − 4λ + 1 of the related symplectic matrix S is irreducible with roots

λ1,2 = 1 +
√

5

2
±

√
5 + 4

√
5

2
, λ3,4 = 1 −

√
5

2
± i

√
4
√

5 − 5

2
It turns out that matrix S is not integrally similar to its companion matrix K
17
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K =

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 4
0 1 0 −1
0 0 1 4

⎞
⎟⎟⎠ .

This means that automorphisms f S and f K , being both ergodic and transitive (and even mixing ones) with transitive strong 
unstable foliations, are not topologically conjugate, since their matrices S, K are not integrally similar, though they are 
rationally similar.

For a 6-dimensional case the above-used algorithm is not convenient. Here we apply the generating function method [3]. 
We seek a symplectic matrix for the symplectic transformation in the form

X = ∂ S

∂Y
, y = ∂ S

∂x
, X = (X1, X2, X3), y = (y1, y2, y3),

with a quadratic generating function S(x, Y ) = 1
2 (Ax, x) + (Bx, Y ) + 1

2 (C Y , Y ), where matrices A, C are symmetric and B is 
an arbitrary real non-degenerate matrix. Then the transformation casts in the “cross” form

X = Bx + C Y , y = Ax + B�Y ,

or in the direct form

x = B−1 X − B−1C Y , y = AB−1 X + (B� − AB−1C)Y .

Let us choose

B =
⎛
⎝1 1 1

0 1 1
0 0 1

⎞
⎠ , B−1 =

⎛
⎝1 −1 0

0 1 −1
0 0 1

⎞
⎠ ,

and

A =
⎛
⎝ 1 1 −1

1 2 0
−1 0 3

⎞
⎠ , C =

⎛
⎝3 0 1

0 1 −1
1 −1 2

⎞
⎠ .

Then we get a symplectic 6 × 6 matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 −3 1 −2
0 1 −1 1 −2 3
0 0 1 −1 1 −2
1 0 −2 0 −2 3
1 1 −2 0 −2 4

−1 1 3 1 3 −3

⎞
⎟⎟⎟⎟⎟⎠

with the characteristic polynomial χ(λ) = λ6 + 2λ5 − 16λ4 + 24λ3 − 16λ2 + 2λ + 1 with approximate roots λ1,2 = 0.704 ±
i0.710, λ3,4 = −5.663, 1.907, λ5,6 = −0.177, 0.524. The last polynomial can be obtained from the cubic polynomial z3 +
2z2 − 19z + 20 by means of the change z = λ + 1/λ.

5.1. Rational and integral similarity: verification

Results of this subsection were kindly presented to us by Dr. K. Conrad (the University of Connecticut), authors are deeply 
thank to him for detailed explanations and the help.

Set

A =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 −3 1 −2
0 1 −1 1 −2 3
0 0 1 −1 1 −2
1 0 −2 0 −2 3
1 1 −2 0 −2 4

−1 1 3 1 3 −3

⎞
⎟⎟⎟⎟⎟⎠ ,

which has characteristic polynomial

χA(x) = x6 + 2x5 − 16x4 + 24x3 − 16x2 + 2x + 1.
18
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This is irreducible in Q[x] (it is irreducible mod 7, as well as mod 61, 73, 83, 101, and so on). Is A integrally conjugate to its 
companion matrix? We’ll see how to get a computer to tell us the answer is no.

Set K = Q(α) where α is a root of χA(x). Using a computer, χA(x) has discriminant −1639961600 and the ring of 
integers OK has discriminant −102497600, so

[OK : Z[α]]2 = −1639961600

−102497600
= 16.

Thus [OK : Z[α]] = 4.

Remark 5.1. A computer says the splitting field of K/Q has degree 48 and OK has class number 1 (it is a PID), but this does 
not mean Z[α] is a PID; in fact it can’t be since for every number field F , a proper subring of finite index in OF is not a 
PID since it is not integrally closed.

We want to convert A (or rather its integral conjugacy class) into an ideal (or rather an ideal class) in the ring Z[α] and 
then ask a computer if that ideal is principal since the ideal class in Z[α] corresponding to the companion matrix of A is 
the class of principal ideals.

A general element of K has the form g(α) = a0 + a1α + a2α
2 + a3α

3 + a4α
4 + a5α

5 where α j ∈ Q. We associate to g(α)

in K the 6 × 6 matrix

g(A) = a0 I6 + a1 A + a2 A2 + a3 A3 + a4 A4 + a5 A5

in M6(Q). Turn Q6 into a K -vector space by setting g(α)v := g(A)v for all v ∈ Q6. Using a computer,

v0 :=

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ =⇒ g(α)v0 = g(A)v0 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 6 −22
0 0 −4 18 −108 602
0 0 2 −11 63 −353
0 1 −4 25 −140 793
0 1 −5 27 −158 884
0 −1 6 −36 199 −1136

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5

⎞
⎟⎟⎟⎟⎟⎠ .

Call that 6 × 6 integral matrix B . Its determinant is −4. The (fractional) Z[α]-ideal a in K that is associated to A is a :=
{γ ∈ K : γ v0 ∈ Z6}. What do elements of a look like? We want to find a spanning set for a as a Z-module and then as a 
Z[α]-module.

Write γ as

g(α) = a0 + a1α + a2α
2 + a3α

3 + a4α
4 + a5α

5 =

⎛
⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1
α

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎟⎟⎠

= a · α.

We have

γ v0 = g(α)v0 = g(A)v0 = Ba ∈ Z6 ⇐⇒ a ∈ B−1(Z6) ⇐⇒ a = B−1x

for x ∈ Z6. Then

γ ∈ a ⇐⇒ γ = g(α) = a · α = (B−1x) · α = x · (B−1)�α for some x ∈ Z6.

As x runs over Z6, we get a is the Z-span of the components of (B−1)�α.
Since

B−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 −25/2 −23/2 −49/2 15 −17/2
0 −107/2 −39 −96 62 −35
0 115 175/2 419/2 −133 153/2
0 −207/2 −161/2 −371/2 118 −135/2
0 35/2 14 31 −20 11
0 7 11/2 25/2 −8 9/2

⎞
⎟⎟⎟⎟⎟⎠ ,

the elements of a are in 1 Z[α]. Therefore set b := 2a is contained in Z[α] and is the Z-span of the components of 2(B−1)�α.
2
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We have

2(B−1)�α =

⎛
⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
−25 −107 230 −207 35 14
−23 −78 175 −161 28 11
−49 −192 419 −371 62 25
30 124 −266 236 −40 −16

−17 −70 153 −135 22 9

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
α

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

so b is the Z-span of

2,

− 25 − 107α + 230α2 − 207α3 + 35α4 + 14α5,

− 23 − 78α + 175α2 − 161α3 + 28α4 + 11α5,

− 49 − 192α + 419α2 − 371α3 + 62α4 + 25α5,

30 + 124α − 266α2 + 236α3 − 40α4 − 16α5,

− 17 − 70α + 153α2 − 135α3 + 22α4 + 9α5.

Since b is an ideal in Z[α], b is also the Z[α]-span of the above 5 elements. Because 2 ∈ b, we can streamline all the 
generators by replacing each integral coefficient with 0 or 1 depending on whether it is even or odd:

b = (2,1 + α + α3 + α4,1 + α2 + α3 + α5,0,1 + α2 + α3 + α5)

= (2,1 + α + α3 + α4,1 + α2 + α3 + α5).

Writing these ideal generators as 2, β1, β2,

b = (2, β1, β2) = (2, β1, β2 − αβ1) = (2,1 + α + α3 + α4,1 − α + α3 − α4).

The last two generators differ by a multiple of 2 in Z[α], so

b = (2,1 + α + α3 + α4)

as an ideal in Z[α].
Using this last formula for b, we now ask a computer algebra system if b is a principal ideal in Z[α]. Using Magma’s 

online calculator at
http://magma .maths .usyd .edu .au /calc/ http://magma .maths .usyd .edu .au /calc/.
We enter the code
P<x>:=PolynomialRing(Integers());
R:=ext<Integers()|xˆ6+2*xˆ5-16*xˆ4+24*xˆ3-16*xˆ2+2*x+1>;
R;
k:=R.2;
I:=ideal<R|[2,1+k+kˆ3+kˆ4]>;
Norm(I);
IsPrincipal(I);

and this returns the result
16
false

which means (i) [Z[α] : b] = 16 and (ii) b is not a principal ideal in Z[α].

Data availability
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