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Many different precursors are known, but not all of which are effective, i.e., giving
enough time to take preventive measures and with a minimum number of false
early warning signals. The study aims to select and study effective early warning
measures from a set ofmeasures directly related to critical slowing down aswell as
to the change in the structure of the reconstructed phase space in the
neighborhood of the critical transition point of sand cellular automata. We
obtained a dynamical series of the number of unstable nodes in automata with
stochastic and deterministic vertex collapse rules, with different topological graph
structure and probabilistic distribution law for pumping of automata. For these
dynamical series we computed windowed early warning measures. We
formulated the notion of an effective measure as the measure that has the
smallest number of false signals and the longest early warning time among the
set of early warning measures. We found that regardless of the rules, topological
structure of graphs, and probabilistic distribution law for pumping of automata, the
effective early warning measures are the embedding dimension, correlation
dimension, and approximation entropy estimated using the false nearest
neighbors algorithm. The variance has the smallest early warning time, and the
largest Lyapunov exponent has the greatest number of false early warning signals.
Autocorrelation at lag-1 and Welch’s estimate for the scaling exponent of power
spectral density cannot be used as early warningmeasures for critical transitions in
the automata. The efficiency definition we introduced can be used to search for
and investigate new early warning measures. Embedding dimension, correlation
dimension and approximation entropy can be used as effective real-time early
warning measures for critical transitions in real-world systems isomorphic to sand
cellular automata such as microblogging social network and stock exchange.
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1 Introduction

It was established more than 35 years ago that self-organization
leads not only to the emergence of order in a nonlinear complex
system and the separation of order parameters from the set of
degrees of freedom, but also brings the system to a critical state (e.g.,
see the paper [1]). In such a state, catastrophic avalanches of any
scale are possible, limited only by the size of the system. What is
fundamentally important in such a phenomenon is that there is no
need to tune the control parameter to a critical value, which is
necessary for phase transitions. For example, the well-known
paramagnetic-ferromagnetic phase transition of the second kind
requires fine-tuning of temperature as a control parameter to a
critical value. On the contrary, self-organized criticality (SOC)
spontaneously arises as a result of many local interactions
between the elements of the system. In the context of statistical
physics of phase transitions, a system located in a small
neighborhood of a critical point is unstable with respect to small
perturbations capable of causing avalanches of any size in the
system. Such a point separates disordered (the phase with a zero
order parameter) and ordered (the phase with a non-zero order
parameter) phases (see Figure 1C). It has been relatively recently

established (e.g., see papers [2, 3]) that complex systems are not only
capable of self-organization at a critical point, but also capable of
self-organization into a state characterized by two stable
configurations. Self-organized bistability (SOB) demonstrates the
coexistence of two stable configurations in the hysteresis loop
(L1L2L3L4) corresponding to zero order parameter and non-zero
order parameter (see Figure 1A). Let us consider the transitions
between the ordered and disordered phases occurring in the loop
L1L2L3L4. If the system is in the state L1, If the system is in the state
L1, the system remains in the unordered phase until the point L2
when the control parameter is increased. Then the system jumps to
the L3 point. Such a transition corresponds to a sharp increase in the
ordering of the system. When control parameter decreases, the
system moves to point L4 with decreasing orderliness of the
system. Further decrease of the control parameter sharply moves
the system to point L1, corresponding to the unordered state of the
system. The SOB is associated with a phase transition of the first
kind, such as the liquid-vapor transition at a jump-like change of the
order parameter (see the paper [2]). Recently, numerous evidence of
self-organization of real-world systems of various origins into a
critical state have been obtained. SOC is characteristic of financial
markets (e.g., see papers [4–6]), social interaction networks (e.g., see

FIGURE 1
Mean-field phase diagrams showing self-organization into bistable (A) and critical (C) states, and time series for the order parameter corresponding
to self-organization into bistable (B) and critical (D) states. The hysteresis loop is shown by arrows. The symbol τc indicates the critical time that separates
the subcritical phase and the critical state.
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papers [7–9]), epidemiological complex networks (e.g., see papers [8,
10]) and many other systems of very different origin (e.g., see papers
[8, 11]). SOB is characteristic of the brain (e.g., see the paper [12]). In
the following, the SOC state will be understood as the state of the
system staying in the critical point; the SOB state will be understood
as the state of the system staying in the region of the hysteresis loop.

The basic model of self-organization of systems into a critical
state is the sand pile model (e.g., see the paper [13]), which is
formulated as a two-dimensional cellular automaton. Such a
model describes a variety of processes in complex systems that
self-organize into a critical state and reflects typical properties
and features of real-world systems of various origins, such as
stock exchanges and online social networks (see section
“Conclusion”). The simplest sand automaton is a square grid
whose nodes contain an integer number of grains of sand. New
grains of sand fall on randomly selected nodes. If the number of
grains of sand in each node is at most three, the automaton is in a
stable state. As soon as a fourth grain of sand falls into one of the
nodes, a collapse occurs. The grains of sand from this node are
redistributed to neighboring nodes, which can cause collapses in
them. Collapses will avalanche until the automaton returns to a
steady state again (see Figures 1B, D). Despite the fact that such
an automaton is a model system with local rules, i.e., the nodes of
the automaton are only capable of interacting with their nearest
neighbor nodes, it exhibits complex behavior. In other words,
complexity is born from simple elements as a result of self-
organization. It is in this context that we consider sand cellular

automata as complex model systems. This is the classical model
of self-organized criticality proposed by P. Buck, C. Tang, and C.
Wiesenfeld in 1987 (see the paper [1]), which demonstrates the
transition of an automaton from a subcritical (disordered) phase
to a critical state.

One of the problems in the development of early warning
systems, which has not been finally solved, is finding effective
precursors of the system transition to a critical state, known as
the early warning signals (e.g., see papers [14–20]). First of all, it
is the search for precursors based on the analysis of the observed
sequence of values of a macroscopic variable, usually an order
parameter, generated by the system in real time. One of the
results of research directly or indirectly related to the analysis of
real-time dynamical series is the measures, by the characteristic
change of which one can judge about the approach of the system
to the critical transition point. Further in this paper we will call
such measures the early warning measures (EWM). First of all,
these are the EWMs, the change of which is explained by the
increase of the relaxation time of the system near the critical
point. This is known as the phenomena of critical slowing down
(e.g., see the paper [21]). EWMs have also been proposed that
are not directly related to this phenomenon, but their
characteristic change near the critical point can be
considered as the early warning signals for the critical
transition (e.g., see the paper [15]). The number of EWMs
and systems for which EWMs give good results in predicting
critical points is regularly growing.

FIGURE 2
Collapse of the unstable vertice (shown in red) in the self-organized critical Bak-Tang-Wiesenfeld model (A), self-organized critical Manna model
(B), self-organized critical Feder-Federmodel (C), self-organized bistable Bak-Tang-Wiesenfeld model (D), self-organized bistable Mannamodel (E), and
self-organized bistable Feder-Feder model (F).
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Despite the available variety of precursors of self-organized
critical transitions based on EWMs, not all precursors can be
considered as effective. Even the best-studied precursors based on
variance and autocorrelation at lag-1 are not effective for all systems.
Moreover, the effectiveness of the precursor depends on the origin of
the real-world system and/or on local and global features of the
observed sequence of values of the macroscopic variable. In the
context of early warning systems, we relate the effectiveness of the
precursor to the sufficiency of time from the moment of its
occurrence to the transition of the system to a critical state for
decision making, as well as to the absence of false positive and/or
false negative results of early detection.

To date, we are not aware of any work that presents a study of
the above-defined efficiency of precursors of self-organized
critical transitions. To close this gap, we have investigated the
efficiency of various EWMs of dynamical series of the number of
unstable nodes of sand cellular automata. To ensure the
representativeness of the results obtained, we investigated the
effectiveness of not only the most studied EWMs, such as some
sample moments, autocorrelation, and the power-law exponent
of the spectral density, but also little or no studied EWMs, such as
measures related to wavelet transform, and phase space
reconstruction from the time series data. In addition,
representativeness was ensured by the diversity of topological
structure of graphs, local rules, and types of pumping of cellular
automata. The choice of sand cellular automata from the existing
model systems with SOC and SOB is due to the fact that for them
the iteration corresponding to the output of the automaton to the
critical state is precisely known, so it is possible to precisely
determine the prediction time as one of the criteria for the
effectiveness of the measure. Finally, in the context of systems
theory, such automata are isomorphic to real-world systems, for

which there is a need to perform a real-time study of the critical
state exit from the moment they start pumping.

The paper is structured as follows: first, a short introduction
to the sandpile cellular automata, including the local rules, graph
topologies and external pumping used in this study, and the
rationale for choosing such automata as test models to study
precursors in real systems are described. Next, a formal definition
of an effective precursor to an effective EWM in the context of
early warning systems is presented. Also the investigated EWMs
and methods of their computation are described. All this is
presented in section “Data set and methods”. Finally, the
results of computing EWMs depending on the rules, topology
and pumping of automata are presented and discussed, as well as
the possibilities and limitations of using such measures to detect
effective precursors of critical transitions (see section “Results
and discussion”). In addition, the possibilities and limitations of
using effective precursors for early detection of critical
transitions in complex systems are described, as well as
possible practical applications of the results obtained (see
section “Conclusion”).

2 Methods

As mentioned in section “Introduction”, we investigate the
effectiveness of EWMs to self-organize sand cellular automata
into a critical state based on the behavior of discrete dynamical
series for unstable automata nodes. These are the dynamical
series ξt|t ∈ [0, n], n ∈ N{ }, where ξt is the number of unstable
nodes of the automaton in t-th iteration. In the presented study,
we use the most common window measure m, which is computed
in a window of fixed width w0 ∈ N. By sliding such a window

FIGURE 3
Early warning measure time series (A) and corresponding zero-mean time series (B). The symbols τc and τEW indicate the critical time and the early
warning time, respectively. The (−k0σ0 ,+k0σ0) and (−2k0σ0 ,+2k0σ0) intervals correspond to the control interval and the pre-warning interval,
respectively.
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along a series ξt with the computation of m for each window
shifted by one iteration step, starting from window [ξ0, ξw0

], we
obtain a dynamic series of measures t|t ∈ [0, n −0]{ }. The
characteristic behavior of the series mt, or zero-mean dynamic
series of increments Δt � (t+1 −t)/μt|t ∈ [0, n −0]{ }, as t
approaches the moment of the critical transition τc is a harbinger
of the self-organization of the automaton into the critical state.
The mean μt is calculated for the values of the series ξt in each
window.

2.1 Sandpile cellular automaton as a
generator of dynamic series data

Consider a sand cellular automaton on a planar graph Γ with
nodes (i, j) in the plane for which i, j ∈ Z. The most studied
automata on square grid graphs (SGG) are of little use as models
of real world systems. This is primarily due to the fact that the
propagation of sand grains from an unstable node (iu, ju) as a
result of its collapse is only possible to its four nearest neighbor
nodes (iu ± 1, ju ± 1). For this reason, we also investigated the
critical behavior of automata on the Erdos-Renyi graph (ERG)
and the Chung-Lu graph (CLG). Thus, ERG has been successfully
applied in modeling the dynamics of opinions in financial
markets (e.g., see the paper [6]), CLG in modeling
information dissemination in online social networks (e.g., see
the paper [22]). An ERG is a random graph on n nodes (i, j) ∈ Z,
in which an edge (k, m) between two nodes (ik, jk) and (im, jm)
appears independently of all other pairs of nodes with equal
probability p. The degree distribution of the nodes of the graph is
binomial with parameters n − 1 and p. In CLG, each vertex is
assigned a weight, and each pair of nodes is associated with a

probability proportional to the product of their weights. In the
resulting graph, each vertex has an expected degree equal to its
weight. Growing a CLG consists of several steps. Let V �
vk � (ik, jk)|k ∈ [1, n], n ∈ N{ } and the degree of each node
dk, t ∈ [1, n]. In the first step, we create a set L, consisting of
dk copies of vk node for each k � 1, n. In the second step, we define
random pairwise combinations on the set L. For nodes vi, vj ∈ V,
the number of edges in CLG connecting them is equal to the
number of vapor-combinations between their copies in L. The
degree distribution of the nodes of the graph is a two-parameter
degree distribution: P deg v � k{ } � eα/kβ, where α is the intercept
for the power law distribution, β> 0 is the slope for the power law
distribution.

First, let us consider the processes occurring in the automaton
on SGG, as well as its self-organization in the SOC state. Let initially
nodes (i, j) of the graph Γ are assigned numbers zij ∈ Z+ ∪ 0{ }. In
the context of sandpile cellular automata, number zij corresponds to
the number of sand grains in node (i, j). An automaton is in a stable
state if the inequality zij < zc. Then, for automata on SGG we take
the stability threshold zc � 4. The critical state of the automaton is
reached as a result of an iterative sequence of disturbance and
relaxation processes. The disturbance consists in that at the
beginning of each new iteration the automaton is pumped up by
assigning non-negative integers zij to the nodes according to a
certain pattern. The relaxation process starts, if for some node
(iu, ju) the inequality ziuju ≥ 4 is fulfilled, then such a node
transfers some number of grains of sand to neighboring nodes
according to local rules of the model and the automaton passes to an
unstable state. Such transfer of grains of sand can violate the stability
of neighboring nodes, which can lead to an avalanche of node
rollovers. The avalanche-like dynamics of the automaton continues
until it returns to the stable state (zij < 4 for all (i, j)). After that, the

FIGURE 4
Dynamic series of variance (A), kurtosis (B), skewness (C), autocorrelation at lag-1 (D), Welch’s power spectral density estimation for power law
exponent (E), and global Holder exponent (F) for the sandpile cellular automaton on the Erdos-Renyi graph with Bak-Tang-Wiesenfeld rule and pumping
according to the law of discrete uniform distribution. The symbol τc indicates the critical time.
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relaxation of the automaton is completed and a new pumping starts
in the next iteration.

For all the automata studied, we used local rules of isotropic (non-
directional) models. These are the Bak-Tang- Wiesenfeld (BTW) [1],
Manna (MA) [23], and Feder-Feder (FF) [24] models. In the
deterministic BTW and FF models, sand grains from unstable node
(iu, ju) are transferred to SGG equally to each of the four nearest four
nodes of the square lattice, i.e., ziu±1,ju±1 → ziu±1,ju±1 + 1 (see Figures 2A,
C). If we consider the collapses and redistribution of grains of sand
presented in Figures 2A, C as processes occurring at some k-th iteration
of the critical dynamics of the automaton, then such iteration can be
considered as completed before complete relaxation. The number of
unstable nodes of the automaton at the k-th iteration is ξk � 2. In the
stochastic MA model on SGG the nearest neighboring nodes with node
(iu, ju) get δk grains of sand, i.e., ziu±1,ju±1 → ziu±1,ju±1 + δiu±1,ju±1. Here
δiu±1,ju±1≥ 0 is a randomnumber of grains of sand for which the equality
δiu+1,ju+1 + δiu+1,ju−1 + δiu−1,ju+1 + δiu−1,ju−1 � 4 (see Figure 2B). In the
conservative BTW andMAmodels, when (iu, ju) collapses, the number
of grains of sand in it decreases by zc � 4, that is, ziuju → ziuju − 4 (see
Figures 2A, C). For the dissipative FF model the number of grains of
sand in (iu, ju) goes to zero, i.e., ziuju → 0 (see Figure 2C).

The above described critical dynamics of the automaton on
SGG corresponds to its exit to the SOC state. To exit the
automaton to the SOB state, it is sufficient to set the stability
threshold equal to zb (zb < 4) for nodes that received sand grains
as a result of shattering of more than one neighboring node. We
used zb � 2. In such an automaton, collapses of nodes (iu, ju)
occur when ziuju ≥ 4, and when more than one sand grain from
neighboring nodes is transferred to other nodes (i, j). The
collapses under the local rules of BTW, MA and FF models
are shown in Figures 2D–F.

The difference between the local rules of automata on random
graphs and the considered rules of automata on SGG is only in the
choice of threshold values zc. The value of zc is taken equal to the
degree of node (iu, ju). This is the value of a random variable from
the binomial distribution of node degrees for the automaton on
ERG, and the value of a random variable from the degree
distribution of node degrees for the automaton on CLG.

In addition to the local rules of automata and graphs on which
the collapse of unstable nodes and redistribution of sand grains
between nodes occur, it is necessary to describe the rules of sand
grains throwing in at each iteration, i.e., the pumping of the
automaton. We performed automata pumping to its randomly
selected nodes with the number of sand grains thrown in from
discrete uniform distribution (DUD) with a � 0 and b � 2,
exponential distribution (EXD) with λ � 1, and Pareto
distribution (PAD) with α � 2 and xm � 0.475.

2.2 Effectiveness of early warning measure

Let us introduce the notion of an effective EWM. Let,
Δt|t ∈ [0, n −0]{ } be the zero-mean dynamic series of EWM
increments for the dynamic series of the number of unstable nodes
of the automaton ξt|t ∈ [0, n]{ }, computed in a sliding window of
width w0; τc is the time when the system enters the critical state.

In addition, we introduce the following notations.

• σ0 is the standard deviation of the series Δmt in the initial
window [ξ0, ξw0

].
• −k0σ0 and k0σ0 are the lower and upper control bounds for the

series Δmt. If the values of the series Δmt in the initial window

FIGURE 5
Dynamic series of embedding dimension (A), correlation dimension (B), approximate entropy (C), and Lyapunov exponent (D) for the sandpile
cellular automaton on the Erdos-Renyi graph with Bak-Tang-Wiesenfeld rule and pumping according to the law of discrete uniform distribution. The
symbol τc indicates the critical time.
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have a normal distribution with zero mean, then k0 � 3 (see 3σ
rule). In the general case the distribution is not normal.
Therefore, we chose for each measure such a value of

k0 ∈ R+ ∪ 0{ }, that would ensure that 99.9% of the values of
the Δmt series in the initial window belong to the interval
(−k0σ0, k0σ0) (see Figure 3B).

FIGURE 6
Parallel plots demonstrating the effectiveness of variance (A), kurtosis/skewness (B), autocorrelation at lag-1 (C), local Holder exponent (D),
embedding/correlation dimension (E), and approximate entropy (F) as early warningmeasures for critical transitions in the sandpile cellular automata. The
lines on the plots correspond to the difference between the early warning time and the critical time (Δτ), and the number of false early warnings (ν).
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• −2k0σ0 and 2k0σ0 are the lower and upper pre-warning
bounds for the series Δmt. The belonging of Δmt to the
interval (k0σ0, 2k0σ0) and/or to the interval
(−2k0σ0,−k0σ0) is a pre-precursor of possible approach
of the system to τc. The precursor can be either false or true
(see Figure 3B). False/true is determined by the further
behavior of the Δmt series beyond the pre-warning
boundaries.

• −3k0σ0 and 3k0σ0 are the lower and upper warning bounds for
the series Δmt, the introduction of which allows us to distinguish
between false and true pre-warnings. If the sequence
Δmk,Δmk+1, . . . ,Δmk+m{ }
∈ (0, k0σ0] ∪ (k0σ0, 2k0σ0] ∪ (2k0σ0,
3k0σ0] ∪ . . .∪ ((n − 1)k0σ0, nk0σ0], then the pre-precursor of
the critical transition of the system is true. In such a case,
(k +m)-th iteration corresponds to early warning time (τew)
for the critical transition of the system at time τc (see Figures 3A,
B). Otherwise, the pre-precursor is false. Figure 3B shows two false
the pre-precursors from the interval (k0σ0, 2k0σ0) and one false
the pre-precursor from the interval (−2k0σ0,−k0σ0). The true
warning discussed above corresponds to the increasing sequence
mk,mk+1, . . . ,mk+m{ }. By similar reasoning we can introduce the
notion of a true warning for a decreasing sequence.

• Μ � Δm(1)
t ,Δm(2)

t , . . . ,Δm(p)
t{ } is a set of series Δmt. Each of

such series demonstrates the behavior of some measure that
characterizes a certain property of the series ξt (see next
Subsection).

• Τ � τ(1)ew , τ
(2)
ew , . . . , τ

(p)
ew{ } there are multiple early warning times

in the early warning measures of set Μ.
• Ν � ](1)f , ](2)f , . . . , ](p)f{ } there are multiple numbers of false

pre-warnings in early warning measures from set Μ.

Definition 1. Them-th early warning measure is called an effective
early warning time if the following condition hold:

τc − τm � τ l( )
ew ∈ Τ{ } . (1)

Definition 2. The k-th early warning measure is called effective in
terms of the number of early warning signals if the following
condition hold:

]k � ] l( )
f ∈ Ν{ }. (2)

Definition 3. The early warning measure is called effective (or
strictly effective) if it is effective both in terms of early warning time
and the number of true early warning signals.

2.3 Calculation methods for early warning
measure

This subsection summarizes the window EWMs and their
computation methods used in the presented study. Each k-th
measure (mk) was computed in a k-th moving window of width
w0, mk was computed for a segment ξk, ξk+1, . . . , ξk+w0

{ } of the

dynamic series ξt|t ∈ [0, n], n ∈ N{ } of the number of unstable nodes
of the sand cell automaton belonging to this window.

Variance, kurtosis, skewness, autocorrelation at lag-1 and
power-law scaling exponent (β) of the power spectral density
(PSD) are window EWMs, the features of changes in which as the
system approaches τc are interpreted by its critical slowing down
(e.g., see the paper [15]). Thus, a precursor of the critical
transition of the system is a sharp increase in the values of the
variance and autocorrelation series, as well as a sharp increase
followed by a sharp decrease in the values of the kurtosis and
skewness series.

The precursor of the critical transition of the system is also an
increase in the values of the series of exponents as the system
approaches τc, which corresponds to an increase in the spectral
power at low frequencies. The exponent β is a statistical estimate of
the power-law tangent for the PSD, S(f) � f−β, n a double
logarithmic scale. We used Welch’s PSD estimate (e.g., see the
paper [25]) as an estimate of the distribution of S over frequency
f for a series ξt|t � k, k +0, k ∈ N{ }:

S f( ) � 1
0

∑k+0

k

wkξke
−j2πfk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

∝f−β, (3)

where w is the Hamming window function, f is the frequency. The
series ξt{ } is split into maximally long overlapping segments with
50% overlap. The PSDs for each of the segments are then calculated
and the PSDs are further averaged to obtain Welch’s PSD estimate.
By applying Welch’s method, the variance of the PSD estimate can
be reduced.

Note that the exponent β also describes the fractality of the series
ξt|t ∈ [k, k +0], k ∈ N{ }, which is associated with the presence of a
highly indented shape of the graph of the function ξ(t), as well as
with the presence of repeatability of statistical characteristics when
the time scale (s) changes. In this case, the following relation is valid
for ξ(t):

ξ t0 + st( ) − ξ t0( ) ≈ sH ξ t0 + t( ) − ξ t0( )[ ], (4)
where H is the Hurst exponent, which characterizes the irregularity
of the function ξ(t) in the neighborhood of the point t0. The smaller
the value H, the more singular, or less smooth, the function is. The
exponentsH and β are related by the following equality (e.g., see the
paper [26]):

2H � 1 + β, (5)
which is used for the spectral estimate of H. The exponent H is an
EWM whose increase in the neighborhood of τc is also associated
with the critical slowing down of the system.

Estimation of the global irregularity of the series
ξt|t ∈ [0, n], n ∈ N{ } also yields the global Holder exponent, h,
which we used as another EWM. To compute this exponent, we
used the wavelet transform modulus maxima (WTMM) method,
whose algorithm implementation starts with a continuous wavelet
transform of the function ξ(t), which is approximated by a sum of
the following form (e.g., see the paper [27]):

W s, t0( ) � 1�
s

√ ∑k+0

t�k k ∈ N( )
ξtψ

t − t0
s

( ), (6)
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where ψ is the soliton-like function (mother wavelet), t0 ∈ N is the
shift parameter, s is the scale parameter, which is inversely
proportional to the Fourier transform frequency. When analyzing
non-stationary series, due to the property of wavelet locality, the
wavelet transform has a significant advantage over the Fourier
transform, which gives only global information about the
frequencies (scales) of the analyzed signal. The second step of the
algorithm consists in estimating the scaling characteristics of the
dynamic series on the basis of the obtained data. For this purpose,
the structural function (Z), proportional to the scaling exponent τq
is used:

Z q, s( ) � ∑
l∈L s( )

sup
s′≤ s

W s′, tl s′( )( )∣∣∣∣ ∣∣∣∣[ ]
q

∝ sτq , (7)

where q ∈ R is the moment, L(s) is the set of all lines l of local
maxima of wavelet coefficient modules W(s, t0), existing on the
scale s. Dependence (7) allows us to obtain an estimate of τq, which
has the form of a linear dependence for fractal series and a nonlinear
dependence for multifractal series. The estimate of the exponent h is
the tangent of the angle of slope of the tangent to the graph of the
function τ(q) at the point q � 0.

In addition to the above EWMs, we investigated the
effectiveness of measures based on the reconstruction of the
phase space of a sand cellular automaton as a self-organizing
dynamical system generating a dynamical series of the number of
its unstable nodes. In the context of nonlinear science, the
properties of complex self-organizing systems are considered
in the phase space of states. According to the Takens theorem,
which defines the requirements for the phase space
reconstruction, attractor, of self-organizing dynamical systems,
the behavior of a cellular automaton can be described by the
dynamical realization of one of the system parameters using time
delays (e.g., see the paper [28]). In the presented study, this is the
instability parameter of the automaton represented by the
dynamical series ξt|t ∈ [k, k +0], k ∈ N{ }.

The coordinates of the p-th pointM-dimensional phase space of
states reconstructed by the time delay method are the following
sequence:

xp � ξp, ξp+τ , . . . , ξp+ N−1( )τ
∣∣∣∣p ∈ 0, m − 1[ ], m � k +0 − M − 1( )τ{ },

(8)

where τ ∈ N is the delay time, M is the dimensionality of the
embedding. The real attractor of the dynamical system and the
reconstructed attractor, X � xp|p ∈ [0, m − 1]{ }, are topologically
equivalent if M and τ are chosen correctly. In particular, such
attractors have the same fractal dimension and the largest Lyapunov
exponents. We calculated the delay τ using the average mutual
information algorithm (see the paper [29]): it was chosen to be equal
to the time of the first local minimum in the mutual information for
the ξp and ξp+τ .

The dimension M, which was used as EWM, was calculated
using the false nearest neighbor algorithm (see the paper [30]). Let
x(M)
i and x(M)

j be two nearest neighbors in the attractor
reconstruction of dimension M, x(M+1)

i and x(M+1)
j are their

corresponding reconstructions of dimension M + 1. If
Rij � |x(M+1)

i − x(M+1)
j |/|x(M)

i − x(M)
j |>R0, then point j is

considered as a false nearest neighbor. If the fraction of points
for which Rij <R0, is zero or small enough, then the dimensionality
M reaches the optimal value needed to describe the dynamics of the
system. The dimensionality of M is the smallest integer dimension of
the space containing the whole attractor. It corresponds to the
number of independent variables uniquely determining the
steady-state motion of the dynamical system.

The measure of the chaotic complexity of the series
ξt|t ∈ [k, k +0], k ∈ N{ }, which we used as EWM, is the
correlation dimension Dc. This dimension is a quantitative
characteristic of the attractor that contains information about the
degree of complexity of the behavior of a dynamical system (e.g., see
the paper [28]). To estimate Dc the correlation sum was calculated:

C ε( ) � 1
m m − 1( ) ∑m−2

i�0
∑m−1

j�i+1
1 ε − xi − xj

∣∣∣∣ ∣∣∣∣( ), (9)

where ε is the given distance between a pair of points in
M-dimensional phase space, 1(·) is the Heaviside function. The
values of C(ε) were calculated for different values of ε. The estimate
for Dc is the tangent of the slope of the linear segment of the
dependence of lnC(ε) from ln ε.

The measure of regularity of a dynamical series
ξt|t ∈ [k, k +0], k ∈ N{ }, as an EWM is the approximate
entropy, AppEn (e.g., see the paper [28]). Such entropy shows
the probability of new modes occurring as the dimensionality of
M increases. The larger AppEn is, the larger are the uncertainties in

FIGURE 7
One of the possible schemes for spreading retweets on Twitter segment.
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the dynamical series. To calculate AppEn, we used the following
formula:

ApEn � 1
0 −M + 1

∑0−M+1

i�1
ln

CM
i ε( )

CM+1
i ε( )( ), (10)

where correlation sum Ci(ε) was calculated with formula (9).
The measure of the chaotic dynamics of a sand cellular

automaton, which we used as an EWM, is the largest Lyapunov
exponent λ. A feature of the chaotic dynamics of automata is the
high sensitivity of their dynamics to small changes in initial
conditions. One measure of the stability of the series
ξt|t ∈ [k, k +0], k ∈ N{ } to small changes in initial conditions is
the exponent λ. If λ> 0, the series can be considered unstable and the
automaton generating it chaotic. We computed λ from the
reconstructed attractor, X � xp|p ∈ [0, m − 1]{ } (see Eq. 8), using
Rosenstein’s algorithm (see the paper [31]). The algorithm is based
on the ergodic Oseledts theorem, according to which, the
exponential divergence of two randomly chosen points on the
attractor with unit probability is characterized by the exponent λ.
The first step of the algorithm consists in finding the nearest
neighbor for each point xi of the attractor X :

dj 0( ) � min
xj

xi − xj

∣∣∣∣ ∣∣∣∣
∣∣∣∣∣∣∣∣ i − j
∣∣∣∣ ∣∣∣∣>〈p〉{ }, (11)

where 〈p〉 is the mean period of the power spectral density. The
second step of the algorithm is to calculate the value of:

y i( ) � 1
0

〈ln dj i( )〉, (12)

where dj(i) is the distance for j-th pair of points after i discrete
steps. The estimate of the largest Lyapunov exponent is the tangent
of the slope of the line y(i).

3 Results and their discussion

In this section we present and discuss the results of computing
EWMs for the self-organization of sand cellular automata into a critical
state. We first consider the behavior of the computed EWMs as the
automata approach τc, which is both directly related to their critical
slowing down and unrelated to this phenomenon. The importance of
this consideration is due to the fact that automata, given a proper choice
of local rules, topological structure of graphs and pumping conditions,
are adequate models of real world systems of very different origins.
Therefore, it is acceptable to use the dynamical series generated by such
automata as series for testing various EWMs before using them for early
detection of critical transitions in the corresponding real-world systems.
We then consider the efficiency of the computed EWMs defined in the
previous section. All EWMs are computed at w0 � 1000, which is the
minimum acceptable value to obtain correct estimates of the measures.

3.1 Behavior of early warning measures

As a result of computing EWMs, we find that the non-linear
trend behavior of a series of EWMs, t|t ∈ [0, n −0]{ }, as the
automaton approaches τc does not depend on the choice of local

rules, the topological structure of the graph and its pumping
conditions. There are only quantitative differences that are
important in classifying EWMs according to their efficiency.
Therefore, without losing the generality of the discussion, we will
limit ourselves to describing the series of measures we obtained for a
randomly chosen BTW-SOB-ERG-DUD automaton.

Figure 4 shows the series for EWMs whose behavior has a
rigorous theoretical justification in the context of critical slowing
down. The series ξt|t ∈ [0, n]{ }, for which the series of EWMs were
computed, is presented in Figure 1B. The critical slowing down of
the automaton is accompanied by an increase in its relaxation time,
which leads to an increase in the number of its unstable nodes and,
consequently, to an increase in the dispersion, a sharp increase in the
skewness and kurtosis of the distribution of values of the series
ξt|t ∈ [0, n]{ } as the right boundary of the sliding window
approaches τc (see Figures 4A–C). The rationale for this behavior
is presented in the context of the critical slowing down. The
justification of such behavior is presented in the papers [14, 15].
Critical slowing down is also accompanied by an increase in
“memory”, which is reflected in the increase in autocorrelation at
lag-1. Moreover, when approaching τc autocorrelation takes a value
close to 1 for SOC automaton and a value equal to 1 for SOB
automaton (see Figure 4D). This suggests that the stochastic
dynamics of unstable nodes in the previous, (t − 1)-th, iteration
strongly affects the number of unstable nodes in the current, t-th,
iteration. This autocorrelation behavior is theoretically justified (see
the papers [14, 15]) and is a precursor to a critical transition. Also,
the critical slowing down of automata is accompanied by an increase
in the power-law scaling exponent, β, of the power spectral density
(see Eq. 3), which is presented in Figure 4E. But, the well-known
“redness” effect, β � 2, which is a precursor of the critical transition
(see the paper [32]), is observed only at t> τc. Hence, the measure β
is not an EWM for critical transitions in automata.

Let us now turn to the behavior of EWMs, which, perhaps with
the exception of the largest Lyapunov exponent (see the paper [33]),
has not yet been theoretically justified in the context of critical
slowing down. We begin by discussing the results obtained for the
global Holder exponent, h (see Figure 4F). As the right boundary of
the sliding window approaches τc we observe a decrease in h
followed by a sharp increase. The anticorrelated (h< − 0.5)
stochastic dynamics of the number of unstable nodes,
ξt|t ∈ [0, n −0]{ }, is replaced by correlated dynamics
(h> − 0.5) at t � 4136. When h< − 0.5, it is most likely that
large values of ξ are followed by small values, and vice versa. At
the dynamic mode change (h> − 0.5) large values of ξ At the
dynamic mode change (h> − 0.5), large values are followed by
large values, and small values are followed by small values. Themode
change at the point t � 4136 is a precursor to the critical transition.
Note that the similarity of behavior β and h is theoretically strictly
justified for fractional Brownian motion, for which β � 2h + 1 (see
the paper [26]). In spite of this, calculating h, in addition to the type
of correlations in the dynamics of the series, we obtain an indirect
estimate of the exponent β In spite of this, calculating h, in addition
to the type of correlations in the dynamics of the series, we obtain an
indirect estimate of the exponent by the WTMM method.

Consider the EWMs of the reconstructed phase space x [see
Sequence (8)] of the dynamical series ξt|t ∈ [k, k +0], k ∈ N{ }.
Figure 5 shows the behavior of these EWMs as the automaton
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approaches τc. At iteration t′ � 4151, there is a sharp increase in the
dimensionality of the reconstructed attractor, M, and a
correspondingly sharp increase in the minimum number of phase
variables that the dynamical system generating the dynamical series
must include (see Figure 5A). Only starting from iteration t′ the
dynamical system generating the dynamical series exhibits complex
behavior, since for complex systems M≥ 3 (see the paper [28]). In
this case,M varies from 2 to 5 for all automata we studied. Changing
the topological structure of the graph and the pumping of the
automaton affect only the numerical values of t′. The correlation
dimension of the reconstructed attractor, Dc, increases sharply at t′,
taking fractional values greater than zero at t> t′ (see Figure 5B).
This behavior indicates the complexity of the structure of the
reconstructed attractor and an increase in the degree of chaotic
complexity of the dynamical series. At t> t′ the geometry of the
reconstructed attractor is fractal. The approximation entropy,
AppEn, increases at t< t′ with a sharp decline at iteration t � t′
and an increase at t> t′ (see Figure 5C). Hence, in iteration t � t′
there is a sharp decline in the uncertainty (irregularity and
unpredictability) of the behavior of the discrete dynamic series
ξt|t ∈ [0, n −0]{ }, i.e., the number of repeating patterns in such
a series increases sharply. Thus, a sharp change in the behavior of
measures M, Dc and AppEn at t � t′ is a precursor of critical
transitions in automata. The behavior of the largest Lyapunov
exponent, λ, due to the strong noisiness of the corresponding
dynamical series is apparently not a reliable precursor of a
critical transition in automata (see Figure 5D). But, in spite of
the noise, it is still possible to assert that the automaton may be
approaching τc by the change of value λ from zero, at t � 2202, to a
positive value, at t> 2202. In the latter case, the dynamics of the
automaton is sensitive to small changes in the initial conditions. A
reliable conclusion about the appearance of a strange attractor in the
dynamics of unstable nodes of the automaton is possible only
starting from iteration t � t′, since Dc takes fractional values and
λ> 0.

3.2 Effectiveness of early warning measures

In the context of the definition of EWM efficiency proposed
in the previous section, the efficiency of EWM for critical
transitions in sandpile cellular automata depends on the
magnitude of the difference between critical iteration and
early warning iteration, Δτ � τc − τew, and on the number of
true early warning signals, ]. Thus, EWM1 is more efficient than
EWM2 if Δτ1 >Δτ2 and ]1 < ]2. Figure 6 shows the magnitudes of
Δτ and ] for automata. To identify an automaton, we use the
abbreviations introduced in the previous section. For example,
BTW-SOB-CLG-PAD stands for a sand cell automaton with Bak-
Tang-Wiesenfeld rule on the Chung-Lu random graph and
pumping from the Pareto distribution, which is capable of
entering the SOB state.

We consider the effects of the critical transition type (SOB/
SOC), local rules (BTW/FF/MA), pumping distribution (DUD/
EXD/PAD) and topological graph structure (SGG/ERG/CLG) on
the EWM efficiency. It is found that the influence features described
below are satisfied for all studied EWMs, as demonstrated by
Figure 6. For two automata with the same rules, pumping and

graph structures, the EWM for the SOC automaton is more efficient
than the corresponding EWM for the SOB automaton, since
ΔτSOB <ΔτSOC and ]SOB � ]SOC. Increasing the degree of internal
(defined by local rules) and external (defined by the mean and
variance of the pumping distributions) stochasticity leads to higher
efficiency in terms of early warning time. Indeed, for two automata
with the same critical transition types, pumping and graph
structures, Δτ measures are in the relationship ΔτBTW <ΔτMA.
Also, the inequalities ΔτDUD <ΔτEXD <ΔτPAD for EWMs
automata with different pumping distributions are satisfied for
other identical features of automata functioning. Even so,
increasing the degree of stochasticity of internal and external
pumping leads to a decrease in the EWMs in terms of the
number of true early warning signals, since ]BTW < ]MA and
]DUD < ]EXD < ]PAD. Finally, changing the topological structure of
the automaton graph does not affect the efficiency of EWMs under
other identical features of its functioning.

To conclude this section, let us consider which of the studied
EWMs are the most efficient independent of the type of critical
transition, rules, pumping and automata graph structure. The
measures determined by the features of the reconstructed phase
space structure, such as embedding dimension, correlation
dimension and approximation entropy, are effective by early
warning time. Apparently, this is due to the fact that the phase
space structure is most sensitive to the approximation of a number
of unstable nodes of the automaton to τc. Also these measures, along
with dispersion, autocorrelation at lag-1 and h are effective on the
number of true early warning signals, with, in contrast, dispersion
being the least effective EWM on early warning time. The power-law
scaling exponent, β, and the largest Lyapunov exponent, λ, are not
EWMs at all, so their Δτ and ] we have not presented them in
Figure 6. The behavior of the measure λ is characterized by a large
number of false signals, i.e., a large number of ]. This is apparently
due to the insufficient width of the sliding window to adequately
estimate this measure using Rosenstein’s algorithm. The numerical
values taken by the measure β in the left neighborhood of the point
τc, do not correspond to the values characteristic of the redness
effect (β � 2) at the critical slowing down of the automaton. This
discrepancy is due to the inadequacy of Welch’s PSD estimate for β,
since the behavior of the associated with β measure h, computed by
the WTMM method predicts the critical slowing down of the
automaton in the left neighborhood of the point τc. But, recall,
that the measure h is not efficient in terms of early warning time.

Thus, only the behavior of EWMs based on estimates of
embedding dimension, correlation dimension and approximation
entropy, in the left neighborhood of the point τc is an effective
precursor to the critical transition of sand cellular automata. Only
these measures have the largest Δτ and the smallest ] of all the
measures studied.

4 Conclusion

Embedding dimension, correlation dimension and
approximation entropy as effective EWMs can be used in real-
time early-warning systems of critical transitions in real systems if its
structure is analogous to that of a sand cellular automaton, i.e., the
systems are isomorphic. In the context of systems theory [34], the
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analogy of systems structures is determined by the analogy of
functioning of elements and connections between elements of
systems. For example, such real systems are a segment of the
online social network Twitter and a segment of the stock
exchange generating dynamic series in real time. By the term
“segment” we denote a set of network users connected by
discussion of some topic or some event. For a stock exchange, it
is a set of traders involved in buying/selling some security.

Figure 7 demonstrates the formation of chains of retweets in a
segment, starting from the pumping of tweets into the network
segment (tweet is shown by a red lightning bolt in Figure 7A) to the
complete relaxation of the segment (see Figure 7D). The presented
process corresponds to some iteration of the automaton’s self-
organization process. The nodes of the graph correspond to the
users of the segment, the edges of the graph determine the existence
of interactions between these users. If two nodes (segment users) are
connected by an edge, then one of the segment users is a subscriber
of the other, and, accordingly, retweet transmission/acceptance
along the edge is possible. Local retweet propagation is shown by
the red dashed arrow. Each network user can be either in an active
state (red nodes of the graph in Figure 7 corresponding to unstable
nodes), in which it is ready to send retweets to its subscribers, or in a
passive state (green nodes of the graph in Figure 7 corresponding to
stable nodes), in which it is not ready to send retweets for some
reason. Sending retweets to subscribers corresponds to the
crumbling of an unstable node of the automaton. If some user of
a segment that is in the passive state receives a tweet, that causes it to
move to the active state (see Figure 7A). This event (pumping)
triggers a chain of retweets in the segment, initiated by this user. This
user then sends retweets to its followers, and let us assume that as a
result of this retweet propagation, they move to the active state (see
Figure 7B). The process of moving from passive to active state, and
vice versa, continues (see Figure 7C) until the segment consisting of
only passive users is completely relaxed (see Figure 7D). The next
iteration also starts by pumping tweets from some users in the
segment and leads to chains of retweets in the segment. Starting at
some iteration (τc), the segment self-organizes into a critical state
characterized by an avalanche-like spread of retweets. The number
of unstable nodes of the automaton, ξt{ } (t is the number of
iterations) is analogous to the number of users of the segment
that initiate retweet chains in it. If we consider the stock market,
comprising bonds and derivatives, as a group of interconnected
subsets, each with the potential to self-organize into a bistable or
critical state, they can be modeled similarly to sand piles using
the logic of the spread of information in the market through
avalanches. In this instance, traders serve as nodes and their
transactions denote edges in the graph. First, a trader initiates a
significant deal with other market participants. As others
become aware of this information, they make their
independent decisions. If the information is impactful, traders
are inclined to make deals that would increase the amount of
available information in the market. This mechanism will persist
in the bistable state, if the number of deals decreases as the
systems begin to relax, or in the critical state, if this segment of
the market becomes much more popular among traders on a
regular basis.

The proposed definition of effective EWMs can be used to find new
effective EWMs, such as multifractal measures (e.g., see the paper [6])

and measures based on recurrences (e.g., see the paper [35]), which
exhibit sharp changes when approaching τc. For this reason, our
approach did not allow us to assign the largest Lyapunov exponent,
which is characterized by a sign change in the neighborhood of τc, to the
set of efficient EWMs. Perhaps another reason for the inefficiency of the
largest Lyapunov exponent is that the window width (the amount of
sampled data) is insufficient to obtain an adequate estimate of the
exponent. In real systems the window width can be increased, for
example, as a result of transition from daily data to minute data on the
number of purchase/sale transactions of a security. When selecting the
initial window, it is fundamentally important that it does not include τc.
Otherwise, a critical transition in a real system will start before the
process of its early detection has been initiated.

The used rules, topological structures of graphs, and pumping of
sand cellular automata allowed us to study the efficiency of EWMs
for bifurcation-induced tipping. But, this type of tipping is not
limited to the study of the effectiveness of the measures, because by a
suitable choice of local rules and pumping it is possible to observe
noise-induced and rate-induced tipping in sand cell automata (e.g.,
see the paper [36]).
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