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Tailoring of interference-induced surface superconductivity by an applied electric field
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Nucleation of the pair condensate near surfaces above the upper critical magnetic field and the pair-condensate
enhancement/suppression induced by changes in the electron-phonon interaction at interfaces are the most
known examples of the surface superconductivity. Recently, another example has been reported when the surface
enhancement of the critical superconducting temperature occurs due to quantum interference. In this case the
pair states spread over the entire volume of the system while exhibiting the constructive interference near
the surface. In the present work we investigate how an applied electric field impacts the interference-induced
surface superconductivity. The study is based on a numerical solution of the self-consistent Bogoliubov-de
Gennes equations for a one-dimensional attractive Hubbard model. Our results demonstrate that the surface
superconducting characteristics, especially the surface critical temperature, are sensitive to the applied electric
field and can be tailored by changing its magnitude.
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I. INTRODUCTION

The phenomenon of the surface superconductivity dates
back to the classical papers by Saint-James, de Gennes,
and Ginzburg [1,2]. Using the Ginzburg-Landau formalism,
Saint-James and de Gennes predicted that the nucleation
of superconductivity occurs near the surface of the ideal
sample in decreasing parallel magnetic fields above the upper
critical field. This prediction was confirmed for various su-
perconducting metallic alloys [3–7]. In turn, Ginzburg argued
[2] that the surface superconductivity can be significantly
different from the bulk one when the phonon properties at
surfaces/interfaces are altered as compared to the bulk lattice
vibrations. Relevant examples and confirmations range from
thin films to small superconductive particles [8–11].

Much less is known about the surface superconductivity
in the absence of magnetic fields and surface phonon modes.
The surface superconducting pair potential (gap function) can
indeed be larger (up to ∼20%) than its bulk value [12–16].
However, the relative difference [τ = (Tcs − Tcb)/Tcb] be-
tween the surface superconducting critical temperature Tcs and
the bulk one Tcb was found to be negligible in those cases.
In more details, it was established [13] that τ is exactly zero
for the standard BCS interaction of electrons (attraction in the
Debye window near the Fermi surface) while it can go up to
∼10−3 when combining the attraction in the Debye window
with the repulsion at high energies.

Recently, it has been demonstrated that τ can increase
up to about 25% within the attractive Hubbard model at the
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half filling [17–19]. The comprehensive study [20] of all the
contributions to the gap function has demonstrated that
the origin of this effect is the constructive interference of the
pair modes near the sample surface. It was revealed that all
the self-consistent pair states contributing to the gap function
are delocalized and occupy the entire volume of the system
[20,21]. The condensation of Cooper pairs near the sample
surface above the bulk critical temperature occurs due to the
quantum interference of the pair states: it is destructive in bulk
and constructive near surfaces. Exactly the superposition of
all the contributing pair states is responsible for the effect of
interest. Moreover, the impact of the interference-induced sur-
face superconductivity can be further enhanced by tuning the
Debye frequency [22] due to the removal of the contribution
of high-energy quasiparticles. As a result, τ can be enlarged
up to 60% ∼ 70%. However, this value can be reduced for
more sophisticated variants of the surface confining potential
(as compared to the standard infinite single-electron potential
barrier) [23].

Experimentally and theoretically, it is of great importance
to investigate the response of the interference-induced surface
superconducting state to other controllable parameters, in par-
ticular, to an electric field. The latter is one of the most useful
tools of modifying properties of thin superconductors and
surface pair states in bulk samples [24–27]. For example, an
electric-field-induced shift of Tc was observed in Sn, In, and
NbSe2 thin films [24,28,29]. Moreover, the electric field can
also give rise to the multigap structure of the surface pair
states [30] and result in the superconductor-metal [31,32] and
superconductor-insulator transitions [33–35].

In the present work, we investigate the effect of an
external electric field on the interference-induced surface
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superconductivity within a one-dimensional attractive Hub-
bard model at the half-filling level. By numerically solving the
self-consistent BdG equations, we demonstrate that varying
the field strength makes it possible to fine tune the surface
superconducting properties, changing the surface critical tem-
perature in a wide range of its values. Here we note that the
interference-induced surface superconductivity is not sensi-
tive to the system dimensionality [22] and appears in 2D and
3D systems [18], where the superconductive fluctuations are
much less important as compared to the 1D case. Thus, to
simplify our study, we investigate the 1D chain, expecting that
our mean-field results are relevant for higher dimensions.

The paper is organized as follows. In Sec. II we outline
the BdG formalism for a one-dimensional attractive Hubbard
model in the presence of a screened electric field parallel to the
chain of atoms. Our numerical results and related discussions
are presented in Sec. III. Concluding remarks are given in
Sec. IV.

II. THEORETICAL FORMALISM

Similarly to the previous papers on the interference-
induced surface superconductivity [20,22,23], we investigate
an attractive Hubbard model for a one-dimensional chain
of atoms with the grand-canonical Hamiltonian given by
[19,36,37]

H − μNe = −
∑

iδσ

tδc†
i+δ,σ ciσ +

∑

iσ

[U (i) − μ]niσ

− g
∑

i

ni↑ni↓, (1)

where i is the site index, ci and c†
i are the electron annihilation

and creation operators associated with site i, Ne and niσ are the
total and local electron number operators, g denotes the on-site
attractive interaction (g > 0), U (i) and μ are the one-electron
and chemical potentials, respectively, and tδ is the hopping
amplitude between sites i and i + δ. We adopt the nearest
neighbor hopping, i.e., δ = ±1 and tδ = t . The open boundary
conditions are applied in the present study so that the relevant
wave functions vanish at i = 0 and N + 1.

The single-electron potential U (i) is the potential energy of
an electron in the external electric field E(i) that is parallel to
the chain and along its positive direction. The field magnitude
is given by

E (i) = E0[e−i/λ + e−(N+1−i)/λ]

= 2 E0 e−(N+1)/2λ cosh[(2i − N − 1)/2λ], (2)

where E0 is the strength of the screened electric field, and λ

is the screening length in units of the lattice constant a. From
Eq. (2) we find

U (i) = −2qλE0e−(N+1)/2λ sinh[(2i − N − 1)/2λ], (3)

where q = −e, with e the electron charge, and the electric
potential is set to nearly zero deep in the chain. The de-
termination of λ near the system surface is rather complex.
However, as we are interested in the qualitative picture, we
can assume, for simplicity, that λ is proportional to the Fermi
wavelength λF of the system in the absence of the electric
field and electron attractive interactions g, i.e., λ ≈ γ λF , with

γ ∼ 1 the parameter of our calculations. Using the disper-
sion relation [36] ξk = −2tcos(ka), with ka = nπ/(N + 1),
one concludes that the half-filling case corresponds to μ = 0.
Then, adopting the parabolic band approximation, one gets
λF = √

2πa. Below our results are shown for γ = 2 and 5.
We remark that our qualitative results are not sensitive to the
particular choice of γ .

The BdG equations (s-wave pairing) obtained in the mean-
field approximation for the Hamiltonian (1) can be written as
[21,22],

εnun(i) =
∑

j

hi jun( j) + 
(i)vn(i),

εnvn(i) = −
∑

j

h∗
i jvn( j) + 
∗(i)un(i), (4)

where hi j = −t (δi, j+1 + δi, j−1) + [U (i) − μ]δi j , 
(i) is the
superconducting pair potential, {εn, un(i), vn(i)} are the
energy and wave functions of quasiparticles with n the quasi-
particle quantum number (here the energy ordering number).
The wave functions should be normalized, i.e.,

∑
i |un(i)|2 +

|vn(i)|2 = 1, and satisfy the open boundary condition un(0) =
un(N + 1) = 0 and vn(0) = vn(N + 1) = 0. The BdG Eq. (4)
are numerically solved together with the self-consistency
relation


(i) = g
∑

n

un(i)v∗
n (i)(1 − 2 fn), (5)

where fn = f (εn) is the Fermi-Dirac quasiparticle distribu-
tion. The summation above includes positive-energy quasipar-
ticle states inside the Debye window 0 � εn � h̄ωD, with ωD

the Debye frequency. Due to the time reversal symmetry, we
regard 
(i) as real.

For the half-filling, the chemical potential μ is fixed by the
relation

n̄e = 1 = 1

N

∑

i

ne(i), (6)

where the electron occupation number ne(i) is given by

ne(i) = 2

N

∑

n

[ fn|un(i)|2 + (1 − fn)|vn(i)|2]. (7)

In our calculations we use the microscopic parameters g =
2, h̄ωD = 10, and N = 301. For this choice, τ = (Tcs −
Tcb)/Tcb ≈ 25% (for zero field). However, as is mentioned
above, τ can be higher for smaller values of the Debye fre-
quency [22]. Notice that N = 301 is large enough to avoid any
finite size effects. Generally, our qualitative conclusions are
not influenced by this choice of the microscopic parameters.
Below the energy-related quantities, the electric field and the
temperature T are shown in units of t , t/(ea), and t/kB,
respectively. In our calculations, the self-consistent solution
for 
(i) is obtained with the accuracy of 10−8.

III. RESULTS AND DISCUSSIONS

A. Suppression of Tcs by electric fields

In Fig. 1(a) one can find a typical example of the self-
consistent pair potential 
(i) given as a function of the
site number i. It is calculated for the electric-field strength
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FIG. 1. (a) The spatial profile of 
(i) at T = 0, E0 = 0.4, and
γ = 2. The site is corresponds to the surface maximum of the pair
potential, and ib = (N + 1)/2 marks the center of the chain. (b) The
screened electric field versus i for E0 = 0.4 and γ = 2.

E0 = 0.4 at T = 0. The spatial profile of 
(i) demonstrates
that the pair potential (the gap function or the order parameter)
stays nearly uniform inside the chain. It is close to 
(ib) =
0.340, where ib = (N + 1)/2. Below, 
(ib) is regarded as the
bulk pair potential. However, near the surface, the gap func-
tion exhibits a maximum. Its value 
max = 0.422 is 24.1%
higher than 
(ib). The locus of the maximum is labeled as
is, and here is = 9. The profile of the screened electric field
is shown for E0 = 0.4 in Fig. 1(b). The field vanishes in the
region i ∈ [50, 250]. Obviously, the maximum of the pair
potential is located in the domain of the exponential decay
of the field.

Figures 2(a)–2(d) show 
(is) and 
(ib) as functions of
T for E0 = 0, 0.1, 0.2, and 0.4, respectively. The tempera-
ture profiles of 
(is) and 
(ib) are similar to the general
temperature dependence of the BCS gap, however, each of
these quantities drops to zero at a distinct critical temperature
dependent on E0. As a result, one obtains the surface Tcs

and bulk Tcb critical temperatures [19,20]. At E0 = 0, we find
Tcb = 0.199 and Tcs = 0.246 in agreement with the results re-
ported in Ref. [22]. One notes that Tcb does not depend on the
field strength. Physically, this is clear as the screened electric
field vanishes in the center of the chain at i = ib. Therefore,

(ib) does not change under the influence of the screened
electric field together with the bulk critical temperature Tcb. In
contrast, Tcs is significantly affected by the field. Indeed, Tcs

decreases by about 14% (from 0.246 to 0.212) as E0 increases
from 0 to 0.4.

To go into more detail on the dependence of our results on
E0, Tcs, Tcb, and the relative enhancement of the surface super-
conducting temperature τ = (Tcs − Tcb)/Tcb are shown versus
E0 in Fig. 3. For comparison, the data are given for the two

FIG. 2. The surface and bulk pair potentials 
(i = is, ib) versus
the temperature T at E0 = 0 (a), 0.1 (b), 0.2 (c), and 0.4 (d) for γ =
2. The surface and bulk critical temperatures Tcs and Tcb are defined
as the temperatures at which 
(is ) and 
(ib) approach zero.

γ values: γ = 2 and 5. For γ = 2, one can see from Fig. 3(a)
that Tcs decreases monotonically from 0.246 at E0 = 0 to
0.212, and at E0 = E∗

0 = 0.3. A further increase of E0 does
not have any effect on Tcs and it remains equal to 0.212 for
E∗

0 � E � 1. The corresponding relative enhancement of Tcs

[see Fig. 3(b)] decreases from 23.8% at E0 = 0 to 6.6% at
E0 = E∗

0 and then stays the same for E0 > E∗
0 . Thus, we find

that the interference-induced surface superconductivity and its
critical temperature can be fine-tuned by changing the applied
electric field. For the chosen microscopic parameters this fine
tuning is within the range ≈7−24%. However, for smaller

FIG. 3. (a), (c) The surface Tcs and bulk Tcb critical temperatures
versus the field strength E0 for the screening length ratio γ = 2 and 5.
(b), (d) The corresponding relative enhancement of the surface crit-
ical temperature τ = (Tcs − Tcb)/Tcb as a function of E0. E∗

0 denotes
the field strength above which Tcs and τ do not change with E0.
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FIG. 4. (a), (b) 
(i) and ne(i) as functions of i, calculated at
T = 1.0 Tcb; γ = 2 for E0 = 0.4 (black squares), 0.6 (red circles),
and 1.0 (blue triangles). (c) The locus is of the pair-potential maxi-
mum near the right (blue stars) and left edges (red spheres) versus E0,
as calculated for T = 1.0 Tcb, γ = 2. (d) The corresponding electron
occupation number at i = is near the right and left edges versus E0;
the colors and symbols are the same as in panel (c).

Debye frequencies the upper level of this range can increase
up to 60–70% at zero electric field, see Ref. [22].

For γ = 5, as seen from Figs. 3(c) and 3(d), we also find
that Tcs and τ decrease with increasing E0 for E0 < E∗

0 . How-
ever, such a decrease is now terminated at significantly weaker
fields. In particular, we find that E∗

0 = 0.1. This is because
larger values of γ correspond to larger penetrations of the
electric field (less screening). As a result, the reconstruction
of the surface pair states is completed at smaller fields, and the
saturation values of Tcs (= 0.218) and τ (= 9.3%) are larger
than those obtained for γ = 2, compare Figs. 3(a) and 3(b),
and Figs. 3(c) and 3(d).

It is important to emphasize that the position of the pair-
potential maximum, i.e., is, changes with E0. This is clearly
seen from Fig. 4(a), where the spatial profile of 
(i) is shown
for T = Tcb, γ = 2, and E0 = 0.4, 0.6, and 1.0. One can see
that the surface enhancement of the pair potential is most
pronounced at i = is, and its maximum shifts toward the chain
center with increasing E0. More precisely, there are two sur-
face maxima: one is close to the left edge and another is
located near the right edge. Both of them shift toward the
chain center with increasing E0. So, there are two values of
is, one of them (near the left edge) increases with E0 while
another (near the right edge) decreases, as shown in Fig. 4(c).

In fact, the electric-field surface effect is even more com-
plicated than one might expect from Figs. 4(a) and 4(c). From
Figs. 4(b) and 4(d), one can see that the electron spatial
distribution ne(i) is significantly altered in the presence of
the field. While ne(i) remains equal to one (the half-filling
regime) in the center of the chain, electrons are removed
from its right edge and accumulate at the left one, see
Fig. 4(b). In particular, the sites near the right edge become
completely empty while those near the left edge are fully oc-
cupied by electrons [ne(i) = 2]. This indicates the emergence

FIG. 5. The local pair potentials 
(i = 1, 301) (a) and electron
occupation number ne(i = 1, 301) (b) as functions of E0 at T = 0
for γ = 2. Panels (c) and (d) are the data for γ = 5. The red stars
correspond to i = 1 while the blue spheres are for i = 301. The
definition of E∗

0 is the same as that in Fig. 3.

of the superconductor-insulator surface transition, which
agrees with the findings of Ref. [38]. Thus, we obtain two
domains near the system edges: the first one (closer to the
edges) is in the insulating regime while the second domain
exhibits an enhanced superconducting temperature in compar-
ison with the bulk critical temperature.

Additional insight is provided by Fig. 5, where the pair
potential and electron occupation number at the first (i = 1)
and last (i = 301) sites of the chain are shown versus E0 at
T = 0 for γ = 2 and 5. One can learn from Fig. 5 that the
field strength E0 = E∗

0 , above which Tcs remains the same, is
connected with the onset of the surface insulator state [38].
In particular, the pair potentials at sites i = 1 and 301 are
close to zero at E0 = E∗

0 = 0.3 for γ = 2 and E0 = E∗
0 = 0.1

for γ = 5, see Figs. 5(a) and 5(c). In turn, at the same time
ne(i = 1) and ne(i = 301) approach two (fully occupied) and
zero (completely empty), respectively, see Figs. 5(b) and 5(d).

One can also learn from Figs. 4(b) and 4(d) that for E0 >

E∗
0 , the electron spatial distribution remains nearly the same in

the vicinity of is. For example, this is clearly seen in Fig. 4(d),
where n(is) is given versus E0 for the vicinity of the left
and right chain edges. As a result, 
(is), which is directly
connected with Tcs, does not change with E0 for E0 > E∗

0 , and
this explains why Tcs stays the same above E∗

0 .

B. Microscopic mechanism behind the suppression
of surface superconductivity

Now we investigate the microscopic mechanism underly-
ing the suppression of the surface superconductivity induced
by a screened electric field, based on the analysis of the
quasiparticle contributions to the pair potential at T = 0. To
facilitate our study, we introduce the cumulative pair potential
defined as [20]


(ε)(i) = g
∑

0�εn�ε

un(i)v∗
n (i)(1 − 2 fn). (8)
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FIG. 6. The cumulative pair potentials 
ε
s ≡ 
(ε)(is ) and 
ε

b ≡

(ε)(ib) versus the quasiparticle energy ε at T = 0 and γ = 2:
panel (a) demonstrates the results for E0 = 0, 0.1, 0.2, 0.3; panel
(b) shows the data for E0 = 0.4, 0.6, 0.8. The solid symbols corre-
spond to 
ε

s while the open ones are for 
ε
b.

Below we consider the cumulative pair potential at i = is and
ib. To simplify the notations, 
(ε)(i = is) and 
(ε)(i = ib) are
referred to as 
ε

s and 
ε
b, respectively.

Figure 6 demonstrates 
ε
s and 
ε

b as functions of the up-
per limit of the quasiparticle energy ε for the field strengths
E0 = 0, 0.1, 0.2, 0.3, 0.4, 0.6, and 0.8 at T = 0. The results
for 
ε

s are shown by the solid symbols while those for 
ε
b

are given by the open symbols. As seen from Fig. 6, all
the quasiparticles have energies less than h̄ωD and so every
positive-energy quasiparticle state gives a contribution to the
pair potential, according to Eq. (5). For E0 = 0 [see the blue
open squares in Fig. 6(a)], one finds that the dependence of

ε

b on ε reflects the energy dependence of the quasiparticle
density of states (DOS) D(ε) = dν/dε, with dν the number
of quasiparticles in the energy interval dε. D(ε) is propor-
tional to the single-electron DOS N (ξ ) = dν/dξ , with ξ the
single-particle energy measured from the chemical potential
μ (μ = 0 for the half-filling case at zero field). Employ-
ing the simple BCS approximation ε = √

ξ 2 + 
2
0, with 
0

the excitation gap (the minimal quasiparticle energy), one
finds D(ε) = N (ξ )ε/

√
ε2 − 
2

0. Due to the van Hove sin-
gularities at the lower and upper electron band edges, one
obtains N (ξ = ±2) → ∞. In addition, ε/

√
ε2 − 
2

0 → ∞,

as ε approaches 
0. Therefore, 
ε
b has infinite derivatives at

ε = 
0 ≈ 0.3-0.4 and ε = 2.
When switching on the electrostatic field, we observe a

similar dependence on ε for ε � 2, as seen from the data for

ε

b in Figs. 6(a) and 6(b). However, for E0 > 0 there appear
high-energy quasiparticles with εn > 2 that do not produce
any contribution to 
ε

b. This is seen from the flat profile

ε

b = 0.34 for ε > 2. Then, based on Fig. 6(a), we conclude
that the bulk pair potential does not change with increasing
E0, though there are high-energy quasiparticles induced by the
screened electric field. This conclusion is in agreement with
our present results for Tcb given in Fig. 3(a).

The response of the cumulative pair potential at i = is (
ε
s )

to the screened electric field is more complex. Here, when
E0 increases from 0 to 0.1, 
ε

s remains nearly the same in
the low-energy sector ε < 1.2. However, its value decreases
significantly as compared to that of E0 = 0 for the energies
1.2 < ε < 2. This decrease is partly compensated by the ap-
pearance of the quasiparticle contributions with ε > 2. The
dependence of 
ε

s on ε demonstrates further evolution at E0 =
0.2. Its overall increase with ε becomes more pronounced
for ε < 1.2, as compared to the case of E0 = 0.1. Then, 
ε

s
stays nearly flat for 1.2 < ε < 2, with 
ε

s ≈ 0.367, while
it slightly increases with ε for the high-energy regime with
ε > 2. For E0 = 0.3, the spatial profile of 
ε

s becomes even
more complex. One can see the presence of three flat regions
around the points ε = 0.2, 2, and 3.5. Quasiparticles with
the corresponding energies do not contribute to the surface
superconducting state.

Finally, for E0 > 0.3 the results for 
ε
s does not change

any more, which is in agreement with our finding that Tcs

does not change with E0 for E0 > E∗
0 = 0.3, see Fig. 3. One

can see from Fig. 6(b) that in this regime 
ε
s exhibits a faster

overall increase with ε for low energies, as compared to the
corresponding increase of 
ε

b. The surface cumulative pair
potential reaches the values 0.42 at ε = 4.0 and stays the same
for ε > 4.0. A similar high-energy behavior is obtained for
the bulk cumulative pair potential. However, it saturates at the
smaller value 0.34 when ε exceeds 2.0. This is in agreement
with the fact that for E0 > E∗

0 we find Tcs larger than Tcb by
6.6%. Thus, our study demonstrates that the alterations of the
quasiparticle contributions with ε > 1.2 are responsible for
the changes of the surface states in the presence of the external
electric field.

A further insight is obtained when analyzing the single-
species quasiparticle contribution to the pair potential
given by


n(i) = gun(i)v∗
n (i)(1 − 2 fn). (9)

Figure 7 shows 
n(i), un(i), and vn(i) for four quasiparticle
species with εn = 0.6 [panels (a1)–(a3)], 1.41 [panels (b1)–
(b3)], 2.21 [panels (c1)–(c3)], and 3.27 [panels (d1)–(d3)].
The results are obtained for E0 = 0.2 < E∗

0 . In this case, the
left maximum of 
(i) is located at is = 2. For εn = 0.6, see
Figs. 7(a1)–7(a3), 
n(i) is a strongly oscillating function of i,
together with un(i) and vn(i). Here we find that 
n(is) = 0.01
(it reaches its local maximum), whereas 
n(ib) = 0.009. This
highlights the fact that the low-energy quasiparticles give
almost the same contribution to the surface and bulk super-
conductivity for sufficiently small fields, i.e., the screened
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FIG. 7. The single-species quasiparticle contribution 
n(i) and
the quasiparticle wave functions un(i) and vn(i) for εn = 0.60 (a),
1.41 (b), 2.21 (c), and 3.27 (d), as calculated at E0 = 0.2, T = 0,

and γ = 2. Panels (a1)–(d1) demonstrate 
n(i); panels (a2)–(d2) and
(a3)–(d3) give the corresponding un(i) and vn(i), respectively. In this
case, the maximum of 
(i) is located at is = 2.

electric field does not significantly affect the contributions of
these quasiparticles to the pair potential. For εn = 1.41, see
Figs. 7(b1)–7(b3), the surface-superconductivity contribution
is nearly suppressed. Indeed, we have 
n(is) = 7.6 × 10−5,
as compared to 
n(ib) = 7.1 × 10−3. Such a small value
of 
n(is) corresponds to the first flat regime of 
ε

s around
the energy ε ≈ 1.2 in Fig. 6. At the same time 
ε

b is still
significant.

When εn exceeds two, the corresponding quasiparticles
do not contribute to the bulk superconductivity, i.e., 
n(ib)
becomes negligible, as seen from the examples with εn =
2.21 and 3.27, shown in Figs. 7(c1)–7(c3) and 7(d1)–7(d3).
However, for the surface contribution we have 
n(is) = 1.9 ×
10−3 (for εn = 2.21) and 4.6 × 10−2 (for εn = 3.27). The
wave functions un(i) and vn(i) for quasiparticles with εn > 2
are localized near the chain edges due to the presence of the
screened electric field, see also Ref. [38].

Figure 8 shows 
n(i), un(i), and vn(i) for the three quasi-
particle species with εn = 0.6 [panels (a1)–(a3)], 2.03 [panels
(b1)–(b3)], and 4.77 [panels (c1)–(c3)]. The calculations are
performed for E0 = 0.4 > E∗

0 . Notice that for this case is = 8.
For εn = 0.6, the general behavior of 
n(i), un(i), and vn(i)
is similar to that of Figs. 7(a1)–7(a3). The results calculated
for εn = 2.03 and demonstrated in Figs. 8(b1)–8(b3) are sim-
ilar to those in Figs. 7(c1)–7(c3). Finally, the data shown in
Figs. 8(c1)–8(c3) do not have a similar dataset in Fig. 7. The
point is that Figs. 8(c1)–8(c3) correspond to the quasiparticle
species which produces a negligible contribution to the bulk

FIG. 8. The same as in Fig. 7 but for εn = 0.60, 2.03, and 4.77;
and E0 = 0.4. Here we have is = 8.

pair potential [
n(ib) = 4.3 × 10−5]. At the same time, its
surface contribution is also strongly suppressed. These high-
energy quasiparticle species correspond to the long nearly flat
regime of 
ε

s illustrated in Fig. 6(b).

IV. CONCLUSIONS

In summary, we have investigated the effect of an ex-
ternal electrostatic field on the interference-induced surface
superconductivity. Our study is based on a self-consistent
solution of the Bogoliubov-de Gennes equations for the
one-dimensional attractive Hubbard model with the nearest-
neighbor hopping at half filling. To reasonably simplify our
consideration, a phenomenological expression has been intro-
duced for the screened electric field.

Our results demonstrate that the surface critical tem-
perature Tcs is sensitive to the electric field so that the
surface superconductivity can be tailored by changing the field
strength. It is worth noting that the field shifts the surface max-
ima of the superconductive pair potential toward the center
of the system so that one gets the combination of the surface
insulating (closer to the edges) and surface superconducting
(further from the edges) domains. When the field strength
exceeds its critical value, the surface superconducting tem-
perature does not change any more. In this case, increasing
E0 is only accompanied by a further shift of the surface pair-
potential maxima toward the chain center. The corresponding
maximal value of the pair potential and Tcs are not altered.

Finally, our results are discussed for the half filling. How-
ever, we note that the qualitative picture remains the same
beyond the half filling. In this case, τ is reduced as com-
pared to its value for the half-filling occupation [20]. As a
consequence, we can expect that the critical field strength E∗

0
becomes smaller.
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