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Surface superconductor-insulator transition induced by electric field
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It is well known that the electric field can induce phase transitions between superconducting, metallic and
insulating states in thin-film materials due to its control of the charge carrier density. Since a similar effect on the
charge carriers can also be expected for surfaces of bulk samples, here, we investigate the transformation of the
surface states in a superconductor under an applied screened electric field. Our study is performed by numerically
solving the self-consistent Bogoliubov–de Gennes equations for the one-dimensional attractive Hubbard model.
It is found that the surface insulating regime occurs at sufficiently large (but still experimentally accessible)
electric fields. Our calculations yield the phase diagram of the surface superconducting, metallic, and insulating
states for a wide range of temperatures and applied fields. Our results are in qualitative agreement with the phase
diagram obtained with the transport measurements for (Li, Fe)OHFeSe thin flakes [Ma et al., Sci. Bull. 64, 653
(2019); Yin et al., ACS Nano 14, 7513 (2020)].
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I. INTRODUCTION

Due to the capability of modulating the carrier concentra-
tion, the electric field has been utilized as one of the most
important experimental tools in the field of superconductivity
for several decades [1–7]. In particular, electric-field effects
on the superconductor-metal transition have been revealed
theoretically and experimentally. Electrostatic charging cre-
ated by an external electric field (E ≈ 2−7 V/m) is able to
cause a shift of the superconducting transition temperature
(�Tc ≈ 10−5 K) in both tin and indium thin films [1,2].
Electric fields change the energy of itinerant electrons in
atomically thin flakes of NbSe2, which results in shifting the
chemical potential and changing the density of states in the
Debye window and, in turn, altering Tc [8]. Although electrons
are heavily affected by an electric field near surfaces, it has
been shown by electrical and thermal conductivity measure-
ments that tin films possess no surface superconductivity in
the presence of an electric field [3]. However, for systems
with a sufficiently low Fermi level, the surface bound states of
electrons induced by electric fields may result in the appear-
ance of multigap surface superconductivity [9]. In addition,
Tc of oxide superconductors (e.g., 8-nm-thick GdBa2Cu3O7−x

films, Nb-doped SrTiO3 films) can be tuned by sufficiently
large electric fields due to dielectric breakdown [10–12].
Furthermore, the electric field influences other superconduct-
ing properties related to the superconductor-metal transition,
e.g., suppression of the critical supercurrent [4,5,13–16].

Electric fields can also induce a superconducting state in
insulators. For example, with gate voltage Vg increasing from
0 to 42.5 V, the resistance of a 10.22-Å-thick amorphous Sb
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film at T = 65 mK [17] drops continuously from 22 to 0 k�,
which implies that the sample may undergo the insulator-
metal and metal-superconductor transitions in sequence. Here,
the electric field associated with the onset of superconductiv-
ity is sufficiently high (up to 4.2 × 1010 V/m), corresponding
to the dielectric breakdown. It was found that increasing
electron concentrations screens the electron-electron interac-
tions, which produces an effective attractive potential and
promotes the superconductive correlations. More particularly,
for a pristine SrTiO3 channel with a size of 15 × 200μm2

[18], the system undergoes a sharp superconducting transi-
tion with a midpoint critical temperature T mid

c = 0.4 K at
Vg = 3 V according to transport measurements. In this case,
the electric field is 2–3 orders of magnitude weaker than the
dielectric breakdown field [19], and the sample is metallic at
T < 0.1 K and Vg = 2.50 V because its resistance is about
20 �. This means that this transition actually occurs from
the metallic state to the superconducting state as the electric
field increases. Similar transitions have also been observed in
2-nm-thick GdBa2Cu3O7−x films [11], atomically flat ZrNCl
films [20], La2−xSrxCuO4 films [21], etc.

Recently, transport measurements revealed [22,23] the di-
rect superconductor-insulator transition that occurs in thin
(Li, Fe)OHFeSe flakes with T ≈ 0 and Vg ≈ 5.13 V. Its mech-
anism is not clear yet, as many important details, such as
the differential conductance dI/dV and the T -dependent re-
sistance, are missing. However, this is certainly an example
where the electric-field effects play a crucial role.

In the present work, motivated by these experiments
with thin (Li, Fe)OHFeSe flakes [22,23], we investigate the
transformation of the surface properties in a bulk super-
conductor under an applied electric field. In particular, we
consider the effect of a screened electric field on the su-
perconducting state near the edges of the system within the
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one-dimensional attractive Hubbard model at the half-filling
level by numerically solving the self-consistent Bogoliubov–
de Gennes (BdG) equations. Our study demonstrates that
the direct surface superconductor-insulator transition does
arise in the superconductor for sufficiently strong electric
fields and low temperatures. Moreover, our findings are
in qualitative agreement with the phase diagram obtained
by the transport measurements for (Li, Fe)OHFeSe thin
flakes [22,23].

The present paper is organized as follows. In Sec. II we
discuss the BdG equations for the one-dimensional attrac-
tive Hubbard model in the presence of an applied (screened)
electric field. In our study the BdG equations are solved nu-
merically, in a self-consistent manner, and the main points
of this procedure are also outlined in Sec. II. In Sec. III,
we consider numerical results for the pair potential and
electron distribution together with the corresponding quasi-
particle energies and wave functions. These results yield
the phase diagram of the surface superconducting, metallic,
and insulating states versus the temperature and the electric-
field strength. Finally, our main conclusions are given in
Sec. IV.

II. THEORETICAL FORMALISM

A. Bogoliubov–de Gennes equations

As we are interested in the qualitative picture of the
surface-state transformations, our analysis can be simplified
by considering a one-dimensional chain of atoms in a parallel
electric field. The corresponding attractive Hubbard model
with s-wave pairing within the tight-binding approximation
is based on the grand-canonical Hamiltonian [24,25]:

H − μNe = −
∑
iδσ

tδc†
i+δ,σ ciσ +

∑
iσ

[V (i) − μ]niσ

− g
∑

i

ni↑ni↓, (1)

where μ is the chemical potential and Ne is the total electron
number operator, i.e., Ne = ∑

iσ niσ = ∑
iδ c†

iσ ciσ , with ciσ

(c†
iσ ) being the annihilation (creation) operator of an electron

with spin σ (=↑,↓) at sites i = 0, . . . , N + 1. tδ is the hop-
ping rate of electrons between sites i and i + δ. In the present
study only the nearest neighbors are taken into account, i.e.,
δ = ±1, and thus, we have tδ = t . Finally, g denotes the on-
site attractive interaction between electrons resulting from the
electron-phonon coupling, and V (i) is the electrostatic energy
appearing due to the presence of a screened electric field.

Within the mean-field approximation one gets the effective
Hamiltonian [26]

Heff = − t
∑
iδσ

c†
i+δ,σ ciσ +

∑
iσ

[V (i) − μ]niσ

−
∑

i

[�(i)c†
i↑c†

i↓ + �∗(i)ci↓ci↑], (2)

with �(i) being the site-dependent superconducting pair
potential. Diagonalizing Heff through the generalized

Bogoliubov-Valatin transformation [26], we obtain the
BdG equations [27–30]

εαuα (i) =
∑

i′
Hii′uα (i′) + �(i)vα (i), (3a)

εαvα (i) = �∗(i)uα (i) −
∑

i′
H∗

ii′vα (i′), (3b)

where Hii′ is the single-particle Hamiltonian and εα , uα (i),
and vα (i) are the energy and wave functions of quasiparti-
cles, respectively. The index α enumerates the quasiparticle
states in energy ascending order (only the states with positive
quasiparticle energies are taken into consideration) [31,32].
We apply open boundary conditions; that is, the quasiparticle
wave functions vanish at i = 0 and N + 1. The Hartree-Fock
potential is ignored in our study since its main effect is
barely shifting the chemical potential [33]. The single-particle
Hamiltonian Hii′ is of the form

Hii′ = −t
∑
δ=±1

δi′,i+δ + [V (i) − μ]δii′ , (4)

where the chemical potential μ is determined by the electron-
filling level n̄e = ∑

i ne(i)/N , where the electron distribution
ne(i) is as follows:

ne(i) = 2
∑

α

[ fα|uα (i)|2 + (1 − fα )|vα (i)|2], (5)

with fα = f (εα ) being the Fermi-Dirac distribution. Below
we focus on the half-filling case, i.e., n̄e = 1. The spatial pair
potential �(i) is related to the quasiparticle energies and wave
functions by [29,30,34]

�(i) = g
∑

α

uα (i)v∗
α (i)[1 − 2 fα]. (6)

Here, the sum is over the quasiparticle states within the
Debye window, i.e., 0 � εα � h̄ωD, where ωD is the Debye
frequency.

The BdG equations (3) are solved self-consistently to-
gether with Eqs. (5) and (6). First, we solve the BdG
equations using some initial guess for the chemical potential
μ and pair potential �(i). Second, based on this solution,
we find the electron-filling level and the new pair potential
according to Eqs. (5) and (6), respectively. Third, if the new
pair potential differs significantly from the initial guess and/or
the electron-filling level is lower or higher than the half-filling
one, we go back to the first step, replacing the initial guess
for the pair potential by its new variant and slightly changing
the chemical potential. The procedure is repeated until the
convergence of �(i) under the condition that n̄e approaches
the half-filling level.

B. Screened electric field E(x) and electrostatic energy V (x)

The parallel electric field is introduced by using the ap-
proach of two charge reservoirs with equal but opposite
charges located at the opposite surfaces of the system [19].
Instead of a uniform electric field appropriate for insulating
materials [25,35], here, we consider a screened electric field.
This variant is relevant for the case when the bulk of the sam-
ple is metallic or superconductive. Then, following Ref. [16],
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the electric field is written as

E(x) = E0[e−x/λE + e−(L−x)/λE ]x̂

= 2 E0 e−L/2λE cosh[(2x − L)/2λE ]x̂, (7)

where λE is the screening length; E0 is the value of the electric
field at the boundaries; L is the chain length, i.e., L=(N+1)a,
with a being the lattice constant; x = (i − 1)a is the site coor-
dinate; and x̂ is the unit vector along the chain.

The screening of the electric field in the presence of
the superconductor-metal-insulator surface transformation is
a rather complex problem [16,36–40]. In the literature, two
simplified approximate relations for λE are often employed:
one is the Thomas-Fermi approximation [1,36], which can be
useful for low temperatures, and the other is the Debye ap-
proximation [36–38], which can be used for sufficiently high
temperatures. There are also phenomenological approaches
when λE is considered a calculation parameter. For example,
λE was set to 1 nm in Refs. [16,37,38], and it was chosen to
be equal to the lattice constant in Ref. [38].

Below we adopt the phenomenological variant, and the
screening length is chosen to be the Fermi wavelength times
the numerical factor γ , i.e.,

λE = γ λF , (8)

where γ is a parameter of our calculations and λF is usually of
the order of the lattice constant. Due to its phenomenological
character, our approach does not give any details about γ . We
adopt γ = 2, keeping in mind that our qualitative results are
not sensitive to the particular choice of this parameter.

To estimate λF , we employ the single-particle dispersion
relation [24] of the one-dimensional (1D) Hubbard model in
the absence of the electric field ξk = −2tcos(ka) − μ. Keep-
ing the first two terms in the expansion of ξk in ka, we obtain

ξk ≈ ξs + h̄2k2

2me
− μ, (9)

with ξs = −2t and the effective electron band mass me =
h̄2/2ta2. Then, the Fermi wave number is obtained from
ξkF = 0 as kF =

√
(μ − ξs)/ta2, and the Fermi wavelength

λF = 2π/kF is given by

λF = 2πa

√
t

μ − ξs
=

√
2πa, (10)

where for the half-filling case we use μ = 0.
According to the relation E(x) = − d[V (x)/q]

dx x̂, with q = −e
being the electron charge, we obtain the following expression
for V (x):

V (x) = −2 qλE E0 e−L/2λE sinh[(2x − L)/2λE ]. (11)

In our calculations, the energy, length, and electric field are
in units of the hopping rate t , the lattice constant a, and t/ea,
respectively.
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FIG. 1. (a) The screened electric field E (i), (b) the electronic
potential energy V (i), (c) the pair potential (order parameter) �(i),
and (d) the spatial electron distribution ne(i) calculated for E0 = 0,
0.18, 0.25, 0.35, 0.5, and 1. (e) and (f) Zoomed-in plots of �(i) and
ne(i) near the left chain edge. The calculations are done at T = 0
for the material parameters n̄e = 1, g = 2, h̄ωD = 10, N = 301, and
γ = 2. The energy-related quantities �(i), V (i), g, and h̄ωD are given
in units of the hopping rate t , while E0 is in units of t/ea, with a being
the lattice constant.

III. RESULTS AND DISCUSSION

A. Surface insulating states of superconductors induced
by an electric field at T = 0

Figure 1 shows a typical example of the surface
superconductor-insulator transition induced by a screened
electric field E (i) in a one-dimensional superconducting chain
with N = 301 and E0 = 0, 0.18, 0.25, 0.35, 0.5, and 1 in the
half-filling case at T = 0. Here, the screening length λE is
equal to 9.0 (as λF = 4.5). The coupling constant g is set to 2,
and h̄ωD = 10.

The electrostatic field E (i) and the corresponding potential
energy V (i) are shown in Figs. 1(a) and 1(b). As can be seen,
E (i) drops from E0 at the edges to zero in the center of the
chain, while V (i) sharply increases with i in the vicinity of the
boundaries, according to Eqs. (7) and (11). The corresponding
spatial distribution of the pair potential is given by Fig. 1(c).
We can see that �(i) is nearly uniform in the center of the
chain, but when approaching an edge (both left and right), it
exhibits a peak with a subsequent abrupt drop to zero. From
the zoomed-in image in Fig. 1(e), we learn that the peaks
in �(i) shift towards the center of the chain with increasing
E0. When E0 crosses the critical value E∗

0 = 0.35, �(i = 1)
vanishes. Then, this zero-pair-potential region expands with a
further increase in E0, so that one finds that �(i � 11) = 0 for
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FIG. 2. (a) The quasiparticle energy εα (in units of t) as a function of the quantum (ordering) number α and the boundary electric field E0;
here, the upper panel represents the contour plot of εα . (b1) and (b2) The quasiparticle wave functions uα (i) and vα (i) versus the site number i
at α = 1; the same quantities, but for α = 2, 300, and 301, are shown in (c1) and (c2), (d1) and (d2), and (e1) and (e2), respectively. In (b)–(e)
the blue points correspond to the case of zero field, whereas the red ones are for E0 = 1. The material parameters are the same as in Fig. 1.

E0 = 1. The same happens near the opposite edge, where we
have �(i � 291) = 0.

Now, we turn to the electron distribution. In the absence of
the electric field, ne(i) is uniform and given by the uniform
black line in Fig. 1(d) and the black line with the upward
triangles in the zoomed-in image in Fig. 1(f). The character
of the distribution changes in the presence of the applied field.
Indeed, for E0 > 0 one finds that ne(i) exhibits a significant in-
crease near the left edge and a decrease near the right edge. In
the center of the chain ne(i) approaches the half-filling value.
When E0 crosses E∗

0 = 0.35, site i = 1 becomes fully occu-
pied (see the red curve with diamonds), i.e., ne(i = 1) = 2,
which corresponds to the onset of the surface insulating state.
At the same time ne(i = 301) = 0, which also corresponds
to the onset of the insulating state at the right edge. Thus,
E∗

0 can be referred to as the critical electric field of the
surface superconductor-insulator transition. For E0 > E∗

0 , the
surface insulating state expands. For example, we find that
ne(i � 11) = 2 and ne(i � 291) = 0 for E0 = 1. Moreover,
the surface domains with �(i) = 0 coincide exactly with the
surface insulator domains. Thus, we observe the direct surface
superconductor-insulator transition without the presence of an
intermediate metallic state.

To go into more detail about the behavior of the pair
potential and electron distribution in the vicinity of the sur-
face superconductor-insulator transition, we first investigate
the quasiparticle energies εα and quasiparticle wave functions
uα (i) and vα (i), as they are directly related to ne(i) and �(i)
through Eqs. (5) and (6). Figure 2(a) shows εα as a function
of α and E0 together with the contour plot of this function.
(We recall that α enumerates the quasiparticles states in an
energy ascending manner.) The lowest quasiparticle energy
in Fig. 2(a) corresponds to α = 1 and E0 = 0 (εα = 0.34),
while the highest one is for α = 301 and E0 = 1 (εα = 9.80).
We can also see that for α > 250 the quasiparticle energies
notably increase with E0 and, moreover, this increase is much
more pronounced for larger α. On the contrary, for α < 250

the electric-field effect on εα is almost negligible. According
to Fig. 2(a), all the quasiparticle states contribute to the pair
potential when E0 � 1 [we have εα < h̄ωD = 10; see Eq. (6)].

The low-energy and high-energy quasiparticle wave func-
tions uα (i) and vα (i) with α = 1, 2, 300, and 301, respectively,
are illustrated in Figs. 2(b)–2(e). The blue dots are the data for
E0 = 0, while the red stars are the results for E0 = 1. Notice
that uα (i) and vα (i) are, of course, single-value functions, and
the appearance of different sets of the red and blue data in
Fig. 2 is a reflection of fast oscillations of the quasiparticle
wave functions from one site to another.

As mentioned above, the energies εα=1,2 are nearly con-
stant (≈0.34) when E0 increases from 0 to 1. This agrees with
the fact that the corresponding quasiparticle wave functions
are only slightly sensitive to the presence of the electric field.
The spatial profiles of u1,2(i) and v1,2(i) for E0 = 0 are in
agreement with the results given in Fig. 4 of Ref. [28] and are
similar to those calculated at E0 = 1: the maxima of their ab-
solute values are located at i = 151, while the wave functions
are almost zero near the boundaries.

On the contrary, the high-energy quasiparticle wave func-
tions with α = 300 and 301 are significantly affected by the
electric field. For example, this is immediately seen from
the data shown in Fig. 2(d1). One can also see the presence
of significant deviations between the blue (E0 = 0) and red
(E0 = 1) data near the chain edges in Figs. 2(d2) and 2(e1).
These deviations are the signature of the accumulation of
charges at the edges of the chain in the presence of a suf-
ficiently strong electric field. For high-energy quasiparticle
states with even α we find a significant increase in |vα (i = 1)|,
resulting from the accumulation of electrons at the left edge.
For high-energy states with odd α we observe large values of
|uα (i = 301)| due to the concentration of positive charges at
the right edge of the chain.

Now, we investigate how the quasiparticle properties are
connected to changes in and suppression of the pair poten-
tial near the chain edges. To facilitate our consideration, we
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FIG. 3. (a) and (b) The single-species quasiparticle contribution
to the pair potential �α (i) calculated for i = 1 and 301 as a function
of α and E0 (the upper panel is the corresponding contour plot).
(c) and (d) The same quantity, but as a function of α at E0 = 0 (black
squares) and 0.18 (red triangles); here, the sets (branches) corre-
sponding to odd and even values of α are displayed. The microscopic
parameters are the same as in Fig. 1.

introduce

�α (i) = guα (i)v∗
α (i)[1 − 2 fα], (12)

which is the contribution to �(i) of the quasiparticles related
to a particular value of α. Figures 3(a) and 3(b) demonstrate
�α (i) as a function of α and E0 at the boundaries i = 1 and
301, respectively. The upper panels in Figs. 3(a) and 3(b) are
the corresponding contour plots. Notice that since h̄ωD = 10,
all quasiparticles with positive energies are inside the Debye
window and hence contribute to the pair potential, as seen
from Fig. 2. The data given in Figs. 3(a) and 3(b) look nearly
the same, but there are minor differences discussed below.
For E0 � 0.35, both �α (i = 1) and �α (i = 301) exhibit two
pronounced maxima: one occurs in the domain of low quasi-
particle energies, while the other (which is much sharper)
takes place at about α ≈ 301. The data shown in Figs. 3(a) and
3(b) make it possible to conclude that for E0 < 0.35 both low-
and high-energy quasiparticles make significant contributions
to �(i = 1, 301). However, for E0 > 0.35 these contributions
are significantly depleted, as the blue color in both panels
represents nearly zero values of �α .

Further details about �α (i = 1, 301) are given in Figs. 3(c)
and 3(d), where �α (i = 1, 301) are shown as a function of
α at E0 = 0 (black squares) and E0 = 0.18 (red triangles).
First, we discuss the results for E0 = 0. In the absence of
the electric field, �α (i = 1) and �α (i = 301) exhibit two
branches: positive with odd α and negative with even α. The
data for �α (i = 1) and �α (i = 301) are the same, which
reflects the inversion symmetry of the chain in the absence
of the electric field. The fast oscillation between the positive
(odd) and negative (even) values of �α (i = 1, 301) is related
to the presence of a π -phase shift between uα (i) and vα (i) at
the boundaries i = 1 and i = 301 [see Eq. (12) at T = 0]. In
particular, uα (i = 1, 301) and vα (i = 1, 301) have the same
sign for a quasiparticle with odd α, while they have opposite
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FIG. 4. The quasiparticle wave functions uα (i) and vα (i) versus
the site number i for (a) α = 31, (b) 44, (c) 300, and (d) 301 at
E0 = 0.18. The material parameters are the same as in Fig. 1.

signs for even α. Similar results can be seen from Figs. 4(a)
and 4(b), where uα (i) and vα (i) are shown for α = 31 and 44
[here, the data are for E0 = 0.18]. The maximal contribution
of the positive branch for E0 = 0 occurs at α = 47, while
the most pronounced but less significant (compared to the
odd states) input of the negative branch is at α = 82, which
matches the slope variation of the accumulative pair potential
in Fig. 3 of Ref. [30].

Now, let us consider �α (i = 1, 301) calculated for E0 =
0.18 and also given in Figs. 3(c) and 3(d). Like in the data for
zero field, we again have positive and negative branches in the
dependence of �α (i = 1, 301) on α. Compared to the case of
E0 = 0, the low-energy maximum and minimum of these two
branches become less pronounced, reflecting the appearance
of the additional local maximum of the positive branch due
to the high-energy quasiparticles. The positions of these low-
energy minimum and maximum are shifted towards smaller
values of α, i.e., to α = 31 and α = 44, respectively. For
α < 150 the positive and negative branches still correspond
to odd and even α, which is the same as in the case of E0 = 0.
However, this correspondence is broken for high quasiparticle
energies. In particular, the situation changes dramatically for
α > 285. Here, the positive branch for i = 1 corresponds to
even α values [see Fig. 3(c)], while the positive branch for
i = 301 is related to odd α [see Fig. 3(d)]. This is dictated by
the breakdown of the inversion symmetry due to the presence
of the electric field. For example, as shown in Fig. 4(c),
uα (i = 1) and vα (i = 1) for α = 300 are finite and positive
at i = 1, while both wave functions are nearly zero at the
other boundary, i = 301. This means that the contribution of
the states with α = 300 to the pair potential at i = 301 is
nearly zero. However, the quasiparticles with α = 301 are
accumulated near i = 301, so that their contribution to the
order parameter is depleted at i = 1. Thus, when the electric
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FIG. 5. (a) and (d) The single-species quasiparticle contribution
to the electron density nα

e calculated for i = 1 and 301, respectively,
as a function of α and E0; (b) and (e) nα

e (i = 1, 301) as a function of
α for E0 = 0; and (c) and (f) nα

e (i = 1, 301) versus α for E0 = 0.18.
The green stars represent odd values of α, whereas the red triangles
are the data for even α. The material parameters are the same as in
Fig. 1.

field is switched on, we find complex rearrangement of the
quasiparticle spatial distributions, and this is related to signif-
icant depletion of the pair potential near the chain edges.

To explore the accumulation/depletion of the charge carri-
ers at the chain edges, we consider

nα
e (i) = 2{ f (εα )|uα (i)|2 + [1 − f (εα )]|vα (i)|2}, (13)

which is the contribution of the quasiparticles with quantum
number α to ne(i). In Figs. 5(a) and 5(d), nα

e (i) is shown
as a function of α and E0 at i = 1, 301. For greater detail,
Figs. 5(b)–5(f) demonstrate nα

e (i) as a function of α, cal-
culated for i = 1 and i = 301 at E0 = 0, 0.18. The inset in
Fig. 5(c) is a zoomed-in plot. The contributions of quasipar-
ticles with odd and even α are given by green stars and red
triangles, respectively.

From Fig. 5(a), we can see that nα
e (i = 1) increase sig-

nificantly with E0 for high-energy quasiparticles with α >

280. However, only low-energy quasiparticles with α ≈ 50
contribute to ne(i = 301). Furthermore, this contribution is
notable only at the fields with E0 < 0.35. When E0 exceeds
0.35, all quasiparticles produce zero contribution to ne(i =
301).

As seen from Fig. 5(b) and 5(e), the profiles of nα
e (i = 1,

301) are the same in the absence for zero field (the inver-
sion symmetry). At E0 = 0.18, nα

e (i = 1) for i = 1 differs
significantly from that for i = 301. In particular, when E0

increases from 0 to 0.18, the odd-α branch of nα
e (i = 301)

decreases significantly, so that its maximum drops from 0.011
to 0.007. At the same time the even-α branch of nα

e (i = 301)

FIG. 6. (a) The spatial pair potential �(i) and (b) election distri-
bution ne(i) at T = 0.21 with E0 = 0, 0.19, 0.22, 0.25, and 0.5. The
other parameters are the same as in Fig. 1. The boundary electric field
E ′

0 corresponds to the case with �(i = 1, 301) = 0.

approaches nearly zero. This means that ne(i = 301) exhibits
a notable decrease due to the presence of an applied electric
field, and we have the concentration of the positive charge
near the right edge of the chain. For nα

e (i = 1) we find a
qualitatively different picture. Although the contributions of
the quasiparticles with α < 280 decrease with increasing E0,
the sector of high-energy states exhibits a huge increase of
nα

e (i = 1). As a result, ne(i = 1) increases significantly when
E0 rises from 0 to 0.18, which is clearly the reflection of the
electron accumulation near the left edge of the chain due to
the applied electric field.

B. Phase diagram of surface insulating states

Here, we study the phase diagram of the surface super-
conducting, metal (normal), and insulating states depending
on the temperature T and external field E0. To have an idea
about the temperature effect on the superconductor-insulator
transition, �(i) and ne(i) are shown in Fig. 6 for E0 = 0,
0.19, 0.22, 0.25, and 0.5 at T = 0.21. The other parame-
ters of the calculation are the same as in Fig. 1. As can be
seen, �(i = 1) [and also �(i = 301)] becomes zero when E0

crosses the value E ′
0 = 0.25, which differs significantly from

E∗
0 = 0.35 at T = 0 (see Fig. 1). At the same time we find

that ne(i = 1) = 1.94 [while ne(i = 301) = 0.06] at E0 = E ′
0.

This means that there is no full occupation for i = 1 at E0 =
E ′

0, and also, site i = 301 is not completely empty in this case.
Thus, E ′

0 marks the onset of the surface normal state rather
than the insulating one. The surface insulating state appears
at T = 0.21 only when E0 crosses the critical value E∗

0 =
0.44. For larger fields ne(i = 1) = 2, and ne(i = 301) = 0, as
seen in Fig. 4. Thus, at finite temperatures the electric-field-
induced superconductor-insulator transition is replaced by the
superconductor-metal-insulator transition. When E0 increases
at T = 0.21, we first find the superconducting-normal transi-
tion at E0 = E ′

0 = 0.25 and then the metal-insulator transition
at E0 = E∗

0 = 0.44.
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FIG. 7. The phase diagram of the surface superconductor-metal-
insulator transition in the E0-T plane. The superconducting-normal
boundary is given by the curve above which �s=�(i=1, 301)=0.
The metal-insulator boundary marks the onset of the insulating state
ne(i = 1) = 2 and ne(i = 301) = 0, which is referred to as ne,s =
0, 2.

Figure 7 shows the phase diagram in the E0-T plane that
describes the surface superconductor-metal(normal)-insulator
states calculated for the 1D chain. All the material parameters
are the same as in Fig. 1. The red solid circles represent
the boundary between the surface superconducting and nor-
mal states above which �s = �(i = 1, 301) = 0. The blues
stars yield the boundary between the metallic and insulating
states. Above this boundary we have ne(i = 1) = 2 and ne(i =
301) = 0. Below the lower boundary the surface of the sample
is superconducting. Above the upper boundary we have the
surface insulating state. Between the boundaries the surface
of the system is in the normal metallic state.

As can be seen, when the temperature increases, the critical
value E ′

0 remains nearly the same up to T = 0.2. Then, it
drops rapidly and becomes zero at T ′

c = 0.244. On the other
hand, E∗

0 , which marks the onset of the surface insulating
state, slowly increases with the temperature from 0.35 to 0.6
when the temperature goes from 0 to 0.4. This increase is
due to the thermal smearing in the Fermi-Dirac distribution.
We find that the lower and upper boundaries approach each
other at E0 ≈ 0.35 for T < 0.05 (≈20.5%T ′

c ). Thus, we can
expect the direct superconductor-insulator transition to occur
at T < 0.05. Here, we note that the zero-T critical value of
E0 is not universal. Our numerical study demonstrates that its
value (in units of t/ea) depends on the microscopic parame-
ters such as the coupling constant, the electron filling level,
the Debye energy, etc. However, the qualitative features of the
surface phase diagram remain unchanged.

We remark that the qualitative picture of our results for
the surface transformation under the applied electric field
is in qualitative agreement with the phase diagram of the
superconductor-insulator transition in (Li, Fe)OHFeSe thin
flakes obtained with the transport measurements [22,23]. This
is especially true of the phase boundary between the supercon-
ducting and insulating states at low temperatures. In addition,
our numerical results for the electric-field dependence of Tc

(i.e., the red curve in Fig. 7) are in qualitative agreement
with the experimental data for 2-nm-thick GdBa2Cu3O7−x

films shown in Fig. 3(a) of Ref. [11], the results for SrTiO3

given in Fig. 4(a) of Ref. [18], and the data for Ti-based
superconductors shown in Fig. 5(c) of Ref. [19], where Tc was
found to decrease with increasing gate voltage (the strength of
the electric field).

Finally, based on our results, we can estimate the strength
of E0. The data shown in Fig. 1(c) demonstrate that �b ≈
t/3 < μF − ξs = 2t , with �b being the bulk pair potential
at i = 151, which is beyond the strong-coupling limit (i.e.,
� � μF − ξs) [41]. As an example of the weak-coupling
superconductor, we can use SrTiO3. For this material we
have � ≈ 0.1 meV [42], and the average lattice constant
a ≈ 4 Å [43]. Then, we find t/(ea) = 7.5 × 105 V/m, where
the above relation between �b and t is utilized. Therefore,
the transition electric field from the surface superconducting
state to the surface insulating state at T = 0 is estimated as
E∗

0 = 0.35 t/(ea) = 2.6 × 105 V/m, which is two orders of
magnitude lower than the dielectric breakdown field (3.1 ×
107 V/m) of SrTiO3 films [44]. For superconductors with
� = 10 meV, keeping a ≈ 4 Å and the same relation between
�b and t , we have E∗

0 = 2.6 × 107 V/m. This electric field
is also available in experiments [19]. Even fields of the order
of 1010 V/m can be achieved based on the voltage-induced
polarization of an electrolyte [45].

IV. CONCLUSIONS

In conclusion, the electric-field-induced surface insulat-
ing state was revealed in a superconductor by numerically
solving the Bogoliubov–de Gennes equations for the one-
dimensional attractive Hubbard model in a self-consistent
manner. We found that the surface insulating state appears
once the chain sites near the edges are either fully occupied
by electrons or completely empty. This rearrangement occurs
due to the applied electric field, affecting the electron dis-
tribution near the surface and suppressing the surface pair
potential. At zero temperature we found the superconductor-
insulator phase transition arises with increasing electric field.
At finite temperatures the system first undergoes the surface
superconductor-metal transition and then, at larger fields, the
metal-insulator phase transition. The phase diagram of the
surface superconducting, metallic, and insulating states is
obtained for a wide range of the temperatures and applied
electric fields. Remarkably, this diagram qualitatively matches
the results of the transport measurements in (Li, Fe)OHFeSe
thin flakes [22,23].
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