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Abstract

Relationships between a chaotic behavior and closely related proper-

ties of topological transitivity, sensitivity to initial conditions, density of

closed orbits of homeomorphism groups and their countable products are

investigated. We construct numerous new examples of chaotic groups of

homeomorphisms of countable products of various metrizable topological

spaces, including infinite-dimensional topological manifolds, whose fac-

tors can be as noncompact surfaces, so triangulable closed manifolds of

an arbitrary dimension.

1 Introduction

In theory of chaos, the chaotic behavior of infinite products of transforma-
tion groups has not been investigated. The reason is that, by definition, the
chaotic behavior of a group of homeomorphisms assumes the density of the set
of finite orbits (see, for example, [8], [9], [20]). This requirement may not be
fulfilled when moving to the infinite product of spaces. Following [6], we give
a more general definition of the chaotic behavior of groups of homeomorphisms
by weakening the above condition by requiring the density of the set of closed
orbits (Definition 1.3). Here by a closed orbit we mean an orbit which is a
closed subset of the respective topological space. This allows us to investigate
the chaotic behavior of arbitrary infinite products of homeomorphism groups.
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1.1 Devaney’s chaos

Let T : X → X be a continuous map of metric space. The family {T n}n∈N

denoted by the pair (X,T ) is called a dynamical system. Devaney [12] proposed
the following notion of chaos, which is usually called Devaney’s chaos.

Definition 1.1. A dynamical system (X,T ) is called chaotic in the sense of
Devaney if it satisfies the following three properties:

(1) (X,T ) is topologically transitive;

(2) the set of periodic points of (X,T ) is dense in X ;

(3) (X,T ) has sensitive dependence on initial conditions.

Sensitive dependence on initial conditions is widely understood as being the
central idea of chaos. In [4] it was shown that in Devaney’s definition of chaos,
the sensitive dependence follows from transitivity and density of periodic orbits.
It was found in [3] that neither transitivity nor density of periodic trajectories
are deducible from the remaining two conditions.

In [8] G. Cairns, G. Davis, D. Elton, A. Kolganova and P. Perversi intro-
duced the following notion of a chaotic group action as a generalization of chaotic
dynamical systems (Definition 1.2). They showed that, if a group G acts chaot-
ically on a compact Hausdorff space, then G is residually finite. Moreover, the
reverse is also true, i.e. for every residually finite group G there exists a Haus-
dorff space on which G acts chaotically. As in [8], we don’t assume any topology
on the group G, but we assume that each element of G acts on a topological
space X as a homeomorphism of X , and the set X is infinite. All group actions
are assumed to be faithful, i.e. the only element of a group G which acts as
identity homeomorphism is the neutral element in G.

Definition 1.2. A group of homeomorphisms G of a Hausdorff topological
space X is called chaotic if the following two conditions are met:

(1) topological transitivity: for every pair of nonempty open subsets U and V
in X , there exists an element g ∈ G such that g(U) ∩ V 6= ∅;

(2) finite orbits dense: the union of finite orbits is dense in X .

Following [6], we give and use in this work a different definition of the chaotic
behavior of an arbitrary homeomorphism group G.

Definition 1.3. A group of homeomorphisms G of a topological space X is
called chaotic (or G has a chaotic behavior) on X if the following two conditions
are met:

(1) there exists a dense non-closed orbit of the group G in X (the existence
of a dense orbit);

(2) the union of closed orbits is dense in X (the density of closed orbits).
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Note that Definition 1.3 is more general than Definition 1.2 in the class of
T1-spaces. Emphasize that in the case when G is a countable homeomorphism
group of a metrizable compact space X , Definitions 1.2 and 1.3 are equivalent
(Proposition 3.4 and Lemma 7.3).

If (X, d) is a metric space, then we define the notion of a sensitive dependence
of a homeomorphism group G on initial conditions (in Section 6).

1.2 The organization of this work. Main results

For the convenience of the reader, we provide the basic notions in Sections 2
and 5.

Let A be any set and let Xα, α ∈ A, be any topological spaces. We prove
that the direct product of groups G =

∏
α∈A Gα is topologically transitive on

the Tychonoff product of topological spaces X =
∏

α∈A Xα if and only if every
homeomorphism group Gα, α ∈ A, is topologically transitive on the respective
factor Xα (Theorem 3.2). The analogous statement is proved for the existence
of dense orbits (Theorem 3.3). We get also an analog of the Birkhoff theorem
(Proposition 3.4).

We investigate density of closed orbits in Section 4 and show that the direct
product of groups G =

∏
α∈A Gα has a dense subset of closed orbits in X =∏

α∈A Xα if and only if for every α ∈ A, the group Gα has a dense subset of
closed orbits in Xα (Theorem 4.1).

In Section 5 we recall the definition of the product of a countable family of
metric spaces.

Section 6 is devoted to the sensitive dependence of group actions on initial
conditions. Recall that a topological space X is a Baire space if every count-
able intersection of open dense subsets of X is dense in X [19, Def. 8.2]. A
topological space X is referred to a completely metrizable space, if it admits an
agreed complete metric [19, Def. 3.1]. According to the Baire category theorem,
every completely metrizable space is a Baire space. Recall that a separable
space homeomorphic to a complete metric space is referred to as a Polish space.
Consequently Polish spaces and, in particular, compact metric spaces are Baire
spaces. A Hausdorff topological space is called locally compact if every its point
has an open neighborhood with the compact closure. Emphasize that com-
pact topological spaces as well as topological manifolds are locally compact.
We prove the following theorem on sufficient conditions for the sensitivity of
homeomorphism groups.

Theorem 1.4. Let (X, d) be a locally compact metric Baire space. If a home-
omorphism group G of X satisfies the following two conditions:

(1) there exists a dense non-closed orbit of the group G in X (the existence of
a dense orbit);

(2) the union of minimal sets of G is a proper dense subset of X (the density
of minimal sets),
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then G is sensitive to initial conditions. Moreover, G is sensitive in every metric
space (X, ρ) such that ρ and d define the same metric topology on X.

For continuous actions of topological C-semigroups S on a metric space
(X, d) under the additional assumption of compactness of minimal sets whose
union is everywhere dense in X , sensitivity of S was proved by Kontorovich and
Megrelishvili [17].

Recall that an n-dimensional topological manifold is a Hausdorff topological
space with a countable base, locally homeomorphic to Rn. As topological mani-
folds are locally compact Polish spaces, the results of Theorem 1.4 are applicable
to them.

The following important statement is a direct corollary from Theorem 1.4,
which is represented as a theorem because of the importance. Note that it is
a generalization of the main result of [4] in the case of invertible dynamical
systems.

Theorem 1.5. Let (X, d) be a locally compact metric Baire space. If a home-
omorphism group G acts chaotically on X in sense of Definition 1.3, then the
group G is sensitive to initial conditions.

Let Gi, i ∈ J ⊂ N, be a homeomorphism group of a metric space Xi,
and on the Tychonoff product X =

∏
i∈J Xi the canonical action of the direct

product of groups G =
∏

i∈J Gi is given. We prove that, in contrast to the
transitivity and density of closed orbits, in order for the canonical action of the
group G on the product X to be sensitive to initial conditions, it is sufficient
to have one group Gn, n ∈ J, which is sensitive to initial conditions on Xn

(Theorem 6.15). In the case when the index set J is finite, this condition is also
necessary (Theorem 6.16).

In Section 7 we prove the following theorem.

Theorem 1.6. For every set A of indexes, let Gα, α ∈ A, be a homeomorphism
group of a topological space Xα, and on the Tychonoff product X =

∏
α∈A Xα

the canonical action of the product of groups G =
∏

α∈A Gα is given. Then
the group G acts chaotically on X if and only if every group Gα, α ∈ A, acts
chaotically on Xα.

For a countable index set A we prove Theorems 7.1 and 7.2 on relationship
between sensitivity of groups Gα, α ∈ A, and G.

The application to compact metrizable spaces are considered (Section 7.2).
In particular, we prove the following theorem.

Theorem 1.7. Let Gi, i ∈ N, be a countable group of homeomorphisms of a
metrizable compact space Xi. Assume that every Gi acts chaotically on Xi.
Then:

(1) the canonical action of the product of groups G =
∏

i∈N
Gi is chaotic on

the Tychonoff product X =
∏

i∈N
Xi;

(2) exists a dense subset F ⊂ X which is the union of continual compact
orbits, and every such orbit is a perfect subset of X;
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(3) exists a dense continuum orbit of the group G in X;

(4) all groups Gi, i ∈ N, and G are residually finite;

(5) all groups Gi, i ∈ N, and G are sensitive to initial conditions (respectively
every metric metrizing Xi);

(6) if each group Gi has a fixed point, then the union of the finite orbits of
group G is dense in X, and G has a fixed point.

Since every topological manifold is a locally compact Polish space, then all
results of our work for locally compact Polish spaces are applicable to topological
manifolds.

The Sections 8–9 contain the construction of families of homeomorphism
groups of various topological spaces.

In Section 8 we check chaoticity of the group generated by the full N -shift of
the space of bi-infinite sequences ΣN ofN symbols. This allows us to get series of
new chaotic groups of homeomorphisms of different finite and infinite products
of spaces ΣNi , Ni ∈ N. Emphasize, that the space ΣN is homeomorphic to the
(2N − 1)-ary Cantor set.

In Section 9 we construct numerous examples of chaotic homeomorphism
groups of topological manifolds including noncompact manifolds. Using the
method from [8], we construct a countable series of examples of chaotic groups
of homeomorphisms, isomorphic to the group Z, on every closed surface as well
as on various noncompact surfaces, examples of which are shown in Figures 1
and 2.

Figure 1: The Loch Ness monster.

Emphasize that all examples of chaotic group of homeomorphisms on non-
compact topological manifolds are new and they are represented for the first
time.
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Figure 2: The surface homeomorphic to the plane without the Cantor set.

We use the obtained chaotic actions as building blocks for constructions of
chaotic actions of homeomorphism groups on Tychonoff products of topological
manifolds. Due to the result of G. Cairns and A. Kolganova [9] and Theo-
rem 1.6, every triangulable closed manifold of arbitrary dimension can be taken
as a factor on which arbitrary countably generated free groups acts chaotically.
In particular, we get a continuum set of examples of chaotic actions of homeo-
morphism groups on infinite dimensional topological manifolds.

Notations. If a group G acts on a set X , we denote by g.x the action of an
element g ∈ G on a point x ∈ X . By G.x we denote the orbit of x with respect
to G.

We use the notations Dr(x) = {y ∈ X | d(x, y) < r} for the open ball of a
radius r with the center at x and Dε(B) = {y ∈ X | d(y,B) < ε} =

⋃
b∈B Dε(b)

for the ε-neighborhood of a subset B in a metric space (X, d).

Assumptions. Inclusions do not exclude equality. All neighborhoods are
assumed to be open. By a countable set we mean an infinite countable set as
well as a finite set.

2 The canonical action of the direct product of

groups

2.1 The Tychonoff product of topological spaces

Let A be an arbitrary set, let {Xα |α ∈ A} be a family of any sets. The direct
(Cartesian) product X =

∏
α∈AXα is the set of all maps x : A →

⋃
α∈A Xα

such that x(α) ∈ Xα for any α ∈ A. If x ∈ X , then the point x(α) ∈ Xα is
denoted by the symbol xα and is called the α-coordinate of the element x. The
symbol {xα} will denote the point of the product X , α-coordinate of which is
the point xα ∈ Xα.
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Let {(Xα, τα) |α ∈ A} be a family of topological spaces. Assume that X =∏
α∈A Xα is provided by the weakest topology τ such that all projections πα :∏
α∈A Xα → Xα, πα({xα}) := xα, are continuous. This topology τ is called by

the Tychonoff topology. Note that

ζ = {π−1
β (U) ⊂ X |U ∈ τβ , β ∈ A}

is a subbase of τ . The base of the Tychonoff topology formed by all possible
finite intersections of subsets of ζ, is called the canonical base.

The topological space (X, τ) is called the Tychonoff product of topological
spaces (Xα, τα) and is denoted by (X, τ) =

∏
α∈A(Xα, τα).

2.2 A direct product of groups and its canonical action

Let Gα, α ∈ A, be a family of groups. On the direct product of sets G =∏
α∈A Gα, the group operation is introduced as follows

Ψ : G×G → G, Ψ({gα}, {hα}) = {gα · hα} ∀({gα}, {hα}) ∈ G×G,

where gα · hα is the product of elements gα and hα in Gα. The group G =∏
α∈A Gα is referred to as a direct product of groups Gα, α ∈ A.
Let X =

∏
α∈AXα be a direct product of sets. Assume that for every α ∈ A

a group Gα acts on Xα. Consider the direct product of groups G =
∏

α∈AGα.
Then the following action of the group G on X is defined

Φ : G×X → G, Φ({gα}, {xα}) = {gα.xα} ∀({gα}, {xα}) ∈ G×X.

We call this action the canonical action of the direct product of groups G =∏
α∈A Gα on the direct product of sets X =

∏
α∈A Xα.

Further in this work we assume that the direct product of groups G =∏
α∈A Gα acts on X =

∏
α∈A Xα canonically.

3 Transitivity of the canonical product of home-

omorphism groups

Definition 3.1. A homeomorphism group G of a topological space X is called
topologically transitive on X if for every nonempty open subsets U and V in X
there exists such an element g ∈ G that

g(U) ∩ V 6= ∅.

Theorem 3.2. Let A be an arbitrary set of indexes. For every α ∈ A, a
homeomorphism group Gα of the topological space Xα is topologically transitive
on Xα if and only if the direct product of groups G =

∏
α∈A Gα topologically

transitive on the Tychonoff product of topological spaces X =
∏

α∈A Xα.
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Proof. Suppose that for every α ∈ A, the group of homeomorphisms Gα of the
topological space Xα is topologically transitive on Xα. Let X =

∏
α∈A Xα be

the Tychonoff product of topological spaces Xα. Show that for every nonempty
open subsets U and V in X there exists an element g = {gα} ∈ G such that
g(U) ∩ V 6= ∅. It is enough to prove this fact for every sets U and V from
the canonical base of the Tychonoff topology on X . Let U =

∏
α∈A Uα, V =∏

α∈A Vα where Uα and Vα are nonempty open subsets in Xα, and for some
finite subsets A1, A2 ⊂ A the equalities are fulfilled

Uα = Xα ∀α ∈ A \A1, Vβ = Xβ ∀β ∈ A \A2.

The topological transitivity of Gα on Xα implies the existence of elements gα ∈
Gα satisfying gα(Uα)∩Vα 6= ∅ for all α ∈ A. Put g = {gα} ∈ G, then g(U)∩V =∏

α∈A(gα(Uα) ∩ Vα) 6= ∅. Thus, the group G is topologically transitive on X .
The opposite. Suppose that the homeomorphism group G =

∏
α∈A Gα is

topologically transitive on the Tychonoff product X =
∏

α∈A Xα. Fix an arbi-
trary element δ ∈ A. Let Uδ and Vδ be any nonempty open subsets in Xδ. Let
U := π−1(Uδ) and V := π−1(Vδ), hence U and V are nonempty open subsets
in X . Since the group G acts topologically transitive on X , then there is an
element g = {gα} ∈ G such that ∅ 6= g(U)∩V =

∏
α∈A(gα(Uα)∩Vα), therefore

gδ(Uδ)∩Vδ 6= ∅. This implies topological transitivity of the group Gδ on Xδ for
every δ ∈ A.

Theorem 3.3. Let A be an arbitrary index set and let X =
∏

α∈A Xα be the
Tychonoff product of topological spaces Xα. Assume that Gα is a homeomor-
phism group of Xα. Then the direct product of groups G =

∏
α∈A Gα has a

dense orbit in X if and only if the group Gα has a dense orbit in Xα for every
α ∈ A.

Proof. As known [15, Prop. 2.3.3], for every family of subsets Bα ⊂ Xα in the
product X =

∏
α∈A Xα the closures satisfy the following relation

∏

α∈A

Bα =
∏

α∈A

Bα. (1)

Since the orbit G.x of x = {xα} ∈ X is equal to the product of orbits Gα.xα, i.e.,
G.x =

∏
α∈AGα.xα, then taking into account (1) we get a chain of equalities

G.x =
∏

α∈AGα.xα =
∏

α∈A Gα.xα. Therefore

G.x =
∏

α∈A

Gα.xα ∀x = {xα} ∈ X =
∏

α∈A

Xα. (2)

Using (2) it is easy to obtain a statement of the theorem being proved.

An analog of the Birkhoff transitivity theorem

If the action of the group G on the space X has a dense orbit, then it is
topologically transitive. Indeed, let U and V are any open nonempty subsets of
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X and let G.x = X for some x ∈ X . Then there are elements g1, g2 ∈ G such
that g1.x ∈ U and g2.x ∈ V . It follows that g.U ∩ V 6= ∅ where g = g2g

−1
1 ∈ G.

According to [10, Prop. 1], if the group G is topologically transitive on a
Baire space X with a countable base, then there exists a point x ∈ X with a
dense orbit. Therefore we get the following analog of the Birkhoff theorem for
homeomorphism groups of Baire spaces with a countable base.

Proposition 3.4. If G is a homeomorphism group of a topological space X,
then the existence of a dense orbit of G implies topological transitivity of G.

When X is a Baire space with a countable base, the converse is also true.

In particular, for Polish spaces X , the existence of a dense orbit of G on X
is equivalent to topological transitivity of G.

Example 3.5. Let {ek}k=1,n, be a basis of the vector space Rn for n ≥ 1.
Define homeomorphisms of the Euclidean space Rn by the following equalities:
gk(x) = x + ek, for k = 1, n, and gn+1(x) = λx where λ > 1 for all x ∈ Rn.
Consider the homeomorphism group G = 〈gk | k = 1, n+ 1〉. According to [25,
Prop. 16], the homeomorphism group G is topologically transitive, and every
its orbit is dense in Rn. In other words, Rn is a minimal set of the group G.
Note that there is no transitive subgroup of G with the number of generators
less than n+ 1.

4 Density of closed orbits

Theorem 4.1. Let A be an arbitrary index set and let X =
∏

α∈A Xα be the
Tychonoff product of topological spaces Xα. Assume that Gα is a homeomor-
phism group of Xα. Then the direct product of groups G =

∏
α∈A Gα has a

dense union of closed orbits in X if and only if for every α ∈ A, the group Gα

has a dense union of closed orbits in the topological space Xα.

Proof. Let x = {xα} ∈ X , then G.x =
∏

α∈A Gα.xα. According to (2), we get

G.x = G.x ⇐⇒ Gα.xα = Gα.xα ∀α ∈ A. (3)

This means that an orbit G.x is closed in X if and only if the orbit Gα.xα

is closed in Xα for every α ∈ A. Let B be the union of all closed orbits of
G in X . Denote by Bα the union of all closed orbits of Gα in Xα. Therefore
B =

∏
α∈A Bα. Suppose that B is dense in X , hence applying the equality

(1), we get the following chain of equalities X = B =
∏

α∈A Bα =
∏

α∈A Bα.

Consequently Xα = Bα, i.e. Bα is dense in Xα.
Conversely, let for every α ∈ A the subset of Bα be dense in Xα. As B =∏

α∈A Bα, applying the equality (1), we have B =
∏

α∈A Bα =
∏

α∈A Xα = X.
This means that the union of all closed orbits of G is dense in X .
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5 Countable products of metric spaces

5.1 The direct product of a countable family of metric

spaces

The direct product of two metric spaces. Let (X1, d1) and (X2, d2) be
metric spaces. A metric d on the product of two metric spaces X1 × X2 =
{(x1, x2) |x1 ∈ X1,x2 ∈ X2} may be introduced in the following ways ([14, Sec.
4.2]):

1. d(x, y) = p
√
dp1(x1, y1) + dp2(x2, y2) where p ≥ 1.

2. d(x, y) = max{d1(x1, y1), d2(x2, y2)}.

3. d(x, y) =
2∑

i=1

1
2i

di(xi,yi)
1+di(xi,yi)

.

All these methods can be easily extended to the case of the product of any
finite number of factors.

The direct product of a countable family of metric spaces. Based
on any metric d on the set X , we can get a metric bounded by the number 1,
by the formula

d̃(x, y) =
d(x, y)

1 + d(x, y)
∀x, y ∈ X, (4)

and metric topologies defined by the metrics d and d̃ are coincided.
Let (Xi, di), i ∈ N, be a countable family of metric spaces. Metric on the

product X =
∏

i∈N
Xi can be given by the equality ([15, Th. 4.2.2]):

d(x, y) =

∞∑

i=1

1

2i
d̃i(xi, yi), (5)

where d̃i is defined by the formula (4) if the metric di is not bounded by a

number 1, otherwise d̃i = di.
Emphasize that the topology on X generated by the metric d, defined by

(5), coincides with the Tychonoff topology of the product X =
∏

i∈N
Xi of

topological spaces Xi.

Definition 5.1. The metric d on X =
∏

i∈N
Xi given by the formula (5), is

called by the direct product of metrics d̃i. The metric space (X, d) is called the

direct product of countable family of metric spaces (Xi, d̃i) and it is denoted by

(X, d) =
∏

i∈N
(Xi, d̃i).

Remark 5.2. As it is known [14], the metric (5) is a special case of the met-

ric d(x, y) =
∞∑
i=1

Aid̃i(xi, yi), where the series
∞∑
i=1

Ai converges and all of its

members are positive.
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5.2 Nonmetrizability of the product of an uncountable

family of topological spaces

Let (M,d) be a metric space and Dr(x) = {z ∈ M | d(x, z) < r} be the ball
of radius r > 0 centered at x. Recall that a topological space satisfies the first
axiom of countability if it has a countable base of topology at each point. Every
metric space (M,d) has a countable base Σx = {D1/n(x) |n ∈ N} at each point
x ∈ M. According to [15, Cor. 4.2.4], an uncountable product of metrizable
spaces such that every of them contains at least two points, does not satisfy the
first axiom of countability. Thus an uncountable product of such spaces is not
metrizable.

Therefore, we will consider further only products of a countable family of
metric spaces in investigations of sensitivity of homeomorphism groups.

6 The sensitivity of homeomorphism groups to

initial conditions

6.1 Properties of sensitivity

Definition 6.1. A homeomorphism group G of a metric space (X, d) is called
sensitive to initial conditions at a point (or, for short, sensitive at a point) x ∈ X,
if there exists a number δ = δ(x) > 0 such that for every neighborhood Ux of x
there exists an element g ∈ G satisfying the following inequality:

diam(g.Ux) ≥ δ. (6)

A group G is called pointwise sensitive to initial conditions (or, for short, point-
wise sensitive), if it is sensitive at every point x ∈ X.

Definition 6.2. A homeomorphism group G of a metric space (X, d) is called
sensitive to initial conditions (or, for short, sensitive) if there exists a number
δ > 0 such that for each open subset U ⊂ X there exists an element g ∈ G
satisfying the following inequality:

diam(g.U) ≥ δ. (7)

The number δ is referred to as the sensitivity constant for G.

Emphasize that every group G satisfying Definition 6.2, satisfies also Defi-
nition 6.1 of the pointwise sensitivity. Note that without violating generality,
in Definitions 6.1 and 6.2 we may consider only neighborhoods from the base of
the metric topology, that is, neighborhoods of the form Dε(x), x ∈ X , ε > 0.

Example 6.3. Recall that a homeomorphism group G of a metric space (X, d)
is said to be expansive on X , if there exists a constant c > 0 such that for
every x 6= y in X, there is g ∈ G satisfying d(g.x, g.y) > c. Such a constant c
is called an expansivity constant of this group [5]. Every expansive group G of
homeomorphisms of a metric space (X, d) is sensitive to initial conditions, and
the role of δ in Definition 6.2 plays the expansivity constant c.
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Proposition 6.4. Let G be a homeomorphism group of a metric Baire space
X having a dense non-closed orbit. Then G is pointwise sensitive if and only if
it has sensitive dependence on initial conditions.

Proof. As the sensitivity implies pointwise sensitivity, prove the inverse. Let X
be a metric Baire space. Assume that a group G is pointwise sensitive and has
a dense non-closed orbit. For each n ∈ N consider the following subset

Vn = {x ∈ X | ∃ ε > 0 : diam(g.Dε(x)) < 1/n ∀g ∈ G}. (8)

Note that Vn is an open G-invariant subset in X , and Vn ⊃ Vn+1 ⊃ Vn+2 ⊃ ...
Since every nonempty open set contains a point with dense orbit, then if Vn 6= ∅

for some n, due toG-invariance of Vn, the set Vn is dense inX . SinceX is a Baire
space, if Vn 6= ∅ ∀n ∈ N, then

⋂
n∈N

Vn is dense in X . Emphasize that each
point x ∈

⋂
n∈N

Vn is not a sensitive point respectively G, that contradicts the
assumption. Consequently, there exists m ∈ N for which Vm = ∅. Therefore,
Vn = ∅ for every n ≥ m. According to (8), this means that there exists δ = 1/m
such that for every x ∈ X and for every ε > 0 there exists an element g ∈ G
satisfying diam(g.Dε(x)) ≥ δ. By Definition 6.2, the group G is sensitive to
initial conditions on X. This completes the proof.

Remark 6.5. For a continuous action of a topological group G on a compact
metric space (X, d), as indicated by F. Polo [21, Prop. 1.3] one can prove Propo-
sition 6.4 using ideas from [1]. In fact, we have implemented such a possibility
under a more general assumption, replacing the compactness condition of the
metric space X with the assumption that X is a Baire space.

Lemma 6.6. If x is a sensitive point of a homeomorphism group G of a metric
space (X, d) with a sensitive constant δ = δ(x), then all points of the closure
G.x of the orbit G.x are also sensitive with the same sensitive constant δ.

Proof. As x is a sensitive point, there exists δ = δ(x) > 0 such that for ev-
ery neighborhood U = Ux there are points y, z ∈ U and g ∈ G satisfying
d(g.y, g.z) > δ(x). Pick x′ ∈ G.x. Let U ′ = U ′

x′ be an arbitrary neighborhood at
x′. Let x′ = g′.x, g′ ∈ G. The sensitivity of x implies that in the neighborhood
g′−1(U ′) of x there exist points g′−1(y′), g′−1(z′), y′, z′ ∈ U ′ and there is ĝ ∈ G,
satisfying the inequality (h.y′, h.z′) > δ(x) for h = ĝg′−1 ∈ G. Consequently
δ = δ(x) is a sensitive constant for every point of the orbit G.x.

For each point v ∈ G.x and for every its neighborhood V = V (v) there is
g ∈ G for which g.x ∈ V. As g.x ∈ G.x, according to the fact proved above,
there are points y, z ∈ V and an element g′ ∈ G such that d(g′.y, g′.z) > δ(x).
This means that δ(x) is a sensitive constant at v. Thus, δ = δ(x) is a common
sensitive constant for every points from the closure G.x.

Lemma 6.7. Let (X, d) be a metric space. Assume that a group G of home-
omorphisms of X has a dense non-closed orbit. Then G is sensitive to initial
conditions if and only if there exists a sensitive point with dense orbit.
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Proof. According the condition, there exists a point x with a dense orbit G.x.
Assume that G is sensitive. Therefore every its point is sensitive, hence x is a
sensitive point with the dense orbit G.x.

Converse, let there exists a sensitive point with dense orbit G.x, i.e. X =
G.x. According to Lemma 6.6, δ = δ(x) is a sensitive constant for G.

Let us use the terminology, generally accepted in the theory of dynamical
systems, for groups of homeomorphisms.

Definition 6.8. Let G be a homeomorphism group of a metric space (X, d).
An action of G is called minimal, if every orbit of G is dense in X, i.e. if X is
a minimal set of G.

For the group G, the term an equicontinuous point is the synonym of an in-
sensitive point. An action of G is called equicontinuous (or G is equicontinuous),
if every point x ∈ X is equicontinuous. An action of G is called almost equicon-
tinuous (or G is almost equicontinuous), if the set of equicontinuous points of
G is dense in X .

Introduce the following notations. Let NS be the set of all insensitive points
and let D be the set of all points with dense orbits of G in X .

Theorem 6.9. Let (X, d) be a metric space and let G be a homeomorphism
group of X. Assume that G has a dense non-closed orbit, and G is insensitive.
Then

NS = D. (9)

If, moreover, (X, d) is a metric Baire space, then D is a dense Gδ-set, coin-
ciding with X in the case when G is minimal.

Proof. Assume that G is insensitive to initial conditions. As G has a dense
non-closed orbit, D 6= ∅, hence, by Lemma 6.7, the inclusion D ⊂ NS holds.

If G is minimal, then the inclusion D ⊂ NS implies D = X = NS, hence
the equality (9) is true.

Let G is non-minimal. Assume that the equality (9) is not true. Conse-
quently there is an insensitive point x ∈ X such that its orbit G.x is not dense
in X . Then U = X \ G.x is nonempty open subset in X , hence there exists
a ∈ U , and d(a,G.x) > 0. Put δ = 1

2d(a,G.x). According the condition, G has
a dense non-closed orbit. Therefore for every neighborhood Vx of x there exists
a point y ∈ Vx having a dense orbit. Hence there exist y′ ∈ G.y ∩ Dδ(a) and
an element g ∈ G for which y′ = g.y. Show that diam(g.Vx) ≥ δ. Suppose the
opposite, i.e. diam(g.Vx) < δ. Using the triangle inequality in the metric space
(X, d), we get

d(a, g.x) ≤ d(a, y′) + d(g.y, g.x) < δ + δ = 2δ = d(a,G.x)

which contradicts the definition of distance d(a,G.x). The contradiction proves
inequality diam(g.Vx) ≥ δ. Therefore, x is sensitive to initial conditions, that
contradicts our assumption. Hence we have shown the inclusion NS ⊂ D. Thus
we proved that D = NS.
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Now assume that (X, d) is a metric Baire space and show that D is a Gδ-
subset in X . As above, by Ux we denote a neighborhood of x. Consider

Vn = {x ∈ X | ∃Ux : diam(g.Ux) ≤ 1/n ∀g ∈ G}. (10)

Note that Vn is an open G-invariant subset in X for each n ∈ N, and Vn ⊃
Vn+1 ⊃ Vn+2 ⊃ ... According to Definition 6.1, NS ⊂ Vn for every n ∈ N,
hence NS ⊂

⋂
n∈N

Vn. The inclusion
⋂

n∈N
Vn ⊂ NS is also true. Thus, NS =⋂

n∈N
Vn. Since every open set contains a point with dense orbit, and Vn 6= ∅

for every n, due to G-invariance of Vn, the set Vn is dense in X . As X is a Baire
space, the intersection

⋂
n∈N

Vn = NS = D is a dense Gδ-subset in X . This
completes the proof of the theorem.

We have the following two direct corollaries from Theorem 6.9.

Corollary 6.10. Let (X, d) be a metric Baire space. Let G be a group of
homeomorphisms of X having a dense non-closed orbit. Then

NS 6= ∅ ⇔ NS = X.

Corollary 6.11. Let (X, d) be a metric Baire space and let G be a group of
homeomorphisms of X with a dense non-closed orbit. Then G is either almost
equicontinuous or sensitive.

Remark 6.12. Let (X, d) be a metric Baire space with a countable base and let
G be a topologically transitive group of homeomorphisms of X. Then, according
to Proposition 3.4, G has a dense orbit. Therefore for such G Theorem 6.9 and
its Corollary 6.11 are applicable.

Remark 6.13. For topologically transitive dynamical systems (X,T ) where T =
{fn}n∈N, f : X → X is a continuous map of an infinite compact metric space
(X, d), the statements similar to Theorem 6.9 and Corollary 6.11 were proved
in ([1, Th. 2.4]).

6.2 Proof of Theorem 1.4

Assume that G satisfies the conditions of Theorem 1.4, but G is not sensitive
to initial conditions. Due to Proposition 6.4, there exists an equicontinuous
point of G in X . Therefore the conditions of Theorem 6.9 are satisfied. Since
there exists a dense orbit, D 6= ∅. Consequently, according to Theorem 6.9,
NS = D 6= ∅, hence there exists equicontinuous point x ∈ X with the dense
orbit G.x. This means that for every η > 0 there exists a neighborhood U = Ux

of x such that diam(g.U) < η for every g ∈ G. Denote by M the union of
all minimal sets of the group G. The set M is dense in X by condition (2) of
Theorem 1.4, hence there exists z ∈ U ∩M. Consequently

d(g.x, g.z) < η ∀ g ∈ G, (11)
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in particular, setting g = idX we see that

d(x, z) < η. (12)

Pick an arbitrary point v ∈ X \G.x. According the condition of Theorem 1.4, X
is locally compact, hence there exists an open neighborhood Uv the closure Uv

of which is compact. Then every neighborhood D2η(v) ⊂ Uv is also relatively
compact. As G.x = X, in the metric space (X, d) there exists a sequence {gk.x},
gk ∈ G, converging to v as k → ∞. So for every ε satisfying the inequalities
0 < ε < η/2 there exists a number k0 thus that

d(v, gk.x) < ε ∀ k > k0. (13)

We consider gn.z and gm.z for n 6= m as different members of the sequence
{gk.z}, k ∈ N.

Since gk.U is an open neighborhood of a point gk.x, and gk.z ∈ gk.U ,
diam(gk.U) < η, then

d(v, gk.z) ≤ d(v, gk.x) + d(gk.x, gk.z) < ε+ η ∀ k > k0.

Consequently, gk.z ∈ Dε+η(v) ⊂ D2η(v) ⊂ Uv for k > k0. Compactness of

D2η(v) implies the existence of a converging subsequence gks
.z → y as s → ∞.

Therefore y ∈ G.z ∩ Dε+η(v) ⊂ D2η(v) for every ε satisfying the inequalities
0 < ε < η/2. For simplicity, denote this subsequence also by {gk.z}. Emphasize
that if y is an isolated point of the minimal set G.z, then G.z = G.z is a closed
orbit, and it is necessary y = gk.z, starting from some k, and all the inequalities
obtained further are correct.

Since G.z is a minimal set of G, and y ∈ G.z, then G.y = G.z. Therefore
G.z ⊂ G.y. As U is a neighborhood of the point z, and z ∈ G.y, there exists
y0 ∈ U ∩ G.y. This implies the existence h ∈ G such that y0 = h.y. Consider
a homeomorphism h : X → X . Let v′ := h(v) = h.v. Taking in account that
gk.x → v as k → ∞, we get h.(gk.x) → v′ as k → ∞. This means the existence
k1 such that

d(h.(gk.x), v
′) = d(hgk.x, v

′) < ε ∀ k > k1. (14)

As diam(g.U) < η for every g ∈ G, we have diam(h.(gk.U)) = diam(hgk.U) < η.
Note that h.(gk.x), h.(gk.z) ∈ hgk.U, so we have

d(hgk.x, hgk.z) < η. (15)

Since gk.z → y as k → ∞, we get h(gk.z) → h.y = y0 as k → ∞, hence there
exists k2 such that

d(y0, h.(gk.z)) = d(y0, hgk.z) < ε ∀ k > k2. (16)

.
Consequently, taking in account that 0 < ε < η/2 and applying the relations

(14), (15) and (16) for k > max{k0, k1, k2}, we get

d(x, v′) ≤ d(x, y0)+ d(y0, hgk.z)+ d(hgk.z, hgk.x)+ d(hgk.x, v
′) < 2ε+2η < 3η.

(17)
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Thus we have shown that for every η > 0 there exists v′ ∈ G.v satisfying
the inequality d(x, v′) < 3η, hence x ∈ G.v. Since the closure of every orbit of a
homeomorphism group is G-invariant, it is necessary that G.x ⊂ G.v. Therefore
X = G.v for every point v ∈ X. This means that X is a minimal set of G, that
contradicts to the condition (2) of the theorem being proved. The contradiction
implies that the group G is sensitive to initial conditions.

As the conditions (1) and (2) of Theorem 1.4 are topological, then the sen-
sitivity of G does not depend on a choice of metrics on the set X defining the
same topology as d.

Since for Polish spaces the topological transitivity of a homeomorphism
group G is equivalent to the existence of a dense orbit, then the following state-
ment is true.

Corollary 6.14. Let X be a locally compact Polish space. If a homeomorphism
group G of X satisfies the following two conditions:

(1) the group G is topological transitive on X;

(2) the union of minimal sets of G is a proper dense subset in X,

then G is sensitive to initial conditions.

6.3 Sensitivity to initial conditions of the direct product

of homeomorphism groups

Emphasize that all metric spaces are considered with the metric topology. We
use notations from Section 5. In the case when J is a finite subset of N, the
metric d of the product

∏
i∈J (Xi, d̃i) is defined by the formula analogous to (5),

in which i ∈ J .

Theorem 6.15. Let (X, d) =
∏

i∈J(Xi, d̃i) where (Xi, d̃i) is a metric space
and let J ⊂ N. Let Gi, i ∈ J , be a homeomorphism group of Xi. If there exists
n ∈ J such that Gn is sensitive to initial conditions on (Xn, d̃n), then the direct
product of groups G =

∏
i∈J Gi is also sensitive to initial conditions on (X, d).

Proof. Let x = {xi} be any point in X . Assume that a group Gn is sensitive to

initial conditions on (Xn, d̃n). This means that there exists a number σ > 0 such
that for the point xn ∈ Xn and for any η > 0 there is an element g̃ ∈ Gn such
that diam(g̃.Dη(xn)) ≥ σ. Therefore there exists a point ỹ ∈ Dη(xn) satisfying

the inequality d̃n(g̃.xn, g̃.ỹ) ≥
σ
2 .

Consider y = {yi} ∈ X where yn = ỹ and yi = xi for i ∈ J \ {n}. Pick an
element g = {gi} ∈ G where gi is an arbitrary element of Gi where i ∈ J \ {n}
and gn = g̃. Then

d(x, y) =
d̃n(xn, ỹ)

2n
<

η

2n
=: ε and d(g.x, g.y) =

d̃n(gn.xn, gn.ỹ)

2n
≥

σ

2n+1
=: δ.
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Hence diam(g.Dǫ(x)) ≥ δ. Since η is any arbitrarily small positive number,
then ε = η

2n is also any arbitrarily small positive number. As x is any point
from X, the proven means the sensitivity of the group G =

∏
i∈J Gi to initial

conditions.

Theorem 6.16. Let Gi, i = 1,m, be a homeomorphism group of a metric space
(Xi, di). Assume that (X, d) =

∏m
i=1(Xi, di). Then the direct product of groups

G =
∏m

i=1 Gi is sensitive to initial conditions on (X, d) if and only if there exists
n, 1 ≤ n ≤ m, such that the group Gn is sensitive to initial conditions.

Proof. Sufficiency is proved similarly to Theorem 6.15. Let’s prove the necessity.
To do this, assume that the product of groups G =

∏m
i=1 Gi is sensitive to

initial conditions and at the same time each group Gi is not sensitive to initial
conditions. Therefore for every δi > 0 there exist point xi ∈ Xi and εi > 0
such that for every gi ∈ Gi the following inequality diam(gi.Dεi(xi)) ≤ δi is
satisfied. Put ε = min{εi| i = 1,m} ⇒ ε > 0, δi = δ

2m , where δ is the
sensitivity constant of the action of the group G. Let x = {xi}. Then for every
y = {yi} ∈ Dε(x) we get

d(g.x, g.y) =
m∑

i=1

di(gi.xi, gi.yi) ≤
m∑

i=1

δ

2m
=

δ

2
,

consequently diam(g.Dε(x)) ≤ δ that contradicts the sensitivity of the group G
to initial conditions. Thus, there exists n, 1 ≤ n ≤ m, such that the group Gn

is sensitive to initial conditions.

Corollary 6.17. Let (X, d) =
∏m

i=1(Xi, di), where (Xi, di) are metric spaces.
Let Gi be a homeomorphism group of Xi. Then the expansiveness of one of the
groups Gi entails the sensitivity of the product group G =

∏m
i=1 Gi to initial

conditions.

Example 6.18. If the group of homeomorphisms G1 is expansive on (X1, d1),
and for i = 2,m the group Gi is an isometry group of a metric space (Xi, di),
then, according to Corollary 6.17, the group G =

∏m
i=1 Gi is sensitive to initial

conditions on the product (X, d) =
∏m

i=1(Xi, di).

7 Chaotic actions of groups

7.1 Proof of Theorem 1.6

Let A be an arbitrary set of indexes. Suppose that the group G =
∏

α∈AGα

acts chaotically on the Tychonoff product X =
∏

α∈AXα of topological spaces
Xα. By Definition 1.3, G has a dense non-closed orbit and a dense union of
closed orbits. According to Theorem 3.3, the group G has a dense non-closed
orbit in X if and only if for every α ∈ A the group Gα has a dense orbit in Xα.
By Theorem 4.1, G has a dense union of closed orbits if and only if the union of
closed orbits of the group Gα are dense on Xα for every α ∈ A. Thus, a chaotic
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behavior of the group G on X is equivalent to a chaotic behavior of each group
Gα on Xα for every α ∈ A.

Further we use notations introduced in Section 5.

Theorem 7.1. For every subset J ⊂ N, let Gi, i ∈ J , be a homeomorphism
group of metric space (Xi, d̃i) and on the product of metric spaces (X, d) =∏

i∈J (Xi, d̃i) the direct product of groups G =
∏

i∈J Gi is given. Assume that
(X, d) is a locally compact metric Baire space. If G acts on X chaotically, then:

(1) the group G is sensitive to initial conditions;

(2) for every i ∈ J the group Gi is chaotic and sensitive.

Proof. First note that by Theorem 1.6, every group Gi, i ∈ J , is chaotic. Since
(X, d) is a locally compact metric Baire space, then every factor (Xi, d̃i), i ∈ J ,
is also a locally compact metric Baire space. Hence, according to Theorem 1.5,
chaoticity of G implies its sensitivity to initial conditions on X and chaoticity
of Gi implies the sensitivity of Gi on (Xi, d̃i).

Theorem 7.2. For every subset J ⊂ N, let Gi, i ∈ J , be a chaotic homeo-
morphism group of metric space (Xi, d̃i) and on the product of metric spaces

(X, d) =
∏

i∈J (Xi, d̃i) the direct product of groups G =
∏

i∈J Gi is given. If

there exists n ∈ J such that (Xn, d̃n) is a locally compact metric Baire space,
then the group G is chaotic and sensitive to initial conditions.

Proof. Theorem 1.6 implies chaoticity of the groupG. By the condition, (Xn, d̃n)
is a locally compact metric Baire space, then according to Theorem 1.4, the
group Gn is sensitive to initial conditions. The application of Theorem 6.15
allows us to state that the G is also sensitive to initial conditions.

7.2 Chaotic products of countable homeomorphism groups

of compact metrizable spaces

Lemma 7.3. Let H be a countable group of homeomorphisms of a Polish space
X. Then:

(1) every closed orbit of H is discrete;

(2) if X is compact, then every closed orbit of H is finite.

Proof. Assume that H.x is a closed orbit of x ∈ X . Then H.x is a Polish space
as a closed subset of a Polish space X . Show that the induced topology on
the orbit H.x is discrete. Assume that it is not true, hence H.x has a non-
isolated point x0. Since H is countable, then H is represented in the form
H = {hi | i ∈ N}. As x0 is non-isolated, there exists a sequence zn = gn.x,
gn ∈ H , such that zn → x0 as n → +∞. Now check that every point of the
orbit H.x is non-isolated. Pick y ∈ H.x, then there is an element g ∈ H for
which y = g.x0. Hence yn = g.zn → y as n → +∞, i.e. y is non-isolated.
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As hi.x is not isolated in H.x, the set Ui = H.x \ hi.x is dense and open in
H.x. Since H.x is a Polish space, then H.x is also a Baire space. According
to the definition of Baire space, the intersection

⋂
i∈N

Ui is dense in H.x. As⋂
i∈N

Ui = ∅, we get a contradiction. Hence every point of H.x is isolated.
Thus, the statement (1) is proved.

Suppose now that a Polish space X is compact. In this case every closed
orbit H.x, x ∈ X , of H is finite as a discrete compact subspace of the compact
X . Therefore, the statement (2) is also true.

Recall that a group G is referred to as residually finite or finitely approx-
imable, if for every non-neutral element g ∈ G there exists a normal subgroup,
not containing g, of finite index in G.

Theorem 7.4. If a countable group of homeomorphisms G is chaotic (in the
sense of Definition 1.3) on a metrizable compact space X, then G is residually
finite and sensitive to initial conditions.

Proof. Lemma 7.3 and Proposition 3.4 imply that definitions of chaos 1.2 and
1.3 are equivalent. Hence the homeomorphism group G is chaotic in the sense of
Definition 1.2. It follows from [8, Th. 1] that every chaotic group of homeomor-
phisms is residually finite. According to Theorem 1.5, chaoticity of the group
G in the sense of Definition 1.3 implies sensitivity of G to initial conditions.

As it is known, the following groups are residually finite:

(1) matrix groups SL(n,Z) for all n ≥ 2;

(2) finitely generated linear groups;

(3) (finite or infinite) direct products of residually finite groups;

(4) countable generated free groups;

(5) finitely generated nilpotent groups;

(6) quotients of residually finite groups by finite normal subgroups;

(7) fundamental groups of compact 3-manifolds

and some others.
Groups having infinite simple subgroups and, in particular, simple groups

are not residually finite [8].

Remark 7.5. In [8] the sensitivity to initial conditions is not investigated.
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Proof of Theorem 1.7

Note that every compact metrizable space is Polish. As it is well known, unlike
the Baire space, any Polish space is either countable or has the continuum
cardinality.

Assume that every group Gi, i ∈ N, is chaotic. According to Theorem 1.6,
the canonical action of the direct product of groups G =

∏
i∈N

Gi is chaotic, i.e.
the statement (1) is true.

As the group Gi is chaotic, the union of closed orbits of Gi is dense in Xi.
Due to countability of Gi and compactness of Xi, by Lemma 7.3, every closed
orbit of Gi is finite. Show that the union Fi ⊂ Xi of closed orbits of the group
Gi, containing greater than one point, is dense in Xi. Otherwise there exists
an open subset U ⊂ Xi such that U ∩ Fi = ∅. Since Gi is chaotic, then the
union of its closed orbits is dense in Xi. Therefore the union of one-point orbits
of Gi is dense in U . Continuation of Gi implies Gi|U = idU that contradicts
the existence of a dense orbit, i.e. the chaoticity of Gi. Thus, Fi is dense in
Xi. Analogously to the proof Theorem 4.1, we get that the subset F =

∏
i∈N

Fi

of X =
∏

i∈N
Xi is a union of closed orbits of the group G =

∏
i∈N

Gi, and F
is dense in X . Every orbit G.x where x = {xi} ∈ X , xi ∈ Fi, has continuum
cardinality as a product of countable set of finite orbits Gi.xi, i ∈ N. By the
Tychonoff theorem, the orbit G.x is compact as the product of compacts orbits
Gi.xi.

Assume that there exists a point x0 ∈ G.x which is isolated in G.x. Now
check that every point of the orbit G.x is isolated. Otherwise there is non-
isolated y = g.x0 where g ∈ G. Hence there exists a sequence yn → y as
n → +∞. Then zn = g−1.yn → x0 as n → +∞, that contradicts to our
assumption. Therefore orbit G.x has no isolated points, i.e. G.x is perfect
subset of X . Consequently, the statement (2) is proved.

According Definition 1.3, every chaotic group Gi has a dense orbit Gi.vi, vi ∈
Xi. Note thatGi.vi is a countable subset ofXi, hence the orbitG.v =

∏
i∈N

Gi.vi
has continuum cardinality. Since G.v =

∏
i∈N

Gi.vi =
∏

i∈N
Xi = X , the orbit

G.v is dense in X . Hence the statement (3) is proved.
The statements (4)− (5) are corollaries of Theorem 7.4.
Let for every i ∈ N, the group Gi has a fixed point x0

i . Let Y be the union
of all finite orbits of the group G =

∏
i∈N

Gi. Note that x0 = {x0
i } is a fixed

point of G, hence x0 ∈ Y . Observe that z = {zi} ∈ Y if and only if there exists
a finite subset A ⊂ N such that zi = x0

i for i ∈ N \ A and zi has a finite orbit
Gi.zi for i ∈ A. As the intersection of Y with every set from the canonical base
of the Tychonoff topology of X is a nonempty set, Y is dense in X . Thus the
statement (6) is proved.
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8 Products of groups generated by generalized

horseshoe maps

8.1 Bi-infinite sequence of symbols

Let S = {1, 2, ..., N} with N ≥ 2. Equip the set S with discrete metric d.
Note that the metric topology coincides with the discrete topology on S. Let
{Si| i ∈ Z} be a family of topological spaces, and Si = S, di = d for every i ∈ Z.
Let ΣN be a Tychonoff product of this family: ΣN =

∏
i∈Z

Si. Every point of ΣN

can be represented as a bi-infinite sequence of N symbols:

σ ∈ ΣN ⇔ σ = (..., σ−k, ..., σ−1, σ0, σ1, ..., σk, ...),

where σi ∈ {1, 2, ..., N} for every i ∈ Z. The topological space ΣN is compact
(as product of compact spaces), totally disconnected (as product of totally dis-
connected spaces), perfect and uncountable. Also ΣN is a metrizable space.
The metric on ΣN can be defined by the following way

ρ(σ, τ) =
∑

i∈Z

1

2|i|
di(σi, τi)

1 + di(σi, τi)
,

where di is the metric on the space Si. The topology induced by the metric ρ
on ΣN is the same as the Tychonoff topology on the product

∏
i∈Z

Si.
As is known, the space Σ2 is homeomorphic to the standard ternary Cantor

set [15, Example 3.1.28].
Now we define a map g : ΣN → ΣN as follows: (g(σ))i = σi+1. The map

g is referred to as the full N -shift. Consider a homeomorphism group G = 〈g〉
generated by g.

Proposition 8.1. The homeomorphism group G = 〈g〉 is chaotic on the space
ΣN , and the union of finite orbits is infinite countable and dense in ΣN . Besides,
the group G is sensitive to initial conditions.

Proof. According to [23, Prop. 3.9.4], the group G has a dense orbit.
Let σ = (σi) ∈ ΣN . It is sufficiently to show that for every ε > 0 there is

periodic point τ ∈ Dε(σ) of the group G. Let m > log2
1
ε and m ∈ N. The point

τ = {τi}, where τk(2m+1)+j = σj ∀k ∈ Z, ∀j ∈ [−m,m] ∩ Z, is periodic with

the minimal period 2m + 1. Besides, τ ∈ Dε(σ) because ρ(σ, τ) ≤
∞∑

i=m+1

1
2i =

1
2m < ε. Thus, the set of periodic orbits is dense in ΣN .

By analogy with [18, Corollary 2.5.1], one can proved that the set of periodic
orbits is infinite countable.

Moreover, the topological space ΣN has a countable base, then it is a compact
Polish space, hence Theorem 1.5 implies that the chaotic group of homeomor-
phisms G of ΣN is sensitive to initial conditions.

Remark 8.2. Let J be any subset of N and ΣN
i = ΣN for all i ∈ J. Applying [15,

Prop. 2.3.7], we get that the Tychonoff product Σ =
∏

i∈J ΣN
i is homeomorphic

to the space ΣN .
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8.2 N-ary Cantor sets

Here we recall the known generalization of the standard ternary Cantor set and
the relation between this generalization and the space ΣN .

Let N ∈ N, N > 2 and N is odd. The N -ary Cantor set can be constructed
in the similar way as the standard ternary Cantor set. Let C0 = [0, 1], C1 =
[0, 1

N ] ∪ [ 2N , 3
N ] ∪ ... ∪ [N−1

N , N
N ]. Further we subdivide every closed interval of

the set C1 into N equal parts and delete open intervals with even numbers.
The remaining set is denoted C2. By repeating this process, we get sets Ci for
every i ≥ 2. The set C =

⋂
i∈N

Ci is the N -ary Cantor set [11, section 2.3]. In
Figure 3 it is illustrated this definition for case N = 5.

Figure 3: Three steps of construction of the 5-ary Cantor set.

Another equivalent approach to the definition of the N -ary Cantor set is
known. Let N ∈ N, N > 2 and N is odd. Recall that the set

{∑

i∈N

ai
N i

| ai ∈ Z, 0 ≤ ai < N, ai is even

}

is called the N -ary Cantor set [2, section 1.9.1].

The N -ary Cantor set is homeomorphic to the space Σ
N+1

2 . The proof
of this fact is fully similar the proof that the standard ternary Cantor set is
homeomorphic to the space Σ2 [15, Example 3.1.28].

8.3 Generalized horseshoe maps

Original notion of the horseshoe map belongs to S. Smale. As is known, the
invariant set Λ of the horseshoe map is homeomorphic to the standard ternary
Cantor set and the restriction of the horseshoe map to the set Λ is conjugate to
the 2-shift map on the space Σ2 [18, Section 2.5].

The definition of generalized horseshoe map of length N can be found in [16,
Definition 2.7]. In Figure 4 it is illustrated this definition for case N = 3.

22



(a)

(b)

Figure 4: The generalized horseshoe map of length 3.

Let D = S0 ∪ R ∪ S1. The generalized horseshoe map f of length 3 has
the set D as its domain. The image of the set D respectively f is shown in
Figure 4a.

The invariant set Λ of the generalized horseshoe map of length N is home-
omorphic to the (2N − 1)-ary Cantor set and, consequently, to the space ΣN .
The full N -shift is conjugate to the restriction of the generalized horseshoe map
of length N to the invariant set Λ [23, Section 4.2.3], [16, Remark 2.9].

8.4 Chaotic groups of homeomorphisms on countable prod-

ucts of Cantor sets

Let A be any index set. Consider a family of chaotic groups {Gα = 〈gα〉}α∈A,
where gα is the full Nα-shift of ΣNα . According to Theorem 1.6, the product
of groups G =

∏
α∈A Gα of homeomorphisms of the space Σ =

∏
α∈A ΣNα

α is
chaotic.

Let the set A be countable. As we have seen above, every ΣNα is a compact
metric space, hence ΣNα is a compact metric Polish space. Consequently, Σ is
a compact metric Polish space, so according to Theorem 1.5, G is sensitive to
initial conditions on Σ.

In the case when Nα = N for every α ∈ A ⊂ N, we get ΣN
α := ΣNα = ΣN

and Σ =
∏

α∈A ΣN
α . According to Remark 8.2, Σ is homeomorphic to ΣN .

Thus we get new chaotic actions of free Abelian groups G with countable set of
generators on the space Σ homeomorphic to (2N − 1)-ary Cantor set.
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9 Construction of chaotic actions of groups on

topological manifolds

9.1 Chaotic actions of the group Z on every closed surface

By a closed surface we mean a connected compact topological two-dimensional
manifold M without boundary.

In the proof of Theorem 9.1 we use the concept of a two-dimensional orbifold.
A simple exposition of the theory of compact two-dimensional orbifolds can be
found in [24]. The necessary information about orbifolds used by us is contained
in [7].

Theorem 9.1. For every closed surface M there exists a countable family of
chaotic groups of homeomorphisms, isomorphic to the group Z, such that the
union of finite orbits of every such group is dense in M .

Proof. Show that for each k,m ∈ N, k,m ≥ 3, the following matrix

A = A(k,m) =

(
1 k
m 1 + km

)
(18)

induces a chaotic homeomorphism gA of the closed two-dimensional disk B2.
Let fA be the Anosov torus automorphism defined by A.

We represent the torus T2 as the square [−1/2, 1/2]× [−1/2, 1/2] in a Carte-
sian coordinate system Oxy on a plane R2 with identified opposite sides. In
other words T2 has coordinates (x, y) where x and y are periodic of period
one. For each fixed pair of numbers k,m ∈ N, k,m ≥ 3, consider subsets
P = [−1/2, 1/2]× [−1/k, 1/k] and Q = [−1/m, 1/m]× [−1/2, 1/2] of T2. Note
that P and Q are two overlapping annuli on the torus T2. Denote the union
of the annuli by R = P ∪ Q and the intersection by S = P ∩ Q, see Figure 5.
Define maps f : R → R and h : R → R by the following equations:

f(x, y, k) =

{
(x+ ky, y) if (x, y) ∈ P,
(x, y) if (x, y) ∈ R \ P,

(19)

h(x, y,m) =

{
(x, y +mx) if (x, y) ∈ Q,
(x, y) if (x, y) ∈ R \Q.

(20)

The map g = h ◦ f : R → R is called the toral linked twist map defined
by composing f and h. According to [13, Theorem A], the constructed linked
twist map g : R → R is topologically mixing and the periodic points of g are
dense in R. Therefore, the homeomorphism group G = 〈g〉 generated by g
is topologically transitive and chaotic on the topological space R. Note that

g = g(k,m) and A = A(k,m) are related by the equality g(x, y) = A

(
x
y

)
in

some neighborhood U of a point (0, 0), U ⊂ S ⊂ T2.
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Figure 5: Representation of the torus on the unit square.

Let E2 be the unit two-dimensional matrix. Denote by ϕ the homeomor-
phism of the torus T2 given by the matrix −E2. Then Φ = 〈ϕ〉 is a homeo-
morphism group of T2. Identify the orbit space N = T2/Φ with the rectangle
[−1/2, 1/2]× [0, 1/2] the sides of which are identified in the way indicated by
the arrows in Figure 6a. Denote by p : T2 → N the quotient map. Note that
N is the orbifold ”Pillow” which is homeomorphic to the standard sphere S2,
and both subsets p(R), colored green, and p(T2 \R), colored yellow, are home-
omorphic to a closed disk B2 (see Figure 6b). Identify the topological space of
N with the sphere S2.

(a) Representation of the orbifold ”Pil-
low”.

(b) The orbifold ”Pillow” is homeomor-
phic to the standard sphere.

Figure 6: Orbifold ”Pillow”.

It is easy to check that g|∂R = id |∂R where g = g(k,m) is defined by the
matrix A = A(k,m). Therefore we can continue g for the entire torus T2 such
that g|T2\R = id |T2\R. We denote the resulting torus homeomorphism also by
g. Emphasize that the points colored yellow in Figure 5, are fixed relative to the
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homeomorphism g. Since the map g satisfies the equality g(−x,−y) = −g(x, y)
for every (x, y) ∈ T2, it induces a homeomorphism gS2 : S2 → S2 satisfying the
following equality p◦g = gS2 ◦p. Therefore the restriction gB2 of gS2 to the closed
disk B2 = p(R) (colored green in Figure 6b) satisfies the commutative diagram

R
g

−−−−→ R

p

y
yp

B2 g
B2−−−−→ B2,

(21)

and the projection p : R → B
2 is a surjective continuous open map. As a finite

orbit of the group G maps onto a finite orbit of the group Γ = 〈gB2〉 with respect
to p : R → B2, the union of finite orbits of Γ is dense in B2. A dense orbit of
G maps onto a dense orbit of Γ. Thus, the group Γ is chaotic in B2. Since
gS2 is equal to identity on another closed disc colored yellow, complementary to
B2, the group Γ fixes every point of the boundary ∂B2. Therefore it is possible
to glue the boundary ∂B2 in an arbitrary way and to obtain a new surface M ,
and as the result, we can get every closed surface M . Denote the corresponding
quotient map by k : B2 → M. Since Γ|∂B2 = id∂B2 , then Γ induces an isomorphic

group of homeomorphisms Γ̃ of the surface M , and the mapping k : B
2 →

M is a topological semi-conjugation of the groups Γ and Γ̃. Emphasize that
the interior Int(B2) is invariant respectively Γ, and the restriction k|Int(B2) is a

homeomorphism conjugating Γ|Int(B2) with Γ̃|k(Int(B2)). Therefore, the group Γ̃

is chaotic on M . Further we write Γ̃ = Γ̃(k,m), since this group is defined by
the matrix A = A(k,m) of the form (18).

Thus we get a countable family of chaotic groups

{Γ̃(k,m) |k,m ∈ N, k,m ≥ 3}

on every closed surface M . For short, further we denote such families by
{Γ̃(k,m)}.

More specifically, we consider the following ways of gluing the disk boundary
∂B2.

Case I. Consider the boundary ∂B2 ∼= S1 as a 4q-polygon whose sides are
glued together according to the scheme a1b1a

−1
1 b−1

1 · · · aqbqa−1
q b−1

q , q ∈ N. The
scheme is obtained as follows: the direction of movement along the sides of
the polygon is selected, the sides are written out in a row, the glued sides are
marked with one letter, the degree −1 means the direction of gluing opposite
to the direction of movement along the side. As a result we get a closed surface
homeomorphic to the sphere with q handles. Denote this surface by S

2
q. Thus

we get a countable family of chaotic groups {Γ̃(k,m)} on S2q for every q ∈ N.
Case II. Consider the boundary ∂B2 ∼= S1 as a 2q-polygon whose sides are

glued together according to the scheme a1a1 · · · aqaq, q ∈ N. In this case we
get a closed non-orientable surface homeomorphic to the sphere with q Mobius
bands which will be denoted by NS2q. Thus we get an infinite series of chaotic

groups {Γ̃(k,m)} on each surface NS2q, q ∈ N.
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Case III. Let us glue the boundary ∂B2 ∼= S1 into an arbitrary segment
denoted by L0 such that as the result we get a topological sphere S2. In the
same way as above we get an infinite series of chaotic groups {Γ̃(k,m)} on S2.

Since every closed surface M is homeomorphic to one of the canonical sur-
faces S2, S2q or NS

2
q where q ≥ 1, then in the above way we obtain a countable

family of chaotic homeomorphism groups {Γ̃(k,m) ∼= Z} on M .
It is well known that finite orbits of every Anosov automorphism of the

torus T2 form a countable dense subset in T2. However, this is not true for the
constructed homeomorphism g in general. In the next section we will construct
a homeomorphism g having a continuum of fixed points. Hence, in this case,
the set of all finite orbits of both groups Γ and Γ̃ has the cardinality of the
continuum.

Remark 9.2. In contrast to [8], we have constructed an infinite countable fam-
ily of chaotic actions of the group Z on each closed surface.

9.2 Chaotic actions of the group Z on noncompact

two-dimensional manifolds

Consider the toral linked twist map g = g(k,m) : R → R constructed in the
previous section. Recall that R is the union of two annuli P ∪ Q on the torus
T2. Let p : R → B2 be the projection satisfying the commutative diagram (21),
hence p(∂R) = ∂B2 ∼= S1.

At first we will pick out some point z ∈ ∂B2. Identify ∂B2 \{z} with the real
line R1 =

⋃+∞
n=−∞[n, n+ 1]. Represent B2 \ {z} as an polygon without a point

z, the boundary of which is divided into a countable set of pairwise glued sides.
Consider the following gluing rules.

Case IV. [n, n+ 1] ∼ anbna
−1
n b−1

n ∀n ∈ Z. As the result of this gluing, we
will get a noncompact two-dimensional manifold M without boundary, homeo-
morphic to a plane with a countable family of handles which we denote by R2

∞.
Emphasize that M is homeomorphic to the Loch Ness monster (see Figure 1).

Case V. [n, n+ 1] ∼ anan ∀n ∈ Z. As the result of this gluing, we will get
a noncompact two-dimensional manifold M without boundary, homeomorphic
to a plane with a countable family of Mobius bands which we denote by NR2

∞.
Case VI. Let us glue p(∂R) = ∂B2 ∼= S1 to a segment L0 as in Case III. As the

result we get a topological sphere S2. As above, let k : B2 → S2 be the respective
quotient map. The image k(∂B2) of ∂B2 we denote by L0 ⊂ S

2. Consider an
arbitrary proper compact subset K0 of L0 and a point z0 ∈ L0 \K0. We get a
noncompact two-dimensional manifold denoted by R2(K0) := S2 \ (K0 ∪ {z0})
homeomorphic to a plane without K0. In Figure 2 you can see the noncompact
surface R2(K0) where K0 is the standard Cantor set.

Now we consider the restriction of g : R → R, constructed in the previous
section, to a circle C = {(x, 0) | − 1/2 ≤ x ≤ 1/2}. The image g(C) is a closed
curve on the torus T2. Observe that

g(x, 0) = (x, 0) ∀x ∈ [−1/2,−1/m]∪ [1/m, 1/2].
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Emphasize that [−1/2,−1/m] ∪ [1/m, 1/2] is a connected segment in R ⊂ T2.
The set L = p([−1/2,−1/m] ∪ [1/m, 1/2]) is a connected topological segment
in the inside of the disk B2 highlighted in red in Figure 6b, and g|L = idL .
Assume that the boundary ∂B2 of B2 is glued in one of the ways specified above
in Cases I – VI. The result is a manifold M where M is either one of arbitrary
closed surfaces S2, S2q , NS2q where q ≥ 1, or one of noncompact surfaces R2

∞,
NR2

∞, R2(K0). Let k : B2 → M be the corresponding quotient map. As
no points from L were not glued together, we identify the image k(L) of L
in M with L and consider L as subset of M . This fact allows us to remove
an arbitrary closed subset K of L from L and to obtain a noncompact two-
dimensional topological manifold M̂ = M̂(K) := M \K. Emphasize that we do
not exclude the possibility K = ∅. The homeomorphism g̃ = g̃(k,m) induces a

chaotic homeomorphism ĝ = ĝ(k,m) of M̂ , and the group Γ̂ = 〈ĝ〉 has a dense

set periodic orbits in M̂ .
Indicate some important classes of obtained manifolds M̂ = M̂(K).

If K is a finite subset of L, then M̂ is a noncompact manifold with a finite
number of ends.

If K is an infinite subset of L with one limit point z′, then z′ ∈ K and we
get a noncompact manifold M̂ = M \K with a discrete countable set of ends.

When K is the standard Cantor set on L, we get a noncompact manifold
M̂ containing the Cantor set of ends. It is possible that M̂ has other ends
obtained by removing a compact subset K0 ⊂ L0 where L0 ⊂ k(∂B2) similarly
to Case VI.

Emphasize that for every closed subset K, the set of handles or Mobius
bands on M̂ may be countable.

In Case VI, for M = R2(K0) we get M̂ = M̂(K0,K). When K0 = ∅ and

K is the standard Cantor set, the surface M̂(K0,K) is homeomorphic to the
surface in Figure 2.

On every such constructing noncompact topological two-dimensional man-
ifold M̂ the homeomorphism g̃ = g̃(k,m) induces a chaotic homeomorphism

ĝ = ĝ(k,m), and the group Γ̂ = 〈ĝ〉 has a dense set periodic orbits in M̂ .

Thus we get an infinite countable family of chaotic groups {Γ̂(k,m) =

〈ĝ(k,m)〉} on each surface M̂ constructed above.

9.3 Chaotic groups acting on closed n-dimensional mani-

fold

LetG be any countably generated free group. In [9] G. Cairns, A. Kolganova and
A. Nielsen showed that every compact triangulable manifold M of an arbitrary
dimension n greater than one admits a faithful chaotic action of the group G.

Emphasize that as follows from [9], the free group Γ = 〈g1, g2〉 may be
implemented as a chaotic group of homeomorphisms of every such manifold M .
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9.4 Chaotic groups of homeomorphisms on products of

manifolds

Since every open subset of a Polish space is also Polish, then all topological
manifolds defined above in Sections 9 are locally compact Polish spaces, hence
they satisfies conditions of Theorems 1.4 – 1.6. For an arbitrary index set A we
use the constructed above chaotic actions of homeomorphism groups Gα, α ∈ A,
on topological manifolds Mα as building blocks for constructions of chaotic
canonical action of the product of groups G =

∏
α∈A Gα on M =

∏
α∈AMα.

According to Theorem 1.7, if Gi, i ∈ J ⊂ N, is a countable chaotic group
of homeomorphisms of ni-dimensional closed triangulable manifold Mi, ni ≥ 2,
then the canonical action of the direct product of groups G =

∏
i∈J Gi is chaotic

on the product M =
∏

i∈J Mi. Here M is a infinite-dimensional topological
manifold, if the set J is infinite countable, otherwise M is a finite-dimensional
topological manifold. In both cases, by Theorem 1.7, every groups G and Gi

have sensitivity to initial conditions. Emphasize that the dimension of Mi may
be an arbitrary greater than one.

Moreover, in the case J = N, according to Theorem 1.7, there exists a dense
subset F ⊂ M which is the union of compact continuum orbits of the group
G, and every such orbit is a perfect subset of M . Besides there exists a dense
continuum orbit of G in M .

If, moreover, every Mi is a two-dimensional manifold with a chaotic action
of the group Gi

∼= Z constructed in Sections 9.1 – 9.2, then every group Gi has
finite orbits and, in particular, a fixed point. Therefore, in this case, the group
G =

∏
i∈N

Gi on the infinite-dimensional topological manifold M =
∏

i∈J Mi

has a continuum set of finite orbits, and the union of finite orbits is dense in M .
Therefore every groups Gi and G are chaotic in the sense of both Definition 1.2
and Definition 1.3.

Example 9.3. Consider the standard two-dimensional torus T
2 = R

2/Z2.
Anosov torus automorphism T2, given by a matrix A ∈ SL(2,Z), is denoted
by gA. As is well known [22], every matrix

A =

(
a b
c d

)
, (22)

where ad − bc = 1 and a + d > 2, defines an Anosov automorphism gA of the
torus T2 preserving its orientation . The group G = 〈gA〉 ∼= Z generated by
gA acts chaotically on T2. It is well known that there exists a countable set of
finite orbits of G, and this set is dense in T2. There exists a countable family
A = {Ak | k ∈ N} such matrices defining Anosov automorphisms.

Consider the infinite-dimensional torus T∞ =
∏

i∈N
T2
i where T2

i = T2 for
each i ∈ N. Let gAi

, Ai ∈ A, be an Anosov automorphism on T2
i . Let Gi =

〈gAi
〉 and G =

∏
i∈N

Gi. According to Theorem 1.7, we get a chaotic group
of homeomorphisms G of the torus T∞. Taking into account that Ai may be
an arbitrary matrix belonging to A, we see that different groups G form a
continuum set. Emphasize that G also has continuum cardinality. As every
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group Gi has a fixed point, by Theorem 1.7, the union of finite orbits of group
G is dense in T∞, and G has a fixed point. Moreover, the union of its compact
orbits of continuum cardinality is also dense in T∞, and every such orbit is a
perfect subset of T∞. Note that every dense orbit has continuum cardinality.
Besides, by Theorem 1.7, the group G is sensitive to initial conditions.

All groups Gi, i ∈ N, and G are chaotic in the sense of Definition 1.2 as well
as in the sense of Definition 1.3.
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