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Objective: Temporal lobe epilepsy (TLE) is a network disorder that alters the total organization of the
language-related network. Task-based functional magnetic resonance imaging (fMRI) aimed at functional
connectivity is a direct method to investigate how the network is reorganized. However, such studies are
scarce and represented mostly by the resting-state analysis of the individual connections between
regions. To fill this gap, we used a graph-based analysis, which allows us to cover the total language-
related network changes, such as disruptions in an integration/segregation balance, during a language
task in TLE.
Methods: We collected task-based fMRI data with sentence completion from 19 healthy controls and 28
people with left TLE. Using graph-based analysis, we estimated how the language-related network seg-
regated into modules and tested whether they differed between groups. We evaluated the total network
integration and the integration within modules. To assess intermodular integration, we considered the
number and location of connector hubs—regions with high connectivity.
Results: The language-related network was differently segregated during language processing in the
groups. While healthy controls showed a module consisting of left perisylvian regions, people with TLE
exhibited a bilateral module formed by the anterior language-related areas and a module in the left tem-
poral lobe, reflecting hyperconnectivity within the epileptic focus. As a consequence of this reorganiza-
tion, there was a statistical tendency that the dominance of the intramodular integration over the total
network integration was greater in TLE, which predicted language performance. The increase in the num-
ber of connector hubs in the right hemisphere, in turn, was compensatory in TLE.
Significance: Our study provides insights into the reorganization of the language-related network in TLE,
revealing specific network changes in segregation and integration. It confirms reduced global connectiv-
ity and compensation across the healthy hemisphere, commonly observed in epilepsy. These findings
advance the understanding of the network-based reorganizational processes underlying language pro-
cessing in TLE.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

Temporal lobe epilepsy (TLE) is a common partial-onset epi-
lepsy with seizures arising from the temporal lobe [1]. As the tem-
poral lobe belongs to the language-related network, TLE, as a
network disorder, may modify its organization [2]. This was mainly
confirmed by studies using functional magnetic resonance imaging
(fMRI). While fMRI activation reported an engagement of addi-
tional regions in both hemispheres during language tasks in TLE
(for review, see [3]), it does not cover the interaction between
areas. Thus, these reorganizational processes remain unclear [4].

An alternative method to study reorganization is functional
connectivity (FC), which examines the communication between
areas based on fMRI timeseries [5]. Previous studies, mostly using
resting-state fMRI [6], revealed unique patterns of FC between
language-related regions in TLE [7]. These patterns reflected both
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a decrease [8,9] and an increase [10] in FC between language-
related regions. Although resting-state fMRI to a large extent char-
acterizes task-based networks, including the language-related net-
work [11], it still provides restricted information about such
networks without performing tasks [12]. Thus, task-based fMRI
aimed at FC is a direct way of analyzing the language-related net-
work [13] and its reorganization in TLE [14].

Task-based fMRI studies exploring reorganization within the
language-related network in TLE are limited (for review, see
[15]). Using a seed-based approach, Vlooswijk et al. [16] and Trim-
mel et al. [17] found a decrease in FC within frontotemporal areas
in people with TLE. Takaya et al. [18] and Foesleitner et al. [19]
revealed similar results, compensated by enhanced FC within the
left frontoparietal areas and between the left temporal and right
temporoparietal areas. These findings consistently highlighted
the reduction in FC between the perisylvian language areas in
TLE. However, the seed-based approach can only show shifts in
individual pairwise connections within the network in TLE. To
complement previous results, a graph-based analysis is required
to represent the topological changes in the language-related net-
work [6].

The graph-based analysis considers a network as a set of nodes
and edges representing the regions and interregional connections.
This approach allows us to gain insights into integration/segrega-
tion balance within the language-related network in healthy con-
trols and its disruption in TLE [20,21]. The segregation of the
network into modules allows for specialized processing within
each module [22], whereas the integration between modules
required for higher-order cognitive functions, including language,
is implemented via connector hubs, the nodes with high intermod-
ular connectivity [23]. As TLE appears as diminished long-range
connections and hyperconnectivity within the epileptic focus
[24], it may lead to disruptions in the modular structure and con-
nector hubs, reflecting the impact of seizures or compensatory
mechanisms and resulting in less efficient cognitive performance
[25]. The graph-based metrics can indicate these connectivity dis-
ruptions. Both global and local efficiency characterize the total net-
work integration and integration within modules, whereas their
difference can reveal integration/segregation imbalance. Therefore,
we conducted the graph-based analysis focusing on the integra-
tion/segregation balance in TLE, to better understand its
disruption.

Previously, Banjac et al. [26] reported the altered integration/
segregation balance in TLE using fMRI tasks based on the dynamic
interaction between language and memory [27]. While the segre-
gation was characterized by modules with anatomically closer
areas and diminished long-range connections, a shift in the inter-
modular integration was shown as an increase in the number of
connector hubs within non-language systems during the tasks.
These changes related to connector hubs can be interpreted as
potential compensation due to the observed modular reorganiza-
tion, aligning with previous studies [28–30]. However, Banjac
et al. [26] prioritized global changes in the integrated language-
and-memory network rather than within its two subsystems. As
a result, the obtained changes did not correlate with language per-
formance in TLE. That suggests that previous analysis might lack
sensitivity to more subtle changes within each network. Sensitivity
can be gained by analyzing the networks separately, thus, identify-
ing the modular structure of the language-related network and its
connector hubs without the influence of non-language systems.
However, to our knowledge, no graph-based studies specifically
focused on it.

Overall, the present study aimed to investigate changes within
the language-related network in TLE by applying graph-based
analysis to task-based fMRI. In fMRI, we used a sentence comple-
tion task [31], that engages core language processing in the ante-
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rior and posterior language-related regions while minimizing the
influence of other cognitive systems, including memory [32,33].
We expected that this approach would provide insights into the
reorganization specifically within the language-related network
in TLE and predict language performance. As reorganization pro-
gresses over time in TLE [24], we also tested the association
between epilepsy duration and network reorganization, and its
impact on predicting language performance.
2. Material and methods

2.1. Participants

Twenty-eight people with drug-resistant left TLE participated in
the study (14 females; age: mean = 37.6, SD = 6.2, range = 28–50;
age of onset: mean = 14.3, SD = 10.6, range = 0–42; duration:
mean = 21.6, SD = 13.3, range = 4–50). All were right-handed native
Russian speakers. They underwent presurgical assessment includ-
ing neurological examination, interictal/ictal video-EEG monitor-
ing, and magnetic resonance imaging (MRI) to define seizure
onset zones, at the National Medical and Surgical Center named
after N.I. Pirogov (Moscow, Russian Federation). MRI indicated
sclerosis in the left hippocampus (n = 20; one of these participants
also had focal cortical dysplasia in the insular cortex in both hemi-
spheres), sclerosis in both hippocampi (n = 1), gliosis in the left
temporal lobe (TL) (n = 4), encephaloceles in the left TL (n = 1) or
both TLs (n = 1); two participants were MR-negative (n = 2). Table 1
summarizes the demographic, clinical, and behavioral characteris-
tics of people with TLE.

Nineteen controls participated in the study (15 females; age:
mean = 40.7, SD = 6.5, range = 30–53). All were right-handed native
Russian speakers with no history of psychiatric or neurological dis-
eases. They underwent scanning at the National Medical and Sur-
gical Center named after N.I. Pirogov (Moscow, Russian
Federation). All people with TLE and controls gave written
informed consent. The study was approved by the ethical commit-
tee of the National Medical and Surgical Center named after N.I.
Pirogov.

2.2. Language task

Participants performed a block-designed language paradigm
with alternating experimental and baseline blocks [31]. The exper-
imental block was a sentence completion task, in which partici-
pants had to read aloud a visually presented sentence and
complete it with a semantically and grammatically appropriate
final word (direct object of the verb; for example, Umnaya sosedka
prochla . . . – ‘‘A clever neighbor read . . .”). During the baseline block,
participants had to read aloud one syllable repeated three times
(for example, Peeeee peeeeeeeeee peeeeeee peeeeeee. . .) and repeat
this syllable one more time. Each block lasted 21 s and consisted
of three stimuli presented for 5 s and separated by an inter-
stimulus interval when an exclamation mark was presented for
2 s. The scanning session included 120 stimuli (60 in the experi-
mental blocks and 60 in the baseline blocks), and lasted 14 min
56 s.

2.3. Magnetic resonance imaging acquisition

We acquired MRI data on a 3 T Siemens Magnetom Skyra MRI
scanner with a 20-channel head coil. First, structural T1-images
were obtained using a 3D gradient-echo (MP-RAGE) sequence with
TR = 2200 ms; TE = 2.4 ms; flip angle = 8�. Each T1-image contained
144 axial slices (no gap) with FOV = 320 � 320 mm2 and spatial
resolution = 1.0 � 1.0 � 1.0 mm3. Then, fMRI data (128 functional



Table 1
Demographic, clinical, and behavioral characteristics of people with TLE.

Demographic characteristics Clinical characteristics Behavioral characteristics

ID Age,
gender

Diagnosis Handedness Pre-operative MRI/
Pathology

Age of onset,
years

Epilepsy duration,
years

Response accuracy,
%

Response time,
ms

1 36, F TLE-L R HS-L 7 29 91.7 559.1
2 32, M TLE-L R MRI-negative 21 11 66.7 625.7
3 34, F TLE-L R EC; TL-L 22 12 78.4 741.4
4 45, M TLE-L R FCD; InsL-L/R HS; L 5 40 91.5 772.8
5 44, M TLE-L R HS-L 19 25 71.7 704.9
6 35, F TLE-L R HS-L 10 25 NA NA
7 35, M TLE-L R Gliosis; TL-L 0 35 88.3 574.9
8 30, M TLE-L R HS-L 23 7 91.7 563.5
9 47, M TLE-L R HS-L 7 40 15.0 673.6
10 46, F TLE-L R Gliosis; TL-L 42 4 88.1 543.2
11 44, M TLE-L R HS-L 0 44 93.3 614.2
12 50, M TLE-L R HS-L 0 50 60.0 522.9
13 32, F TLE-L R HS-L 0 32 NA NA
14 35, F TLE-L R MRI-negative 12 23 78.3 668.9
15 32, M TLE-L R HS-L/R 28 7 55.0 553.0
16 42, M TLE-L R HS-L 19 23 81.7 601.3
17 35, F TLE-L R EC; TL-L/R 29 6 88.3 571.7
18 37, M TLE-L R Gliosis; TL-L 30 7 65.0 627.1
19 48, F TLE-L R HS-L 7 41 NA NA
20 34, F TLE-L R HS-L 1 33 NA NA
21 33, M TLE-L R HS-L 2 31 55.2 534.4
22 35, F TLE-L R HS-L 2 33 91.7 613.4
23 39, F TLE-L R HS-L 19 20 96.7 470.1
24 28, M TLE-L R Gliosis; TL-L 18 10 91.7 412.5
25 43, F TLE-L R HS-L 14 29 95.0 476.4
26 41, F TLE-L R HS-L 18 23 98.3 613.3
27 29, F TLE-L R HS-L 1 28 96.7 447.7
28 33, M TLE-L R HS-L 24 9 86.7 586.4

Note. F/M = female/male; L/R = left/right; TL/InsL = temporal/insular lobe; TLE = temporal lobe epilepsy; FCD = focal cortical dysplasia; EC = encephalocele; HS = hippocampal
sclerosis; NA = not available.
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volumes) were collected during the language task using an EPI
sequence with TR = 7000 ms; TE = 30 ms; flip angle = 90�. Each
functional image contained 30 axial slices (no gap) with FOV = 2
05 � 205 mm2 and spatial resolution = 3.0 � 3.0 � 3.75 mm3.
We applied sparse sampling acquisition to record the participant’s
overt responses in intervals equal to TR delay = 5000 ms.

2.4. Behavioral data

Auditory responses were recorded and transcribed for all partic-
ipants, except for two controls and four people with TLE due to
technical errors. Response accuracy (RA) was assessed by two inde-
pendent raters as the ratio of correct responses to the total number
of responses. Responses were considered correct if they repre-
sented grammatically and semantically appropriate sentence com-
pletions. Response time (RT) was assessed by one rater using Praat,
version 6.3.09 (https://www.fon.hum.uva.nl/praat/) as an interval
between the start of the stimulus presentation and the response
completion. Details of the estimation of RA and RT are presented
in Elin et al. [31]. To test whether RA and RT differed between
the groups, we used Mann-Whitney U tests.

2.5. fMRI preprocessing

We discarded the first eight volumes of task-based fMRI data
corresponding to task instructions and despiked the remaining
volumes in AFNI-21.3.13 [34] with 3dDespike. We preprocessed
T1-images and task-based fMRI data using fMRIPrep-20.2.6 [35].
Details of the pipeline are presented in the Supplementary Meth-
ods. Briefly, correction for intensity non-uniformity, skull stripping,
and brain tissue segmentation of cerebrospinal fluid, white matter,
and grey matter were performed on T1-images. Skull stripping,
slice-timing, and fieldmap-less susceptibility distortion correction
3

were performed on fMRI data. T1-images and fMRI data were spa-
tially normalized to the MNI template. Following the denoising
strategy for task-based FC [36], we regressed out 24 realignment
parameters of head motion (six rotational and translational param-
eters, temporal derivatives, and their squared terms), global signal,
and the top five anatomical components for white matter with the
top five anatomical components for cerebrospinal fluid obtained
from the principal component analysis. To account for signal drifts,
we excluded 18 discrete cosine-basis regressors. fMRI data were
smoothed with a 6-mm FWHM isotropic Gaussian kernel.
2.6. Graph-based analysis of the language-related network

The language-related network was defined as 36 ROIs com-
prised of 18 core language-related regions in the left hemisphere,
taken from Labache et al. [37], and their homologs. We averaged
functional time-series extracted from preprocessed fMRI data in
AFNI with 3dmaskdump across all voxels within each ROI. We per-
formed the correlational psychophysiological interaction (cPPI) on
the timeseries using the ‘cPPI’ toolbox [38] in MATLAB R2021a
(MathWorks; Natick, MA, USA). For each ROI, timeseries were first
deconvolved with the canonical hemodynamic response function
(HRF) to represent the underlying neural activity [39]. Then, the
deconvolved timeseries were multiplied with the design variable
(sentence completion > syllables) and convolved back with the
canonical HRF to form a cPPI term. Thus, we calculated an undi-
rected symmetrical connectivity 36 � 36 matrix for each partici-
pant containing partial correlations across all pairs of the 36
ROIs. The correlational coefficients within each matrix, except for
the diagonal elements, were Fisher-transformed to z-scores. We
set their negative values to zero [40], leaving only positive
weighted values in the connectivity matrices.

https://www.fon.hum.uva.nl/praat/


V. Karpychev, S. Malyutina, A. Zhuravleva et al. Epilepsy & Behavior 147 (2023) 109407
2.6.1. Graph-based system segregation
To identify the modular structure of the language-related net-

work in each group, we applied the Louvain algorithm to the con-
nectivity matrices. To increase the robustness of the results, we
repeated the algorithm at a set of proportional thresholds
(range = 1–99% in 1% increment [41]) and implemented the con-
sensus approach [42]. Thus, we obtained a stable structure at the
individual level. To obtain the final modular structure for each
group, we again implemented the consensus approach across all
participants.

For people with TLE, we extracted the modularity index (Q),
which measures the degree of network division into modules
obtained across all thresholds. Then, we correlated Q with lan-
guage performance. To compare the modular structures between
the groups, we used the variation of information (VIn), a measure
of the information required to represent two partitions through
each other [43]. We obtained the significance of VIn through a per-
mutation procedure. Details of the modular structure detection
and their comparison are presented in the Supplementary
Methods.

2.6.2. Graph-based system integration
After the modular structure detection in each group, we applied

a set of proportional thresholds (range = 5–20% in 5% increment) to
each connectivity matrix to remove spurious connections [6]. We
calculated the graph-based metrics on matrices obtained at each
threshold, then averaged the results across the set of thresholds
[44].

For each participant, we estimated global efficiency (Eglob) and lo-
cal efficiency (Eloc) as metrics of the total network integration and
averaged intramodular integration, respectively [45]. We also mea-
sured the integration-segregation balance (IS) [10] as the difference
between Eglob and Eloc.

To examine intermodular integration, we identified connector
hubs using the participant coefficient (PC) and intra-community
degree (z) metrics [46]. Details of the metric estimation are pre-
sented in the Supplementary Methods. Nodes with PC and z values
higher than 0 were defined as connector hubs. We extracted the
number of connector hubs in both hemispheres (Nhubs), the left
(Nhubs-L) and right (Nhubs-R) hemisphere. At the group level, we
identified a node as a connector hub if the frequency of its occur-
rence as a connector hub across participants was found to be an
outlier. According to Leys et al. [47], we used median absolute devi-
ation (MAD) for robust outlier detection. The threshold of the
detection was the sum of the median and 2.5 times theMAD, which
was considered to be moderately conservative [47].

2.7. Statistical analyses

All statistical analyses were performed in RStudio, version 4.2.0
(https://www.rstudio.com). To test whether epilepsy duration and
age of onset were associated with Q, Eglob, Eloc, IS, Nhubs, Nhubs-L, and
Nhubs-R in people with TLE, Pearson’s correlation coefficients were
calculated, with the level of significance adjusted for seven tests,
a = 0.05/14 = 3.5 � 10�3 (Bonferroni correction). To test whether
Eglob, Eloc, IS, Nhubs, Nhubs-L, and Nhubs-R differed between controls
and people with TLE, two-sample t-tests were used, with the level
of significance adjusted for six tests, a = 0.05/6 = 0.008 (Bonferroni
correction).

To assess the association between language performance (RA,
RT) and the graph-based metrics, as well as their interaction with
epilepsy duration in TLE, we used two multiple linear regressions.
As epilepsy duration was correlated with age of onset (r = �0.89,
p < 0.001), we did not consider the interaction of the graph-
based metrics with age of onset in the multiple linear regressions.
Given that IS and Nhubs represented linear combinations of Eglob
4

with Eloc, and Nhubs-L with Nhubs-R, respectively, multicollinearity
could have resulted in the false-negative inferences in the regres-
sions while considering all graph-based metrics [48]. Therefore,
we first estimated the multicollinearity of all graph-based
metrics using the squared generalized variance inflation factor
(GVIF(1/(2�df))) [48]. According to Dormann et al. [49], we used a
value of GVIF(1/(2�df)) = 5 as a threshold that indicated
multicollinearity.
2.8. Data and code availability

The raw datasets are not publicly available due to containing
sensitive personal information. Preprocessed data can be found
online at DOI (https://doi.org/10.17605/OSF.IO/F4JR3). The code is
publicly available (https://github.com/vkarpychev/Graph-analy-
sis-of-language-network).
3. Results

3.1. Demographic and behavioral characteristics

A two-sample t-test revealed no significant difference between
controls and people with TLE in age (t (46) = 1.7, p = 0.09) and a chi-
square test revealed no significant difference in gender distribution
(v2

(1,48) = 3.3, p = 0.07). Mann-Whitney U tests revealed that RA was
significantly higher in controls (M = 98.1%, SD = 13.4%) than people
with TLE (M = 79.9%, SD = 19.3%), z = 4.3, p < 0.001. No difference
was found in RT between controls (M = 609.2 s, SD = 79.6 s) and peo-
ple with TLE (M = 586.5 s, SD = 88.3 s), z = 0.70, p = 0.48.
3.2. Graph-based analysis of the language-related network

3.2.1. Graph-based system segregation
Fig. 1 shows the modular structures and connectivity matrices

within the language-related network. The language-related net-
work in both groups was segregated into four modules. We found
no difference in VIn = 0.38, p = 0.41 between the modular struc-
tures in the groups. However, both groups had unique modules.
Controls found a left-lateralized module (module-3) comprising
perisylvian language areas, except for two regions in the right
superior temporal lobe. People with TLE, in turn, reported a unique
module consisting of areas in the left temporal lobe only (module-
4). Table S1 presents the modular structures for both groups. No
associations were found between Q and epilepsy duration,
r = �0.03, p = 0.89, as well as age of onset, r = 0.03, p = 0.89.
3.2.2. Graph-based system integration
No association was found between Eglob, Eloc, IS, Nhubs, Nhubs-L,

Nhubs-R and epilepsy duration, as well as age of onset in people with
TLE (Fig. 2). Table 2 presents the results of two-sample t-tests com-
paring the graph-based metrics between controls and people with
TLE. Nhubs-R was significantly lower in controls (M = 3.1, SD = 1.2)
than people with TLE (M = 4.7, SD = 1.7), t (45) = �3.5, p < 0.001. Dif-
ferences in IS and Nhubs reached the significance level a = 0.05, but
not the Bonferroni-corrected significance level (a = 0.008). Fig. 2
shows the distributions of the graph-based metrics.

Distributions of the graph-based metrics and their correlations
to epilepsy duration.

Eglob = global efficiency; Eloc = local efficiency; IS = integration-
segregation balance; Nhubs = the number of connector hubs;
Nhubs-L = the number of connector hubs in the left hemisphere;
Nhubs-R = the number of connector hubs in the right hemisphere;
ED = epilepsy duration; AO = age of onset.

*Difference significant at a = 0.008 Bonferroni-corrected.
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Fig. 1. Modular structures of the language-related network in healthy controls and people with TLE. (A) Connectivity matrices averaged across participants in each group and
across a set of proportional thresholds (range = 1–99% in 1% increment). Dotted squares indicate unique modules for each group: module-3 in healthy controls, module-4 in
people with TLE. (B) Spatial distribution of the modular structure in each group. Each color indicates a single module in each group.
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In controls, the connector hubs identified as outliers using MAD
[47] were pars opercularis and two regions in the superior tempo-
ral sulcus (STS) in the left hemisphere, as well as supramarginal
gyrus and a region in STS in the right hemisphere. In people with
TLE, connector hubs were the precentral gyrus and two regions
in STS in the left hemisphere, as well as the anterior insula in the
right hemisphere. Fig. 3 shows the identified connector hubs.
3.2.3. Associations of language performance with the graph-based
metrics in people with TLE

We estimated GVIF(1/(2�df)) of all graph-based metrics. The val-
ues of GVIF(1/(2�df)) > 105 for Nhubs-L, Nhubs-R, and Nhubs; GVIF(1/
(2�df)) = 17.8 for Eglob; 32.6 for Eloc; 31.7 for IS exceeded the thresh-
old (GVIF(1/(2�df)) = 5), indicating the multicollinearity. Given that IS
and Nhubs represented linear combinations of Eglob with Eloc,
and Nhubs-L with Nhubs-R, respectively, we removed Eglob, Eloc,
5

and Nhubs-L, Nhubs-R to avoid multicollinearity resulting in false-
negative inferences in the multiple linear regressions.

Thus, we built two multiple linear regressions with either RA or
RT as dependent variables and the graph-based metrics (Q, IS,
Nhubs), as well as their interaction with epilepsy duration as inde-
pendent variables. We mean-centered all graph-based metrics
and adjusted the level of significance for two multiple linear
regressions, a = 0.05/2 = 0.025 (Bonferroni correction). Table 3 pre-
sents the results of the multiple linear regressions examining the
associations of RA and RT with the graph-based metrics in people
with TLE. We did not detect multicollinearity in these multiple lin-
ear regressions. Greater RAwas significantly associated with higher
IS (b = 454.4, SE = 164.1, t (14) = 2.8, p = 0.014) and higher value of
interaction between IS and epilepsy duration (b = 580.4, SE = 153.0,
t (14) = 3.8, p = 0.002): that is, the reduction in ISwith epilepsy dura-
tion predicted lower RA. There were no associations between RT
and the graph-based metrics.



Fig. 2. Graph-based metrics between healthy controls and people with TLE. Eglob = global efficiency; Eloc = local efficiency; IS = integration-segregation balance; Nhubs = the
number of connector hubs; Nhubs-L = the number of connector hubs in the left hemisphere; Nhubs-R = the number of connector hubs in the right hemisphere; ED = epilepsy
duration; AO = age of onset.
*Difference significant at a = .008 Bonferroni-corrected.
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Table 2
Results of two-sample t-tests comparing the graph-based metrics of the language-related network between healthy controls and people with TLE.

Graph-based metrics Controls People with TLE T (45) p

M SD M SD

Eglob 0.10 0.01 0.09 0.01 1.8 0.08
Eloc 0.13 0.01 0.13 0.02 �1.4 0.18
IS �0.03 0.01 �0.04 0.02 2.3 0.02
Nhubs 8.2 1.6 9.4 2.1 �2.0 0.05
Nhubs -L 5.1 1.5 4.6 1.7 1.0 0.33
Nhubs -R 3.1 1.2 4.7 1.7 �3.5 < 0.001*

Note. Eglob = global efficiency; Eloc = local efficiency; IS = integration-segregation balance; Nhubs = the number of connector hubs; Nhubs-L = the number of connector hubs in the
left hemisphere; Nhubs-R = the number of connector hubs in the right hemisphere.

* Difference significant at a = 0.008 Bonferroni-corrected.

Fig. 3. Connector hubs in healthy controls and people with TLE. F3O1 = pars opercularis; STS2, STS3, STS4 = areas in the superior temporal sulcus; SMG7 = supramarginal
gyrus; prec4 = precentral sulcus; INSa3 = anterior insula.

Table 3
Results of the multiple linear regressions examining the associations of RA and RT with the graph-based metrics in people with TLE.

b SE t(14) p GVIF(1/(2�df))

RA
(Intercept) 81.3 3.2 25.5 <0.001* NA
IS 454.4 164.1 2.8 0.014* 1.29
Q 76.8 50.1 1.5 0.14 1.21
Nhubs 1.9 1.6 1.1 0.27 1.28
duration 2.4 4.2 0.6 0.58 1.85
IS � duration 580.4 153.0 3.8 0.002* 1.26
Q � duration �31.62 49.25 �0.6 0.53 1.34
Nhubs � duration 1.80 1.98 0.9 0.38 2.05
RT
(Intercept) 584.3 21.4 27.3 <0.001* –
IS �375.9 1102.8 �0.3 0.74 –
Q �130.6 336.5 �0.4 0.70 –
Nhubs �1.4 11.0 �0.1 0.90 –
duration 3.39 28.4 0.12 0.91 –
IS � duration 55.9 1028.4 0.05 0.96 –
Q � duration 236.4 331.0 0.7 0.49 –
Nhubs � duration �4.47 13.3 �0.3 0.74 –

Note. RA = response accuracy; RT = response time; IS = integration-segregation balance (Eglob � Eloc); Q = modularity index; Nhubs = the number of connector hubs;
duration = epilepsy duration; SE = standard error; GVIF(1/(2�df)) = squared generalized variance inflation factor (identical values for two multiple linear regressions); NA = not
available.

* Predictors significant at a = 0.025 Bonferroni-corrected.
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4. Discussion

The study investigated the reorganization of the language-
related network in people with TLE. Applying graph-based analysis
to task-based fMRI, we found how the language-related network
was segregated into modules in each group and compared integra-
tion in the total network and within the modules between the
groups. Differences in the intermodular integration were assessed
by comparing the number and location of connector hubs [20,21].
To increase the sensitivity to characteristics of the language-
related network, we used a sentence completion task engaging
core language processing. Given that TLE affects language func-
tions [50], we analyzed the relation between the graph-based met-
rics and language performance in people with TLE.

We first explored the effect of TLE on the segregation into mod-
ules in the language-related network. We found no difference in
the variance of information (VIn) between the modular structures
of the groups [43]. While VIn, as a quantitative metric, does not
reflect the role of the regions, perisylvian language areas were seg-
regated differently in the groups. During language processing in
controls, perisylvian language areas, including pars triangularis,
the supramarginal gyrus, and regions of the superior and middle
temporal gyri, are grouped into a left-lateralized module. Consis-
tent with the reduced role of long-range connections in TLE
[24,26], we did not find such module in people with TLE. Instead,
part of perisylvian language areas – pars triangularis, pars opercu-
laris, and anterior regions in the superior temporal gyrus, together
with their homologs, formed a bilateral module. This suggests
potential compensation with the right hemisphere involvement
[28]. The posterior language-related areas close to the epileptic
focus, in turn, formed a unique left-lateralized module. Thus, these
changes in the modular structure in TLE were indicative of dimin-
ished long-range connections and hyperconnectivity within the
epileptic focus [24].

These altered connectivity patterns observed in our study in TLE
are thought to be interrelated and enhanced with epilepsy dura-
tion and seizure frequency [24]. Our results were consistently sup-
ported by previous studies [10,51,52] and can be interpreted in line
with ‘‘the network inhibition hypothesis” [53]. According to this
hypothesis, during the propagation of ictal activity beyond the
temporal lobe to the subcortical structures – thalamus and brain-
stem reticular activation system, their excitatory signals to the
neocortex become disrupted [51]. Due to this altered input, the
neocortex shifts into the deactivated state. Under recurrent sei-
zures, it leads to connectivity reorganization over time with
reduced long-range connections. Conversely, there appears to be
hyperconnectivity within the epileptic focus in TLE. Even though
hyperconnectivity can be explained by growing new synapses
and axonal sprouting [54], the mechanisms underlying the dimin-
ished long-range connections are not fully understood. It is unclear
whether they reflect a direct consequence of ictal activity or an
adaptive mechanism to prevent seizure propagation [24].

Despite this connectivity reorganization under recurrent sei-
zures, we revealed no difference in the network integration (Eglob)
and averaged intramodular integration (Eloc) between controls and
people with TLE based on their modular structures. These findings
are consistent with Roger et al. [10], who found no difference in
Eglob and Eloc within the language-and-memory network between
these groups using resting-state fMRI. However, we observed that
IS, the contrast between Eglob and Eloc, was shifted more to Eloc in
people with TLE, which did not reach significance after multiple
testing corrections. Thus, we found a statistical tendency that the
dominance of the intramodular integration over the total network
integration was greater in TLE. To our knowledge, no graph-based
studies revealed such imbalance within the language-related net-
work. However, this is consistent with a common observation of
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reduced global connectivity [20,24] and increased local connectiv-
ity in epilepsy represented, respectively, by Eglob and Eloc in our
study. The increased local connectivity is, in turn, indicative of
hyperconnectivity within the epileptic focus described above, as
well as greater total network segregation in epilepsy [55,56]. As
both phenomena were mostly confirmed using resting-state fMRI
[8–10] (for review, see [15]), further graph-based studies need to
confirm this statistical tendency of the alteration in TLE relying
on task-based fMRI [14].

We described the intermodular integration via connector hubs
found in the left temporal lobe in both groups. In people with
TLE, additional connector hubs were the precentral gyrus in the left
hemisphere and anterior insula in the right hemisphere, whereas
pars opercularis in the left hemisphere and supramarginal gyrus
with a region in STS in the right hemisphere were connector hubs
only in healthy controls. Moreover, the groups differed in the num-
ber of connector hubs (Nhubs). While there was no difference in the
left hemisphere, their number in the right hemisphere (Nhubs-R)
significantly increased in people with TLE. Together, this supports
the idea that TLE primarily disrupts the functioning of hubs due
to the high cost of their connecting role [57,58]. The increase of
Nhubs-R agrees with Banjac et al. [26], who reported such gain in
the dorsal attention network in TLE during language and memory
tasks. This reflects an engagement of additional non-language sys-
tems, including the right hemisphere [28], accompanied by a
decrease in FC within the left frontotemporal areas [16–19].
Although this increase in Nhubs-R did not predict language perfor-
mance in our study, it can serve as compensation, because bilateral
reorganization was shown to be associated with greater cognitive
performance [29,30]. However, the exact role of such reorganiza-
tion in left TLE remains unclear. Given the left-hemispheric lateral-
ization of language processing, Takaya et al. [18] pointed out that
enhanced FC within left frontoparietal areas can be more likely
compensation than bilateral reorganization. Further studies are
needed to clarify the compensatory mechanism in TLE.

Finally, considering the graph-based segregation and integra-
tion metrics, we found that reduced IS, that is, a shift towards
the intramodular integration relative to total network integration,
predicted lower RA in TLE. Moreover, the greater reduction in IS
with epilepsy duration predicted lower RA. This is consistent with
Vlooswijk et al. [16] and Trimmel et al. [17], who, using seed-based
fMRI, reported that FC predicted language performance. However,
in contrast to the graph-based analysis, seed-based fMRI focused
only on individual pairwise connections [6]. Applying the graph-
based analysis to resting-state fMRI, Roger et al. [10] reported that
the individual integration of the regions within the language-and-
memory network predicted cognitive performance, whereas the
network changes did not. Struck et al. [52] reported the opposite
effect of the network changes. Both reduced global clustering coef-
ficient and increased rich club proportion, as the graph-based met-
rics, predicted lower multi-domain cognitive performance in TLE.
As both metrics represented the total network integration and seg-
regation into modules, our prediction of RA is consistent with
Struck et al. [52]. These results align with ‘‘the network inhibition
hypothesis” [53], which posits that recurrent seizures affect the
connectivity organization, including long-range connections,
required for higher-order cognitive functions [24]. But, in contrast
to Struck et al. [52], we used task-based fMRI instead of resting-
state fMRI. Thus, we complemented previous studies by providing
evidence for the relation between network changes and language
performance during a task in TLE. To our knowledge, only one
study previously applied the graph-based analysis to language
task-based fMRI but did not find such an association in TLE [26].
While Banjac et al. [26] considered the language-and-memory net-
work based on the dynamic interaction between both functions,
we focused on core language processing and respective networks
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via sentence completion in fMRI. As a result, we gained sensitivity
to more subtle changes within the language-related network in
TLE, allowing to predict language performance.

We acknowledge some limitations in our study. Due to the lim-
ited sample size, we did not investigate differences in the reorgani-
zation depending on the underlying pathologies of TLE [19].
Therefore, further studies need to specify our findings regarding
the pathologies. Also, we did not consider seizure frequency and
anti-epileptic medications as predictors, but they may influence
the graph-based metrics [16]. Although we followed a common
practice of removing negative connections from the connectivity
matrices according to Wang et al. [40], such connections may pro-
vide relevant information about network organization [59]. Finally,
our results were dependent on the choice of proportional thresh-
olds applied to the connectivity matrices [60]. However, we believe
that averaging the graph-based metrics across different propor-
tional thresholds minimized the potential bias related to thresh-
olding. Further studies should address these limitations.
5. Conclusions

This is the first graph-based study that specifically investigated
language-related network reorganization in TLE using task-based
fMRI. During core language processing, people with TLE exhibited
a bilateral module formed by the anterior language-related areas
and a module in the left temporal lobe, reflecting hyperconnectiv-
ity within the epileptic focus. However, they did not show a left-
lateralized module consisting of left perisylvian language areas
found in healthy controls. As a consequence of this reorganization,
we observed a statistical tendency that a shift towards the
intramodular integration relatively the total network integration
was greater in TLE, which predicted language performance, as well
as possible compensation via the increase in the number of con-
nector hubs in the right hemisphere.
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