Gradedness of the set of rook placements in A_{n-1}

Mikhail V. Ignatev

Abstract

A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in A_{n-1} with respect to a slightly different order and prove that this poset is graded.

1 Introduction

Denote by $G=\mathrm{GL}_{n}(\mathbb{C})$ the group of all invertible $n \times n$ matrices over the complex numbers. Let B be the Borel subgroup of G consisting of all invertible uppertriangular matrices, U be the unipotent radical of B (it consists of all uppertriangular matrices with 1's on the diagonal), and T be the subgroup of all invertible diagonal matrices (it is the maximal torus of G contained in B). Next, let \mathfrak{b} and \mathfrak{n} be the Lie algebras of B and U respectively.

Let Φ be the root system of G with respect to T, Φ^{+}be the set of positive roots with respect to B, Δ be the set of simple roots, and W be the Weyl group of Φ (for basic facts on algebraic groups and root systems, see [3], [4] and [5]). The root system Φ is of type A_{n-1}; as usual, we identify the set of positive roots with the subset of the Euclidean space \mathbb{R}^{n} of the form

$$
A_{n-1}^{+}=\left\{\epsilon_{i}-\epsilon_{j}, 1 \leqslant i<j \leqslant n\right\}
$$

Under this identification, Δ consists of the roots $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}, 1 \leqslant i \leqslant n-1$ $\left(\left\{\epsilon_{i}\right\}_{i=1}^{n}\right.$ is the standard basis of $\left.\mathbb{R}^{n}\right)$.

[^0]Definition 1. A rook placement is a subset $D \subseteq \Phi^{+}$such that $(\alpha, \beta) \leqslant 0$ for all distinct $\alpha, \beta \in D$. (Here (\cdot, \cdot) denotes the standard inner product on \mathbb{R}^{n}.)

Example 1. Let $n=6$. Below we draw the rook placement $D=\left\{\epsilon_{1}-\epsilon_{3}, \epsilon_{2}-\right.$ $\left.\epsilon_{6}, \epsilon_{3}-\epsilon_{5}\right\}$. If a root $\epsilon_{i}-\epsilon_{j}$ is contained in D, then we put the symbol \otimes in the (j, i) th entry of the $n \times n$ chessboard. If we interpret these symbols as rooks, then it follows from the definition that the rooks do not hit each other.

We denote the set of all rook placement in A_{n-1} by $\mathcal{R}(n)$. Further, let $\mathcal{I}(n)$ be the set of all orthogonal rook placements. Below we describe two closely related partial orders on these sets.

The Lie algebra \mathfrak{n} has the basis $\left\{e_{\alpha}, \alpha \in \Phi^{+}\right\}$consisting of the root vectors: for $\alpha=\epsilon_{i}-\epsilon_{j}, e_{\alpha}$ is nothing but the elementary matrix $e_{i, j}$. Denote by $\left\{e_{\alpha}^{*}, \alpha \in \Phi^{+}\right\}$ the dual basis of the dual space \mathfrak{n}^{*}. Given a rook placement D, put

$$
f_{D}=\sum_{\beta \in D} e_{\beta}^{*} \in \mathfrak{n}^{*}
$$

The group B acts on its Lie algebra \mathfrak{b} by the adjoint action, and \mathfrak{n} is an invariant subspace. Hence one has the dual action of the groups B and U on the space \mathfrak{n}^{*}; we call this action coadjoint. We say that the B-orbit $\Omega_{D} \subset \mathfrak{n}^{*}$ of the linear form f_{D} is associated with the rook placement D.

Such orbits play an important role in the A.A. Kirillov's orbit method [14], [15] describing representations of B and U. For $D \in \mathcal{I}(n)$, such orbits were studied by A.N. Panov in [18] and by me in [6]. One can define analogues of such orbits for other root systems, see [7], [8], [9] for the case of $\mathcal{I}(n)$. For arbitrary rook placements in $\mathcal{R}(n)$, such orbits were considered in [10]; see also [1], [2], where C. Andre and A. Neto used rook placements to construct so-called supercharacter theory for the group U. Note that in [16], [17], A. Melnikov studied the adjoint B-orbits of elements of the form $\sum_{\beta \in D} e_{\beta}, D \in \mathcal{I}(n)$.

Given a subset $A \subseteq \mathfrak{n}^{*}$, we will denote by \bar{A} its closure with respect to the Zarisski topology. There exists a natural partial order on the set $\mathcal{R}(n)$ induced by the degenerations of associated orbits: we will write $D_{1} \leqslant{ }_{B} D_{2}$ if $\Omega_{D_{1}} \subseteq \bar{\Omega}_{D_{2}}$. We need to introduce one more partial order on the set of rook placements. Namely, given an arbitrary $D \in \mathcal{R}(n)$, denote by R_{D} the $n \times n$ matrix defined by

$$
\left(R_{D}\right)_{i, j}= \begin{cases}\#\left\{\epsilon_{a}-\epsilon_{b} \in D \mid a \leqslant j, b \geqslant i\right\}, & \text { if } i>j \\ 0 & \text { otherwise }\end{cases}
$$

Put $D_{1} \leqslant D_{2}$ if $\left(R_{D_{1}}\right)_{i, j} \leqslant\left(R_{D_{2}}\right)_{i, j}$ for all i, j.
Example 2. Let $n=4, D_{1}=\left\{\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{4}\right\}, D_{2}=\left\{\epsilon_{1}-\epsilon_{3}, \epsilon_{2}-\epsilon_{4}\right\}$. Then

$R_{D_{1}}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right)$,

$$
R_{D_{2}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

We conclude that $D_{1} \leqslant D_{2}$. On the other hand, it is easy to check that $D_{1} \not \star_{B} D_{2}$, see
[10, Remark 1.6 (iii)], so these two partial orders on $\mathcal{R}(n)$ do not coincide.
Nevertheless, it turns out that these orders are closely related to each other. Precisely, given rook placements $D_{1}, D_{2} \in \mathcal{R}(n)$, it follows from $D_{1} \leqslant_{B} D_{2}$ that $D_{1} \leqslant D_{2}$ [10, Theorem 1.5]. Furthermore, if $D_{1}, D_{2} \in \mathcal{I}(n)$ then the conditions $D_{1} \leqslant B D_{2}$ and $D_{1} \leqslant D_{2}$ are equivalent [6, Theorem 1.7]. Besides, given a rook placement

$$
D=\left\{\epsilon_{i_{1}}-\epsilon_{j_{1}}, \ldots, \epsilon_{i_{l}}-\epsilon_{j_{l}}\right\}
$$

we denote by $w_{D} \in S_{n}$ the permutation, which is equal to the product of transpositions

$$
w_{D}=\left(i_{1}, j_{1}\right) \ldots\left(i_{l}, j_{l}\right) .
$$

Now, both of the conditions above (for orthogonal rook placements D_{1}, D_{2}) are equivalent to the condition that $w_{D_{1}}$ is less or equal to $w_{D_{2}}$ with respect to the Bruhat order [6, Theorem 1.1]. Similar facts are true for orthogonal rook placements in the root system C_{n}, see [7]. Note that these results are in some sense "dual" to A. Melnikov's results.

In the paper [12], F. Incitti studied the order on $\mathcal{I}(n)$ induced by the Bruhat order on the elements $w_{D}, D \in \mathcal{I}(n)$, from purely combinatorial point of view (see also [11] for other classical root systems). In particular, given an orthogonal rook placement D, he explicitly described the set of its immediate predecessors (it consists of $D^{\prime} \in \mathcal{I}(n)$ such that there exists an edge from D^{\prime} to D in the Hasse diagram of this poset). The set of immediate predecessors for the partial order \leqslant on $\mathcal{I}(n)$ and $\mathcal{R}(n)$ was described by me in [6, Lemmas $3.6,3.7,3.8]$ and by A.S. Vasyukhin and me in [10, Theorem 3.3] respectively. (In the case of $\mathcal{I}(n)$, the set of immediate predecessors for \leqslant coincides with the set described by F. Incitti, which implies that those two partial orders coincide.)

Furthermore, F. Incitti proved that the poset $\mathcal{I}(n)$ is graded and calculated its Möbius function. Recall that a finite poset X is called graded if it has the greatest and the lowest elements and all maximal chains in X have the same length. Gradedness is equivalent to the existence of a rank function. By definition, it is a (unique) function ρ on X, which value on the lowest element is zero, such that if x is an immediate predecessor of y then $\rho(y)=\rho(x)+1$. In [12, Theorem 5.2], F. Incitti constructed the rank function on $\mathcal{I}(n)$. As the main result of this paper, we prove the gradedness of the poset $\mathcal{R}(n)$.

The main tool used in the proof is so-called Kerov placements (see [13]). To each rook placement $D \in \mathcal{R}(n)$ one can assign a certain orthogonal rook placement $K(D) \in \mathcal{I}(2 n-2)$. We prove that if rook placements D_{1} is an immediate predecessor of D_{2} in $\mathcal{R}(n)$ then $K\left(D_{1}\right)$ is an immediate predecessor of $K\left(D_{2}\right)$ in $\mathcal{I}(2 n-2)$ (and vice versa), see Theorem 3. As a corollary, we construct a rank function on $\mathcal{R}(n)$ and prove the gradedness of this poset, see Corollary 1.

The structure of the paper is as follows. In the next section we describe the set of immediate predecessors of a given rook placement for $\mathcal{I}(n)$ and $\mathcal{R}(n)$. In the third section we introduce the Kerov map

$$
K: \mathcal{R}(n) \rightarrow \mathcal{I}(2 n-2)
$$

and show that it preserves the property "to be an immediate predecessor". This allows us to use F . Incitti's results to construct a rank function on $\mathcal{R}(n)$, which implies the gradedness of this poset.

2 Immediate predecessors

To prove that the set $\mathcal{R}(n)$ is graded with respect to the partial order introduced above, we need to describe the set of immediate predecessors of a given rook placement in $\mathcal{R}(n)$ and $\mathcal{I}(n)$. Such a description for $\mathcal{R}(n)$ was provided in [10], while for $\mathcal{I}(n)$ it was presented in F. Incitti's work [12]. Recall that a rook placement $D \in \mathcal{R}(n)$ is called an immediate predecessor of a rook placement $T \in \mathcal{R}(n)$ if $D<T$ and there are no $S \in \mathcal{R}(n)$ such that $D<S<T$. (As usual, $D<T$ means that $D \leqslant T$ and $D \neq T$.) In other words, there exists an oriented edge from D to T in the Hasse diagram of the poset $\mathcal{R}(n)$. The definition of immediate predecessors for $\mathcal{I}(n)$ is literally the same.

We denote the set of all immediate predecessors in $\mathcal{R}(n)$ (respectively, in $\mathcal{I}(n)$) of a rook placement $D \in \mathcal{R}(n)$ (respectively, of an orthogonal rook placement $D \in \mathcal{I}(n))$ by $L_{\mathcal{R}}(D)$ (respectively, by $L_{\mathcal{I}}(D)$). This set consists of rook placements of several types, which we will describe now. First, we will consider the set $L_{\mathcal{R}}(D)$ in details.

It is convenient to introduce the following notation. We will write simply (i, j) instead of $\epsilon_{j}-\epsilon_{i}, i>j$. Besides, for each k from 1 to n, we put

$$
\mathcal{R}_{k}=\left\{(k, s) \in \Phi^{+} \mid 1 \leq s<k\right\}, \mathcal{C}_{k}=\left\{(r, k) \in \Phi^{+} \mid k<r \leq n\right\} .
$$

Definition 2. The sets $\mathcal{R}_{k}, \mathcal{C}_{k}$ are called the k th row and the k th column of Φ^{+} respectively. We will write $\operatorname{row}(\alpha)=k$ and $\operatorname{col}(\alpha)=k$ if $\alpha \in \mathcal{R}_{k}$ and $\alpha \in \mathcal{C}_{k}$ respectively. Note that, for $D \in \mathcal{R}(n)$, one has

$$
\left|D \cap \mathcal{R}_{k}\right| \leq 1 \text { and }\left|D \cap \mathcal{C}_{k}\right| \leq 1 \text { for all } 1 \leq k \leq n
$$

Furthermore, if $D \in \mathcal{I}(n)$ then

$$
\left|D \cap\left(\mathcal{R}_{k} \cup \mathcal{C}_{k}\right)\right| \leq 1 \text { for all } 1 \leq k \leq n
$$

There exists a natural partial order on the set of positive roots: given $\alpha, \beta \in \Phi^{+}$, by definition, $\alpha \leq \beta$ if $\beta-\alpha$ is a (probably, empty) sum of positive roots. In the other words,

$$
(a, b) \leq(c, d) \text { if } c \geq a \text { and } d \leq b
$$

Given a rook placement $D \in \mathcal{R}(n)$, denote by $\widetilde{M}(D)$ the set of minimal roots from D (with respect to \leqslant). Now, we set

$$
\begin{aligned}
M_{\mathcal{R}}(D) & =\left\{(i, j) \in \widetilde{M}(D) \mid D \cap \mathcal{R}_{k} \neq \emptyset \text { and } D \cap \mathcal{C}_{k} \neq \emptyset \text { for all } j<k<i\right\} \\
N_{\mathcal{R}}^{-}(D) & =\left\{D_{(i, j)}^{-},(i, j) \in M_{\mathcal{R}}(D)\right\}
\end{aligned}
$$

where $D_{(i, j)}^{-}=D \backslash\{(i, j)\}$.
Next, fix a root $(i, j) \in D$. Denote

$$
m=\min \left\{k \mid j<k<i \text { and } D \cap \mathcal{C}_{k}=\emptyset\right\} .
$$

Suppose that such a number m exists. Assume that $D \cap \mathcal{R}_{k} \neq \emptyset$ for all k from $j+1$ to m. Assume, in addition, that there are no $(p, q) \in D$ such that $(i, j)>(p, q)$ and $(i, m) \ngtr(p, q)$. The set of all roots $(i, j) \in D$ satisfying these conditions is denoted by $A_{\rightarrow}^{\mathcal{R}}(D)$; given $(i, j) \in A_{\rightarrow}^{\mathcal{R}}(D)$, we put

$$
\overrightarrow{(i, j)} \overrightarrow{\mathcal{R}}=(D \backslash\{(i, j)\}) \cup\{(i, m)\}
$$

Similarly, suppose that there exists a number

$$
m^{\prime}=\max \left\{k \mid j<k<i \text { and } D \cap \mathcal{R}_{k}=\emptyset\right\}
$$

Assume also that $D \cap \mathcal{C}_{k} \neq \emptyset$ for $m^{\prime}+1 \leq k \leq i-1$ and that there are no $(p, q) \in D$ such that $(i, j)>(p, q)$ and $\left(m^{\prime}, j\right) \ngtr(p, q)$. Denote the set of all such (i, j) 's by $A_{\uparrow}^{\mathcal{R}}$; given $(i, j) \in A_{\uparrow}^{\mathcal{R}}$, we put

$$
D_{(i, j)}^{\uparrow, \mathcal{R}}=(D \backslash\{(i, j)\}) \cup\left\{\left(m^{\prime}, j\right)\right\}
$$

Now, let $B_{(i, j)}^{\mathcal{R}}(D)$ be the set of roots $(\alpha, \beta) \in D$ such that $(\alpha, \beta)>(i, j)$ and there are no $(p, q) \in D$ satisfying $(i, j)<(p, q)<(\alpha, \beta)$. For each $(\alpha, \beta) \in B_{(i, j)}^{\mathcal{R}}(D)$ we set

$$
D_{(i, j)}^{(\alpha, \beta), \mathcal{R}}=(D \backslash\{(i, j),(\alpha, \beta)\}) \cup\{(i, \beta),(\alpha, j)\} .
$$

By definition, let

$$
\begin{aligned}
N_{\mathcal{R}}^{0}(D)=\left\{D_{(i, j)}^{\uparrow, \mathcal{R}},(i, j) \in A_{\uparrow}^{\mathcal{R}}\right\} \cup\left\{D_{(i, j)}^{\rightarrow, \mathcal{R}},\right. & \left.(i, j) \in A_{\rightarrow}^{\mathcal{R}}\right\} \\
& \cup \bigcup_{(i, j) \in D}\left\{D_{(i, j)}^{(\alpha, \beta), \mathcal{R}},(\alpha, \beta) \in B_{(i, j)}^{\mathcal{R}}(D)\right\} .
\end{aligned}
$$

Example 3. Let $n=8$ and $D=\{(3,1),(6,2),(7,3),(5,4),(8,5)\}$. Clearly, $M_{\mathcal{R}}(D)=$ $\{(5,4)\},(8,5) \in A_{\rightarrow}^{\mathcal{R}},(3,1) \in A_{\uparrow}^{\mathcal{R}}$ and $(6,2) \in B_{(5,4)}^{\mathcal{R}}(D)$. On the picture below we draw the rook placements $D, D_{(5,4)}^{(6,2), \mathcal{R}}, D_{(3,1)}^{\uparrow, \mathcal{R}}$ and $D_{(8,5)}^{\rightarrow, \mathcal{R}}$.

Next, fix a root $(i, j) \in D$, and consider a pair $(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z}$. Suppose that $i>\beta \geq \alpha>j, D \cap \mathcal{R}_{\alpha}=D \cap \mathcal{C}_{\beta}=\emptyset, D \cap \mathcal{R}_{k} \neq \emptyset, D \cap \mathcal{C}_{k} \neq \emptyset$ for all $\alpha<k<\beta$, and the conditions $(p, q) \in D,(i, j)>(p, q),(\alpha, j) \ngtr(p, q)$ imply $(i, \beta)>(p, q)$. Moreover, assume that if $\alpha \neq \beta$ then $D \cap \mathcal{R}_{\beta} \neq \emptyset$ and $D \cap \mathcal{C}_{\alpha} \neq \emptyset$. Denote the set of all such pairs (α, β) by $C_{(i, j)}^{\mathcal{R}}(D)$. For an arbitrary pair $(\alpha, \beta) \in C_{(i, j)}^{\mathcal{R}}(D)$, we put

$$
D_{(i, j)}^{\alpha, \beta, \mathcal{R}}=(D \backslash\{(i, j)\}) \cup\{(i, \beta),(\alpha, j)\} .
$$

By definition, let

$$
N_{\mathcal{R}}^{+}(D)=\bigcup_{(i, j) \in D}\left\{D_{(i, j)}^{\alpha, \beta, \mathcal{R}},(\alpha, \beta) \in C_{(i, j)}^{\mathcal{R}}(D)\right\} .
$$

Example 4. Let $n=6$ and $D=\{(4,1),(6,2),(5,4)\}$, then $(3,3) \in C_{(6,2)}^{\mathcal{R}}(D)$. On the picture below we draw the rook placements D and $D_{(6,2)}^{3,3, \mathcal{R}}$.

Finally, we set

$$
N_{\mathcal{R}}(D)=N_{\mathcal{R}}^{-}(D) \cup N_{\mathcal{R}}^{0}(D) \cup N_{\mathcal{R}}^{+}(D)
$$

The set of immediate predecessors of a given rook placement from $\mathcal{R}(n)$ is described as follows.

Theorem 1 ([10, Theorem 3.3]). Let $D \in \mathcal{R}(n)$. Then $L_{\mathcal{R}}(D)=N(D)$.
Now we turn to the description of immediate predecessors for $\mathcal{I}(n)$. Given an orthogonal rook placement $D \in \mathcal{R}(n)$, put

$$
\begin{aligned}
& M_{\mathcal{I}}(D)=\left\{(i, j) \in \widetilde{M}(D) \mid D \cap\left(\mathcal{R}_{k} \cup \mathcal{C}_{k}\right) \neq \emptyset \text { for all } j<k<i\right\} \\
& N_{\mathcal{I}}^{-}(D)=\left\{D_{(i, j)}^{-},(i, j) \in M_{\mathcal{I}}(D)\right\}
\end{aligned}
$$

where $D_{(i, j)}^{-}=D \backslash\{(i, j)\}$, as above.
Let $D \in \mathcal{I}(n),(i, j) \in D$. Denote

$$
m=\min \left\{k \mid j<k<i \text { and } D \cap \mathcal{C}_{k}=D \cap \mathcal{R}_{k}=\emptyset\right\}
$$

Suppose that such a number m exists. Assume that there are no $(p, q) \in D$ such that $(i, j)>(p, q)$ and $(i, m) \ngtr(p, q)$. The set of all $(i, j) \in D$ satisfying these conditions is denoted by $A_{\rightarrow}^{\mathcal{I}}(D)$; given $(i, j) \in A_{\rightarrow}^{\mathcal{I}}(D)$, we set

$$
D_{(i, j)}^{\rightarrow, \mathcal{I}}=(D \backslash\{(i, j)\}) \cup\{(i, m)\} .
$$

Similarly, suppose that there exists

$$
m^{\prime}=\max \left\{k \mid j<k<i \text { and } D \cap \mathcal{R}_{k}=D \cap \mathcal{C}_{k}=\emptyset\right\}
$$

and there are no $(p, q) \in D$ such that $(i, j)>(p, q)$ and $\left(m^{\prime}, j\right) \ngtr(p, q)$. The set of all such (i, j) 's is denoted by $A_{\uparrow}^{\mathcal{T}}$; given $(i, j) \in A_{\uparrow}^{\mathcal{T}}$, we set

$$
D_{(i, j)}^{\uparrow \mathcal{I}}=(D \backslash\{(i, j)\}) \cup\left\{\left(m^{\prime}, j\right)\right\} .
$$

Next, let $B_{(i, j)}^{\mathcal{I}}(D)$ be the set of roots $(\alpha, \beta) \in D$ such that $j<\beta<i<\alpha$,

$$
D \cap\left(\mathcal{R}_{r} \cup \mathcal{C}_{r}\right) \neq \emptyset
$$

for all $\beta<r<i$ and there are no $(p, q) \in D$ for which $j<q<\beta<p<i$ or $\beta<q<i<p<\alpha$ (in other words, for which $(i, j)>(p, q)$ and $(\beta, j) \ngtr(p, q)$, or $(\alpha, \beta)>(p, q)$ and $(\alpha, i) \ngtr(p, q))$. To each $(\alpha, \beta) \in B_{(i, j)}^{\mathcal{I}}(D)$ we assign the set

$$
D_{(i, j)}^{(\alpha, \beta), \mathcal{I}}=(D \backslash\{(i, j),(\alpha, \beta)\}) \cup\{(\beta, j),(\alpha, i)\}
$$

Now, let

$$
\begin{aligned}
& N_{\mathcal{I}}^{0}(D)=\left\{D_{(i, j)}^{\uparrow, \mathcal{I}},(i, j) \in A_{\uparrow}^{\mathcal{I}}\right\} \cup\left\{D_{(i, j)}^{\rightarrow, \mathcal{I}},(i, j) \in A_{\rightarrow}^{\mathcal{I}}\right\} \\
& \cup \bigcup_{(i, j) \in D}\left\{D_{(i, j)}^{(\alpha, \beta), \mathcal{R}},(\alpha, \beta) \in B_{(i, j)}^{\mathcal{R}}(D)\right\} \cup \bigcup_{(i, j) \in D}\left\{D_{(i, j)}^{(\alpha, \beta), \mathcal{I}},(\alpha, \beta) \in B_{(i, j)}^{\mathcal{I}}(D)\right\} .
\end{aligned}
$$

Example 5. If $n=8, D=\{(5,1),(6,2),(8,4)\}$, then $(8,4) \in B_{6,2}^{\mathcal{I}}(D)$, hence

Besides, denote by $C_{i, j}^{\mathcal{I}}(D)$ the set of pairs $(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z}$ such that $i>\beta>$ $\alpha>j$,

$$
D \cap\left(\mathcal{R}_{\alpha} \cup \mathcal{C}_{\alpha}\right)=D \cap\left(\mathcal{R}_{\beta} \cup \mathcal{C}_{\beta}\right)=\emptyset
$$

$D \cap\left(\mathcal{R}_{k} \cup \mathcal{C}_{k}\right) \neq \emptyset$ for all $\beta>k>\alpha$, and if $(p, q) \in D,(i, j)>(p, q),(\alpha, j) \ngtr(p, q)$ then $(i, \beta)>(p, q)$. For each pair $(i, j) \in C_{(i, j)}^{\mathcal{I}}(D)$, we put

$$
D_{(i, j)}^{\alpha, \beta, \mathcal{I}}=(D \backslash\{(i, j)\}) \cup\{(i, \beta),(\alpha, j)\}
$$

Example 6. Let $n=8, D=\{(4,1),(8,2),(7,6)\}$, then $(3,5) \in C_{(8,2)}^{\mathcal{I}}(D)$, so

Finally, we denote

$$
\begin{aligned}
& N_{\mathcal{I}}^{+}(D)=\bigcup_{(i, j) \in D}\left\{D_{(i, j)}^{\alpha, \beta, \mathcal{I}},(\alpha, \beta) \in C_{(i, j)}^{\mathcal{I}}(D)\right\}, \\
& N_{\mathcal{I}}(D)=N_{\mathcal{R}}^{-}(D) \cup N_{\mathcal{I}}^{0}(D) \cup N_{\mathcal{I}}^{+}(D)
\end{aligned}
$$

Immediate predecessors in $\mathcal{I}(n)$ are described by the following F. Incitti's theorem (see also [6, Subsection 2.4]).

Theorem 2 ([12, Theorem 5.1]). Let $D \in \mathcal{I}(n)$. Then $L_{\mathcal{I}}(D)=N_{\mathcal{I}}(D)$.

3 Kerov map and the main result

In this section, we introduce our main technical tool, Kerov orthogonal rook placements, and, using them, prove that $\mathcal{R}(n)$ is graded.

Definition 3. Let $n \geq 3$, and D be a rook placement from $\mathcal{R}(n)$. A Kerov rook placement corresponding to D is, by definition, the orthogonal rook placement $K(D) \in \mathcal{I}(2 n-2)$ constructed by the following rule: if

$$
D=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)\right\}
$$

then

$$
K(D)=\left(2 i_{1}-2,2 j_{1}-1\right) \ldots\left(2 i_{s}-2,2 j_{s}-1\right) .
$$

(Kerov rook placements were introduced in the paper [13]). We call the map $K: \mathcal{R}(n) \rightarrow \mathcal{I}(2 n-2)$ given by the rule $D \mapsto K(D)$ the Kerov map.

Example 7. If $n=8$ and $D=\{(3,1),(6,2),(7,3),(5,4),(8,6)\} \in \mathcal{R}(8)$, then

$$
\begin{aligned}
K(D) & =(4,1) \cdot(10,3) \cdot(12,5) \cdot(8,7) \cdot(14,11) \\
& =\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
4 & 2 & 10 & 1 & 12 & 6 & 8 & 7 & 9 & 3 & 14 & 5 & 13 & 11
\end{array}\right) \in \mathcal{I}(14) .
\end{aligned}
$$

The following proposition is evident.

Proposition 1. Let $D, T \in \mathcal{R}(n)$. Then the conditions $T \leq D$ and $K(T) \leq K(D)$ are equivalent.

The following theorem plays the crucial role in the proof of the main result.
Theorem 3. Let $D, T \in \mathcal{R}(n)$ be rook placements. Then the conditions $T \in L_{\mathcal{R}}(D)$ and $K(T) \in L_{\mathcal{I}}(K(D))$ are equivalent.

Proof. Clearly, $K(T) \in L_{\mathcal{I}}(D)$ implies $T \in L_{\mathcal{R}}(D)$. Indeed, since there are no orthogonal involutions from $\mathcal{I}(2 n-2)$ between $K(T)$ and $K(D)$, we conclude that, in particular, there are no Kerov involutions between them. It remains to prove that the converse is also true.

Assume that $T \in L_{\mathcal{R}}(D)$. By Theorem 1, this is equivalent to

$$
T \in N_{\mathcal{R}}(D)=N^{-}(D) \cup N_{\mathcal{R}}^{0}(D) \cup N_{\mathcal{R}}^{+}(D)
$$

We will consider these variants case-by-case.
First, suppose that $T \in N_{\mathcal{R}}^{-}(D)$. This means that $T=D_{(i, j)}^{-}$for a certain root $(i, j) \in M(D)$. Automatically, $K(T)=K(D) \backslash\{(2 i-2,2 j-1)\}$. It follows immediately from $(i, j) \in \widetilde{M}(D)$ that $(2 i-2,2 j-1) \in \widetilde{M}(K(D))$. Since $(i, j) \in$ $M(D)$, we see that $D \cap \mathcal{R}_{k}$ and $D \cap \mathcal{C}_{k}$ are nonempty if $i<k<j$. This shows that $K\left(D \cap \mathcal{R}_{2 k-2}\right)$ and $K(D) \cap \mathcal{C}_{2 k-1}$ are nonempty for all such k. Thus,

$$
(2 i-2,2 j-1) \in M(K(D)),
$$

i.e., $K(T) \in N_{\mathcal{I}}^{-}(K(D))$. By Theorem 2, $K(T) \in L_{\mathcal{I}}(K(D))$.

Next, assume that $T \in N_{\mathcal{R}}^{0}(D)$. If $T=D_{(i, j)}^{(\alpha, \beta), \mathcal{R}}$ for some $(i, j) \in D,(\alpha, \beta) \in$ $\mathcal{B}_{(i, j)}^{\mathcal{R}}(D)$, then it is easy to see that

$$
(2 \alpha-2,2 \beta-1) \in \mathcal{B}_{(2 i-2,2 j-1)}^{\mathcal{R}}(K(D))
$$

and

$$
K(T)=K(D)_{(2 i-2,2 j-1)}^{(2 \alpha-2,2 \beta-1), \mathcal{R}} \in N_{\mathcal{R}}^{0}(K(D)),
$$

hence

$$
K(T) \in N_{\mathcal{I}}^{0}(D) \subset L_{\mathcal{I}}(K(D))
$$

Now consider the case when $T=\underset{(i, j)}{\rightarrow, \mathcal{R}}$ for some $(i, j) \in A_{\rightarrow}^{\mathcal{R}}$. (The case $T=D_{(i, j)}^{\uparrow, \mathcal{R}}$, $(i, j) \in A_{\uparrow}^{\mathcal{R}}$ can be considered similarly.) Let $T=(D \backslash\{(i, j)\}) \cup\{(i, m)\}$, then

$$
K(T)=(K(D) \backslash\{(2 i-2,2 j-1)\}) \cup\{(2 i-2,2 m-1)\} .
$$

Since there are no root in D which is less than (i, j) but not less than (i, m), we have a similar condition for $K(D)$. Since $D \cap \mathcal{C}_{k} \neq \emptyset$ forP. Heymans: Pfaffians and skew-symmetric matrices $j<k<m$, one has $K(D) \cap \mathcal{C}_{2 k-1} \neq \emptyset$ for such k. On the other hand, $D \cap \mathcal{R}_{k}$ is nonempty for $j<k \leq m$, so $K(D) \cap \mathcal{R}_{2 k-2}$ is also nonempty for such k. Thus, $K(D) \cap\left(\mathcal{R}_{k} \cup \mathcal{C}_{k}\right) \neq \emptyset$ for $2 j-1<k<2 m-1$, which means that $(2 i-2,2 j-1) \in A_{\rightarrow}^{\mathcal{I}}$ and $K(T)=K(D)_{(2 i-2,2 j-1)}^{\rightarrow \mathcal{I}}$. Hence, by Theorem 2, $K(T) \in L_{\mathcal{I}}(K(D))$, as required.

Finally, suppose that $T \in N_{\mathcal{R}}^{+}(D)$, i.e., $T=D_{(i, j)}^{\alpha, \beta, \mathcal{R}}$ for certain $(i, j) \in D$ and $(\alpha, \beta) \in C_{(i, j)}^{\mathcal{R}}(D)$. Since $i>\beta \geq \alpha>j$, we have

$$
2 i-2>2 \beta-1>2 \alpha-2>2 j-1
$$

It follows from $D \cap \mathcal{R}_{\alpha}=D \cap \mathcal{C}_{\beta}=\emptyset$ that

$$
K(D) \cap \mathcal{R}_{2 \alpha-2}=K(D) \cap \mathcal{C}_{2 \beta-1}=\emptyset
$$

Since $K(D)$ is a Kerov rook placement, the condition

$$
K(D) \cap \mathcal{C}_{2 \alpha-2}=K(D) \cap \mathcal{R}_{2 \beta-1}=\emptyset
$$

is satisfied automatically. If $\alpha=\beta$ then there is nothing to prove. If $\beta>\alpha$ then $D \cap \mathcal{R}_{k} \neq \emptyset$ and $D \cap \mathcal{C}_{k} \neq \emptyset$ for all k from $\alpha+1$ to $\beta-1$, hence $K(D) \cap \mathcal{R}_{2 k-2} \neq \emptyset$ and $K(D) \cap \mathcal{C}_{2 k-1} \neq \emptyset$ for all such k. Furthermore, $D \cap \mathcal{R}_{\beta}$ and $D \cap \mathcal{C}_{\alpha}$ are nonempty, which implies that $K(D) \cap \mathcal{R}_{2 \beta-2}$ and $D \cap \mathcal{C}_{2 \alpha-1}$ are also nonempty. Thus, we obtain $K(D) \cap\left(\mathcal{R}_{k} \cap \mathcal{C}_{k}\right) \neq \emptyset$ for all k from $2 \alpha-1$ to $2 \beta-2$, sa required. We conclude that $(2 \alpha-2,2 \beta-1) \in C_{(2 i-2,2 j-1)}^{\mathcal{I}}(D)$ and $K(T)=K(D)_{(2 i-2,2 j-1)}^{2 \alpha-2,2 \beta-1, \mathcal{I}}$. Theorem 2 guarantees that $K(T) \in L_{\mathcal{I}}(K(D))$. The proof is complete.

Corollary 1. For each $n \geqslant 2$ the poset $\mathcal{R}(n)$ is graded with the rank function

$$
\rho(D)=\frac{l\left(w_{K(D)}\right)+|D|}{2}
$$

where $l(w)$ is the length of a permutation w in the corresponding symmetric group.
Proof. As we mentioned in the introduction, F. Incitti showed that the set $\mathcal{I}(2 n-2)$ of orthogonal rook placements is graded. Precisely [11, Theorem 5.3.2], the rank function on this poset has the form

$$
\rho(D)=\frac{l\left(w_{D}\right)+|D|}{2}
$$

Applying Theorem 3, we see that the restriction of this rank function to $K(\mathcal{R}(n))$ in fact provided the rank function of the required form on $\mathcal{R}(n)$. This concludes the proof.

References

[1] C.A.M. Andrè: The basic character table of the unitriangular group. J. Algebra 241 (2001) 437-471.
[2] C.A.M. Andrè, A.M. Neto: Super-characters of finite unipotent groups of types B_{n}, C_{n} and D_{n}. J. Algebra 305 (2006) 394-429.
[3] N. Bourbaki: Lie groups and Lie algebras. Springer (2002). Chapters 4-6.
[4] J.E. Humphreys: Linear algebraic groups, Grad. Texts in Math. Springer (1998).
[5] J.E Humphreys: Reflection groups and Coxeter groups. Cambridge University Press, Cambridge (1990).
[6] M.V. Ignatyev: Combinatorics of B-orbits and the Bruhat-Chevalley order on involutions. Transform. Groups 17 (3) (2012) 747-780. arXiv:math.RT/1101.2189.
[7] M.V. Ignatyev: The Bruhat-Chevalley order on involutions of the hyperoctahedral group and combinatorics of B-orbit closures. Zapiski Nauchnykh Seminarov POMI 400 (2012) 166-188. English translation: J. Math. Sci. 192 (2) (2013), 220-231; arXiv:math.RT/1112.2624.
[8] M.V. Ignatyev: Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups. Mat. Zametki 86 (1) (2009) 65-80. English translation: Math. Notes 86 (1) (2009), 65-80; arXiv:math.RT/0904.2841.
[9] M.V. Ignatev: Orthogonal subsets of root systems and the orbit method. Algebra i Analiz 22 (5) (2010) 104-130. English translation: St. Petersburg Math. J., 22 (5) (2011), 777-794; arXiv:math.RT/1007.5220.
[10] M.V. Ignatyev, A.S. Vasyukhin: Rook placements in A_{n} and combinatorics of B-orbit closures. J. Lie Theory 24 (4) (2014) 931-956.
[11] F. Incitti: Bruhat order on the involutions of classical Weyl groups. Ph.D. thesis, Dipartimento di Matematika "Guido Castelnuovo", Università di Roma "La Sapienza." (2003).
[12] F. Incitti: The Bruhat order on the involutions of the symmetric groups. J. Alg. Combin 20 (3) (2004) 243-261.
[13] S.V. Kerov: Rooks on ferrers boards and matrix integrals. Zapiski Nauchnykh Seminarov POMI 240 (1997) 136-146. English translation: J. Math. Sci., 96 (5) (1999), 3531-3536.
[14] A.A. Kirillov: Unitary representations of nilpotent Lie groups. Russian Math. Surveys 17 (1962) 53-110.
[15] A.A. Kirillov: Lectures on the orbit method, Grad. Studies in Math. American Mathematical Soc. (2004).
[16] A. Melnikov: B-orbit in solution to the equation $X^{2}=0$ in triangular matrices. J. Algebra 223 (1) (2000) 101-108.
[17] A. Melnikov: Description of B-orbit closures of order 2 in upper-triangular matrices. Transform. Groups 11 (2) (2006) 217-247.
[18] A.N. Panov: Involutions in S_{n} and associated coadjoint orbits. Zapiski Nauchnykh Seminarov POMI 349 (2007) 150-173. English translation: J. Math. Sci. 151 (3) (2008), 3018-3031.

Received: 11 October 2019
Accepted for publication: 7 November 2019
Communicated by: Ivan Kaygorodov

[^0]: 2020 MSC: 06A07, 17B22, 17B08.
 Key words: Root system, rook placement, Borel subgroup, coadjoint orbit, graded poset
 During the work on the final version of the paper I was partially supported by FAPESP grant no. 19/00563-1. A part of this work was done during my stay at the Oberwolfach Research Institute for Mathematics in February-March 2018 via the program "Research in pairs" together with Alexey Petukhov. I thank Alexey for fruitful discussions. I also thank the Oberwolfach Research Institute for Mathematics for hospitality and financial support.

 Affiliation:
 Samara National Research University, ul. Ak. Pavlova, 1, 443011, Samara, Russia
 E-mail: mihail.ignatev@gmail.com

