
Transformation Groups
https://doi.org/10.1007/s00031-022-09703-1

Automorphism Groups of ind-Varieties
of Generalized Flags

Mikhail Ignatev1,2 · Ivan Penkov2

Received: 13 June 2021 / Accepted: 2 February 2022
© The Author(s) 2022

Abstract
We compute the group of automorphisms of an arbitrary ind-variety of (possibly
isotropic) generalized flags. Such an ind-variety is a homogeneous ind-space for
one of the ind-groups SL(∞), O(∞) or Sp(∞). We show that the respective auto-
morphism groups are much larger than SL(∞), O(∞) or Sp(∞), and present the
answer in terms of Mackey groups. The latter are groups of automorphisms of non-
degenerate pairings of (in general infinite-dimensional) vector spaces. An explicit
matrix form of the automorphism group of an arbitrary ind-variety of generalized
flags is also given. The case of the Sato grassmannian is considered in detail, and its
automorphism group is the projectivization of the connected component of unity in
the group known as Japanese GL(∞).

Keywords ind-variety · ind-group · Generalized flag · Homogeneous space ·
Automorphism group · Makey group · Sato grassmannian · Japanese GL(∞)
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1 Introduction

Given a homogenous space X, it is a natural problem to compute its automorphism
group Aut X. In the case when X is a complex flag variety, that is, X = G/P for a
connected reductive complex algebraic group and a parabolic subgroup P ⊂ G, the
automorphism group of X is well known. Moreover, it is a classical result that here
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the connected component Aut0 X of the identity equals the projectivized group PG,
except in some special cases as described in [12].

In this paper, we would like to pose and solve the problem of computing Aut X
for a class of homogeneous ind-varieties X. This is the class of ind-varieties of gen-
eralized flags introduced by that name in [3] but also considered earlier in several
works, see for instance [4, 11]. These ind-varieties can be defined simply as G/P

where G is one of the ind-groups SL(∞) = lim−→ SL(n), SO(∞) = lim−→ SO(n),
Sp(∞) = lim−→ Sp(2n) and P is a splitting parabolic subgroup, i.e., a subgroup for
which the intersections P ∩ SL(n), P ∩ SO(2n), P ∩ SO(2n + 1), P ∩ Sp(2n) are
parabolic subgroups of SL(n), SO(2n), SO(2n + 1), Sp(2n) for all n, respectively.
The definition from [3] can be considered as a flag realization of the ind-varieties
G/P as above, and is recalled in Section 2 below. The main idea of that approach
is that one designates certain chains of subspaces in the natural representation V of
SL(∞) as generalized flags, and then defines an ind-variety of generalized flags as
the ind-variety of generalized flags which differ only “slightly” from a fixed gener-
alized flag W in V . For the exact definition see Section 2. One then shows that the
so obtained ind-variety is isomorphic to G/P for G = SL(∞) and some splitting
parabolic subgroup P ⊂ G.

An ind-grassmannian is an ind-variety of generalized flags for which the fixed
generalized flag consists of a single proper subspace W ⊂ V . For dim W =
codim V W = ∞ the ind-grassmannian is isomorphic to the Sato grassmannian. This
has been pointed out for instance in [5].

In the cases of the groups SO(∞) and Sp(∞) we consider ind-varieties of
isotropic generalized flags, as stated in Section 4.

Our main result is the explicit determination of the group Aut X for an arbitrary
ind-variety of, possibly isotropic, generalized flags. A notable feature is that the
answer is very different from the ind-groups PGL(∞), PO(∞), or PSp(∞), and
we present it in the language of Mackey groups. Such a group is defined in terms
of a non-degenerate pairing of vector spaces T × R → C, and is a subgroup of the
group of all linear operators ϕ : T → T for which the dual operator ϕ∗ determines a
well-defined automorphism ϕ : R → R. This definition of Mackey group is inspired
by G. Mackey’s dissertation [10]. If T and R are finite dimensional, then the Mackey
group is nothing but GL(T ) � GL(R). The group known as Japanese GL(∞) is a
Mackey group and plays a crucial role in our work. In the Appendix we discuss the
structure of this group in detail.

The precise statement of our main result, Theorem 2.1, is presented in Section 2.
The consideration of the isotropic case is postponed to Section 8. The proof of Theo-
rem 2.1 is divided into two parts: the case of an ind-grassmannian and the case of an
arbitrary generalized flag. For the Sato grassmannian (which is the most interesting
ind-grassmannian) our result implies that its automorphism group is isomorphic to
the projectivization of the connected component of the identity in the group Japanese
GL(∞). In Section 7 we give a matrix realization of the group of automorphisms of
an arbitrary ind-variety of generalized flags. In the isotropic case such a realization
is given in Corollary 8.1.

We would like to point out that Aut X depends essentially on the ind-variety X,
despite the fact that all X are homogeneous spaces for the same group SL(∞) (or,
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respectively, SO(∞), Sp(∞)). This is in contrast with the finite-dimensional case in
which the connected component of the identity in the automorphism group of a vari-
ety SL(n)/P (respectively, SO(2n)/P , SO(2n + 1)/P or Sp(2n)/P ) depends only
on n and not on the choice of P . Further research should be carried out to compare
the isomorphism classes of ind-varieties of generalized flags with the isomorphism
classes of their automorphism groups.

Our possible application of the results of the present paper would be the study
of locally reductive ind-groups ˜G different from G = SL(∞), SO(∞), Sp(∞) for
which G/P is a homogeneous ˜G-space.

In conclusion of this short introduction, we should mention that some particular
cases of the automorphism groups of ind-varieties of generalized flags have been
considered in [13] and [17].

2 Brief Background and Statement of theMain Result

The ground field is C. If R is a vector space, we set GL(R) = {ϕ ∈ HomC(R, R) |
ϕ is invertible} and R∗ = HomC(R,C). We also use the superscript ·∗ to denote the
dual of a vector bundle, as well as the pullback functor for vector bundles along a
morphism of varieties. In what follows we consider infinite matrices, in particular,
infinite rows and columns. We call such matrices, rows or columns finitary if they
have at most finitely many nonzero entries. By 〈·〉C we denote the linear span over C.

We fix a countable-dimensional vector space V . A chain of subspaces W = {Wα}
is a set of subspaces Wα ⊆ V , parameterized by some index set with elements α such
that for α �= α′ we have Wα � Wα′ or Wα′ � Wα . The relation of inclusion induces
a total order on the set of indices of a chain. A chain of subspaces W = {Wα} is
a generalized flag in V if every index α has either an immediate predecessor or an
immediate successor, and every nonzero vector v of V is contained in some difference
Wα′′ \Wα′ , where α′′ is the immediate successor of α′. For a more detailed discussion
of generalized flags, and for an introduction to ind-varieties of generalized flags, see,
e.g., [3, 8] and [15].

We say that a generalized flag W is compatible with a basis ˜E of V (or that W is ˜E-
compatible) if any space Wα of W is spanned by elements of ˜E, i.e., Wα = 〈Wα∩˜E〉C
for any α. We set Eα = ˜E ∩ Wα . Then Eα is a basis of Wα . By (Wα)∗ we denote the
span of the system of linear functions ˜E∗ dual to the basis Eα . We have (Wα)∗ ⊆ W ∗

α .
We also let V∗ equal the span of the system of linear functions dual to the basis ˜E.
The group GL(˜E, V ) is the subgroup of GL(V ) consisting of all invertible operators
ϕ : V → V each of which acts as the identity on all but finitely elements of ˜E.

In what follows, we fix a basis ˜E and a generalized flag W in V compatible with
˜E. The set F l(W, ˜E, V ) is the set of all generalized flags W ′ = {W ′

α} which are
˜E-commensurable with W . This latter requirement spells out as the following three
conditions for each element W ′ of F l(W, ˜E, V ):

• the index set which parameterizes the generalized flag W ′ is the same as the
index set of W ;
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• there exists a finite-dimensional subspace Z � V depending on W ′, such that
for any α we have W ′

α + Z = Wα + Z and dim(Wα ∩ Z) = dim(W ′
α ∩ Z);

• the generalized flag W ′ is compatible with a basis ˜E′ of V , depending on W ′,
such that ˜E′ differs from ˜E by finitely many vectors.

The set F l(W, ˜E, V ) has a natural structure of ind-variety. This is explained in
detail in [3] (and in [8] and [15]). Briefly, the ind-variety structure on F l(W, ˜E, V )

arises as follows. Enumerate the basis ˜E by the set Z>0 and put Vi := 〈e1, . . . , ei〉C
for i ∈ Z>0. Each intersection W ∩ Vi is a flag in Vi of certain type di =
(d1

i , . . . , d
ki

i ), and this ordering of the basis ˜E induces embeddings

F l(di, Vi) ↪−→ F l(di+1, Vi+1), (1)

called strict standard extensions, such that F l(W, ˜E, V ) = lim−→F l(di, Vi). The

embeddings (1) endow F l(W, ˜E, V ) with an ind-variety structure. In Section 4 below
we recall the definition of a strict standard extension.

Next we recall that if T and R are two (in general, infinite-dimensional) vector
spaces endowed with a non-degenerate pairing p : T × R → C, then the Mackey
group G(T , R) is defined as

G(T , R) = {ϕ ∈ GL(T ) | ϕ∗(R) = R}, (2)

see [10]. Here ϕ∗ : T ∗ → T ∗ is the operator dual (adjoint) to the operator ϕ : T → T ,
and R is considered as a subspace of T ∗ via the embedding R ↪→ T ∗ induced by the
pairing p. Equivalently, G(T , R) can be defined as the group

{ψ ∈ GL(R) | ψ∗(T ) = T } (3)

where T is considered as a subspace of R∗ via p. The correspondence

ϕ �→ (

ϕ∗|R
)−1

is a canonical isomorphism between the groups (2) and (3). In what follows, when
writing ϕ ∈ G(T , R) we will assume that ϕ ∈ GL(T ), and will denote the operator
ϕ∗|R by ϕ. Note that, given a subspace A of T , one has ϕ(A) = ϕ−1(A⊥), where A⊥
is the annihilator of A in R.

Consider again the ind-variety of generalized flags F l(W, ˜E, V ). Define the
spaces V W

˜E
and V W

∗˜E
as

V W
˜E

:= ⋂

α

(

((Wα)∗)∗ ⊕ Uα

)

,

V W

∗˜E
:= ⋂

α

(

(Wα)∗ ⊕ U∗
α

)

,

where α runs over the indices parameterizing the generalized flag W , and the spaces
Uα are direct complements of the spaces Wα , i.e., V = Wα⊕Uα , with the assumption
that Uα ∩ ˜E is a basis of Uα . Note that the spaces V W

˜E
, V W

∗˜E
are necessarily infinite-

dimensional and there is a canonical non-degenerate pairing

V W
˜E

× V W

∗˜E
→ C,

therefore the group G(V W
˜E

, V W

∗˜E
) is well defined.
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An essential observation is that the spaces V W
˜E

and V W

∗˜E
depend only on the ind-

variety F l(W, ˜E, V ) and not on the specific point W ∈ F l(W, ˜E, V ). This follows
from the fact that, for each α, the spaces ((Wα)∗)∗ ⊕ Uα and (Wα)∗ ⊕ U∗

α do not
change when Wα is replaced by a subspace W ′

α ⊂ W which is ˜E-commensurable
with Wα , and Uα is replaced by a direct complement U ′

α of W ′
α containing all but

finitely many vectors from ˜E ∩ Uα .
Moreover, GL(˜E, V ) is a subgroup of G(V W

˜E
, V W

∗˜E
). To see this, consider a linear

operator κ : V → V , κ ∈ GL(˜E, V ), and fix α. There exist subspaces W ′
α ⊂ Wα ,

U ′
α ⊂ Uα , such that κ|W ′

α
= idW ′

α
, κ|U ′

α
= idU ′

α
, and V = W ′

α ⊕ K ⊕ U ′
α for some

κ-invariant finite-dimensional subspace K ⊂ V . Then (W ′
α)∗, (U ′

α)∗ and K∗ are κ∗-
invariant subspaces of V ∗, and (Wα)∗ ⊕U∗

α = (W ′
α)∗ ⊕K∗ ⊕ (U ′

α)∗ is a κ∗-invariant
subspace of V ∗. This shows that V W

∗˜E
= ⋂

α((Wα)∗ ⊕U∗
α ) is a κ∗-invariant subspace

of V ∗. The same argument applied to the κ
∗-invariant subspace V∗ of V ∗ implies

that V W
˜E

is a (κ∗|V∗)
∗-invariant subspace of (V∗)∗. This allows to consider κ as an

element of G(V W
˜E

, V W

∗˜E
).

Next, if W ′ is any chain of subspaces in V and ϕ : V W
˜E

→ V W
˜E

is any linear

operator from the group G(V W
˜E

, V W

∗˜E
), then

ϕ−1
(

W ′⊥)⊥ ∩ V = ϕ((W ′⊥)⊥) ∩ V (4)

is a chain of subspaces in V . Here W ′⊥ is the chain in V W

∗˜E
consisting of the annihi-

lators in V W

∗˜E
⊆ V ∗ of the spaces W ′

α , and similarly ϕ−1
(

W ′⊥)⊥
, W ′⊥⊥ are chains

in V W
˜E

⊆ V ∗∗.

In what follows, we use the notation W ′⊥ for chains perpendicular to W ′ also in
appropriate subspaces of V ∗ different from V W

∗˜E
, and indicate the respective subspace

as necessary. A similar convention applies to the notation W ′⊥⊥. Moreover, we call
the generalized flag W symmetric if the chain W⊥ ⊂ V∗ is the image of W under a
linear isomorphism V∗ � V sending ˜E∗ to ˜E.

Theorem 2.1 a) If W is not symmetric, then the group Aut F l(W, ˜E, V ) is isomor-
phic to P(GL(˜E, V )·StW ), where StW is the stabilizer of the generalized flagW

in the group G(V W
˜E

, V W

∗˜E
) under the action (4). Here the product · is taken inside

G(V W
˜E

, V W

∗˜E
), and P · indicates passage to the quotient modulo scalar operators.

b) If W is symmetric, then the group Aut F l(W, ˜E, V ) is isomorphic to
P(GL(˜E, V ) · StW ) � Z2.

In Section 7 we present an explicit matrix realization of the group GL(˜E, V )·StW .
Let’s also point out that, since Theorem 2.1 implies that GL(˜E, V ) · StW is a group,
we have GL(˜E, V ) · StW = StW · GL(˜E, V ).

Remark 2.1 In the case of a finite-dimensional flag variety X, every automorphism
of X belonging to the connected component of unity in the automorphism group has
a fixed point on X. This no longer holds in the generality of Theorem 2.1. Indeed, if
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X is the projective ind-space F l(W, E, V ) for dim W = 1, then AutX = PGL(V )

and it is well known that not every invertible linear automorphism of V has an
eigenvector.

3 Examples

Before we embark on proving Theorem 2.1, we present five examples in which we
compute the respective group GL(˜E, V )·StW from Theorem 2.1. In all five cases our
claims follow from Theorem 7.1 below, which provides a matrix form of the group
GL(˜E, V ) · StW in the general case.

3.1 The Case of an ind-Grassmannian

Let’s consider the case where the generalized flag W has the form 0 � W � V ,
where W is a single proper subspace of V (we slightly abuse notation by using the
same letter W for a flag and a subspace). There are three cases: dim W < ∞, or
dim W = codim V W = ∞, or codim V W < ∞. If dim W < ∞, then Gr(W, ˜E, V )

does not depend on the basis ˜E, and the points of Gr(W, ˜E, V ) are all subspaces
of V of the same dimension as W . In this case we may write Gr(W, ˜E, V ) =
Gr(dim W, V ). If codim V W < ∞ then Gr(W, ˜E, V ) depends as a set on the choice
of the basis ˜E, but up to isomorphism Gr(W, ˜E, V ) depends only on codim V W .
Moreover, as an ind-variety Gr(W, ˜E, V ) is isomorphic to Gr(codim V W, V ). If
dim W = codim V W = ∞, the ind-variety Gr(W, ˜E, V ) does not depend up to iso-
morphism on the choice of both W and ˜E. It is known, see for instance [5], that in
this case Gr(W, ˜E, V ) is isomorphic to the Sato grassmannian introduced in [16].

If dim W < ∞, then V W
˜E

= V , V W

∗˜E
= V ∗ and G(V, V ∗) = GL(V ). Since W is

not symmetric, Theorem 2.1 asserts that Aut Gr(W, ˜E, V ) ∼= P(GL(˜E, V ) · StW ),
and we note that here

P(GL(˜E, V ) · StW ) ∼= PGL(V ). (5)

Indeed, the action of G(V, V ∗) = GL(V ) on Gr(W, ˜E, V ) via the formula (4) is
easily checked to coincide with the obvious action of GL(V ) on subspaces of V , and
the isomorphism (5) is a consequence of the transitive action of the group GL(˜E, V )

on finite-dimensional subspaces of fixed dimension in V .
If codim V W < ∞, then V W

˜E
= (V∗)∗, V W

∗˜E
= V∗ and P(GL(˜E, V ) · StW ) ∼=

PGL(V∗), i.e.,

Aut Gr(W, ˜E, V ) ∼= PGL(V∗).

In the case where dim W = codim V W = ∞, we prove in the Appendix that the
group G(V W

˜E
, V W

∗˜E
) can be represented as invertible (Z \ {0}) × (Z \ {0})-matrices

which together with their inverses satisfy the condition: in the block structure

(6)
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induced by the equality Z \ {0} = Z<0 � Z>0, the matrix A has finitary rows (no
restriction on the columns), the matrix D has finitary columns (no restriction on the
rows) and the matrix C is finitary. The group GL(˜E, V ) ·StW consists of matrices M

such that M and M−1 have the form (6) and satisfy the additional condition rk C =
rk C′ where

Moreover, in this case W is symmetric.

3.2 The Case of Fl (W, ˜E , V), WhereW = {Wn }, dimWn = n for
n ∈ Z>0,

⋃

nWn = V

In this case V W
˜E

= V , V W

∗˜E
= V ∗, and the group GL(˜E, V ) · StW can be identified

with all invertible Z>0 × Z>0-matrices with finitely many nonzero entries below the
main diagonal, cf. [13].

3.3 The Case of Fl (W, ˜E , V), Where ˜E = {ei }i∈Z and
W = {Wn = 〈ei , i ≤ n〉C, n ∈ Z}

Here

V W
˜E

= ((W0)∗)∗ ⊕ 〈ei, i > 0〉C, V W

∗˜E
= (W0)∗ ⊕ (〈ei, i > 0〉C)∗ .

In coordinate form, the vectors from V W
˜E

are columns (aj )j∈Z with aj = 0 for j � 0,

and GL(˜E, V ) · StW consists of all invertible Z × Z-matrices M which, together
with their inverses, have finitely many nonzero entries below the main diagonal and
satisfy the condition rk C = rk C′, where C and C′ are respectively the strictly lower-
triangular parts of M and M−1.

3.4 The Case of Fl (W, ˜E , V), WhereW = {0 ⊂ W1 ⊂ W−1 ⊂ V }, dimW1 = 1,
codim VW−1 = 1

Here ˜E can be ordered by any countable ordered set I with a minimal and a maximal
element. We have V W

˜E
= V , V W

∗˜E
= V∗, and GL(˜E, V ) ·StW consists of all invertible

I ×I -matrices which, together with their inverses, satisfy the condition that each row
and column is finitary.

3.5 The Case of Fl (W, ˜E , V) for ˜E = {ei }i∈Z>0�Z<0 andW = {Wn }, Where
Wn = 〈e1, . . . , en〉C if n ∈ Z>0 andWn = 〈. . . , en−2, en−1, e1, e2, . . .〉C if
n ∈ Z<0

Then V W
˜E

= V , V W

∗˜E
= V∗, I = Z>0 � Z<0 with k < l if k ∈ Z>0, l ∈ Z<0, and

GL(˜E, V ) · StW consists of all invertible I × I -matrices which, together with their
inverses, satisfy the condition: each row and column is finitary, and there are at most
finitely many nonzero entries below the main diagonal.
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Note that in the cases 3.3, 3.4, and 3.5 the generalized flag W is symmetric, while
in the case 3.2 W is not symmetric.

4 More Background

We need to recall some facts about linear embeddings of finite-dimensional grass-
mannians and flag varieties. If T is a finite-dimensional space and d = {d1, . . . , di}
is a vector of positive integers satisfying dk < dl < dim T for k < l, then F l(d, T )

denotes the variety of all flags of subspaces T1 � . . . � Ti � T , where dim Tj = dj .
If d consists of one integer d , we write simply Gr(d, T ). If T is endowed with a
non-degenerate symmetric or antisymmetric (symplectic) form, we write respectively
F lO(d, T ) and F lS(d, T ) for the varieties of isotropic flags in T with respect to the
fixed form. We also write GrO(d, T ) and GrS(d, T ). An isotropic flag has always
length less or equal dim T

2 but, for convenience, in this paper by an isotropic flag we
will mean a flag of the form

W1 ⊂ W2 ⊂ . . . ⊂ Wk ⊂ W⊥
k ⊂ . . . ⊂ W⊥

1 ,

where the spaces W1, . . . , Wk are isotropic and the spaces W⊥
k , . . . , W⊥

1 are
coisotropic. All flag varieties F lO(d, T ) and F lS(d, T ) are connected, except
GrO(d, T ) for dim T = 2d . In what follows, by F lO(d, T ) or GrO(d, T ) we
always denote a connected component.

The Picard group of any grassmannian or ind-grassmannian Z is isomorphic to

Z except in the case of GrO
(

dim T
2 − 1, T

)

for 2 < dim T ∈ 2Z>0, and OZ(1)

always denotes the ample generator of Pic Z. In the case of GrO
(

dim T
2 − 1, T

)

for

2 < dim T ∈ 2Z>0 we have Pic GrO
(

dim T
2 − 1, T

)

� Z × Z.

The automorphism groups of the flag varieties F l(d, T ), F lO(d, T ), F lS(d, T )

have been known for long time. The fact that the automorphism group of the pro-
jective space P

n is PGL(n + 1) goes back to the nineteenth century. Wei-Liang
Chow [2] extended this result to grassmannians in 1949. For a general flag variety
X = F l(d, T ), F lO(d, T ), F lS(d, T ) the connected component of the iden-
tity in the automorphism group Aut X is the respective group PGL(T ), SO(T ), or
Sp(T ), except in several cases listed by A.L. Onishchik in [12]. These special cases
are GrS(1, T ) � P(T ), the five dimensional quadric GrO(1, T ) for dim T = 7, and

GrO
(

dim T −1
2 , T

)

for dim T ∈ 2Z>0 + 1.

In all cases, see for instance [1, Section 3.3], the full automorphism group G is
always a semidirect product of its connected component of unity G0 and a finite
group of automorphisms of the Dynkin diagram of the Lie algebra g = Lie G0 which
keep fixed the simple roots of the Lie algebra of the isotropy subgroup of a point on
the respective flag variety. In the present paper we only consider classical groups of
large enough rank, hence we can summarize the relevant part of this result as follows:

• for dim T ≥ 3,
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Aut F l(d, T ) �
⎧

⎨

⎩

PGL(T ) � Z2 if d = (d0 = 0, d1, d2, . . . , ds, ds+1
n = dim T ) satisfies

the condition di − di−1 = ds+2−i − ds+1−i for all 1 ≤ s ≤ n + 1
PGL(T ) in all other cases.

• for dim T ≥ 8, Aut F lO(d, T ) � O(T ), except for GrO( dim T
2 , T )

where Aut GrO( dim T
2 , T ) � SO(T ), and for GrO( dim T −1

2 , T ) where
Aut GrO( dim T −1

2 , T ) � SO(T ′) for dim T ′ = dim T + 1.
• for dim T ≥ 4, Aut F lS(d, T ) � Sp(T ), except for GrS(1, T ) where

Aut GrS(1, T ) � PGL(T ).

Based on the above exception concerning GrO
(

dim T −1
2 , T

)

for dim T ∈ 2Z>0 +1,

in what follows we will automatically assume that this case is excluded from con-

sideration. This leads to no loss of generality as GrO
(

dim T −1
2 , T

)

is isomorphic to

GrO
(

dim T ′
2 , T ′

)

where T ′ is an orthogonal space of dimension dim T + 1.

A nice class of embeddings of flag varieties F l(d1, T1) ↪→ F l(d2, T2)

for dim T1 < dim T2 is the class of standard extensions. Embeddings of ind-
grassmannians are discussed in detail in [14], and of arbitrary flag varieties in [15].
Here we just recall a definition and a basic fact needed to understand our arguments
in Sections 5, 6, and 8.

Definition 4.1 a) An embedding

η : F l(d1
1 , . . . , dk

1 , T ) ↪→ F l(d1
2 , . . . , dl

2, T
′),

respectively,

η : F lO(d1
1 , . . . , dk

1 , T ) ↪→ F lO(d1
2 , . . . , dl

2, T
′),

respectively,

η : F lS(d1
1 , . . . , dk

1 , T ) ↪→ F lS(d1
2 , . . . , dl

2, T
′)

is a strict standard extension if there exists a surjection

p : {0, 1, . . . , l, l + 1} → {0, 1, . . . , k, k + 1}
satisfying p(i) ≤ p(j) for i < j , together with an isomorphism

V ′ = V ⊕ ̂W, (7)

satisfying ̂W = V ⊥ in the orthogonal and symplectic case, and subspaces Wi ∈
̂W for 1 ≤ i ≤ l with Wi ⊂ Wj for i < j such that η has the form

η
({0} = Vp(0) ⊂ Vp(1) ⊂ . . . ⊂ Vp(l) ⊂ V

)

= ({0} = Vp(0) ⊂ Vp(1) ⊕ W1 ⊂ . . . ⊂ Vp(l) ⊕ Wl ⊂ V ′). (8)

Here the spaces W1, . . . , Wl are not required to be pairwise distinct, while the
spaces in the right-hand side of (8) are pairwise distinct by definition. In the
orthogonal or symplectic case we require that for each i there is j such that
Wj = W⊥

i .
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b) An embedding

η : F l(d1
1 , . . . , dk

1 , T ) ↪−→ F l(d1
2 , . . . , dl

2, T ′)
is a standard extension if after composing with one of the duality isomorphisms

F l(d1
1 , . . . , dk

1 , T ) � F l(dim T − dk
1 , . . . , dim T − d1

1 , T ∗),

F l(d1
2 , . . . , dl

2, T ′) � F l(dim T ′ − dl
2, . . . , dim T ′ − d1

2 , T ′∗)
η becomes a strict standard extension. For varieties of isotropic flags, standard
extension and strict standard extension are synonyms.

The following theorem follows directly from Corollary 4.4 in [15].

Theorem 4.1 Let X1 ↪→ X2 and Y1 ↪→ Y2 be embeddings of flag varieties or of
isotropic flag varieties, such that Y1 is the image of X1 under some isomorphism
ϕ : X2 → Y2. Then the embedding Y1 ↪→ Y2 is a standard extension whenever the
embedding X1 ↪→ X2 is a standard extension.

We need to recall also the notion of an ind-variety of isotropic generalized flags.
There are several cases. If a symmetric non-degenerate form (·, ·) on V is given, then
there are two types of relevant bases ˜E we consider:

{ei}i∈Z with (ei, e−i ) = 1 for all i, (ei, ek) = 0 for k �= −i,

or

{ei}i∈Z\{0} with (ei, e−i ) = 1 for all i ∈ Z>0, (ei, ek) = 0 for k �= −i. (9)

In the case of a symplectic non-degenerate form on V , we consider bases satisfying
(9) (here (e−i , ei) = −1 for i ∈ Z>0). We refer to bases as above as isotropic bases of
V . An isotropic generalized flag in V is by definition a generalized flag W = {Wα}
in V such that each space Wα is either isotropic or coisotropic and Wα belongs to W

if and only if W⊥
α = {w′ ∈ V | (w′, w) = 0 for all w ∈ Wα} belongs to W . If W is

an E-compatible isotropic generalized flag in V , then by definition, F lO(W, ˜E, V )

in the case of a symmetric form, or F lS(W, ˜E, V ) in the case of a symplectic form,
consists of all isotropic generalized flags in V which are ˜E-commensurable with
W . In all cases, F lO(W, ˜E, V ) or, respectively, F lS(W, ˜E, V ) is a direct limit of
finite-dimensional varieties of isotropic flags under standard extensions.

Finally, we should point out that in order to follow the proof of our main results
in Sections 5–8 the readers should first familiarize themselves with the results of the
Appendix.

5 Proof of Theorem 2.1 for ind-Grassmannians

We start by proving Theorem 2.1 under the assumption that the generalized flag W

has exactly one proper subspace, which we also denote by W . In what follows, we
write most of the time Gr(W, E, V ) instead of Gr(W, ˜E, V ), where E = ˜E ∩ W .
The set E is a basis of W , and the ind-variety Gr(W, ˜E, V ) depends only on E
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and not on the entire basis ˜E. We feel that this notation makes the argument more
transparent. Also, the space W is fixed and we write VE and V∗E instead of V W

˜E
and

V W

∗˜E
, respectively.

Recall that Gr(W, E, V ) is defined as the direct limit of strict standard extensions

Gr(dn, Vn) ↪−→ Gr(dn+1, Vn+1)

for some dn and some subspaces Vn ⊂ V , dim Vn � n, lim−→Vn = V . If dn stabilizes at
k ∈ Z>0 for large n, then lim−→Gr(dn, Vn) = Gr(k, V ) is the ind-grassmannian of all
k-dimensional subspaces in V . If dim Vn − dn stabilizes at k > 0, then Gr(W, E, V )

is isomorphic to Gr(k, V ) as an ind-variety via the map

δ : Gr(W, E, V ) → Gr(k, V∗),

W ′ �−→ W ′⊥ ⊂ V∗,
where W ′ denotes a variable point of Gr(W, E, V ) and W ′⊥ := {α ∈ V∗ | α(w′) =
0 ∀ w′ ∈ W ′}.

As we already mentioned, the automorphism groups of (finite-dimensional) grass-
mannians have been described in the classical paper [2]. This description implies that
if

α : Gr(dn, Tn)
∼→ Gr(dn, T

′
n) (10)

is any isomorphism of grassmannians, where dim Tn = dim T ′
n, then the pullback

α∗S′
n of the tautological bundle S′

n on Gr(dn, T
′
n) is isomorphic to the tautological

bundle Sn on Gr(dn, Tn), or to the bundle (˜Tn/Sn)
∗ in case 2dn = n, where ˜Tn is

the trivial bundle on Gr(dn, Tn) with fiber Tn. Moreover, if α∗S′
n � Sn, then the

isomorphism (10) is determined by the linear operator η : (T ′
n)

∗ → T ∗
n which it

induces via pullback: we have α(Tdn) = η∗(Tdn) where Tdn ∈ Gr(dn, Tn) and the
operator η∗ is dual to η. Recall also that any global endomorphism of the bundle Sn

or (˜T /Sn)
∗ is scalar.

Set Xn = Gr(dn, Vn). Then Gr(W, E, V ) = lim−→Xn. In the rest of the argument
we assume in addition that dim W = codim V W = ∞ and that dn = n, dim Vn = 2n.
This is the case of the Sato grassmannian. The remaining cases where dim W < ∞
or codim V W < ∞ have been considered in [13], and it has been proved there that
Aut Gr(W, E, V ) ∼= PGL(V ) for dim W < ∞, and Aut Gr(W, E, V ) ∼= PGL(V∗)
for codim W < ∞. This is in agreement with Theorem 2.1, as in these two cases W

is not symmetric and there is an isomorphism

GL(˜E, V ) · StW ∼=
{

GL(V ) for dim W < ∞
GL(V∗) for codim V W < ∞.

(11)

We leave the proof of (11) as an exercise to the reader.
Our first step will be to prove that the group of automorphisms of the ind-variety

Gr(W, E, V ) is a subgroup of P(GL(˜E, V ) · StW ) � Z2. Let ϕ̃ : Gr(W, E, V ) →
Gr(W, E, V ) be an arbitrary automorphism. Denote by Yn the image of Xn, that
is, ϕ̃(Xn) = Yn. Clearly, Yn is a grassmannian isomorphic to Xn. Moreover, the
embeddings Yn ↪→ Yn+1 can be assumed to be strict standard extensions by Theorem
4.1.
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Next, we have two possibilities: for some n, the isomorphism

ϕ̃n := ϕ̃|Xn : Xn −→ Yn

has the property

ϕ̃∗
nSYn

∼= (

˜Vn/Sn

)∗
, (12)

where Sn is the tautological bundle on Xn and SYn is the tautological bundle on Yn,
or the property

ϕ̃∗
nSYn

∼= Sn (13)

for all n. Since our chains of embeddings Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict
standard extensions, if the isomorphism (12) holds for some n, it must hold for all
n. However, if this happens we can compose our automorphism ϕ̃ with the following
automorphism which represents an element of Z2 in the semidirect product from the
statement of the theorem:

δ : Gr(W, ˜E, V ) �−→ Gr(W⊥, ˜E∗, V∗) −→ Gr(W, ˜E, V ),

where the left arrow sends W to W⊥ ⊂ V∗ and the right arrow is induced by an
appropriate linear isomorphism

V∗ −→ V

which maps W⊥ to W . Option (13) certainly holds for the composition δ ◦ ϕ̃, so
without loss of generality we can assume in the rest of the argument that (13) holds.

The latter assumption implies

ϕ̃∗
nS∗

Yn
= S∗

n (14)

for all n. We write equality, as such an isomorphism is determined up to a scalar cn,
and we assume that the scalars cn are chosen in a way compatible with the restriction
maps

Then, by our above remark that isomorphisms of grassmannians are encoded by
linear operators, the isomorphisms ϕ̃n : Xn

∼→ Yn are recovered by a choice of
compatible invertible linear operators

ϕ∗
n : (V ′

n)
∗ = H0(Yn, S

∗
Yn

)
∼→ H0(Xn, S

∗
n) = V ∗

n .

The operators ϕ∗
n are dual to unique operators ϕn = (ϕ∗

n)∗ : Vn → V ′
n which we will

also consider.
Since both chains of embeddings Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict standard

extensions, we have lim−→V ′
n = V = lim−→Vn, and consequently, lim←−(V ′

n)
∗ = V ∗ =

lim←− V ∗
n . Therefore, the operators ϕ∗

n induce a linear operator

� : V ∗ → V ∗,
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and more precisely, a commutative diagram

(15)

The diagram (15) encodes the automorphism ϕ̃ in the following way. Let W ′ =
lim−→(W ′ ∩ Vn) be a point of Gr(W, E, V ). Then

ϕ̃(W ′) = lim−→ϕn(W
′ ∩ Vn) = lim−→

(

(

ϕ∗
n

)−1
(

(W ′ ∩ Vn)
⊥)⊥)

, (16)

where the orthogonal to W ′ ∩ Vn is taken in V ∗
n and the orthogonal to

(

ϕ∗
n

)−1
(

(

W ′ ∩ Vn

)⊥)

is taken in V ′
n.

Next, it is essential to observe that the subspace V∗E ⊂ V ∗ is nothing but the
subspace of global sections μ of the sheaf lim←− S∗

n satisfying the condition: the value
of μ at any point W ′ ∈ Gr(W, E, V ) is a linear function on W ′ which belongs
to the subspace W ′∗ ⊂ W ′∗. Here W ′∗ is defined in terms of a basis of W ′ which
differs from E by finitely many vectors (W ′∗ is the span of the system of linear func-
tionals dual to such a basis). Note that, for each W ′ ∈ Gr(W, E, V ), the subspace
W ′∗ ⊂ W ′∗ is determined solely by the set Gr(W, E, V ), and hence the above sub-
space of global sections μ, i.e., the space V∗E , must be invariant under the operator �.
Next, the subspace VE is the counterpart of the space V∗E for the ind-grassmannian
Gr(W⊥, ˜E∗, V∗), where V∗ is defined by the fixed extension ˜E of E to a basis
of V , and E∗ are the linear functions in ˜E∗ which do not vanish on W . Since
Gr(W⊥, ˜E∗, V∗) is isomorphic to Gr(W, E, V ), the space VE is also invariant under
the linear map �′ : (V∗)∗ → (V∗)∗ induced by the automorphism ϕ̃ of Gr(W, E, V ).

We have shown that any automorphism ϕ̃ : Gr(W, E, V ) → Gr(W, E, V ) sat-
isfying (13) induces a pair of invertible operators ϕ := �′|VE

: VE → VE and
ϕ := �|V∗E

: V∗E → V∗E which determine an element of the Mackey group
G(VE, V∗E). Moreover, if Aut0Gr(W, E, V ) stands for the group of automorphisms
of the ind-variety Gr(W, E, V ) satisfying (13), then the assignment ϕ̃ �−→ ϕ, or
equivalently ϕ̃ �−→ ϕ−1, defines an injective group homomorphism

ε : Aut0Gr(W, E, V ) ↪→ PG(VE, V∗E).
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We now check that the action of the image in PG(VE, V∗E) of Aut0Gr(W, E, V )

is given by the formula

ϕ̃
(

W ′) = ϕ−1
(

W ′⊥)⊥ ∩ V,

where W ′⊥ ⊂ V∗E and ϕ−1
(

W ′⊥)⊥ ⊂ (V∗E)∗ (clearly, V ⊂ (V∗E)∗). To do this,
recall that ϕ̃(W ′) is given by formula (16). Therefore, we need to verify that

lim−→
(

(

ϕ∗
n

)−1
(

(

W ′ ∩ Vn

)⊥)⊥)

= ϕ−1
(

(

lim←−
(

(

W ′ ∩ Vn

)⊥))⊥)

∩ V . (17)

However, formula (17) follows from the observation that both its left-hand and
right-hand sides coincide with the subspace of vectors in V which vanish on
(

ϕ∗
n

)−1
(

(

W ′ ∩ Vn

)⊥)

whenever they belong to Vn; we consider here vectors in Vn

as linear functions on V ∗
n .

In conclusion, the image of Aut0Gr(W, E, V ) in PG(VE, V∗E) is a subgroup of
PG(VE, V∗E) which acts on Gr(W, E, V ) via formula (17). Next, we note that since
GL(˜E, V ) acts transitively on Gr(W, E, V ), for any ϕ̃ ∈ Aut0Gr(W, E, V ) there
are κ ∈ GL(˜E, V ) and ϕ̃W ∈ Aut0Gr(W, E, V ) such that ϕ̃W (W) = W and ϕ̃ =
κ ◦ ϕ̃W . Indeed if ϕ̃(W) = W ′ for W ′ ∈ Gr(W, E, V ), then ϕ̃ = κ

−1 ◦ κ ◦ ϕ̃ where
κ ∈ GL(˜E, V ) satisfies κ(W ′) = W . Consequently, ϕ = κ

−1ϕW for ϕW ∈ StW , in
other words, the image of ε lies in P(GL(˜E, V ) · StW ).

To complete the proof, we need to show that any operator ϕ ∈ GL(˜E, V ) · StW
determines a well-defined automorphism of Gr(W, E, V ). In the Appendix we intro-
duce the degree d(ϕ) of an operator ϕ and show that the space ϕ ·W ′ = ϕ−1(W ′⊥)⊥∩
V is ˜E-commensurable with W for any ϕ ∈ G(VE, V∗E) such that d(ϕ) = 0. Denote
by G0(VE, V∗E) the group of all operators ϕ ∈ G(VE, V∗E) with d(ϕ) = 0.

We have to convince ourselves that the action of G0(VE, V∗E) on Gr(W, E, V )

is by automorphisms of ind-varieties, and not merely by bijections of the set
Gr(W, E, V ). Let V = W ⊕ U where ˜E ∩ U spans U . Recall that our fixed nested
finite-dimensional spaces V1 ⊂ . . . ⊂ Vn ⊂ Vn+1 ⊂ . . . are spanned by elements of
˜E and Gr(W, E, V ) = lim−→ Gr(dn, Vn) where dn = dim Vn ∩ W . The embeddings
Xn = Gr(dn, Vn) ↪→ Gr(dn+1, Vn+1) = Xn+1 are strict standard extensions

Fdn �−→ Fdn ⊕ Wn|n+1,

where Wn+1 = W ∩Vn+1 = Wn ⊕Wn|n+1 for Wn = W ∩Vn, and Wn|n+1 ∩ ˜E spans
Wn|n+1. Therefore, we have a decomposition V∗E = Wn∗ ⊕V ∗

n ⊕U∗
n , where Wn∗ is

the ˜E-compatible direct complement of V ∗
n within W∗ +V ∗

n and U∗
n is the dual of the

˜E-compatible direct complement Un of W + Vn in V . Any invertible linear operator
ζ : V∗E → V∗E induces a decomposition

V∗E = ζ(Wn∗) ⊕ ζ(V ∗
n ) ⊕ ζ(U∗

n ),

and hence an operator

ζn : V ∗
n := V∗E/(Wn∗ ⊕ U∗

n ) −→ V∗E/(ζ(Wn∗) ⊕ ζ(U∗
n )) = ζn(V

∗
n ).

Moreover, we have ζ =
(

lim←− ζn

)

|V∗E
.
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Each linear operator ζn induces an isomorphism of grassmannians

Gr(dn, ζn(V
∗
n )∗) −→ Gr(dn, Vn),

and the varieties Gr(dn, ζn(V
∗
n )∗) form an ind-variety isomorphic to Gr(W, E, V ).

We conclude that if lim−→Gr(dn, ζn(V
∗
n )∗) = Gr(W, E, V ), then ζ induces an auto-

morphism of the ind-variety Gr(W, E, V ). Set now ζ := ϕ−1 for ϕ ∈ G0(VE, V∗E).
Then ζn = (

ϕ∗
n

)−1 and ζn(V
∗
n )∗ = ϕn(Vn). By the above mentioned result from the

Appendix, we know that ϕ · W ′ ∈ Gr(W, E, V ) whenever ϕ ∈ G0(VE, V∗E) and
W ′ ∈ Gr(W, E, V ). Therefore lim−→ Gr(dn, ϕn(Vn)) = Gr(W, E, V ), and we have

shown that PG0(VE, V∗E) ⊂ im ε.
Finally, Theorem A.1 (i) from the Appendix implies that StW ⊂ G0(VE, V∗E), and

hence that also GL(˜E, V ) · StW ⊂ G0(VE, V∗E). Consequently, GL(˜E, V ) · StW =
G0(VE, V∗E) and GL(˜E, V ) ·StW is a group. In particular, GL(˜E, V ) ·StW = StW ·
GL(˜E, V ). The proof is now complete as we have shown that im ε = P(GL(˜E, V ) ·
StW ).

Corollary 5.1 If dim W = codim V W = ∞, the group AutGr(W, E, V ) is isomor-
phic to the projectivization of the connected component of unity in the group Japanese
GL(∞).

Proof We proved that AutGr(W, E, V ) ∼= PG0(VE, V∗E). As pointed out in the
Appendix, the group G0(VE, V∗E) is isomorphic to the connected component of
unity in the group Japanese GL(∞).

6 Proof of Theorem 2.1 in the General Case

Step 1. Reduction to the case of an automorphism which preserves all inverse lim-
its of dual tautological bundles. Consider the ind-variety F l(W, ˜E, V ) for our fixed
generalized flag W = {Wα} compatible with the fixed basis ˜E of V . Fix an exhaus-
tion of F l(W, ˜E, V ) as a direct limit lim−→F l(dn, Vn) of strict standard extensions of
finite-dimensional flag varieties F l(dn, Vn). If the generalized flag W is symmetric,
then the exhaustion can be chosen so that each flag variety F l(dn, Vn) is symmetric,
i.e., the vector (d0

n = 0, d1
n, d2

n, . . . , ds
n, d

s+1
n = dim Vn) satisfies the condition

di
n − di−1

n = ds+2−i
n − ds+1−i

n

for all 1 ≤ s ≤ n + 1. If W is not symmetric, then infinitely many vectors dn are not
symmetric, so (by passing to a subsequence of the sequence {n}) we can assume that
all vectors dn are not symmetric.

Let ϕ̃ : F l(W, ˜E, V ) → F l(W, ˜E, V ) be an automorphism. Set Xn :=
F l(dn, Vn) and let Yn = ϕ̃(Xn). The varieties are finite-dimensional flag varieties,

and there are fixed isomorphisms ϕ̃n := ϕ̃|Xn : Xn
∼→ Yn. Moreover, Theorem 4.1

implies that the embeddings Yn ↪→ Yn+1 are standard extensions. By replacing Yn or
Yn+1 by its dual flag variety we can further assume that the embeddings Yn ↪→ Yn+1
are strict standard extensions.
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Denote by S
j
n and S

j
Yn

the tautological bundles of rank d
j
n on Xn and Yn,

respectively. There are two possibilities: either

ϕ̃∗
nS

j
Yn

� S
j
n (18)

for all n, or
ϕ̃∗

nS
j
Yn

� (˜Vn/S
s+1−j
n )∗ (19)

for some n = n0 and all j , 1 < j � s. Case (19) can occur only if the vector dn0
is symmetric. Moreover, then (19) will necessarily hold for all n > n0 due to the
assumption that all embeddings Xn ↪→ Xn+1 and Yn ↪→ Yn+1 are strict standard
extensions. In that case, we may as well assume that (19) holds for all n.

Similarly to the case of an ind-grassmannian, if (19) holds for all n we can
compose ϕ̃ with an automorphism

δ : F l(W, ˜E, V )
∼−→ F l(W⊥, ˜E∗, V∗)

∼−→ F l(W, ˜E, V )

which maps W first to W⊥ and then maps W⊥ to a point of F l(W, ˜E, V ) under the
isomorphism F l(W⊥, ˜E∗, V∗)

∼−→ F l(W, ˜E, V ) induced by an appropriate linear
isomorphism V∗ → V mapping ˜E∗ to ˜E. Then the composition δ ◦ ϕ̃ satisfies the
condition (18) for all n. Therefore, in order to prove Theorem 2.1, it suffices to prove
that

Aut0F l(W, ˜E, V ) � P(GL(˜E, V ) · StW )

where Aut0F l(W, ˜E, V ) denotes the group of automorphisms of F l(W, ˜E, V )

satisfying (18) for all n.
Step 2. From automorphisms to linear operators. Since (18) holds, the automor-

phism
ϕ̃ : F l(W, ˜E, V ) → F l(W, ˜E, V )

induces automorphisms

ϕ̃α : Gr(Wα, Eα, V ) → Gr(Wα, Eα, V ) (20)

for each subspace Wα in W . In turn, the automorphisms (20) induce linear operators,
defined up to scalar multiples,

�α : V ∗ → V ∗

as explained in Section 5.
We now point out that the operators �α can be chosen to coincide, i.e., to define a

single operator
� : V ∗ → V ∗

not depending on α. This observation is justified as follows. Denote by S∗
α the

pullback to F l(W, ˜E, V ) of the inverse limit of the tautological bundles S∗
n on

Gr(Wα, Eα, V ). Let α′ < α be two indices in the chain W = {Wα}. Then the mor-
phism of inverse limits S∗

α → S∗
α′ , arising from the respective morphism of inverse

systems, induces a commutative diagram

(21)
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the vertical equalities being the identifications V ∗ = lim←− V ∗
n

= lim←− H0(Gr(d
γ
n , Vn), S

∗
n) where Gr(Wγ , Eγ , V ) = lim−→ Gr(d

γ
n , Vn) for γ = α and

γ = α′, respectively. Therefore, for a fixed α and all α′ < α, the spaces of the form
H0(S∗

α′) are identified with V ∗ in a way compatible with the upper horizontal arrows
of the diagrams (21). Next, the following diagram is commutative

and this implies �α = �α′ .

Step 3. Injective homomorphism Aut0F l(W, ˜E, V ) → PG
(

V W
˜E

, V W

∗˜E

)

. Note first

that each homomorphism

Aut0F l(W, ˜E, V ) −→ Aut0Gr(Wα, ˜E, V )

ϕ̃ �−→ ϕ̃α

is injective, since ϕ̃α recovers ϕ̃ through the formula

ϕ̃
(

W ′)
α′ = �−1

(

W ′
α′

⊥)⊥ ∩ V

for any α′, where W ′
α′

⊥ ⊂ V
Wα′
∗Eα′ , �−1

(

W ′
α′

⊥)⊥ ⊂ V
Wα′
Eα′ and, as explained above,

� = �α .
Moreover, the automorphism � : V ∗ → V ∗ induces pairs of automorphisms

ϕα = �′
α|

V
Wα
Eα

: V
Wα

Eα
−→ V

Wα

Eα
, ϕα : V

Wα∗Eα
−→ V

Wα∗Eα
, (22)

compatible with all inclusions of the form V
Wα′
Eα′ ⊂ V

Wα

Eα
, V

Wα∗Eα
⊂ V

Wα′
∗Eα′ for α′ < α,

and such that ϕα ∈ G
(

V
Wα

Eα
, V

Wα∗Eα

)

. The compatibility of ϕα and ϕα′ is clear, while

the compatibility of ϕα and ϕα′ follows from the inclusion

ϕ−1
α′ (W⊥

α′ )⊥ ⊂ ϕ−1
α (W⊥

α )⊥,

where W⊥
α ⊂ V

Wα∗Eα
, W⊥

α′ ⊂ V
Wα′
∗Eα′ , ϕ−1

α (W⊥
α )⊥ ⊂ V

Wα

Eα
, ϕ−1

α′ (W⊥
α′ )⊥ ⊂ V

Wα′
Eα′ .

Therefore, we conclude that the system of linear operators (22) determines a unique

element in G
(

V W
˜E

, V W

∗˜E

)

for V W
˜E

= ⋂

α

V
Wα

Eα
and V W

∗˜E
= ⋂

α

V
Wα∗Eα

, and we obtain a

homomorphism

ε : Aut0F l(W, ˜E, V ) −→ PG
(

V W
˜E

, V W

∗˜E

)

.
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The fact that GL(˜E, V ) acts transitively on F l(W, ˜E, V ) shows, by the same argu-
ment as in Section 5, that the image of ε lies in the subset P

(

GL(˜E, V ) · StW
)

of

PG
(

V W
˜E

, V W

∗˜E

)

.

We have to prove that ε is injective, i.e., that the image of ε determines all operators
ϕα and ϕα as above. We will do this by recalling that each operator ϕα : V

Wα

Eα
→ V

Wα

Eα

admits a matrix as described in the Appendix. The key point is that if an invertible
operator on V

Wα

Eα
admits such a matrix, then this matrix is unique. Now the compati-

bility of the operators ϕα under all inclusions V
Wα′
Eα′ ↪→ V

Wα

Eα
for α′ < α implies that

the matrices of all operators ϕα coincide. Since each homomorphism

ϕ̃α �−→ ϕα

is injective according to Section 5, we conclude that ε is injective.
Step 4. The image of ε. As a final step of the proof, we need to show that the

image of ε coincides with the set P(GL(˜E, V ) · StW ). For this it suffices to prove
that P(GL(˜E, V ) · StW ) belongs to the image of ε, i.e., that GL(˜E, V ) · StW acts on
the ind-variety F l(W, ˜E, V ) via the formula (4).

Pick an operator ϕ ∈ GL(˜E, V ) · StW and a flag W ′ ∈ F l(W, ˜E, V ). Since W

and W ′ are ˜E-commensurable, one has GL(˜E, V ) · StW = GL(˜E, V ) · StW ′ . There-
fore ϕ = κ

−1ϕW ′ for some ϕW ′ ∈ StW ′ and some κ ∈ GL(˜E, V ). Consequently,
ϕ(W ′) = κ

−1(W ′), i.e., ϕ−1(W ′) is ˜E-commensurable with W . In conclusion,
imε = P(GL(˜E, V ) · StW ), and since GL(˜E, V ) · StW is a group we have also
imε = P(StW · GL(˜E, V )). The proof is complete.

7 An Explicit Matrix Form of the Group GL(˜E,V) · StW
Now we would like to characterize the product GL(˜E, V ) ·StW in terms of matrices.
We start by describing a matrix form of the group StW .

Choose a linear order on ˜E such that ej ∈ Wα \ Wα′ , ek ∈ Wα′ for α′ < α

implies k < j . It follows from the Appendix that for each space Wα the stabilizer of

Wα in G
(

V
Wα

Eα
, V

Wα∗Eα

)

under the action (4) can be represented by infinite matrices

(with rows and columns ordered by the fixed order on ˜E) which, together with their
inverses, have the form

(23)

where A has finitary rows, D has finitary columns, and there are no restrictions on
the rows and columns of B. Certainly, the splitting (23) depends on the space Wα .

Next, the fact that the operators ϕα and ϕα form a system compatible with the

inclusions V
Wα′
Eα

⊂ V
Wα

Eα
, V

Wα∗Eα
⊂ V

Wα′
∗Eα

for α′ < α, implies that all operators
ϕα , respectively ϕα , are represented by the same matrix. This means that all matri-
ces (23) are just one matrix which satisfies the above conditions for all spaces Wα .
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Consequently, StW consists of matrices M which, together with their inverses, have
the form

(24)

the rows and columns of M being ordered by the ordered set which orders the
elements of ˜E as above, and the diagonal blocks being of size dim(Wα2/Wα1) ×
dim(Wα2/Wα1) where α is one of the indices α1 and α2, and α1 is the immediate pre-
decessor of α2. This datum induces a block structure on the entire matrix M , and all
strictly lower-triangular blocks are set to equal zero. Furthermore, since M and M−1

are subject to the above additional conditions for all splittings arising from spaces
Wα of W , the matrices M and M−1 satisfy the following:

• if there exists a rightmost highest block L (this depends on the order on ˜E, i.e.,
ultimately on the structure of the generalized flag W ), then there are no condi-
tions on the rows and columns of L, all columns of M which intersect L have at
most finitely many nonzero entries outside of L, all rows of L which intersect L

have at most finitely many nonzero entries outside of L, and all other rows and
columns of M have at most finitely many nonzero entries in the region in which
the first index is greater then the first index of any entry of L and the second
index is smaller than the second index of any entry of L;

• if M has no rightmost highest block, then all rows have at most finitely many
nonzero entries in direction to the left (from any point on) and all columns have
at most finitely many nonzero entries in the downward direction (from any point
on).

In order to pass to the full group GL(˜E, V ) · StW , consider matrices of the form
(24) and replace the zeros in the lower-triangular part by finitely many nonzero
entries. Let’s refer to such matrices as W -aligned. If M is a W -aligned matrix, then
every space Wα induces a splitting of M into four blocks

(25)

where C is a finitary matrix. A W -aligned matrix M is eligible if M−1 is also W -
aligned, and for any α the splittings
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of M and M−1 respectively, satisfy the condition

rk C = rk C′.

We leave it as an exercise to the reader to check that the condition of eligibility is
empty (i.e., it is automatically satisfied) if the ordered set parameterizing the rows
and columns of A or D is finite.

Our result in this section states as follows.

Theorem 7.1 The group GL(˜E, V ) · StW is isomorphic to the group of all eligible
W -aligned matrices.

Proof Any matrix in GL(˜E, V ) · StW has the form Mf M where Mf is an element
of GL(˜E, V ) and M is a matrix from StW having the form (24). The necessary and
sufficient condition for Mf M to lie in GL(˜E, V ) · StW is that the splitting (25)
of Mf M for any space Wα in W satisfies the condition of Theorem A.1. For all
α these conditions amount precisely to the requirement that the matrix Mf M be
eligible.

8 The Isotropic Case

Theorem 8.1 Let X = F lO(W, ˜E, V ) or F lS(W, ˜E, V ) for some isotropic gener-
alized flag W compatible with an isotropic basis ˜E of V . We assume in addition that
W does not have the form 0 ⊂ W1 ⊂ W⊥

1 ⊂ V where dim W1 = 1 in the symplectic
case, and that dim W⊥

1 /W1 �= 2 in the orthogonal case if the basis ˜E has the form
(9). Then

AutX � P(O(˜E, V ) · StOW )

or

AutX � P(Sp(˜E, V ) · St
Sp
W ),

where StOW and St
Sp
W denote respectively the stabilizer of W in O(V ) and Sp(V ).

The action of O(V ) on F lO(W, ˜E, V ), or respectively of Sp(V ) on F lS(W, ˜E, V ),
is induced by the linear action of O(V ) or Sp(V ) on V .

Proof Step 1. The case of an isotropic ind-grassmannian. The argument starts in
the same way as for ordinary ind-grassmannians. The embeddings Xn ↪→ Xn+1
are assumed to be standard extensions of isotropic grassmannians, and by Theo-

rem 4.1 the embeddings Yn := ϕ(Xn)
ηn
↪→ Yn+1 := ϕ(Xn+1) are also standard

extensions.
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Next, in the isotropic case the isomorphisms (14) must hold, so we arrive to
diagram (15) or, equivalently, to a commutative diagram

The isomorphism V = lim−→ V ′
n holds since the embeddings Yn ↪→ Yn+1 are stan-

dard extensions, and hence any V ′
n is a subspace of VN for some N > n. Furthermore,

the restriction of the fixed (symmetric or antisymmetric) form on V to V ′
n is a form

defining the corresponding isotropic grassmannian in V ′
n. (Such a form is unique up

to a scalar if W satisfies the conditions of the theorem.) Recall (from Section 5) that
the maps ϕn are defined up to compatible scalars cn. The key observation is that there
is a unique choice of these scalars such that the maps ϕn are isomorphisms of orthog-
onal or, respectively, symplectic vector spaces. This follows from the fact that the
automorphism groups of our finite-dimensional isotropic grassmannians Xn and Yn

are the respective orthogonal or symplectic groups.
Set

ϕ := lim−→ϕn : V → V .

Then by construction ϕ is an orthogonal or, respectively, symplectic operator, and ϕ

determines our automorphism ϕ̃ which acts on a point W ′ by formula (16). However,
in the case considered we have

lim−→
(

ϕn

(

(

W ′ ∩ Vn

)⊥)⊥)

= lim−→
(

ϕn

(

W ′ ∩ Vn

)) = ϕ(W ′), (26)

hence the action of ϕ̃ on X is simply induced by the action of ϕ as a linear
automorphism of V . This implies that there is an injective homomorphism

ε : AutGrO(W, ˜E, V ) ↪→ PO(V )

or, respectively,
ε : AutGrS(W, ˜E, V ) ↪→ PSp(V ),

ϕ̃ �−→ ϕ

and that the action of the image of ε on GrO(W, ˜E, V ) or GrS(W, ˜E, V ) is induced
by the linear action of O(V ) or, respectively, Sp(V ) on V .

In the case of a general ind-variety of isotropic generalized flags, an injective
homomorphism ε is constructed exactly as in Step 3 of the proof of Theorem
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2.1. Here the images of all homomorphisms εα lie in PO(V ) or, respectively,
PSp(V ), therefore ε is just the homomorphism into the intersection of all images
of εα . Moreover, the image of ε coincides respectively with P(O(˜E, V ) · StOW ) or

P(Sp(˜E, V ) · St
Sp
W ). Indeed, since O(˜E, V ) or, respectively, Sp(˜E, V ), acts transi-

tively on F lO(W, ˜E, V ) or F lS(W, ˜E, V ), the image of ε must be a subgroup of
P(O(˜E, V ) · StOW ) or, respectively, P(Sp(˜E, V ) · St

Sp
W ). On the other hand, by the

same argument as in Section 6, O(˜E, V ) · StOW or, respectively, Sp(˜E, V ) · St
Sp
W acts

on the ind-variety F lO(W, ˜E, V ) or F lS(W, ˜E, V ) via the formula (16). Since in
our case the equality (26) holds, the proof is complete.

Corollary 8.1 The group O(˜E, V ) · StOW , or Sp(˜E, V ) · St
Sp
W , is isomorphic to

the group of all invertible W -aligned matrices M with finitary rows and columns
satisfying M = ±M−1, where · denotes reflection along the antidiagonal, plus
corresponds to the case of O and minus corresponds to the case of Sp.

Proof The group O(˜E, V ) · StOW or Sp(˜E, V ) · St
Sp
W is clearly the intersection of the

group GL(˜E, V ) · StW with O(V ) or, respectively, with Sp(V ), and this implies the
claim. Note that the condition M = ±M−1 makes M eligible automatically.

Appendix. On the Structure of the GroupG(VE,V∗E)

In this Appendix we have collected some basic statements about the Mackey group
G(VE, V∗E). The isomorphism of this group a the group sometimes referred to as
Japanese GL(∞) is stated at the end.

A.1 A Lemma from Linear Algebra

Lemma A.1 A be a countable-dimensional vector space, and μ : A∗ → A,
ν : A∗ → A be linear maps such that α(μ(β)) = β(ν(α)) for all α, β ∈ A∗. Then
the dimensions of the images of μ and ν are finite and equal.

Proof We first check that dim im μ < ∞. This will imply that dim im ν is also
finite because the conditions on μ and ν are symmetric. Pick a basis {f1, f2, . . .}
of A, and let {f ∗

1 , f ∗
2 , . . .} be the dual system in A∗. Assume that im μ is infi-

nite dimensional. Then there exist linear functions λn ∈ A∗ for n ∈ Z>0, such that
dim〈μ(λ1), . . . , μ(λn)〉C = n. It is easy to see that these linear functions can be
chosen so that λn(fi) = 0 for i < n and λn(fn) �= 0. Let B := 〈λn|n ∈ Z>0〉C. The
formula (a, b) �→ b(a) for a ∈ A, b ∈ B defines a non-degenerate pairing between
A and B. By a result of G. Mackey [10, Lemma on p. 171], we may assume without
loss of generality that λn = f ∗

n for all n.
Since dim im μ = ∞, for any n ∈ Z>0 there exists in ∈ Z>0 such that μ(f ∗

in
) is not

contained in An := 〈f1, . . . , fn〉C. In other words, there exist two infinite sequences
of integers 1 ≤ i1 < i2 < . . . and 2 ≤ k1 < k2 < . . . so that μ(f ∗

in
) ∈ Akn \ Akn−1

for all n ≥ 1.
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Now we define a sequence c1, c2, . . . of complex numbers inductively as follows.
Set c1 to be an arbitrary nonzero scalar. For n > 1 we let cn to be an arbitrary complex
number such that

n
∑

j=1

cjf
∗
kj

(μ(f ∗
in
)) = cnf

∗
kn

(μ(f ∗
in
)) +

n−1
∑

j=1

cjf
∗
kj

(μ(f ∗
in
)) �= 0.

(Such a number exists because f ∗
kn

(μ(f ∗
in
)) �= 0.) Finally, we define α ∈ A∗ by the

formula

α(fj ) =
{

cn if j = kn for some n ≥ 1,

0 otherwise.

Then

f ∗
in
(ν(α)) = α(μ(f ∗

in
)) = ∑n

j=1 cjf
∗
kj

(μ(f ∗
in
)) �= 0

for any n ∈ Z>0. This means that ν(α) /∈ Ain−1 for all n ≥ 1, i.e., that ν(α) can not
be expressed as a finite linear combination of f1, f2, . . ., and this is a contradiction.

Hence, dim im μ < ∞, and also dim im ν < ∞. It remains to check that
dim im μ = dim im ν. Since dim im μ < ∞, there exist n ∈ Z>0 and linear functions
α1, . . . , αn ∈ A∗∗ such that μ(a) = ∑n

i=1 αi(a)fi for all a ∈ A∗. We note that in
fact αi ∈ A for all i. Indeed,

f ∗
j (μ(a)) = f ∗

j

(

n
∑

i=1

αi(a)fi

)

= αj (a) = a(ν(f ∗
j )),

so αj = ν(f ∗
j ) ∈ A for all j . It follows that there exist m ∈ Z>0 and scalars αij ∈ C

so that αj = ∑m
i=1 αijfi for all 1 ≤ j ≤ n. Clearly, dim im μ = rk (αij )

m,n
i,j=1.

Similarly, there exist n′, m′ ∈ Z>0, vectors βj ∈ A, and scalars βij ∈ C so that

ν(b) = ∑n′
j=1 βj (b)fj and βj = ∑m′

i=1 βijfi for all 1 ≤ j ≤ n′. Then dim im ν =
rk (βij )

m′,n′
i,j=1. However, αij = f ∗

i (αj ) = f ∗
i (ν(f ∗

j )) = f ∗
j (μ(f ∗

i )) = f ∗
j (βi) =

βji for all i, j . This means that m′ = n, n′ = m, and the matrices (αij )
m,n
i,j=1 and

(βij )
n,m
i,j=1 are transpose to each other. The result follows.

A.2 A Grading on the Group G(VE , V∗E )

We work in the setup of Section 5. Recall that we consider a generalized flag of the
form {0} ⊂ W ⊂ V , where dim W = codim V W = ∞, and that E = ˜E ∩ W is a
basis of W . Let U = 〈˜E\E〉C. We have VE = (W∗)∗⊕U , V∗E = W∗⊕U∗ and there
is a natural non-degenerate pairing VE × V∗E → C. The group G(VE, V∗E) consists
of invertible linear operators ϕ : VE → VE such that ϕ = ϕ∗|V∗E

: V∗E → V∗E is a
well-defined isomorphism.

Choose an ordering of E via Z<0 and an ordering of ˜E \ E via Z>0. Set

Ek :=
{

E \ {ek, . . . , e−1} for k < 0

E ∪ {e1, . . . , ek} for k > 0
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and Wk := 〈Ek〉C. The disjoint union
⊔

k∈Z
Gr(Wk, Ek, V ), where E = E0, W =

W 0, is an ind-variety which we denote by X.

Proposition A.2 The formula (4) defines an action of G(VE, V∗E) on X by ind-
variety automorphisms.

Proof We first prove that ϕ · W ′ ∈ X for any W ′ ∈ X and any ϕ : VE → VE ,
ϕ ∈ G(VE, V∗E). Since in the definition of X, W can be replaced by W ′, it suffices to
check that ϕ · W ∈ X. Denote by πU : VE → U and πW∗ : V∗E → W∗ the canonical
projections onto the corresponding direct summands. Set also μ := πU ◦ (

ϕ|(W∗)∗
)

and ν := πW∗ ◦ (ϕ|U∗).
We claim that dim im μ and dim im ν are finite (and equal). Fix an isomorphism

of vector spaces η : W∗ → U and the dual isomorphism η∗ : U∗ → (W∗)∗. Consider
the linear maps μ′ = μ ◦ η∗ and ν′ = η ◦ ν from U∗ to U . Then, for all α, β ∈ U∗,
we have

α(μ′(β)) = α(μ(η∗(β))) = α(πU(ϕ(η∗(β)))) = α(ϕ(η∗(β))) = ϕ(α)(η∗(β))

= πW∗(ϕ(α))(η∗(β)) = ν(α)(η∗(β)) = η(ν(α))(β) = β(ν′(α)).

Hence, dim im μ′ = dim im ν′ < ∞ (and, consequently, dim im μ = dim im ν < ∞)
by Lemma A.1.

Now, denote by A0 the preimage of zero under the restriction of πU to ϕ((W∗)∗).
Obviously, A0 = (W∗)∗ ∩ ϕ((W∗)∗). According to the proof of Lemma A.1, there
exist n ∈ Z>0 and α1, . . . , αn ∈ W∗ such that

μ(ω) = πU(ϕ|(W∗)∗(ω)) =
∑n

i=1
ω(αi)ei

for all ω ∈ (W∗)∗. A vector ω of (W∗)∗ belongs to A0 if and only if μ(ω) = 0, i.e., if
ω(αi) = 0 for 1 ≤ i ≤ n. It follows immediately that A0 ∩W has finite codimension
in W and, moreover, given w ∈ W , one has w ∈ A0 if and only if αi(w) = 0 for all
1 ≤ i ≤ n. Hence, A0 ∩ W contains all but finitely many vectors of E.

Recall that ϕ · W = ϕ−1(W⊥)⊥ ∩ V . Clearly, W⊥ = U∗, and since ϕ−1(B)⊥ =
ϕ(B⊥) for any subspace B of V∗E , we conclude that

ϕ−1(U∗)⊥ = ϕ((U∗)⊥) = ϕ((W∗)∗).

Hence ϕ · W = ϕ((W∗)∗) ∩ V . Since A0 ⊂ ϕ((W∗)∗), we have A0 ∩ W ⊂ ϕ · W ,
and so ϕ · W contains all but finitely many vectors of E. On the other hand,

ϕ((W∗)∗) ⊂ (W∗)∗ ⊕ πU(ϕ((W∗)∗)) = (W∗)∗ ⊕ im μ.

This implies ϕ · W ⊂ W ⊕ im μ, and consequently ϕ · W ∈ X.
Next, a trivial modification of the argument at the end of the proof of Theorem 2.1

for ind-grassmannians shows that ϕ induces an automorphism of ind-varieties

ϕ̃ : X → X.

Finally, the fact that ϕ̃′ ◦ ϕ′′ = ˜ϕ′ ◦ ϕ̃′′ follows from the realization of ϕ̃ as an
inverse limit of morphisms of finite-dimensional grassmannians where the property

ϕ̃′
n ◦ ϕ′′

n = ϕ̃′
n ◦ ϕ̃′′

n is obvious.
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The ind-variety X is the disjoint union of the ind-grassmannians Gr(Wk, Ek, V )

for k ∈ Z. These closed ind-subvarieties are not stable with respect to this action.

Example A.3 Let a reverse sequence be a set parameterized by Z<0. The vectors in
VE and V∗E can be written respectively as x = ∑

i>0
ωie−i + ∑

i>0
uiei ∈ VE , y =

∑

i>0
wie

∗−i + ∑

i>0
νie

∗
i ∈ V∗E where ω = (. . . , ω−2, ω−1) and w = (. . . , w−2, w−1)

are reverse sequences of complex numbers, and u = (u1, u2, . . .), ν = (ν1, ν2, . . .)

are usual sequences of complex numbers. In addition, u and w are finitary, i.e., have
at most finitely many nonzero entries. In what follows, we write simply (ω, u) for
vectors in VE , and (w, ν) for vectors in V∗E .

Consider the shift (linear) operator Sh : VE → VE

Sh((ω, u)) = ((. . . , ω−3, ω−2), (ω−1, u1, u2 . . .)).

One checks immediately that Sh is an element of the group G(VE, V∗E) with Sh

having the form

Sh((w, ν)) = ((. . . , w−2, w−1, ν1), (ν2, ν3, . . .)).

Moreover, Sh · W belongs to Gr(W 1, E1, V ), and in fact Sh · Gr(W, E, V ) =
Gr(W 1, E1, V ). In addition, we note that

dim πU(Sh((W∗)∗)) − dim πU(Sh−1((W∗)∗))
= dim πW∗(Sh(U∗)) − dim πW∗(Sh

−1
(U∗)) = 1.

This example motivates the following.

Definition A.4 Let ϕ ∈ G(VE, V∗E). We define the integer

d(ϕ) = d(ϕ) := dim πU(ϕ((W∗)∗)) − dim πU(ϕ−1((W∗)∗))
= dim πW∗(ϕ(U∗)) − dim πW∗(ϕ

−1(U∗))

to be the degree of ϕ. (The latter equality follows immediately from the fact that
dim im (πU ◦ ϕ|(W∗)∗) = dim im (πW∗ ◦ ϕ|U∗) checked in the proof of Proposition
A.2.)

Proposition A.5 Given ϕ ∈ G(VE, V∗E) and k ∈ Z, one has ϕ · Gr(W, E, V ) =
Gr(Wk, Ek, V ) if and only if d(ϕ) = k.

Proof It suffices to check that the condition ϕ · W ∈ Gr(Wk, Ek, V ) is equivalent
to d(ϕ) = k. Since ϕ · W belongs to X, the condition ϕ · W ∈ Gr(Wk, Ek, V ) is
equivalent to the equality

codim ϕ·W((ϕ · W) ∩ W) − codim W((ϕ · W) ∩ W) = k.

We have ϕ · W = ϕ((W∗)∗) ∩ V and W ⊂ (W∗)∗, hence

(ϕ · W) ∩ W ⊂ (ϕ((W∗)∗) ∩ V ) ∩ (W∗)∗ = A0 ∩ V = A0 ∩ W
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where A0 = (W∗)∗ ∩ ϕ((W∗)∗). Moreover, the opposite inclusion is clear, so (ϕ ·
W) ∩ W = A0 ∩ W . Therefore, we need to prove that

codim ϕ((W∗)∗)∩V (A0 ∩ W) − codim W(A0 ∩ W) = d(ϕ).

As was shown in the proof of Proposition A.2, there exist n ∈ Z>0 and
α1, . . . , αn ∈ W∗ such that πU(ϕ|(W∗)∗(ω)) = ∑n

i=1 ω(αi)ei for all ω ∈ (W∗)∗,
and A0 = {ω ∈ (W∗)∗ | ω(αi) = 0, 1 ≤ i ≤ n}. Hence, A0 ∩ W = {w ∈ W |
αi(w) = 0, 1 ≤ i ≤ n} and

codim (W∗)∗A0 = codim W(A0 ∩ W) = dim πU(ϕ((W∗)∗)). (27)

It remains to check that codim ϕ((W∗)∗)∩V (A0 ∩ W) = dim πU(ϕ−1((W∗)∗). This
is done essentially by the same argument as above. Indeed, the argument in the proof
of Proposition A.2 now shows that there exist m ∈ Z>0 and α̃i ∈ W∗, 1 ≤ i ≤ m,
such that πU(ϕ−1|(W∗)∗(ω)) = ∑m

i=1 ω(̃αi)ei for ω ∈ (W∗)∗. This, together with
fact that dim πU(ϕ−1((W∗)∗)) < ∞, implies that, given (ω, u) ∈ VE , the condition
ϕ−1((ω, u)) ∈ (W∗)∗ is equivalent to a finite system of linear equations on finitely
many of the coordinates of (ω, u). Thus,

codim ϕ((W∗)∗)∩V (A0 ∩ W) = codim ϕ((W∗)∗)A0 = codim ϕ((W∗)∗)(ϕ((W∗)∗) ∩ (W∗)∗)
= codim (W∗)∗((W∗)∗ ∩ ϕ−1((W∗)∗)) = dim πU(ϕ−1((W∗)∗)).

The proof is now complete.

Corollary A.6 The definition of d(ϕ) does not depend on the choice of W in the
following sense: in the definition of d(ϕ) one can replace W by any subspace W ′ ⊂
V which is ˜E-commensurable with W , and U — by any direct complement U ′ of W ′
in V such that codim U ′ 〈U ′ ∩ ˜E〉C < ∞.

Proof The claim follows directly from Proposition A.5 as the ind-varieties
Gr(Wk, Ek, V ) remain unchanged under a replacement W � W ′, U � U ′.

Now we are ready to describe the structure of the G(VE, V∗E)-action on X in
more detail. In particular, we prove that the degree defines a grading on the group
G(VE, V∗E). In the next theorem we set X(k) = Gr(Wk, Ek, V ) for k ∈ Z. Then
X(0) = Gr(W, E, V ) and X = ⊔

k∈Z
X(k).

Theorem A.7 Given d ∈ Z, set Gd(VE, V∗E) := {ϕ ∈ G(VE, V∗E) | d(ϕ) = d}.
Then

i) ϕ · X(k) = X(k + d(ϕ)) for all ϕ ∈ G(VE, V∗E), k ∈ Z;
ii) d(ϕ ◦ ϕ′) = d(ϕ) + d(ϕ′) for all ϕ, ϕ′ ∈ G(VE, V∗E);

iii) G0(VE, V∗E) is a normal subgroup of G(VE, V∗E) whose cosets are
Gd(VE, V∗E), d ∈ Z.

Proof i) We have d(ϕ−1) = −d(ϕ) by the definition of degree. This implies that
if ϕ · X(0) = X(d) then ϕ−1 · X(0) = X(−d). In particular, since Sh · X(n) =
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X(n + 1) and consequently Shk · X(n) = X(n + k), we obtain Sh−k · X(n) =
X(n − k) for all k, n ∈ Z.

We claim that if ϕ ·X(0) = X(0) then ϕ ·X(k) = X(k) for all k ∈ Z. Indeed,
assume that ϕ ·X(0) = X(0) and pick an integer k. We have (Sh−k ◦ϕ)·X(0) =
Sh−k · (ϕ · X(0)) = Sh−k · X(0) = X(−k). By our observation in the first
paragraph, we conclude that (Sh−k ◦ ϕ)−1 · X(0) = X(k), i.e.,

(ϕ−1 · Sh−k) · X(0) = ϕ−1 · (Shk · X(0)) = ϕ−1 · X(k) = X(k).

This clearly implies ϕ · X(k) = X(k).
Now, assume that ϕ · X(0) = X(d), i.e., that d(ϕ) = d . Then (Sh−d ◦ ϕ) ·

X(0) = Sh−d · X(d) = X(0). Thus, by the previous paragraph, for all k ∈ Z

we have (Sh−d ◦ ϕ) · X(k) = X(k), i.e.,

ϕ · X(k) = Shd · X(k) = X(k + d).

ii) Follows immediately from (i).
iii) Follows immediately from (ii).

A.3 Matrix Realization

Consider the spaces VE = (W∗)∗ ⊕ U , V∗E = W∗ ⊕ U∗, and assume that the
isomorphism η : W∗ → U maps e∗−i to ei for i ∈ Z>0. Then the pairing VE ×V∗E →
C is identified with the pairing

(U∗ ⊕ U) × (U∗ ⊕ U) → C : ((γ, y), (κ, z)) �→ 〈(γ, y), (κ, z)〉
= γ (z) + κ(y), y, z ∈ U, γ, κ ∈ U∗.

This allows us to denote the group G(VE, V∗E) = G(U∗ ⊕ U, U∗ ⊕ U) simply by
GU .

We now present an explicit matrix realization of the group GU . We have a fixed
basis {e1, e2, . . .} of U , and we identify U∗ ⊕ U with the space {(γ, y)} where
γ = (. . . , γ−2, γ−1) are reverse sequences and y = (y1, y2, . . .) are finitary usual
sequences. We consider matrices whose rows and columns are parameterized by the
ordered set Z \ {0} = Z<0 � Z>0. Such a matrix M naturally splits into four blocks

Let J be the subset of such matrices satisfying the following conditions:

• each row of A and each column of D is finitary;
• C is a finitary matrix.

(28)

Matrices from J act on U∗ ⊕ U via left multiplication: one considers vectors of
U∗ ⊕ U as columns

(γ, y)T =
(

γ T

yT

)

,

and we have (γ, y)T �−→ ψ(γ, y)T for ψ ∈ J .
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Given a matrix ψ ∈ J , we let ψ denote the reflection of ψ with respect to its

antidiagonal. Clearly, ψ = ψ . One checks immediately that ψ belongs to J , and
that ψ1ψ2 = ψ2 ψ1. Furthermore, if γ := (γ−1, γ−2, γ−3, . . .) for a reverse
sequence γ = (. . . , γ−3, γ−2, γ−1) and y := (. . . , y3, y2, y1) for a finitary
sequence y = (y1, y2, y3, . . .), then we have ψ(γ, y)T = (γ, y)T ψ for all
(γ, y) ∈ U∗ ⊕ U , where (γ, y)T = (y, γ ).

Let ˜GU be the group of automorphisms of VE with matrices ψ such that ψ , ψ−1 ∈
J .

Theorem A.8 The group GU coincides with ˜GU .

Proof First, we prove that GU is contained in ˜GU . Pick an operator ϕ ∈ GU . Since
πU ◦ (ϕ|U) is a well-defined operator on the countable-dimensional space U , it is
represented by a (unique) matrix D = (di,j )i,j∈Z>0 with finitary columns.

Next, Lemma A.1 implies that dim im (πU ◦ (ϕ|U∗)) < ∞. Moreover, according
to the proof of Lemma A.1 there exist n ∈ Z≥0 and vectors c1, . . . , cn ∈ U such
that πU(ϕ|U∗(γ )) = ∑n

i=1 γ (ci)ei for all γ ∈ U∗. This means that πU ◦ (ϕ|U∗) can
be represented as a finitary matrix C = (ci,−j )i,j∈Z>0 , where ci = ∑

j≥1 ci,−j ej .
Let πU∗ be the projection operator U∗ ⊕U → U∗. The operator πU∗ ◦ (ϕ|U) is an

operator from the space U of finitary sequences to the space U∗ of arbitrary reverse
sequences, and is therefore given by a matrix B = (b−i,j )i,j∈Z>0 .

Finally, given γ ∈ U∗, we have πU∗(ϕ|U∗(γ ))(ei) = ϕ(γ )(ei) = γ (ϕ(ei)) =
γ (πU(ϕ(ei))). There exist linear functions βj ∈ U∗, j ∈ Z>0, such that πU(ϕ(y)) =
(β1(y), β2(y), . . .). Since πU(ϕ(ei)) belongs to U , there exists k(i) ∈ Z>0 such that
βj (ei) = 0 for j > k(i), i.e., πU(ϕ(ei)) = ∑k(i)

j=1 βj (ei)ej . Thus, πU∗ ◦ (ϕ|U∗) can
be represented as a matrix with finitary rows A = (a−i,−j )i,j∈Z>0 , where a−i,−j =
βj (ei).

It follows that ϕ ∈ GU can be represented by invertible matrices from L. This
conclusion applies also to the inverse operator ϕ−1 by the same argument.

In order to verify the inclusion ˜GU ⊂ GU , let now ψ be a matrix from L such
that ψ−1 ∈ L. Then the linear operator on U∗ ⊕U with matrix ψ is the restriction to
U∗ ⊕ U of the operator dual to the operator defined by ψ . Indeed,

〈ψ(γ, y)T , (γ ′, y′)T 〉 = ψ(y, γ )T (γ ′, y′)T = (γ, y)T ψ(γ ′, y′)T
= (γ, y)T ψ(γ ′, y′)T = 〈(γ, y)T , ψ(γ ′, y′)T 〉, (29)

where the three middle terms are products of two or respectively three matrices.

Moreover, the invertibility of ψ follows from the equality ψ
−1 = ψ−1 which is

a consequence of the relation ψ1ψ2 = ψ2ψ1. This shows that ψ determines an
operator from GU .

Remark A.9 Finally, the reader will notice that if in the definition of J we replace
the ordered set Z \ {0} = Z<0 � Z>0 by any ordered set which is the disjoint union
O1 � O2 of two linearly ordered countable sets with the condition r < s for r ∈
O1, s ∈ O2, and define a group by imposing the conditions (28), we will obtain
a group isomorphic to GU . Of course, in such a setting the matrix of the operator
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ϕ = ϕ∗|U∗⊕U , for a given ϕ ∈ GU with matrix ψ , will not be ψ as defined above,
and its form will depend on the choice of O1 and O2. Moreover, there will also be
analogues of the operator Sh, and we leave it to the reader to define one.

The above remark is used in the proof of Theorem 2.1 presented in Section 6.
Finally, using the matrix form of the group GU given by Theorem A.8, it is

straightforward to check that GU is nothing but the group of continuous automor-
phisms of U∗ ⊕ U as a Tate space, see, for instance, [9]. In other words, GU

is the group known as Japanese GL(∞), and G0(U, U∗) is simply the connected
component of the identity in G(U, U∗) = GU .
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